30
© 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences [email protected] Synchronization over Ethernet Standard for a Precision Clock Synchronization Protocol according to IEEE 1588 Synchronous Ethernet according to ITU-T G.8261

© 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences [email protected] Synchronization over Ethernet Standard for a Precision Clock

Embed Size (px)

Citation preview

Page 1: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© 2003-2008 ZHAW

Prof. Hans Weibel, Zurich University of Applied [email protected]

Synchronization over Ethernet

Standard for a Precision Clock Synchronization Protocol according to IEEE 1588

Synchronous Ethernet according to ITU-T G.8261

Page 2: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 2

Who is ZHAW – Zurich University of Applied Sciences?

The School of Engineering is a department of the Zurich University of Applied Sciences (ZHAW)

ZHAW‘s Institute of Embedded Systems has a strong commitment to industrial communications in general and to Ethernet in particular, e.g.

Real-time Ethernet (Ethernet Powerling, ProfiNet, etc.) Synchronization (IEEE 1588) High-availability Ethernet add-ons (MRP, PRP, etc.)

The related R&D activities and services include Hardware assistance and off-load (IP) Protocol stacks Support Engineering and consultancy

Page 3: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 3

Preliminary remark

only Ethernet solutions are taken into account in this presentation (according to workshop planning)

this requires some compromises to be accepted

the big advantage to be exploited is that the same infrastructure can be used for both data transmission and synchronization

Page 4: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 4

The Standard IEEE 1588

Page 5: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 5

The Standard IEEE 1588 PTP Message Exchange

UDP

IP

MAC

Phy

PTP

UDP

IP

MAC

Phy

Master Clock Slave Clock

Delay and

JitterProtocol

Stack

Delay and JitterNetwork

Delay and JitterProtocolStack

Network

PTP

MII MII

PTP Precision Time Protocol (Application Layer)UDP User Datagram Protocol (Transport Layer)IP Internet Protocol (Network Layer)MAC Media Access ControlPhy Physical Layer

optional

Page 6: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 6

The Standard IEEE 1588 Determination of Phase Change Rate (Drift) – one step

Sync(t0k)

t0k

t1k

Master Clock

Slave Clock40

42

44

46

48

50

52

54

56

58

60

62

64

40

42

44

46

48

50

52

54

56

58

60

62

38

Sync(t0k+1)

t0k+1

t1k+1

Δ0

Δ1

Δ0 = t0k+1

- t0 k

Δ1 = t1k+1 - t1

k

Drift = Δ 1 - Δ 0

Δ 1

Page 7: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 7

The Standard IEEE 1588 Determination of Phase Change Rate (Drift) – two step

Follow_up(t0k)

Sync()t0

k

t1k

Master Clock

Slave Clock40

42

44

46

48

50

52

54

56

58

60

62

64

40

42

44

46

48

50

52

54

56

58

60

62

38

Sync()t0

k+1

Follow_up(t0k+1) t1

k+1

Δ0 = t0k+1

- t0 k

Δ1 = t1k+1 - t1

k

Drift = Δ 1 - Δ 0

Δ 1

Δ0

Δ1

Page 8: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 8

The Standard IEEE 1588 Determination of Delay and Offset

Follow_up(t0)

Sync(t0)t0

Delay_Resp(t3)

t3 = t2-O+D

apparent concurrencyO = Offset = ClocksSlave – ClocksMaster

Delay_Req()

t3

t2B

measured values t0, t1, t2, t3

A = t1-t0 = D+O

B = t3-t2 = D-O

Delay D =

Offset O =

A + B2

A - B2

t1 = t0+D+O

A

O

D = Delay

Master Clock Slave Clock40

42

44

46

48

50

52

54

56

58

60

62

64

40

42

44

46

48

50

52

54

56

58

60

62

38

Page 9: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 9

The Standard IEEE 1588 Boundary Clock copes with the Network‘s Delay Fluctuations

PTP

UDP

IP

MAC

Phy

PTP

UDP

IP

MAC

Phy

MAC

Phy

MAC

Phy

Switch with Boundary ClockMaster Clock Slave Clock

Switching Function

PTP

UDP

IP

Slave

PTP

UDP

IP

Master

Page 10: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 10

The Standard IEEE 1588 Topology and „Best Master Clock“

M

M

S

M M

M

S

M M

S

SSSS

Ordinary Clock, Grandmaster: clock selected as „best Master“ (selection basedon comparison of clock descriptors)

Ordinary Clock

Boundary Clock, e.g. Ethernet switch

S: Port in Slave StateM: Port in Master State

Page 11: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 11

The Standard IEEE 1588 Version 2Transparent Clock

Delay_Resp(t3 , ∑corr) Time Stamping

Master Clock Slave Clock

t t

t0Sync(t0 , corr)

t1

Delay_Req(corr + Δr)t3

t2

Sync(t0 , corr + Δs)

Delay_Req(corr)

Δs

Δr

Transparent Clock

Δ Residence Time

Follow_up(t0)

Page 12: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 12

The Standard IEEE 1588 Version 2 Transparent Clock – End-to-End Delay Measurement

M

S

S

S

S

SSync Stream e2e Delay Measurement

TC

TC

TC

TC

Page 13: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 13

The Standard IEEE 1588 Version 2 Transparent Clock – Peer-to-Peer Delay Measurement

M

S

S

S

S

S

TC

TC

TC

TC

Sync Stream p2p Delay Measurement

Page 14: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 14

The Standard IEEE 1588 Limits

Timestamp quantization effects

Accuracy of Start-of-Frame Detection

Unknown portion of data path asymmetries in cables and transceivers

Jitter in the data path (PHY chips, network elements)

Environmental conditions

Oscillator instabilities

Implementation specific effects (e.g. phase between different asynchronous clock domains of all involved functional building blocks)

Note: Uncertainty due to limited observation capabilities (e.g. the PPS output is subject of quantization effects as well)

Stochastic effects can be filtered out with statistical methods

Systematic errors remain

Page 15: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 15

The Standard IEEE 1588 Industry Relevance

PTP is or will be applied in application areas such as Test and Measurement (LXI: LAN eXtensions for Instrumentation) Automation and control systems (various flavors of real-time Ethernets) Audio/Video Bridge (AVB according to IEEE 802.1as) Telecommunications

Silicon vendors and IP providers offer Protocol software Hardware assistance IPs PHYs with hardware assistance logic IEEE-1588 enabled microcontrollers Switching cores with IEEE-1588 support

Page 16: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 16

Synchronous Ethernet

Page 17: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 17

Synchronous EthernetPhysical Layer Timing in Legacy Ethernet

Ethernet works perfectly well with relatively inaccurate clocks

Each Ethernet link may use its own clock nominal clock rate is the same, but deviations of ± 50 ppm are allowed

(dimensioning such that physical layer buffers do not underflow or overflow)

Details differ according to transmission technology where the two directions of a link use different media (i.e. separate wire pairs

or separate fibers), both directions may have independent clocks GBE over twisted pair uses all wire pairs simultaneously in both directions

signal processing (echo compensation technique) requires same clock on both directions of a link one PHY acts as the master, the other as slave

Page 18: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 18

Synchronous EthernetTiming of a Fast Ethernet Link (100 Base-TX)

RX_CLK

25 MHz ± 50 ppm

25 MHz ± 50 ppm

TX_CLK

TX_CLK

RX_CLK

PHYMAC PHY MAC

clk

transmission lineis driven by clk

clk recovered fromtransmission line

clk

Symbol

Cable

Page 19: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 19

Synchronous EthernetPhysical Layer Timing in Legacy Ethernet

E

E

E

E

E

E

X

X

X

X

X

X

X

X

Page 20: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 20

Synchronous EthernetTiming of a Gigabit Ethernet Link (1000 Base-T)

1000 Base-T transmission is split on 4 wire pairs operation simultaneously in both directions

transmitter and receiver are coupled via a hybrid echo compensation is applied both directions require the same clock

A 1000 Base-T PHY can operate as a master or slave.

Master/slave role selection is part of the auto-negotiation procedure.

A prioritization scheme determines which device will be the master and which will be slave.

The supplement to Std 802.3ab, 1999 Edition defines a resolution function to handle any conflicts:

multiport devices have higher priority to become master than single port devices. if both devices are multiport devices, the one with higher seed bits becomes the

master.

Page 21: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 21

Synchronous Ethernet1000 Base-T uses 4 pairs simultaneously in both directions

Page 22: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 22

Synchronous Ethernet1000 Base-T Pysical Layer Signalling with Echo Compensation

Page 23: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 23

Synchronous EthernetTiming of a Gigabit Ethernet Link (1000Base-T)

RX_CLK

25 MHz ± 50 ppm

25 MHz ± 50 ppm

GTX_CLK

GTX_CLK

RX_CLK

PHYMAC PHY MAC

Master Slave

The Master PHY uses the internal 125 MHz clock generated from CLOCK_IN to transmit data on the 4 wire pairs.

The Slave PHY uses the clock recovered from the opposite PHY as the transmit clock.

x5

CLOCK_IN

Cable

Page 24: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 24

Synchronous EthernetConcept - 1

Concept has been proposed, elaborated, and standardized by the Telco community in ITU-T by transferring the traditional SDH clock distribution concept to Ethernet networks

The Primary Reference Clock (PRC) frequency is distributed on the physical layer

a receiver can lock to the transmitter‘s frequency a switch selects the best available clock this results in a hierarchical clock distribution tree

OAM messages (Synchronization Status Messages) are used to signal clock quality and sync failure conditions of the upstream switch

to allow selection of the best available timing source (stratum of upstream source)

to avoid timing loops

Page 25: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 25

Synchronous EthernetConcept - 2

Active layer 2 data forwarding topology (as established by spanning tree protocol) and clock distribution tree are independent (i.e. a blocked port can deliver the clock to its neighboring switch)

Design rules (topology restrictions, priorities for source selection) guarantee clock quality

Clocking of Ethernet devices is changed in a way that is fully conforming with IEEE 802.3 standards

Standard PHY chips can be used as long as a few conditions are met, e.g. PHY provides the recovered receive clock to the external world GBE PHY allows master/slave role to be set by software (no automatic

selection)

Page 26: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 26

Synchronous EthernetClock Sources for a Synchronous Ethernet Switch

Clock Selection / Regeneration

Oscillator

Ext-In Ext-Out

Port 1 Port 2 Port … Port n

Page 27: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 27

Synchronous EthernetPhysical Layer Timing in Synchronous Ethernet

E

E

E

E

E

E

X

X

X

X

PRC

X

X

X

X

PRC tracable clock (other links and directions are free running)

Page 28: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 28

Synchronous EthernetCompared with IEEE 1588

Synchronous Ethernet Clock distribution based on

Ethernet‘s physical layer

Provides frequency only

Performance is independent of data traffic

IEEE 1588 Application layer protocol with

hardware assistance

Provides frequency and time of day

May be susceptible to specific data traffic patterns

Complementary technologies, can be used in combination:

Syncronous Ethernet delivers accurate and stable frequency to all nodes while IEEE 1588 can deliver time of day, where required.

Page 29: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 29

Synchronous EthernetIndustry Relevance

Telco equipment manufacturers rely on both technologies

Synchronous Ethernet operation will certainly be an important feature in future carrier grade products

Synchronous Ethernet’s role in corporate and industrial communication application is not yet forseeable

Silicon vendors and IP providers offer Synchronous Ethernet compatible PHYs ICs for clock monitoring, selection, and processing

Page 30: © 2003-2008 ZHAW Prof. Hans Weibel, Zurich University of Applied Sciences hans.weibel@zhaw.ch Synchronization over Ethernet Standard for a Precision Clock

© ZHAW / H. Weibel, 15.2.2008 CERN_Sync_Workshop.ppt / Folie 30

Many thanks for your attention!

[email protected]

Zurich University of Applied Sciences Institute of Embedded Systemshttp://ines.zhaw.ch/ieee1588