17
G Solvation Continuum Electrostatics

G Solvation Continuum Electrostatics. G Solvation sol G = sol G VdW + sol G cav + sol G elec sol G VdW = solute-solvent Van der Waals

Embed Size (px)

Citation preview

Page 1: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

G Solvation

Continuum Electrostatics

Page 2: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

G Solvation

solG = solGVdW + solGcav + solGelec

solGVdW = solute-solvent Van der Waals

solGcav = work to create cavity in solvent

= surface tension x surface area Entropy penalty for rearrangement of

water molecules Evaluate from a series of alkanes

NH

H H

r = 1-5

r = 78.54

Page 3: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

G Solvation solGelec = difference in electrostatic

work necessary to charge ion: solGelec = NA wsoln – NA wgas

Work to transfer ion from vacuum to solution with the same electrostatic potential Work = solGelec = 0

Zie i dqi

i = electrostatic potential for ion i and its ionic atmosphere of neighbors j

Page 4: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

Electrostatic Potential

r = relative dielectric constant

r = 78.54 for water (attenuates interaction)

V(r) = i qi

V(r) = qj qi

4ro rij

i = qj

4ro rij

i(r)

rij

qiqj

uniform dielectric

0

Page 5: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

Screening caused by ionic atmosphere

pj(r) dr = probability of finding an ion j at r to r+dr

rmp = rD = Debye length thickness of ionic atmosphere

pj(r)

rqi qj

uniform solvent dielectric

+

-

-

-

-

-

-

-

-

- -

+

+

+

+

rD

rD = 305 pm(m/m )½ =

1

Page 6: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

Boltzmann distribution

thermal jostling collisions disrupt ionic halo

Nj = No e-i(r)qj

kT

pj(r) dr = 4r2Noj e-i(r)qj

kT dr

Noj = number of ions j in volume V k = R/NA

pj(r)

rqi qj

uniform solvent dielectric

+

-

-

-

-

-

-

-

-

- -

+

+

+

+

rD

Page 7: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

Poisson Equation

Non-electrolyte Solutions or Dilute Solution Limit for Electrolyte Solutions

i(r) = qi pi(r) = charge density i(r) = charge per unit volume (r) (r) =o r(r)

2 i(r) = – i(r)(r)

2 = 2

x2 + 2

y2 + 2

z2

r

i(r)

2i higher

Page 8: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

Poisson Equation– Spherical Ion

the higher the charge density the faster the potential drops

1r 2(r i(r))

r2 = – i(r)(r)

i

ri

i

ij

j

j

j

j

Page 9: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

Screened Coulomb Potential

Point charges, uniform solvent dielectric (r) = ro

qj = zj e

i(r) = +(r) + -(r) = q+N+

V e–i(r)q+

kT + q-N-

V e–i(r)q-

kT

e-i(r)qj

kT 1 – i(r)qj

kT 2 =

j=1

s

q2j

ro kT

Nj

V

Page 10: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

Screened Coulomb Potential

Point charges, uniform solvent dielectric

2(r i(r))r2 = 2 (r i(r))

i(r) = Ar e

-r =

qj

4ro r e

-r

rD = 1

pj(r)

rqi qj

uniform solvent dielectric

+

-

-

-

-

-

-

-

-

- -

+

+

+

+

rD

Page 11: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

Poisson-Boltzmann Equation Continuum Electrostatics with

Background Electrolyte

)()( xuxε )(sinh)(2 xuxκ )(π4 2

ii i

cxxδz

kT

e

*N. A. Baker

Page 12: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

)(π4 2

ii i

cxxδz

kT

e

Poisson-Boltzmann Equation

)()( xuxε )(sinh)(2 xuxκ

*N. A. Baker

Page 13: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

Poisson-Boltzmann Equation Linearized

)()( xuxε )()(2 xuxκ )(π4 2

ii i

cxxδz

kT

e

Page 14: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

sinh

Page 15: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

Electrostatic potential of the 30S ribosomal subunit

http://agave.wustl.edu/apbs/images/images/30S-canonical.html

Top: face which contacts 50S subunit

Page 16: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

Web links http://ashtoret.tau.ac.il/Homepage/courses/Poisson-Boltzmann.pdf http://www.biophysics.org/btol/img/Gilson.M.pdf Nathan A. Baker;

http://www.npaci.edu/ahm2002/ahm_ppt/Parallel_methods_cellular.ppt

Jeffry D. Madura; http://www.ccbb.pitt.edu/BBSI/6-11_class_jm.pdf

Page 17: G Solvation Continuum Electrostatics.  G Solvation  sol G =  sol G VdW +  sol G cav +  sol G elec  sol G VdW = solute-solvent Van der Waals

)()( xuxε )(sinh)(2 xuxκ )(π4 2

iii

c xxδzkTe

Linearized Poisson

-

Boltzmann equation also useful:

iii

c xxδzkT

πexuxκxuxε )(

4)()()()(

22

-

xxxgxu )()(

Free energies and forces obtained from integrals of u