86
Numerical Modeling Laboratory Yonsei University 홍 홍 홍 홍홍홍홍홍 홍홍홍홍홍홍홍 홍홍홍홍홍 (Numerical Weather Prediction, NWP)

대기과학에서의 수치모델링 (Numerical Weather Prediction, NWP)

  • Upload
    shalom

  • View
    412

  • Download
    3

Embed Size (px)

DESCRIPTION

대기과학에서의 수치모델링 (Numerical Weather Prediction, NWP). 홍 성 유 연세대학교. 순서. 수치예보에 대한 개념 및 역사 수치 모형의 구성 WRF 모형의 특성 예측도 한계. 홍성유 ( 연세대 ). 현업 모델 개발 경력. 관련 논문 : 국내 (15), 국제 SCI (34). 한국형 전산예보 시스템 개발 ( 서울대 , 1986-1989). 미국 기상청 현업모델의 개발 (NCEP/EMC, 1993-2000). - PowerPoint PPT Presentation

Citation preview

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

홍 성 유연세대학교

홍 성 유연세대학교

대기과학에서의 수치모델링(Numerical Weather

Prediction, NWP)

대기과학에서의 수치모델링(Numerical Weather

Prediction, NWP)

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

•수치예보에 대한 개념 및 역사

•수치 모형의 구성

•WRF 모형의 특성

•예측도 한계

•수치예보에 대한 개념 및 역사

•수치 모형의 구성

•WRF 모형의 특성

•예측도 한계

순서순서

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

홍성유 홍성유 (( 연세대연세대 ))

한국형 전산예보 시스템 개발 ( 서울대 , 1986-1989)한국형 전산예보 시스템 개발 ( 서울대 , 1986-1989)

현업 모델 개발 경력현업 모델 개발 경력

미국 기상청 현업모델의 개발 (NCEP/EMC, 1993-2000)미국 기상청 현업모델의 개발 (NCEP/EMC, 1993-2000)

적운모수화 (Hong and Pan 1998, MWR) : 1998 년 현업구름물리과정 (Hong et al. 1998, MWR) : 1996 년 현업경계층 물리 (Hong and Pan 1996, MWR) : 1995 년 현업경계조건 (Hong and Juang, MWR) : 1996 년 현업현업모형 비교 (Nagata et al. 2001, BAMS) : 미기상청 대표미기상청 중기예보 모형 지침서 (Hong 2000, http://emc.ncep.noaa.gov) 차세대 전구모델의 개발 (1998-2000)차세대 전구모델의 개발 (1998-2000)

차세대 지역모델 (WRF) 의 개발 (2001-)차세대 지역모델 (WRF) 의 개발 (2001-)

관련 논문 : 국내 (15), 국제 SCI (34)

한국형 전구모형의 개발 (2002-)한국형 전구모형의 개발 (2002-)

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

일기예보는 어떻게 만들어 지는가 ?

관측 예보

NO!

그러면 ??

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

일기예보는 어떻게 만들어 지는가 ?

관측자료처리

분석

관측 예보

수치 모델링

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

일기예보는 어떻게 만들어 지는가 ?

Step1: 관측

Step2: 자료처리

• 지상기상관측

• 고층기상관측 레이다관측

• 위성기상관측

• 해양기상관측

• 통신용 컴퓨터를 통한 전세계 기상자료의 수집 → 편집 , 가공

• 수집된 기상자료로 각종일기도와 예보자료를 작성

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

대기현상 법칙은 ?

열역학 법칙

역학 법칙

• 열역학 제 2 법칙 → 에너지보존

열 = 에너지 + 일 p

v

H c T p

c T p

V00000000000000

( 가속도 )

힘 = 질량 × 가속도

• 질량 ≒ 1 kg/m³

• 힘 : 기압경도력 , 코리올리힘 , 마찰력 … 공기 ~

1kg/m³

rF

pF

cF

운동량 보존

질량 보존

수분 보존

이상기체 방정식

에너지 보존 ( 열역학 법칙 )

Numerical Modeling LaboratoryNumerical Modeling Laboratory

대기 현상의 법칙 ?지배 방정식

질량의 시간변화 = 0

수분의 시간변화 = 증발 - 응결

열 = 에너지 + 일

F : 기압경도력 , 중력 , 마찰력 , 원심력 , 코리올리힘 F ma

10

dM

M dt

dqE C

dt

p RT

v

dT dQ C p

dt dt

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

V. Bjerknes (1904) pointed out for the first time that there is a complete set of

7 equations with 7 unknowns that governs the evolution of the atmosphere:

2d

pdt

v

F v- (1-3) 운동량 보존

The governing equations

.( )t

v (4)

이상기체 상태방정식 (5)

질량 보존 ( 연속방정식 )

1p

ds d QC

dt dt T

(6)

dqE C

dt 수증기 보존 (7)

열역학 제 1 법칙 ( 에너지 보존 )

p RT

7 equations, 7 unknown (u,v,w,T, p, den and q)solvable

컴퓨터 모델을 이용하여 대기의 운동을 지배하는 역학과정과 물리과정을 수식으로 풀어 미래 대기의 상태를 예측하는 것 .

Numerical Modeling LaboratoryNumerical Modeling Laboratory

수치예보란 ??

1. 관 측

2. 자료처리 3. 수치모델링 4. 분 석

5. 예 보

보다 정확한 물리과정보다 정학한 초기자료 예측성 향상 !!

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

수치 예보의 역사

1904 : Norwegian V. Bjerknes (1862-1951) :날씨 예측 방법의 수학적 표현 기상 예보 위한 방정식 개발

 1922 : British L. F. Richardson (1881-1953) :

수치 예측 모형 개념 정립 및 최초 계산 시도 ( 실패 )1. 원시방정식 사용2. 계산불안정3. 초기 조건의 문제점

 1939 : Swedish C.-G. Rossby : 비발산 와도 방정식 개발 큰 규모 행성파 예측  1948, 1949, J. G. Charney (1917-1981)

Scale analysis 를 통하여 작은 규모 운동 제거 지균풍 가정 : 정역학방정식과 지균풍방정식 이용

소규모 파동 제거 , 일기의 변화에 중요한 영향 미치는 큰 규모

파동만 남김( 순압 준지균 잠재와도 방정식 )

 1950 : Princeton Group (Charney, Fjortoft, von Newman)

ENIAC (Electrical Numerical Integrator and Computer) 첫 수치예보에 성공 !

수치예보의 선구자 L.F. Richardson, 그리고 정치학

연세대학교 홍성유

13

Richardson 의 군비 예측 수치 방정식

VNKORATPxXYdt

dx1514131211 )(

RPTySOVPLYXdt

dy232221 )(

)ln(lnln *

33 XXdt

Xd xXX lnln 3231

* ,)ln(ln

ln *43 YY

dt

Yd

, yYY lnlnln 4241*

x,y : 소련의 국방비 x′ : 전쟁에 사용하지 않은 국방비

ATP : 미국이 소련에 대한 긴장감 RPT : 소련이 미국에 느끼는 긴장감

VN : 미국이 베트남 전쟁에서 지출한 국방비 KOR : 한국전쟁에서 지출한 국방비

SOVPL : 소련의 경제 제도에 대한 지수

14

실제 자료와 시뮬레이션 결과- 국방비 예산의 연별 경향

미국 소련

실제값

------ 시뮬레이션

단위 : 1970 년 미화 10 억불

⇒ 기상학의 수치모형과 매우 유사

15

25

35

45

55

65

75

1950 1960 1970 1980 1990 2000

NCEP operational S1 scores at 36 and 72 hrover North America (500 hPa)

Year

"useless forecast"

"perfect forecast"

72 hr forecast36 hr forecast

10-20 years

예측오차의 경향 (1955-1998) : 미국기상청

하루 / 8 년

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

수치 예보의 예측성 향상 원인 

• supercomputers 

• physical processes 

• initial conditions

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

 Supercomputers 

18

 Table 1 Major operational implementations and computer acquisitions at NMC between 1955 and 1985 (adapted from Shuman, 1989)

Year  Operational model  Computer

 1955 Princeton 3-level quasi-geostrophic model (Charney, 1954). Not used by the forecasters

IBM 701

1958 Barotropic model with improved numerics, objective analysis initial conditions, and octagonal domain.

 IBM 704

1962  3-level quasi-geostrophic model with improved numerics

IBM 7090 (1960)

IBM 7094 (1963)

 1966 6-layer primitive equations model (Shuman and Hovermale, 1968)

 CDC 6600

 

1971

 Limited-area fine mesh (LFM) model (Howcroft, 1971) (first regional model at NMC)

 

 

1974 Hough functions analysis (Flattery, 1971)  IBM 360/195

 1978  7-layer primitive equation model (hemispheric)  

 

 

1978

Optimal Interpolation (Bergman1979)  Cyber 205

Aug 1980  Global spectral model, R30/12 layers (Sela, 1982)  

 

 March 1985  Regional Analysis and Forecast System based on the Nested Grid Model (NGM, Phillips, 1979) and Optimal

Interpolation (DiMego, 1988)

 

 

19

Table 2: Major changes in the NMC/NCEP global model and data assimilation system since 1985 (from a compilation by P. Caplan, pers. comm., 1998)  

 Year  Operational model  Computer acquisition

April 1985

 

GFDL physics implemented on the global spectral model with silhouette orography, R40/ 18 layers

 

Dec 1986 New Optimal Interpolation code with new statistics  

1987   2nd Cyber 205

 

Aug 1987

Increased resolution to T80/ 18 layers, Penman-Montieth evapotranspiration and other improved physics (Caplan and White, 1989, Pan, 1989)

 

Dec 1988 Implementation of Hydrostatic Complex Quality Control (Gandin, 1988)

 

1990   Cray YMP/8cpu/

32megawordsMar 1991 Increased resolution to T126 L18 and improved physics, mean

orography. (Kanamitsu et al, 1991) 

 June 1991 New 3D Variational Data Assimilation (Parrish and Derber, 1992, Derber et

al, 1991) 

Nov 1991 Addition of increments, horizontal and vertical OI checks to the CQC (Collins and Gandin, 1990)

 

7 Dec 1992 First ensemble system: one pair of bred forecasts at 00Z to 10 days, extension of AVN to 10 days (Toth and Kalnay, 1993, Tracton and Kalnay, 1993)

 

Aug 1993 Simplified Arakawa-Schubert cumulus convection (Pan and Wu, 1995). Resolution T126/ 28 layers

 

Jan 1994   Cray C90/16cpu/

128megawordsMarch 1994 Second ensemble system: 5 pairs of bred forecasts at 00Z, 2

pairs at 12Z, extension of AVN, a total of 17 global forecasts every day to 16 days

 

20

10 Jan 1995 New soil hydrology (Pan and Mahrt, 1987), radiation, clouds, improved data assimilation. Reanalysis model

 

 

25 Oct 1995 Direct assimilation of TOVS cloud-cleared radiances (Derber and Wu, 1997). New PBL based on nonlocal diffusion (Hong and Pan,

1996). Improved CQC

Cray C90/16cpu/

256megawords

5 Nov 1997 New observational error statistics. Changes to assimilation of TOVS radiances and addition of other data sources

 

13 Jan 1998 Assimilation of non cloud-cleared radiances (Derber et al, pers.comm.). Improved physics.

 

June 1998

 

Resolution increased to T170/ 40 layers (to 3.5 days). Improved physics. 3D ozone data assimilation and forecast. Nonlinear increments in 3D VAR. Resolution reduced to T62/28levels on Oct. 1998 and upgraded back in

Jan.2000

IBM SV2 256 processors

 

June 2000

 

Ensemble resolution increased to T126 for the first 60hrs  

May 2001 NEW cloud scheme, convection scheme, SSMI data assimilation  

2002 MRF 254,L64  

2005 GFS 382, L64  

Cray T90

Cray T3E

Cray SV1Fujitsu VPP700E

NEC SX-5ENIAC,1946

고성능 수퍼컴퓨터 –수치 모델과 함께 발달

 Initial condition(data assimilation : 자료동화 ) 

10

15

20

25

30

35

40

45

50

1975 1980 1985 1990 1995 2000

500MB RMS FITS TO RAWINSONDES6 HR FORECASTS

A

YEAR

RM

S D

IFFE

RE

NC

ES

(M

)

Southern Hemisphere

Northern Hemisphere

Fig. 1.6: RMS observational increments (differences between 6 hour forecast and rawinsonde observations) for 500hPa heights (data courtesy of Steve Lilly, NCEP).

북반구가 남반구보다 좋음

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

여러가지 관측자료여러가지 관측자료

Data Assimilation

• Model 1°X 1° resolution, 20 levels

u, v, T, q, Ps, Tg6 6360 180 20 1.3 10 4 var 5 10iabl

• observation : 4 510 ~ 10 non-uniform distribution

3 hour window

• Data assimilation cycle 1) data checking

2) objective analysis

3) Initialization: dynamical adjustment

4) short-range fcst for first guess

Global analysis (statistical interpolation) and balancing

Observation (+/-3hrs) Background of FG

Initial Conditions

Global forecast model

(operational forecasts)

6 hour forecast

1) Empirical analysissuccessive correction method (SCM) – Cressman

(1959)① first guess

0 (0 : #, : )bi if f iteration b background

② iteration0

1 1

2

1

( )ni

ni

kn nik k k

n n ki i k

nik

k

w f ff f

w

nkf

0kf : observation

: the value of the field estimate evaluated at the observation point k (obtained by interpolation from the surrounding grid points)

2

thk

thn

: error information

nikw

2 2

2 2n ik

n ik

R r

R r

2 2ik nr R

2 2ik nr R

: weighting factor

= 0

for

for

x

x

x

i

k

radius of influence

2) Advanced analysis (statistical information, model 사용 )

① 3D VAR

cost fn: 1 10 0

1 1

2 ( ) ( ) ( ) ( ( )) ( ( ))

( : cov , : cov )

T Tb bJ x x x B x x y H x R y H x

B background error ariance R observational error ariance

minimize J(x)

② Kalman filtering

1 1 1

1

( ) [ ( )] ( )

( : mod )

f ai i i i

i

x t M x t t

M nonlinear el fcst

③ 4D VAR

cost fn includes the time evolution

1 0 1 00 0 0 0 0 0

1

1 1( ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ) ( ( ) )

2 2

Nb T b T

i i i i ii

J x t x t x t B x t x t H x y R H x y

bJ 0J

VAR 초기자료는 모델의 역학 열역학 조건에 부합…

Standard 4D-Var

Initial guess

Forward Integration

NLM X, J

▽J ADJM

Backward Integration

Observations

Minimization Process

Revised Initial Conditions

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

 Model - Dynamics : Speed - Physics : Predictability

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

Step3: 수치적분

y

v

x

u

p

c

H

p

T

p

T

y

Tv

x

Tu

t

T

p

RT

t

Ffuyp

v

y

vv

x

vu

t

v

Ffvxp

u

y

uv

x

uu

t

u

p

y

x

31

ct x

Ex)

; advection eq.

1) FDM ( 유한 차분법 )

BC BCL2 1

2 1t t t

 Finite difference method (FDM) : 지역 모형

 Spectral method (SPM) : 전구모형

  Finite element method (FEM) : 중간 - 공학

Dynamics : model frame

No variation between grid points

M 개의 grids

2) Spectral Method ( 분광법 )

M 개의 function

- Determine basis function to get

( )H x

- Expand in terms of a time series

(basis funct ), … infinite ( )me x 1 nm m m

2

1

, ( ) ( )m

m mm m

x t t e x

* Resolution Increases

x decreases

m increases

L

Numerical Modeling LaboratoryNumerical Modeling Laboratory

수치모델링Dynamics

Physics

강수과정

단파복사

기압경도력 , 중력 , 원심력 , 코리올리힘 ..

장파복사

난류효과

현열 , 잠열

지면마찰효과

식생작용

해수면온도

적운대류

오염물질

온실기체

O3

Numerical Modeling LaboratoryNumerical Modeling Laboratory

수치예보 모델의 분류

역학체계에 의한 구분

규모에 의한 구분

목적에 따른 구분

Hydrostatic Non-hydrostatic

수평규모 >> 연직규모Large time step

작은 수평규모 ( 집중호우 등 ..)Small time step

Global Regional

50-100 km, 2 주까지 예보가능초기조건 필요

10-30 km, 3 일까지 예보가능초기조건 & 경계조건 필요

FORECAST Forcing RESPONSE

NWP : 단기예보 (~2 주 )GCM (General circulation

model)

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

수치 모델링

대기과학의 집합체

대기역학 대기물리

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

NML

Numerical Modeling LaboratoryNumerical Modeling Laboratory

WRF Model

The Weather Research and Forecasting Model (WRF)

Mesoscale grid model

Global model

Mesoscale model

관측 및 자료처리

Numerical Modeling LaboratoryNumerical Modeling Laboratory

Background on WRF Model “Weather Research and Forecasting”

Co-developed by research and operational communities

Replaces MM5 and Eta models

Current version 2.2

Platforms (for model): Linux, IBM/AIX, SGI, Cray, Darwin… and Sun (hideous)

Numerical Modeling LaboratoryNumerical Modeling Laboratory

WRF Model Process

Model Process

PhysicsParameterization

초기자료 및 경계자료 수치적분 모형 결과

Dynamics

Conservation Eqs.

MicrophysicsCumulus Physic

PBLLand SfcSW rad.LW rad.

자료 생성(WRFSI)

WRF Model

Numerical Modeling LaboratoryNumerical Modeling Laboratory

WRF Model Process

Numerical Modeling LaboratoryNumerical Modeling Laboratory

WRF Model

• Terrain-following pressure vertical coordinate

• Arakawa C-grid

• 3rd order Runge-Kutta split-explicit time integration

• Conserves mass, momentum, entropy, and scalars using flux form prognostic equations

• 5th order upwind or 6th order centered differencing for advection

• Limited area (not global ???)

(more info - http://www.mmm.ucar.edu/wrf/users/)

WRF 구름물리과정

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

M a j o r m o d i f i c a t i o n s s u g g e s t e d b y H o n g e t a l . ( 2 0 0 3 )

( R u t l e d g e a n d H o b b s , 1 9 8 3 ) ( H o n g e t a l , 2 0 0 3 )

N u m b e r

c o n c e n t r a t i o n o f

c l o u d i c e

3 20( ) 1 0 e x p [ 0 . 6 ( ) ]IN m T T ( ) d

I IN c q

I c e n u c l e i

n u m b e r 3 2

0( ) 1 0 e x p [ 0 . 6 ( ) ]IN m T T 30 01 0 e x p [ 0 . 1 ( ) ]IN T T

I n t e r c e p t

p a r a m e t e r f o r

s n o w SN 0 = 7102 4m 4 6

0 0( ) 2 1 0 e x p { 0 . 1 2 ( ) }SN m T T

old new

WSMMP (WRF-Single-Moment- MicroPhysics)Hong, Dudhia and Chen (2004)

23 –25 June 1997Heavy Rainfall

Case(Vertically integrated

cloud ice)

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

Overview of the WSMMP- HDC2004 (WSM3, WSM5, WSM6)

Overview of the WSMMP- HDC2004 (WSM3, WSM5, WSM6)

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

Idealize 2D squall line experiment- 250 m horizontal resolution

WSM6WSM6WSM5WSM5WSM3WSM3

Precipitation

Hydrometer

WSM6 WSM5

WSM3

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

Comparison of WSM6 and PLIN - Hong et al. (2006, to be submitted to Mon.

Wea.Rev.)

Comparison of WSM6 and PLIN - Hong et al. (2006, to be submitted to Mon.

Wea.Rev.)

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

Comparison of WSM6 and Lin

WSM6WSM6 PLINPLIN

Water vapor

Rain

Cloud ice

Snow

Cloud water

Piacr, Psacr

Pgfrz, P

iacr, Psa

cr, Pgacr

Pimlt

Pihmf, Pihtf

Pgmlt, Pgeml

Pcond

Pra

ci,

Psa

ci,

Psa

ut

Praci,

PgaciPsacw, Pgacw

Pra

ut,

Pra

cw,

Psa

cw,

Pgacw

Pracs, Pgacs, Pgaut

Psmlt, Pseml

Graupel

Pidep, Pigen

Pidep

Psdep

Psdep,Psevp

Pgdep

Pgdep

, Pgevp

Prev

p

Water vapor

Rain

Cloud ice

Snow

Cloud water

Piacr, Psacr

Pgfrz, P

iacr, Psa

cr, Pgacr

Pimlt

Pihmf, Pihtf

Pgmlt, Pgeml

Pcond

Pra

ci,

Psa

ci,

Psa

ut

Praci,

PgaciPsacw, Pgacw

Pra

ut,

Pra

cw,

Psa

cw,

Pgacw

Pracs, Pgacs, Pgaut

Psmlt, Pseml

Graupel

Pidep, Pigen

Pidep

Psdep

Psdep,Psevp

Pgdep

Pgdep

, Pgevp

Prev

p

Water vapor

Rain

Cloud ice

Snow

Cloud water

Piacr, Psacr

Pgfrz, P

iacr, Psa

cr, Pgacr

Pimlt

Pihmf

Pgmlt

Pcond

Pra

ci,

Psa

ci,

Psa

ut,

Psfi

Praci,

PgaciPsacw, Pgacw

Pra

ut,

Pra

cw,

Psa

cw,

Pgacw

Pracs, Pgacs, Pgaut

Psmlt

Graupel

Pidep

Pidep

Psdep

Psdep

Pgdep

Pgdep, P

gevp

Prev

p

Psfw

Water vapor

Rain

Cloud ice

Snow

Cloud water

Piacr, Psacr

Pgfrz, P

iacr, Psa

cr, Pgacr

Pimlt

Pihmf

Pgmlt

Pcond

Pra

ci,

Psa

ci,

Psa

ut,

Psfi

Praci,

PgaciPsacw, Pgacw

Pra

ut,

Pra

cw,

Psa

cw,

Pgacw

Pracs, Pgacs, Pgaut

Psmlt

Graupel

Pidep

Pidep

Psdep

Psdep

Pgdep

Pgdep, P

gevp

Prev

p

Psfw

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

WSM6 & PLIN ( real case : 0000 UTC 15 July 2001 )

qg

WSM6WSM6 PLINPLIN OBSOBS

WRF-SINGLE-MOMENT-MICROPHYSICS SCHEME

Bulk parameterization

RH83, WSM5 - 5 species of hydrometeors, , , ,v c i r sq q q q q

D89, WSM3- 3 species of hydrometeors, ,v ci rsq q q

PLIN, WSM6 - 6 species of hydrometeors, , , , ,v c i r s gq q q q q q

WSMMPS 3

Calculate production terms due to

Microphysical processes

Sedimentation

Structure of WSM32D

N=Δt/Δtcld

Nv=(VtΔtcld/ΔZ)max

Update variables(qv, qci, qrs, T)

module_mp_wsm3.f

SUBROUTINE wsm3

SUBROUTINE wsm32D

SUBROUTINE wsm3init

REAL FUNCTION rgmma(x)

REAL FUNCTION fpvs

SUBROUTINE microphysics_driver

CALL wsm3

SUBROUTINE phy_init

CALL wsm3init

DO j = jts, jte CALL wsm32DENDDO

WSMMPS 3T>0oC

T≤0oC

qrs (rain)

q (vapor)

qrs (snow)qci (ice)

qci (cloud)paut1pracw

paut2praci

pres1

pres2

pcon

pisdpgen

• paut1 : autoconversion of cloud water • pcon : condensation • pres1 : evaporation/condensation of rain • pracw : accretion of cloud water by rain

• pgen : generation(nucleation) of ice from vapor• pisd : Deposition/Sublimation rate of ice• pres2 : deposition/sublimation rate of snow • paut2 : conversion(aggregation) of ice to snow• praci : accretion of cloud ice by snow

T>0oC

T≤0oC

WSMMPS 3

Tunable parameters

WSMMPS 3

Define functions

WSMMPS 3

N=Δt/Δtcld

WSMMPS 3

Sedimentation part

1

21 0(4 ) 1

[ ]6 r

r rr b

r

a bV ms

WSMMPS 3

• Calc. Vt

• Nv=(VtΔtcld/ΔZ)max

Sedimentation part

compute qrs flux

WSMMPS 3

Sedimentation part

WSMMPS 3

find a melting level

Compute freezing/melting→ freezing occurs one layer above the melting level

WSMMPS 3

precipitation

WSMMPS 3

microphysics partT>0oC

4733

1

3

0.1041 min ,

( )

C cc

c w

gE qPaut q

dtN

1

20 0

3

(3 )

4 r

r CR r c rracw b

r

a E N q bP

1 1 112 2 43

0 02 / 2 5 / 2

2 ( 1) 0.31 ( / 2 5 / 2)0.78 11

( ) r

r w r rb

w w r r

N S a bPres

A B D

WSMMPS 3

microphysics partT≤0oC

psaci

1

20 0

03

(3 ), exp[0.05( )]

4 s

s SI s i ssaci SIb

s

a E N q bP E T T

1

2 4 ( 1)11.9 i i i

i i i

q n SPisd

n A B

WSMMPS 3

microphysics partT≤0oC

22 6 82.08 10 (500 10 )2 max 0, /iPaut q dt

1 1 112 2 43

0 02 / 2 5 / 2

4 ( 1) 0.44 ( / 2 5 / 2)0.65 12

( ) s

s i s sb

i i s s

N S a bPres

A B D

11

1.3330

1 4.92 1010 exp(0.1( ) i

cld

Pgen T T qt

WSMMPS 3

update part

mass conservation check

update qv, qci, qrs, T

WSMMPS 3

update part

Numerical Modeling LaboratoryNumerical Modeling Laboratory

Example of WRF FCST.OBS WRF FCST.

Precipitation

Synoptic

▪ 연세대 : 1984-5 년 연구용 준지균 역학 모형 개발

        차세대 수치모형 : YOURS

▪ 서울대 : 1986-1987 년 : VAX - MM4 run ( 폭설 사례 )       1987-1989 년 : 1984 년 8.31-9.1 일 서울 호우 모의

▪ 기상청 : 1989 년 7 월 22 일 : 기상청 예비 모의 시작 1992 년 제한 지역 모형 현업 시작 (KLAPS) 1998 년 전구모형 현업 시작

한국의 수치예보

연구도구로서의 수치모델연구도구로서의 수치모델

역학적 , 열역학적 특성 연구

민감도 실험 (physics, external forcing)

Mechanism 규명

중요 forcing 규명

New theory 개발

시간 공간적 고해상도의 자료

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

화남지방에 상륙한 태풍과 한반도 집중호우와의 관련성

김 계 환 ( 공군 ), 홍 성 유연세대 대기과학과

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

150 250 350

Precipitation (mm)

Ratio(%

)

0

5

10

15

20

25

30

35

150 250 350 850

Precipitation(mm)

Fre

quency

(num

ber)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N TC R TC P TC + R TC

Ratio (

%)

R TC : TC in southern China not to passthe Korean peninsula

P TC : TC passing the Korean peninsula

N TC : Other factors except TC effect

72 %

68 %

121 cases of heavy rainfall over South Korea during 1980-1999

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

Heavy rainfall at Kanghwa during 1200 UTC 4-1200 UTC 6 August, 1998

00 03 06 09 12 15 18 21 00 (UTC)05AUG 06AUG

(mm)

120

90

60

30

0

00 03 06 09 12 15 18 21 00 (UTC)05AUG 06AUG

(mm)

120

90

60

30

0

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

Synoptic analysis

1200 UTC 4 August, 1998

Surface chart GMS composite

Surface chart and GMS sattelite infraed image

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

GFDL TC bogus algorithm Directly, control the intensity of TC in southern China

Intimate correlation between the intensity of tropical cyclone (TC) and heavy rainfall over Korea

Adoption of intensified, weakened, removed tropical cyclone

diagnose and quantify role of tropical cyclone

-TC initialization procedure

(Kurihara et al., 1995)

-GFDL type TC bogus algorithm for MM5

(implemented by Kwon et al., 2002)

To generate other synoptic

variables

(i.e. temperature, mixing ratio,

geopotential height, etc.), use

FDDA

(Four Dimensional Data

Assimilation)

in MM5 option.

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

Model & experiments

Model MM5 version 3

Phsical option

Micro phsics Mixed phase

Cumulus Kain-Fritsch

PBL Blackadar

Radiation RRTM

Map projection

Lambert conformal

Domain Domain 1 Domain 2

Resolution 45km 15km

Grid size 141*141 121*121

Integration time

60 s 20 s

Vertical size 23 sigma layer (model top : 100 hPa)

Iintial data& Lateralboundary

Data

NCEP reanalysis data&

GTS

Model set-up

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

sea level pressure

T970

T980

T1000

T960

NoTC

1200 UTC 4 Aug 1998 24-hr precipitation

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

 불확실성 

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

수치모형을 이용한 대기의 예측성

? 한계 ?대기현상 복잡성(u,v,T,q, etc)

계산상오차(dx=dt=finite)

Lorenz ( 혼돈역학 ) – 2 주

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

예측성이론 – 혼돈역학 (Lorenz)

Charney (1951) : 초기자료와 모델의 불확실성 -> 예측한계 `

Lorenz (1962,1963) : 불안정 역학시스템의 주기성의 한계

목적 : 수치모형이 통계모형보다 좋음도구 : 4 K memory 컴퓨터모델 : 12 개 변수 (heating and dissipation forcing)결과 : 변수의 변화 -> 수년 적분 후 비주기성 확인

초기조건 ( 소수점 3 째자리 ) : 2 개월 후 다른 결과

Round-off error -> 비주기성 결과의 원인

혼돈 역학

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

 

Unstable system(No-periodicity)

Stable system(Periodicity)

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

앙상불 예보

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

time

stochastic

 

 

 

deterministic

Transition : 2-3 days for largesccaleflows

2-3 hours for individual thunderstorm

Shorter for sharply nonlinear parameters

(precip. Diverges faster than 500 mb Z

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

0

0.2

0.4

0.6

0.8

1

0 5 10 15

Anomaly Correlation for the winter of 1997/98 (from 00Z)Controls (T126 and T62) and 10 perturbed ensemble forecasts

mrf126

forecast day

Average of 10 perturbed forecasts

Individualperturbed forecasts

Control (deterministic)forecasts, T126 and T62

anom

aly

corr

ela

tion

Ensemble ( 앙상블 예보 )

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

3) to provide the possibility of an adaptive or targeted observing system. Trace the error source region --> backward integration --> in time, for example 2 days. -- > point to a region or regions where additional observations would be especially useful

4) long-range integration : longer than 1 week, even in a short ranger upto a few days (SAMEX)

예보관이 신뢰함 예보관이 신뢰 못함

스파게티 Diagram

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

  예측성 한계 

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

수치모형을 이용한 대기의 예측성

? 한계 ?대기현상 복잡성(u,v,T,q, etc)

계산상오차(dx=dt=finite)

Lorenz ( 혼돈역학 ) – 2 주

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

Forecast Error Growth and Predictability

Source: Fred Carr

예측시간

오차완전 모델

종관예보현재 수준

Numerical Modeling Laboratory

Numerical Modeling Laboratory

Yonsei UniversityYonsei University

15

25

35

45

55

65

75

1950 1960 1970 1980 1990 2000

NCEP operational S1 scores at 36 and 72 hrover North America (500 hPa)

Year

"useless forecast"

"perfect forecast"

72 hr forecast36 hr forecast

10-20 years

예측오차의 경향 (1955-1998)

2 주 까지 하루 / 8 년 2050 년 ???