110
LITHUANIAN UNIVERSITY OF HEALTH SCIENCES MEDICAL ACADEMY Vestina Strakšytė VALUE OF MRI ENTEROCOLONOGRAPHY AND FAECAL CALPROTECTIN FOR DIAGNOSIS OF CROHN'S DISEASE Doctoral Dissertation Medical and Health Sciences, Medicine (M 001) Kaunas, 2021

VALUE OF MRI ENTEROCOLONOGRAPHY AND FAECAL

Embed Size (px)

Citation preview

LITHUANIAN UNIVERSITY OF HEALTH SCIENCES

MEDICAL ACADEMY

Vestina Strakšytė

VALUE OF MRI

ENTEROCOLONOGRAPHY AND

FAECAL CALPROTECTIN FOR

DIAGNOSIS OF CROHN'S DISEASE

Doctoral Dissertation

Medical and Health Sciences,

Medicine (M 001)

Kaunas, 2021

The dissertation has been prepared at the Department of Radiology of

Lithuanian University of Health Sciences from 2011 to 2020.

The dissertation is defended extramurally.

Scientific Consultant:

Prof. Dr. Gediminas Kiudelis (Lithuanian University of Health Sciences,

Medical and Health Sciences, Medicine – M 001).

The dissertation is defended at the Medical Research Council of the

Lithuanian University of Health Sciences:

Chairperson

Assoc. Prof. Dr. Vaidotas Gurskis (Lithuanian University of Health

Sciences, Medical and Health Sciences, Medicine – M 001).

Members:

Prof. Dr. Rymantė Gleiznienė (Lithuanian University of Health

Sciences, Medical and Health Sciences, Medicine – M 001);

Prof. Dr. Kristina Žvinienė (Lithuanian University of Health Sciences,

Medical and Health Sciences, Medicine – M 001);

Prof. Dr. Nomeda Rima Valevičienė (Vilnius University, Medical and

Health Sciences, Medicine – M 001);

Dr. Povilas Ignatavičius (Zurich University, Medical and Health Scien-

ces, Medicine – M 001).

Dissertation will be defended at the open session of the Medical Research

Council of Lithuanian University of Health Sciences on the 26th

of January,

2021 at 11 a.m. in A-203 of the Centre for the Advanced Pharmaceutical

and Health Technologies of Lithuanian University of Health Sciences.

Address: Sukilėlių 13, LT-50162 Kaunas, Lithuania.

LIETUVOS SVEIKATOS MOKSLŲ UNIVERSITETAS

MEDICINOS AKADEMIJA

Vestina Strakšytė

MRT ENTEROKOLONOGRAFIJOS IR

IŠMATŲ KALPROTEKTINO REIKŠMĖ

DIAGNOZUOJANT KRONO LIGĄ

Daktaro disertacija

Medicinos ir sveikatos mokslai,

medicina (M 001)

Kaunas, 2021

Disertacija rengta 2011–2020 metais Lietuvos sveikatos mokslų universiteto

Medicinos akademijos Radiologijos klinikoje.

Disertacija ginama eksternu.

Mokslinis konsultantas

prof. dr. Gediminas Kiudelis (Lietuvos sveikatos mokslų universitetas,

medicinos ir sveikatos mokslai, medicina – M 001).

Disertacija ginama Lietuvos sveikatos mokslų universiteto medicinos

mokslo krypties taryboje:

Pirmininkas

doc. dr. Vaidotas Gurskis (Lietuvos sveikatos mokslų universitetas,

medicinos ir sveikatos mokslai, medicina – M 001).

Nariai:

prof. dr. Rymantė Gleiznienė (Lietuvos sveikatos mokslų universitetas,

medicinos ir sveikatos mokslai, medicina – M 001);

prof. dr. Kristina Žvinienė (Lietuvos sveikatos mokslų universitetas,

medicinos ir sveikatos mokslai, medicina – M 001);

prof. dr. Nomeda Rima Valevičienė (Vilniaus universitetas, medicinos

ir sveikatos mokslai, medicina – M 001);

dr. Povilas Ignatavičius (Ciuricho universitetas, medicinos ir sveikatos

mokslai, medicina – M 001).

Disertacija bus ginama viešame Lietuvos sveikatos mokslų universiteto medicinos mokslo krypties tarybos posėdyje 2021 m. sausio 26 d. 11 val.

Lietuvos sveikatos mokslų universiteto Naujausių farmacijos ir sveikatos

technologijų centro A-203 auditorijoje. Disertacijos gynimo vietos adresas: Sukilėlių pr. 13, LT-50162 Kaunas, Lietuva.

5

CONTENTS

ABBREVIATIONS ............................................................................................................... 8

INTRODUCTION ................................................................................................................. 9

The aim of the study ................................................................................................................... 10

The objectives of the study ......................................................................................................... 10

The novelty of the study ............................................................................................................. 11

1. LITERATURE REVIEW ............................................................................................ 12

1.1. Epidemiology, Etiology, and Pathogenesis ....................................................................... 12

1.2. Clinical classification of Crohn's disease .......................................................................... 13

1.3. Clinical manifestation of Crohn's disease ......................................................................... 14

1.4. Clinical activity scores ...................................................................................................... 14

1.4.1. Crohn's disease activity index (CDAI) ................................................................. 14

1.4.2. The Harvey Bradshaw index (HBI) ...................................................................... 15

1.4.3. IBDQ – inflammatory bowel disease questionnaire ............................................. 15

1.5. Crohn disease diagnostic gold standard ............................................................................ 15

1.6. Markers of Crohn's disease activity .................................................................................. 16

1.6.1. C reactive protein (CRP) ...................................................................................... 16

1.6.2. Faecal calprotectin ................................................................................................ 17

1.7. Magnetic resonance enterocolonography diagnostic features of Crohn's disease ............. 18

1.7.1. The general principle of magnetic resonance enterocolonography ....................... 18

1.7.2. Enteric contrasts ................................................................................................... 18

1.7.3. Spasmolytics ........................................................................................................ 20

1.7.4. Imaging classification of Crohn’s disease ............................................................ 20

1.7.4.1. Active inflammatory disease subtype ................................................... 20

1.7.4.2. Penetrating subtype ............................................................................... 21

1.7.4.3. Stenosing subtype ................................................................................. 21

1.7.4.4. Reparative-regenerative subtype ........................................................... 22

1.7.5. Magnetic resonance enterocolonography signs of Crohn’s disease activity,

severity, and complications .................................................................................. 22

1.7.5.1. Bowel wall assessment ......................................................................... 22

1.7.5.1.1. Bowel wall thickening .......................................................................... 22

1.7.5.1.2. Enhancement of the bowel wall ............................................................ 23

1.7.5.1.3. Patterns of enhancement ....................................................................... 23

1.7.5.1.4. Bowel wall hyperintensity on T2W images .......................................... 24

1.7.5.1.5. Bowel wall ulceration ........................................................................... 24

1.7.5.2. Extramural findings .............................................................................. 25

1.7.5.2.1. The fibrofatty proliferation ................................................................... 25

1.7.5.2.2. Mesenteric vascularity "comb" sign ...................................................... 25

1.7.5.2.3. Lymph nodes enhancement ................................................................... 25

1.7.6. DWI for CD activity evaluation ........................................................................... 25

1.7.6.1. Technical aspects of DWI ..................................................................... 25

1.7.6.2. DWI assessment .................................................................................... 26

6

1.7.7. Crohn’s disease activity indices ............................................................................ 27

1.7.7.1. Lemann index ........................................................................................ 27

1.7.7.2. MaRIA and mMaRIA ........................................................................... 27

1.7.7.3. Clermont index ...................................................................................... 28

1.8. Crohn disease management ............................................................................................... 29

2. METHODS ................................................................................................................. 31

2.1. Ethics ................................................................................................................................ 31

2.2. Patient selection criteria .................................................................................................... 31

2.2.1. Inclusion criteria ................................................................................................... 31

2.2.2. Exclusion criteria .................................................................................................. 31

2.3. Study design ...................................................................................................................... 31

2.3.1. Questionnaire survey data ..................................................................................... 33

2.3.1.1. Inflammatory bowel disease questionnaire ........................................... 33

2.3.1.2. Crohn’s disease activity index ............................................................... 33

2.3.1.3. Harvey-Bradshaw Index ........................................................................ 33

2.3.2. Blood tests ............................................................................................................ 34

2.3.3. Faecal calprotectin ................................................................................................ 34

2.3.4. Endoscopy with histology ..................................................................................... 34

2.3.5. Magnetic resonance enterocolonography protocol ............................................... 35

2.3.5.1. MR image interpretation ....................................................................... 36

2.3.5.2. Evaluation of MR-EC parameters ......................................................... 36

2.3.5.3. Crohn's disease classification ................................................................ 37

2.3.5.3.1. Active inflammation ............................................................................. 37

2.3.5.3.2. Chronic inflammation ........................................................................... 40

2.3.5.4. Crohn's disease activity grading ............................................................ 42

2.3.5.4.1. Bowel damage assessment .................................................................... 42

2.3.5.4.2. Crohn's disease activity evaluation ....................................................... 42

2.4. Statistical analysis ............................................................................................................. 43

3. RESULTS ................................................................................................................... 44

3.1. Study population characteristics ........................................................................................ 44

3.1.1. Inflammatory bowel disease questionnaire ............................................................. 45

3.2. Overall diagnostic value of MR-EC .................................................................................. 46

3.3. MR-EC parameters ........................................................................................................... 47

3.3.1. Length, location of abnormal segments ................................................................ 47

3.3.2. Bowel wall thickening .......................................................................................... 47

3.3.3. Bowel wall hyperintensity on T2W images .......................................................... 48

3.3.4. Bowel wall enhancement ...................................................................................... 48

3.3.5. Bowel wall pattern of enhancement ...................................................................... 48

3.3.6. Extraluminal changes and complications .............................................................. 49

3.3.7. MR-EC and clinical disease activity ..................................................................... 51

3.4. Correlation between the Crohn's disease activity indices .................................................. 52

3.5. Diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) ................ 54

3.6. Faecal calprotectin ............................................................................................................ 56

3.6.1. Faecal calprotectin and disease behavior .............................................................. 57

3.6.2. Crohn's disease activity indices and faecal calprotectin level ............................... 57

7

4. DISCUSSION ............................................................................................................. 59

4.1. Characteristics of MR-EC for predicting Crohn's disease ....................................... 59

4.2. MR-EC parameters for evaluating disease activity .................................................. 60

4.3. MR-EC indices for evaluating Crohn's disease activity .......................................... 61

4.4. ADC and DWI for predicting CD activity ................................................................. 63

4.5. Faecal calprotectin for monitoring Crohn's disease .................................................. 64

CONCLUSIONS ................................................................................................................. 65

PRACTICAL RECOMMENDATIONS .............................................................................. 66

REFERENCES .................................................................................................................... 67

LIST OF PUBLICATIONS ................................................................................................. 82

LIST OF SCIENTIFIC CONFERENCES ........................................................................... 83

SUMMARY IN LITHUANIAN .......................................................................................... 84

ANNEXES .......................................................................................................................... 98

Annex 1 ...................................................................................................................................... 98

Annex 2 ...................................................................................................................................... 99

Annex 3 .................................................................................................................................... 100

Annex 4 .................................................................................................................................... 109

CURRICULUM VITAE .................................................................................................... 110

8

ABBREVIATIONS

ADC apparent diffusion coefficient

AIS acute inflammatory score

AGA American Gastroenterological Association

anti-TNF antibodies directed against tumor necrosis factor

BW pixel bandwidth

BW bowel wall

BMI Body Mass Index

CD Crohn's disease

CDAI Crohn's Disease Activity Index

CDEIS Crohn's Disease Endoscopic Index of Severity

CRP C reactive protein

DWI diffusion-weighted imaging

eAIS endoscopic biopsy acute inflammatory score

FC faecal calprotectin

FISP fast imaging with steady precession

FOV field of view

fs fat-suppressed

GI gastrointestinal

HASTE Half Fourier acquisition single-shot turbo spin-echo

HBI Harvey-Bradshaw Index

IBD inflammatory bowel disease

IBDQ inflammatory bowel disease questionnaire

IBS Irritable bowel syndrome

IVC intravenous contrast

IV intravenous

LI Lemann index

MaRIA Magnetic Resonance Index of Activity

mMaRIA modified Magnetic Resonance Index of Activity

MR magnetic resonance

MRI magnetic resonance imaging

MR-EC magnetic resonance enterocolonography

PACS picture archiving and communication system

PEG polyethyleneglycol

RCE relative contrast enhancement

ROI region of interest

T1W T1 weighted

T2W T2 weighted

TE echo time

TR repetition time

VIBE Volumetric interpolated breath-hold examination

9

INTRODUCTION

Crohn's disease (CD) is one of the subtypes of idiopathic inflammatory

bowel disease. It is characterized by chronic transmural intestinal inflam-

mation [1, 2] of the gastrointestinal tract anywhere from the mouth to the

anus, with a tendency for the small intestine [3] and an inflammatory

response associated with lymphoid aggregates and granulomas [4].

CD affects more than 2.5 million individuals in the Western world and

has an increasing incidence in the developing world [4].

It is most prevalent in young adults and remains incurable. Patients

usually require lifelong medication and multiple surgeries [5].

CD is usually inflammatory when first recognized but progresses over

time to stricturing or penetrating disease at 3.8–7.5% per year [6].

The symptoms of active CDs, such as abdominal pain and diarrhea,

have a poor correlation to disease severity and behavior (inflammatory,

penetrating, or stricturing) [7]. Additionally, the disease is heterogeneous,

comprising multiple complex phenotypes that vary depending on the age of

onset, disease location, and behavior [8].

Ileocolonoscopy and upper endoscopy are considered the gold standard

to evaluate mucosal inflammation [6]. Endoscopy has the advantage of

getting the tissue sample and investigating the microscopic disease activity

[9]. Nevertheless, they only cover proximal small bowel or terminal ileum

and do not provide information on the possible extra-luminal complications

(fistulas, abscesses), requiring other evaluation modalities [10–13]. More-

over, endoscopy evaluates only the superficial mucosa, while deeper layers

of the bowel wall are not assessed [10].

Thus, cross-sectional imaging is a significant adjunct to endoscopic

evaluation, to allow a complete and sensitive staging of the small bowel and

perineum with the unique advantage to assess mural and extramural disease

[14, 15]. Magnetic resonance imaging (MRI) plays a key role in confirming

the diagnosis, identifying and managing complications, evaluate disease

severity, and determining response to medical therapy [3, 6, 11, 16].

Patients with CD typically need to undergo multiple imaging

examinations because of the nature of the disease. Magnetic resonance

enterocolonography (MR-EC), supply static and dynamic three-dimensional

information of small bowel, enhanced soft-tissue contrast resolution, and

lower incidence of adverse events than computed tomography enterocolono-

graphy [10, 17]. The need for repeated imaging has recently increased more

aggressive medical therapies using biologics or immunosuppressive agents.

10

Also, faecal calprotectin (FC) is a useful biomarker for CD diagnosis of

relapse or mucosal healing [18]. Also, FC is a well-established, useful tool

to identify patients most likely to require conventional colonoscopy for

suspected CD [19].

Grading the activity of CD nowadays is essential [20]. In order to

objectively evaluate the clinical symptoms of a disease, the course, severity,

extent, and to monitor expensive treatment [21]. There are a lot of indices

and scores invented for disease activity and severity evaluation. The most

well-known quality of life assessment – inflammatory bowel disease

questionnaire (IBDQ) [22], Endoscopic Disease Severity Assessment-

Crohn's Disease Endoscopic Index of Severity (CDEIS) [23], and Magnetic

Resonance Index of Activity (MaRIA) [24].

The new quantitative tool for assessing bowel damage in CD is the

Crohn's Disease Digestive Damage Score – the Lemann index (LI) has

recently been developed. [25, 26]. It combines clinical, surgical, endoscopic,

and imaging findings from all digestive tract segments into one composite

score [27].

Current treatments include traditional anti-inflammatory agents, immu-

nomodulators, biological agents with antibodies directed against tumor

necrosis factor (anti-TNF), antibiotics, and surgery [4, 28]. The treatment

goal has changed from symptomatic to complete mucosal healing and

requires periodic imaging examinations to monitor the treatment response

[6, 10, 29–31].

The aim of the study

The aim of the study was to evaluate the role of MR-EC and faecal

calprotectin in the diagnosis and assessment of Crohn's disease.

The objectives of the study

1. To assess the prognostic values of MR-EC in the diagnosis of CD.

2. To compare MR-EC imaging parameters of patients with proven

Crohn's disease with controls (patients without organic gastro-

intestinal lesions).

3. To evaluate the correlations of different Crohn's disease MR-EC

activity indices with CDEIS, clinical activity indices, and IBDQ.

4. To determine the value of apparent diffusion coefficient (ADC) and

DWI for assessment CD inflammatory activity.

5. To evaluate faecal calprotectin as a non-invasive CD activity

marker and it's correlation with various Crohn's disease activity

indices.

11

The novelty of the study

CD remains a clinical challenge due to nonspecific symptoms and a

weak correlation between symptoms and disease activity [32].

In the past two decades, there have been advances in modalities for

imaging the bowel and technologies, providing increased imaging demand

for patients with CD. Improvements in the temporal and spatial resolution of

MRI and the development of enteric agents to distend the bowel have led to

routine visualization of the small and large bowel lumen, wall, and

perienteric tissues using MR-EC [33–36]. Currently, MR-EC is considered

the gold standard to identify and define small bowel CD [14].

The development of modern biologic and immunomodulatory therapies

has increased the need for bowel imaging. The demand to detect, to stage,

and classify inflammatory, penetrating, and stricturing disease, determine

treatment strategies, assess response to therapy, reduce complications, and

reproducibly and accurately track inflammation that is beyond the reach of

the endoscope [37]. In up to 50% of patients with active small bowel

disease, inflammation may skip the terminal ileum or be intramural and not

detected by ileocolonoscopy [38].

The MR-EC methodology was initiated in 2013 at the Department of

Radiology, Lithuanian University of Health Sciences Kauno klinikos. This

clinical study is the first in Lithuania to evaluate CD extension and activity,

so it has considerable scientific and practical value in optimizing the use of

MRI in CD diagnostics.

We performed the first perspective MR-EC study in Lithuania, which

includes CD in a multidisciplinary approach. We evaluated clinical CD

activity indices: CDAI and Harvey Bradshaw, also IBDQ – the quality of life.

Laboratory test whole blood count, CRP, faecal calprotectin. Endoscopy with

biopsy and MR-EC investigation with index calculation was performed.

Also, we adapted the MR-EC protocol in clinical practice. Until now,

routine testing of CD patients in the MR-EC study has not been accepted.

Also, in the present study, we performed a quality of life analysis using

IBDQ.

Up to date, we have not found any study looking for the correlation of

Crohn's Disease Digestive Damage Score – LI and patients' quality of life

measured by IBDQ.

Also, the first clinical study that investigated the performance of the

Lemman index in a clinical setting. Increasing bowel damage evaluated by

LI in this study was associated with decreasing IBDQ. This finding proves

the suggestion that LI could be used for a more global assessment of CD

and even could assess the level of disability.

12

1. LITERATURE REVIEW

1.1. Epidemiology, Etiology, and Pathogenesis

CD is more common in industrialized than in non-industrialized count-

ries [39]. In the 21st century, inflammatory bowel disease (IBD) became a

global disease with accelerating incidence in the newly industrialized count-

ries of Africa, Asia [40–42]. In Europe alone, more than three million

people are affected by IBD [43]. The highest incidence rates are in

Scandinavia, the United Kingdom [39]. However, the classic geographical

distribution of the disease is changing. Low incident regions such as Eastern

Europe

have recently reported rising incidence rates that mean their CD

occurrence is comparable to Western Europe [39]. Increased awareness of

the disease has improved access to healthcare and diagnostic procedures, or

real changes in lifestyle and environmental factors due to the socio-

economic transition from "developing" to "developed" in many Eastern

European countries [44].

Etiology is complex, and the most widely accepted hypothesis purports

CD as an immune-mediated condition in genetically susceptible individuals.

The disease's onset is triggered by environmental factors that disturb the

mucosal barrier, the healthy balance of the gut microbiota, and starts abnor-

mally stimulating gut immune responses [45]. These factors: genetics, gut

immune response, and the microbiota are influenced by the individual's

environmental exposures or triggers to engage different mechanisms giving

rise to CD (Fig. 1.1.1) [4].

Another theory, other autoimmune and allergic diseases in modern

society, is the "hygiene hypothesis". The hypothesis proposes that these

diseases are caused by abnormal development and response of the immune

system due to the reduced exposure to microorganisms, such as the

microbes in the gut [5].

CD pathogenesis involves a complex interaction over time between ge-

netic, epigenetic, immunological, and microbiological mechanisms affected

by exposure to triggering factors [45, 46]. CD patients have a unique patho-

genic signature comprised of different contributions from each of these

factors. Furthermore, correcting and avoiding triggering factors related to

the exposome are areas of considerable interest [4].

13

Fig. 1.1.1. Crohn's disease: multi-layer communication in pathogenesis

and clinical evaluation (with permission of Faculty Opinions) [4]

1.2. Clinical classification of Crohn's disease

In 2000 the Vienna classification was introduced, which was the first to

classify the CD's different clinical phenotypes. The Montreal classification

in 2008 followed the Vienna classification. The Montreal classification

describes the extent and behavior of CD in more detail, although the

Montreal classification is widely used in both research and clinical practice

[47]. The main characteristics of Vienna and Montreal's classifications are

shown in Table 1.2.1.

14

Table 1.2.1. Vienna and Montreal classification for Crohn's disease

(Permission License Number 4860270033677) [48]

Vienna Montreal

Age at

diagnosis

A1 below 40 years old

A2 above 40 years old

A1 below 16 years old

A2 between 17 and 40 years old

A3 above 40 years old

Location L1 ileal

L2 colonic

L3 ileocolonic

L4 upper

L1 ileal

L2 colonic

L3 ileocolonic

L4 isolated upper disease*

Behavior B1 non-stricturing, non-penetrating

B2 stricturing

B3 penetrating

B1 non-stricturing, non-penetrating

B2 stricturing

B3 penetrating

*L4 is a modifier that can be added to L1–L3 when a concomitant upper gastrointestinal

disease is present.

1.3. Clinical manifestation of Crohn's disease

The most common presenting symptom of CD is chronic diarrhea [49].

More acute presentations may occur, and severe terminal ileal CD may be

mistaken for acute appendicitis, unexplained anemia [45]. Abdominal pain

and weight loss are seen in about 80% and 60% of patients before diagnosis,

respectively [50]. Blood and/or mucus in the stool may be in up to 40–50%

of patients with Crohn's colitis [19]. Patients may present with

extraintestinal manifestations of CD before the gastrointestinal symptoms

become prominent [50]. Extraintestinal manifestations are most common

when CD affects the colon. Perianal fistulas are present in 4–10% of

patients at the time of diagnosis [19].

1.4. Clinical activity scores

1.4.1. Crohn's disease activity index (CDAI)

The CDAI was developed and validated in 1970 and consisted of eight

variables [51]. Variables measured include a number of liquid stools,

abdominal pain, general well-being, extraintestinal complications, use of

antidiarrhoeal drugs, abdominal mass, hematocrit, and body weight [52].

The index ranges from 0 to 600, and the cut off between remission and

active disease has initially taken to be 150, while values above 450 indicate

active and very severe disease [53] – higher scores corresponding to more

severe disease.

15

Although the CDAI index has mostly been used in clinical trials. It has

some limitations: high scores for subjective sign "general well being" and

intensity of "abdominal pain", misleading results in fistulating and stenosing

disease [54]. It is also limited for patients with ileocolic resection and

stoma.

1.4.2. The Harvey Bradshaw index (HBI)

The HBI is a modified and simplified version of the CDAI. HBI uses a

single day's reading for diary entries and excludes three variables: body

weight, hematocrit, and drugs for diarrhea [55]. Scores range from 0 to 20,

with higher scores corresponding to worse disease. The CDAI can be

predicted reasonably well from the HBI [55, 56]. All the clinical indices can

only give an indirect assessment of disease activity. Furthermore, they are

rather complicated and time-consuming to collate. The application of

indices is limited to clinical trials [57].

1.4.3. IBDQ – inflammatory bowel disease questionnaire

The IBDQ examines aspects of the patient's life: bowel and systemic

symptoms, emotional and social functions [22].

Global assessments of patient well-being are subjective and influenced

by disease-specific, inflammatory, psychological, and sociological factors

[58]. A simplified, more reproducible and validated score combining items

from the CDAI and IBDQ could serve in clinical practice and clinical trials

[59].

1.5. Crohn disease diagnostic gold standard

A single reference standard for the diagnosis of CD does not exist. CD's

determination is based on a combination of clinical, biochemical, stool,

endoscopic, cross-sectional imaging, and histological investigations [37].

Ileocolonoscopy with multiple biopsy specimens is well established as

the first-line procedure for diagnosing CD [37, 60]. Ileocolonoscopy with

biopsy can be achieved with practice in at least 85% of colonoscopies and

increases the diagnostic yield [61, 62]. The endoscopic hallmark of CD is

the patchy distribution of inflammation, with skip lesions, the presence of

strictures and fistulas, and perianal involvement [37]. CD ulcers tend to be

longitudinally associated with a "cobblestone" appearance of the ileum or

colon, fistulous orifices, and stricture [37]. When there is a severe, active

disease, the value of full colonoscopy is limited by a higher risk of bowel

perforation [63, 64]. In these circumstances, initial flexible sigmoidoscopy

16

is safer, and ileocolonoscopy should be postponed until the clinical

condition improves [65]. Ileocolonoscopy is superior for diagnosing CD of

the terminal ileum [66–68] compared with radiology techniques, including

MRI and CT, especially for mild lesions [19].

In 2018, ECCO-ESGAR jointly issued a guideline for Diagnostic

Assessment in IBD where initial diagnosis, monitoring of known IBD,

detection of complications are discussed [37].

One of the ECCO-ESGAR statement states, "For suspected IBD,

ileocolonoscopy with biopsies from inflamed and uninflamed segments are

required to establish the diagnosis [EL1]" [37].

A study by Samuel et al. evaluated CD patients with CT enterography

and ileocolonoscopy. From the group of patients with normal ileoscopy,

53.7% of these patients had active small-bowel CD. The ileocolonoscopic

examination can thus miss CD of the terminal ileum, as the disease can skip

the distal ileum or be confined to the intramural portion of the bowel wall

and mesentery [69].

Various endoscopic scoring systems for assessing disease severity and

activity have developed over time, notably the Crohn's disease endoscopic

index of severity (CDEIS).

CDEIS scoring system was developed in 1989 by a French group of

GETID (Groupe d'Etude Therapeutique des Affections Inflammatoires

Digestive) [23] and based upon the presence or absence of four types of the

lesion (superficial ulcers, deep ulcers, ulcerated stenosis, and non-ulcerated

stenosis). The score can range from 0 to 30. Over time CDEIS was

established as the gold standard for endoscopic evaluation of activity [23].

1.6. Markers of Crohn's disease activity

1.6.1. C reactive protein (CRP)

CRP is a useful laboratory surrogate of gut inflammation. However,

low CRP levels were reported in clinically active CD patients with ileal

disease distribution and a low body mass index [3].

CRP – is one of the essential acute phase proteins produced exclusively

in hepatocytes in response to stimuli, including infections, inflammation,

stress, tissue necrosis, trauma, and childbirth [70]. IL-6 and TNF influence

its production, and it has a half-life of 19 hours with a baseline

concentration of 0.8 mg/L [71, 72].

CRP correlates with the disease activity in CD. CRP often increases in

the presence of active disease before rapidly decreasing after the improve-

17

ment in inflammation [73]. Its levels are not directly affected by the admi-

nistration of anti-inflammatory or immunosuppressive drugs [73].

CRP correlates reasonably well with CDAI [7, 74]. A rise in CRP is

commonly seen with moderate to severe clinical activity in CD, and there is

a reasonable correlation with other biomarkers (thrombocytosis, anemia,

and hypoalbuminemia) and endoscopic findings. However, the association

between CRP and radiological and histologic disease activity markers is less

potent [75].

1.6.2. Faecal calprotectin

Calprotectin is a 36 kDa calcium-zinc binding protein, consisting of a

heterodimer of the S100 proteins A8 and A9 [76]. It is expressed abundantly

in the cytoplasm of neutrophils, monocytes, and macrophages [77]. When

the intestine is inflamed, calprotectin is secreted into the faeces from these

types of cells. FC's amount correlates with the degree of neutrophil

infiltration in the gut [76, 78]. FC is a useful and convenient test to

distinguish CD from irritable bowel syndrome (IBS) and assess intestinal

inflammatory activity in patients with CD [79, 80]. FC levels have been

reported to correlate with endoscopic activity of CD [77, 80].

Surprisingly, patients may display elevated FC levels, even when endo-

scopic disease activity is absent [81]. This elevation could be due to disease

activity proximal to the terminal ileum in CD patients or other pathology in

the upper gastrointestinal tract such as peptic ulcers or nonsteroidal entero-

pathy [82].

Alternatively, these elevated calprotectin levels could also be explained

by low-grade inflammation only detectable upon histological evaluation.

Kiesslich et al. and Moum et al. have shown that histological inflammation

can be more extensive and severe than can be appreciated endoscopically

[54, 83]. Earlier studies have shown that elevated calprotectin levels can

predict relapse during follow-up in clinical remission patients with a pooled

sensitivity of 78% and a specificity of 73% [81, 84].

FC is a promising non-invasive marker because it can readily determine

in stool samples [77]. FC is the best-studied faecal biomarker of inflam-

mation. FC is useful as a biomarker to detect response to therapy in Crohn's

colitis and predict recurrence ileocecectomy in CD but is poorly correlated

with endoscopic disease activity in the ileum [3]. Thus, it has remained

unclear whether FC accurately detects inflammation in the large and small

intestines in patients with CD [85].

18

1.7. Magnetic resonance enterocolonography diagnostic

features of Crohn's disease

Many MR-EC parameters are associated with inflammation and

damage, but reported sensitivities and specificities vary widely. Studies

have been performed with different MR-EC protocols and using different

thresholds for a positive. Also, different reference standards have been used,

with different limits. This heterogeneity caused difficulties in choosing the

essential MR-EC parameters in clinical practice [6].

1.7.1. The general principle of magnetic resonance

enterocolonography

There is evidence of optimal patient preparation before MR-EC and

recommendations concerning no solid food and mainly fluid-based diet

[86].

Cronin et al. confirmed that superior bowel distension was achieved in

the prone position [87]. There is no reliable evidence that helps to improve

diagnostic accuracy. Some patients may have difficulty lying prone. Either

supine or prone positioning is considered acceptable [86].

There was no consensus that field strength, either 1.5T or 3T, was

optimal for enteric MRI [88, 89].

There is some evidence that MR-EC can achieve high diagnostic

accuracy without using a spasmolytic [90]. However, other data show

significantly superior distension with the use of these agents [91]. The use

of spasmolytic before MR-EC is, therefore, recommended.

1.7.2. Enteric contrasts

The accuracy of MR-EC is improved by the administration of oral

contrast in comparison to unprepared MR-EC [92, 93]. Many oral contrast

agents are described in the literature, but no substantial evidence from

patient studies supports one particular oral contrast agent over another [94,

95–98]. Therefore, many contrasts are recommended, usually with

hyperosmolar properties and ingested over 46–60 min before the exami-

nation [86].

Three groups of enteric contrast agents may be used for MR-EC to

obtain a homogeneous contrast distribution and achieve uniform bowel

distension (Table 1.7.2.1) [99].

19

Contrast agents:

Negative contrast media – appears low signal intensity on both T1W

and T2W images. Provide better visualization of bowel wall edema and

mucosal enhancement and help to discriminate between intraluminal and

extraluminal fluid (abscess) [100, 101]. The negative contrast agents have a

less pleasant taste compared to others and are more expensive.

Positive contrast media – is high signal intensity on both T1W and

T2W and is helpfully delineating the bowel wall [100]. In general, positive

agents are rarely used in clinical practice.

Biphasic contrast media – is high signal intensity on T2W and low

signal on T1W images [102]. The biphasic contrast agents group is the

largest (including osmotic agents such as mannitol and non-osmotic such as

polyethylene glycol (PEG)). It is the most used type of enteric contrast. The

"dark lumen" on T1W images is essential for evaluating the bowel mucosa

and detecting mural enhancement after intravenous contrast (IVC)

administration. The most commonly used oral contrast agents are mannitol

and PEG.

Critical issues related to the use of oral contrast are the volume of

contrast and administration time. There is high interpersonal variability in

transit times, even higher than the variability between healthy subjects and

patients with CD [103]. The patient takes 1 L in the first 30 min and then

250 ml every 15 min. Immediately before imaging, the patient drinks about

500 ml of water [103].

Table 1.7.2.1. Enteric contrast agents for MR imaging (Permission License

Number 4860271176009) [103]

Contrast agents Limitations

Positive Gadolinium chelates Costs

Manganese Low availability

Food (milk, juice) Storage, expiration

Negative Superparamagnetic particles Low availability

Ferrous oral suspension Cost, taste, poor distention

Biphasic Water Rapidly absorbed, poor distention

Polyethylene glycol Rapid transit, diarrhea

Mannitol The osmotic effect, third space

Methylcellulose Availability

Barium sulfate Taste

20

1.7.3. Spasmolytics

The wide variability of spasmolytics is described in the literature [103].

Most authors use N-Butyl Scopolamine or glucagon intravenous (IV) or

intramuscularly immediately before the procedure, as suggested by some

authors [94, 104–107].

Both N-Butyl Scopolamine and glucagon are acceptable agents with

different properties regarding the effect's duration, although they are most

effective when given intravenously [108]. N-Butyl Scopolamine is recom-

mended as the first-line spasmolytic, with glucagon as the second line [109].

The spasmolytics usually are administered before motioning sensitive

sequences and either a single or a split dose [86]. Post-gadolinium T1W

images' use increases diagnostic accuracy [110, 111] and utility of bowel

wall enhancement in validated disease activity scores [24, 86, 112].

1.7.4. Imaging classification of Crohn's disease

CD is classified into several subgroups, and patients may exhibit cha-

racteristics of more than one disease subtype [107, 113]. The subtypes are

the active inflammatory subtype (non-stricturing, non-penetrating),

penetrating, stricturing, and reparative-regenerative subtype. This

classification is useful for determining whether a patient can receive

medical or surgical treatment [103–113].

1.7.4.1. Active inflammatory disease subtype

Early CD manifestations include edema and aphthous ulcers easily

detected by endoscopy, and MRI is less useful [113, 114]. The initial muco-

sal inflammation can progressively develop into deep ulcers, transmural

inflammation, and granuloma formation with further wall thickening,

hyperemia, submucosal edema, and mesenteric fat hypertrophy [103]. Minimal

active inflammatory signs are characterized as aphthous or superficial ulcers

on endoscopic images [113].

Endoscopic and barium examinations are superior in detecting these

superficial mucosal abnormalities [115], which may not identify on MR

imaging even with optimal luminal distension [107, 114]. Mucosal

hyperemia is an area of intense enhancement after contrast agent

administration. The early signal intensity after contrast administration

correlates well with the CDAI [106], as well as a stratified pattern of

contrast enhancement with active inflammation [103].

Additional extramural findings include mesenteric hyperemia with

engorged vessels corresponding to hypervascularity of the inflammated

segment ("comb" sign), usually accompanied by edema and mesenteric fat

21

proliferation around the affected loop. Regional lymphadenopathy was seen

in patients with inflammatory changes [116].

The signs of severe inflammatory activity include deep mucosal ulcera-

tions and a "cobblestone" appearance of the bowel mucosa, very charac-

teristic of CD.

Deep transmural ulcers were readily detected on True FISP, HASTE,

and T1W fat-suppressed (fs) images after IV contrast administration. These

deep transmural ulcers progress to fistula formation [103].

1.7.4.2. Penetrating subtype

This subtype is described by severe inflammation that progresses to

transmural ulceration with fistula formation or intestinal perforation. Before

fistulization, large penetrating ulcers may occur. Differentiation between

deep transmural ulcerations and well-established fistulas is critical as

fissures may respond to more aggressive immunomodulatory treatments

(TNF inhibitors) [103].

Fistula formation has been reported in up to one-third of patients with

CD [117]. MR-EC's sensitivity for detecting fistulizing/penetrating disease

ranges from 83.3–84.4%, with a specificity of 100% [118].

Active fistulas show marked contrast, and chronic fistulas are

considered low signal serpiginous tracts with no enhancement after contrast

injection. Sagittal sequences help delineate fluid-filled tracts that extend

from the small bowel to the anterior abdominal wall [102]. Desmoplastic

reaction incited by transmural inflammation in the mesentery can occur in

band-like areas of fibrosis, often bridging surrounding small bowel loops in

a stellate configuration, also referred to as the "star-sign". These fibrous

bands often show delayed progressive enhancement and are indirect

evidence of enteroenteric fistula [102].

Fistulous may develop between bowel loops or between loops and skin

or other adjacent organs [103].

Extramural complications such as abscesses, inflammatory masses, or

adjacent organ involvement are easily seen at MR-EC [103].

1.7.4.3. Stenosing subtype

Intestinal obstruction is usually together with a greater or lesser degree

of prestenotic dilatation. Differentiation between fibrotic and edematous

stenosis is useful for selecting patients for surgical versus medical treatment

[103].

22

Chronic fibrotic stenoses are typically hypointense on T1W and T2W,

unlike inflammatory stenoses with transmural edema are hyperintense on

T2W fs [103].

Pseudosacculation ("omega" sign) is caused by asymmetric fibrosis

involving the mesenteric margin of the loop resulting in pseudosaccule

formation [103].

Functionally significant stenosis than prestenotic dilatation of bowel

lumen proximal to the stenosis measured >3 cm in diameter [16].

Functionally not significant stenosis than bowel lumen narrowing >10%

compared with normal adjacent bowel in the absence of dilatation [16].

One of the significant disadvantages of MR-EC is the low specificity

and sensitivity in the detection of strictures. Although symptomatic

strictures may be detected, incipient or partial strictures are often missed on

MR-EC because the enterocolonographic technique may not provide

adequate distension of the bowel to highlight partial strictures [102].

1.7.4.4. Reparative-regenerative subtype

Mucosal atrophy and regenerative polyps characterize this phase.

Mucosal atrophy with focal areas of sparing seen as pseudopolyps that

demonstrate no significant enhancement or edema.

Regenerative pseudo-polyps should not be confused with the deep

ulcerations that develop in the advanced inflammatory disease

("cobblestone" sign) [103].

1.7.5. Magnetic resonance enterocolonography signs of

Crohn's disease activity, severity, and complications

The assessment of active CD with MRI may determine the management

of the patient. The findings associated with CD on MRI are divided into

mural and extramural. Mural findings include thickening and enhancement

of the bowel wall, patterns of enhancement, hyperintensity on T2W,

ulcerations. Extramural findings are fibrofatty proliferation, "comb sign",

lymph nodes.

1.7.5.1. Bowel wall assessment

1.7.5.1.1. Bowel wall thickening

The mural thickening one of the signs that better correlates with CD

activity. Wall thickening of more than 3 mm in the good distended small

bowel is considered abnormal [119, 120]. Koh et al. have reported that

mural thickening more than 4 mm is a reliable predictor of the disease

23

activity with a sensitivity and specificity (88% and 75%) [121]. Also, a

significant reduction in mural thickening was in response to the treatment

[122, 123]. Florie et al. stated that wall thickness correlated well with

clinical activity grade (r=0.47, P=0.003) and Van Hees activity index

(r=0.41, P=0.007) [109]. Nonetheless, Punwani et al. reported a precise

correlation between mural thickness on MRI and surgical specimens [103].

Typically, abnormal wall thickening in the acute inflammatory phase of

CD measures >5 mm in thickness. Fat-suppressed balanced steady-state free

precession imaging is best for evaluating wall thickness [102].

1.7.5.1.2. Enhancement of the bowel wall

Mural enhancement in active inflammation is significantly higher than

in normal segments and is highly specific for detecting segmental involve-

ment [121]. Studies comparing segments with active inflammation before

and after treatment showed that the signal intensity decreases significantly

after medical treatment [122, 123].

Florie et al. reported that the bowel wall's enhancement showed a

significant correlation with the clinical grade (r=0.29, P=0.045), CDAI

(r=0.31, P=0.033). The enhancement based on the dynamic series correlated

significantly with the CDAI (r=0.38, P=0.016) [109]. Koh et al. results

analyzing the ratio of the signal intensity of abnormal to normal bowel were

higher in patients with active disease (P<0.05) and had a sensitivity and

specificity (68% and 94%) [121]. Del Vescovo et al. have confirmed that

the layered enhancement has a high sensitivity of 100%, specificity of 87%

in detecting active inflammation [124]. There is evidence suggesting that

bowel wall enhancement is the parameter that correlates with the degree of

inflammation [103].

1.7.5.1.3. Patterns of enhancement

Normal enhancement of adjacent small bowel loops should be used as a

reference when assessing abnormal mural enhancement [102].

Several mural enhancement patterns are described:

– Layered pattern ("target" sign) is due to the edema of the

submucosa and muscularis propria that appears in the early stages

of the CD in bowel loops with increased mucosal and serosal

enhancement due to active inflammation [125]. This sign is useful

to differentiate between loops with active inflammation and loops

with homogeneous enhancement, that is, without the active disease

[102, 103, 105, 107, 121].

24

– Mucosal enhancement may be the only sign of early active inflam-

mation [103].

– Homogeneous mural enhancement is typical for the chronic or

inactive disease [103]. The diffuse transmural enhancement pattern

reflects the transmural nature of the CD [102].

– The absence of mucosal enhancement and weak, homogeneous

enhancement in the rest layers is an indicator of inactive disease.

[103].

Punwani et al. stated statistically significant differences between the

different enhancement patterns and the histologic indexes of acute inflam-

mation [126]. Segments with layered enhancement have a significant

inflammatory component in the histologic analysis, while those with

homogeneous enhancement lack acute inflammatory component [126].

1.7.5.1.4. Bowel wall hyperintensity on T2W images

In segments with wall thickening, edema is best evaluated by

comparing the bowel wall between fat-suppressed and non-fat-suppressed

T2W images. Both mural edema and fat will appear hyperintense on non-

fat-suppressed T2W images. Whereas mural edema alone will persist as a

hyperintense wall signal on fat-suppressed sequences, indicating active

inflammation. Mural fat will lose signal on T2W fs images, suggesting

chronic disease.

Several studies have shown the significant correlation between signal

hyperintensity on T2W images of the affected loops and the presence of

active inflammation [110, 126, 127], as well as significant differences

between healthy individuals and patients with response to treatment [103].

1.7.5.1.5. Bowel wall ulceration

The deep and superficial ulcers are characteristic of active

inflammation. When there is adequate luminal distention, we can observe

aphthous ulcers on MR-EC. The aphthous ulcers are seen as a central focal

area of high T2W signal surrounded by a mound of T2W intermediate

signal [106]. Usually, they are not visualized on MRI [107, 114]. In this

case, conventional endoscopy, capsule endoscopy, and barium imaging are

superior to MRI for aphthous ulcers detection [115].

Deep transmural ulcers are seen as a linear high signal indentation into

the bowel wall. Ulcers are best observed on T2W fs images. Cobblestone

appearance of the mucosa is also associated with deep ulceration areas alter-

nating with thickened mucosal folds [103, 128]. Deep ulcers can develop

into fistula [102].

25

Gourtsoyiannis et al. categorized the bowel wall thickness, lymph node

enhancement, and intestinal ulcers as having the strongest correlation with

active CD [129]. These findings were confirmed by Sinha et al. in a sizeable

validated study of surgically excised bowel segments compared with MR-

EC [102].

1.7.5.2. Extramural findings

1.7.5.2.1. The fibrofatty proliferation

The fibrofatty proliferation may appear in both active and inactive CD.

The fat signal will be hypointense on T2W fs images due to a higher fibrous

content in the inactive disease. In active CD, there is an increase in signal

[130].

1.7.5.2.2. Mesenteric vascularity "comb" sign

Increased vascular engorgement can persist for a long time in patients

with inactive or quiescent disease due to chronic mesenteric fibrosis [103,

116].

The comb sign has a high sensitivity to active disease detection but low

specificity without statistical significance [117]. It has been suggested that

increased vascular spills can persist for a long time in patients with inactive

or transient disease due to chronic mesenteric fibrosis [93, 111].

1.7.5.2.3. Lymph nodes enhancement

Mesenteric lymph nodes moderate or intense contrast enhancement is

highly suggestive of active CD. However, modest lymph node enhancement

can also be seen in 50% of inactive disease [116]. Meanwhile, the regional

lymph nodes' size shows a weak correlation with the degree of inflammatory

activity [103, 131].

1.7.6. DWI for CD activity evaluation

1.7.6.1. Technical aspects of DWI

Contrary to conventional T1W and T2W MRI sequences, DWI

measures changes in water motility caused by the interaction between cell

membranes, macromolecules, and alterations of the tissue that modify the

Brownian motion and distribution of fluids (Table 1.7.6.1.1) [132, 133].

Measuring water motion, called apparent diffusion, was first described in

1965 by an experiment that adapted a standard T2W spin-echo sequence by

applying a symmetric pair of diffusion-sensitizing bipolar gradients around

26

the 180° refocusing pulse [134]. This approach quantifies the restriction of

the motion of water molecules. The more free water molecules can move,

the more signal attenuation there will be on DWI compared with the T2W

sequence [135]. The b-value (also known as the diffusion coefficient;

expressed in s/mm²) is proportional to these three factors and quantifies

diffusion sensitivity. On DWI, applying small (e.g., 50–100 s/mm²) b-values

water molecules with a large degree of motion will show signal attenuation.

The slow-moving water molecules need higher (e.g., 500–1000 s/mm²) b-

values [136].

Table 1.7.6.1.1. General features of conventional and diffusion-weighted MRI

sequences (Permission License Number 4860300020553) [136]

Principle High signal

intensity

Low signal

intensity

Conventional

T1W spin-echo

sequence

Measuring spin-lattice

relaxation with a short

repetition and echo time

Fat and paramagnetic

substances*

Water content

Conventional

T2W spin-echo

sequence

Measuring spin-spin

relaxation with a long

repetition and echo time

Water content Fat

Diffusion-

weighted

sequence

Measuring Brownian

motion of water

molecules

Water molecules with

a small degree of

motion or diffusion

distance† and high

cellular environment

and integrity (e.g.,

cytotoxic edema,

fibrosis, abscesses,

and tumor)

Water molecules with

a large degree of

motion or diffusion

distance† and low

cellular environment

and integrity (e.g.,

vascular tissue and

necrosis)

*Dynamic contrast-enhanced imaging is based on a T1W spin-echo sequence with the

administration of gadolinium contrast injection. †Higher b-values are needed to detect

small degrees of motion or diffusion distances compared with large degrees of motion or

diffusion distances.

1.7.6.2. DWI assessment

Compared with MR-EC, the DWI sequence is less time-consuming and

may not require intravenous contrast agents, fasting, bowel cleansing, or

oral preparation [28, 93]. DWI signals can be assessed both qualitatively

and quantitatively [135]. Quantitative assessment is done by calculating an

ADC for each pixel of an image and displaying it as a parametric map. The

ADC map of an image shows differences in tissue diffusivity at different b-

values. Post-processing of DWI to construct an ADC map is a fully

27

automated process done by all commercially available MR scanners.

Calculation of ADCs requires the application of at least two b-values, with

the ADC map's accuracy increasing with the number of b-values [136].

Oto et al. were the first to evaluate DWI and ADC's role in detecting

bowel inflammation and demonstrating increased signal and lower ADC

values in inflamed segments [137]. This observation was confirmed by other

studies [138], and the use of DWI in CD continues to develop [46, 132,

139]. Because of the increased use of DWI in the radiological assessment of

disease activity, Kim et al. recently proposed a modifying MR-EC index,

which replaces ulcers with DWI grade [140]. The similar correlation was

obtained for CDEIS (r=0.737 and r=0.742, P=0.387, respectively) and did

not differ in the ability to diagnose active (r=0.909 and r=0.903, P=0.571) or

severe (r=0.907 and r=0.892, P=0.443) inflammation.

1.7.7. Crohn's disease activity indices

1.7.7.1. Lemann index

The Lemann index (LI) differs from other indices by assessing

structural damage rather than the extent of disease activity and mucosal

inflammation [25, 27]. The LI is a gut damage score. GI tract is divided into

four parts for calculation the score: upper tract (esophagus, stomach,

duodenum), small bowel (each segment is 20 cm), colon (cecum,

ascending/transverse/descending, and sigmoid colon, rectum) and anus. All

the sections are evaluated according to three parameters: surgical

intervention, stricturing lesions, and penetrating lesions, which are being

assessed by either endoscopy, colonoscopy, CT, or MRI and are graded

between 0–3. LI significantly increased with disease durations of years <2

years, ≥2 years, <10 years, and ≥10 years corresponding to LI values of 6.3,

14.3, and 19.0, respectively (P<0.001).

1.7.7.2. MaRIA and mMaRIA

Rimola et al. were the first to develop an MR-EC based index for

quantification of disease activity using CDEIS as a reference standard [141].

They have evaluated six bowel segments (the terminal ileum, ascending,

transverse, descending, sigmoid colon, and rectum). The final score was

based on the features which independently predicted active endoscopic

disease. The features were: bowel wall thickness (mm), ulcers, edema (defi-

ned as hyperintensity of the bowel wall relative to the signal of the m. psoas

on T2W), wall signal intensity (WSI) before and after IV contrast

administration and relative contrast enhancement (RCE) of the bowel wall.

The following formula calculates RCE: RCE = [(WSI postgadolinium −

28

WSI pre-gadolinium)/(WSI pre-gadolinium)] × 100 × [standard deviation

(SD) noise pre-gadolinium/SD noise postgadolinium]. SD noise pre and

postgadolinium is measured outside of the body before and after gadolinium

injection, respectively.

The following formula calculates the segmental MaRIA score: 1.5 ×

wall thickness (mm) + 0.02 × RCE + 5 × edema + 10 × ulceration. The

MaRIA score had a high (r=0.81, P<0.001) correlation with the CDEIS of

the correspondent segment. A global MaRIA score is a sum of six bowel seg-

ments. The significant correlation with CDEIS (r=0.78, P<0.001), HBI

(r=0.56, P<0.001) and CRP (r=0.53, P<0.001) was assessed. Rimola and

colleagues established cutoff points for disease severities [24].

Scardapane et al. obtained the same calculation as MaRIA, excluding

the data related to RCE (0.02 × RCE), and modified the formula: 1.5 × wall

thickness (mm) + 5 × edema + 10 × ulceration [142]. The index was called

mMaRIA.

Recently Ordas et al. developed a simplified version of MaRIA (sMaRIA);

instead of RCE, new item fat stranding was added [143, 144].

1.7.7.3. Clermont index

Buisson et al. developed the first index, which combines DWI and ADC

measurements in the ileum using the MaRIA score as a reference standard

[145]. The Clermont index was proposed by findings showing lower ADC

values in acutely inflamed bowel tissue than in normal tissue [145]. ADC

values and combined conventional MR-EC parameters derived by the

MaRIA index (bowel wall thickness, edema, and ulceration) are used to

calculate the score [146]. The calculation is performed by using the

following formula:

−1.321 × ADC (mm2/s) + 1.646 × wall thickening +

+ 8.306 × ulcers + 5.613 × edema + 5.039 [145].

Validation showed a high correlation of the Clermont index with the

MaRIA score at the ileum and remission prediction after biological therapy

[147–149]. The Clermont index also correlated with ileal CDEIS (r=0.63,

P<0.05) and ileal SES-CD (r=0.58, P<0.05) [150]. A score greater than 18.9

detected ulcerations at endoscopy with sensitivity and specificity, both more

than 70% [150]. Caruso et al. performed a retrospective study and

confirmed the correlation of the Clermont index with the SES-CD for ileal

disease activity (r=0.76, P<0.0001) [151]. The Clermont index is

advantageous because it does not require intravenous contrast injection

[136]. The calculation of the Clermont index depends on the quantitative

29

assessment of DWI. Li X-H et al. [152] confirmed an increased accuracy of

ADC values for the differentiation of inactive-mild CD and moderate-severe

CD compared with conventional MRI parameters [153]. A study by Pendsé

and colleagues [154] supported the use of qualitative grading of DWI signal

to define the burden in CD, and quantitative ADC measurements had a poor

discriminatory ability for segmental disease activity [136].

The Clermont score is highly correlated with the MaRIA (rho=0.99) in

ileal CD. A Clermont score >8.4 was predictive of active ileal disease,

which was defined as MaRIA ≥7, and a score ≥ of 12.5 was predictive of

severe ileal disease (MaRIA ≥ 11).

Table 1.7.7.3.1. Magnetic resonance enterocolonography parameters used

for indices calculation (with permission) [155]

Score

MR-EC parameters Validated parts

of the GI tract

En

ha

nce

men

t

Wa

ll t

hic

kn

ess

Ulc

ers

AD

C

Mu

ral

T2W

sig

na

l

Ste

no

sis

Ab

sces

s

Fis

tula

Jej

un

um

Ileu

m

Co

lon

MaRIA

Clermont

Lemann index

GI – gastrointestinal, MaRIA – Magnetic Resonance Index of Activity.

1.8. Crohn disease management

To effectively treat CD, the anatomic distribution, disease activity is

essential factors to be considered [156].

Medical treatment of CD usually includes induction and maintenance

therapy. These phases of treatment include relatively rapid control of

inflammation and then sustaining that control for prolonged periods.

Treatment is generally chosen according to the disease severity to control

inflammation and symptoms arising from active inflammation. Another aim

is to prevent the occurrence of disease complications, such as stricture and

fistula. Medical therapy used to treat CD includes 5-aminosalicylates,

antibiotics, corticosteroids, immunomodulators, and biologics (the anti-TNF

agents; and the anti-p40 (anti-IL-12/23) antibody) [156].

30

Treatment goals for CD that were initially based on symptom control

using corticosteroids have been modified since immunomodulators'

introduction (azathioprine, 6-mercaptopurine, and methotrexate), anti-TNF

therapies (infliximab, adalimumab, and certolizumab pegol). The target of

novel therapies integrin-adhesion molecule interaction-mediated leukocyte

trafficking (vedolizumab) and interleukin-12/23 mediated T-cell activation

(ustekinumab) was introduced into clinical practice [157–158]. The

American Gastroenterological Association (AGA) and European Crohn's

and Colitis Organisation (ECCO) suggests early recognition of disease

severity and inflammatory burden to classify patients at moderate-to-high

risk of disease progression [159]. The known risk factors: diagnosis at age

less than 30 years (expected post-diagnosis life expectancy greater than 30–

40 years); extensive anatomic involvement; perianal and/or severe rectal

disease; deep ulcers in the colon; prior surgical resection; and

stricturing/penetrating disease phenotypes [160- 161]. In the moderate- to

the high-risk patient, the AGA guidelines on medical therapy in CD suggest

the use of a top-down approach with anti-TNF in combination with a

thiopurine is the preferred treatment strategy, in the absence of

contraindications [162].

A subgroup of individuals rapidly progresses to complicated disease

behaviors (stricturing or penetrating disease, or both). These patients are in

the high-risk group. Risk factors for CD progression include young age at

the time of diagnosis, ileal disease location, serological response to specific

microbial antigens, initial extensive bowel involvement, perianal/severe rectal

disease, and presence of a penetrating or stenosis disease phenotype at diag-

nosis [156].

Anti-TNF (infliximab) is approved to induce remission in moderately

severe CD refractory to other therapies, including mesalamine, antibiotics,

corticosteroids, and immunomodulators [162]. These anti-TNFs are superior

to thiopurine monotherapy in inducing remission in moderately severe CD

[163]. Furthermore, a combination of an anti-TNF with a thiopurine is

superior to an anti-TNF alone in inducing remission in moderately severe

CD [163].

31

2. METHODS

2.1. Ethics

We performed a single-center study in the Radiology and Gastroente-

rology Department at the Hospital of Lithuanian University of Health

Sciences Kauno klinikos during 2013–2018.

The Kaunas Regional Ethics Committee approved the study for

Biomedical Research No. BE-2-48 (21st of December, 2012). All patients

have signed an informed consent form before inclusion.

2.2. Patient selection criteria

2.2.1. Inclusion criteria

1. Patients with suspected or established CD.

2. Patients 18 years and older.

3. No pacemakers, metal devices, prostheses, or foreign bodies in the

patient's body.

4. The patients with no evidence of renal insufficiency (serum creati-

nine lower than 130 mg/L).

5. Patient in whom complete MR-EC has been performed.

2.2.2. Exclusion criteria

1. Patients with a high BMI>30.

2. Patients with stomas.

3. Patients with perianal CD only.

4. Patients with ulcerative colitis.

5. Other pathology found on MR-EC: tumors, diverticulitis,

adhesions.

6. Incomplete MR-EC investigation or with severe artifacts.

2.3. Study design

Our study included consecutive patients with suspected or already

diagnosed CD who were referred for MR-EC.

Two hundred twenty-nine patients met the inclusion criteria. Patients

were informed about the purpose of the study, and the research plan was

explained to them. In the absence of exclusion criteria, all patients filled

questionnaires. Blood specimens were obtained before the MR-EC proce-

32

dure. Endoscopy and histology were performed within 14 days before the

MR-EC examination. The stool samples were collected for FC analysis

(from 2014 years). The study flow chart is presented in Fig. 2.3.1.

Fig. 2.3.1. Flow chart of the study

Gastroenterologists had evaluated the patients who fulfilled

Copenhagen Diagnostic Criteria for diagnosing CD (at least two of the

criteria present) [44] and made the final diagnosis:

1. History of abdominal pain, weight loss, and/or diarrhea for more

than three months.

2. Characteristic endoscopic findings of ulceration (aphthous lesions,

snail track ulceration) or cobblestoning or radiological features of

stricture or cobblestoning.

3. Histopathology consistent with Crohn's disease (epitheloid granulo-

ma of Langerhans type or transmural discontinuous focal or patchy

inflammation).

4. Fistula and/or abscess concerning affected bowel segments.

One hundred patients fulfilled the Copenhagen Diagnostic Criteria for

CD (at least two of the criteria).

The control group consisted of 129 patients in whom CD was not

diagnosed, who did not have any organic pathology. These patients usually

had functional gastrointestinal disorders.

33

2.3.1. Questionnaire survey data

All patients filled questionnaire forms: inflammatory bowel disease

questionnaire (IBDQ), Crohn's Disease Activity Index (CDAI), Harvey-

Bradshaw Index (HBI).

2.3.1.1. Inflammatory bowel disease questionnaire

IBDQ is a validated, disease-specific quality of life assessment instru-

ment (Annex 3) [164]. This questionnaire includes four main problems that

reflect the quality of life: bowel and systemic symptoms, emotional and

social functions [164]. IBDQ questionnaire consists of 32 questions. In our

study, patients were interviewed, and IBDQ results were calculated

according to the survey's instructions. The response for each item was

graded on a 7-point Likert scale, ranging from 1 (reflects "worst" condition)

to 7 (reflects the "best" condition). The total IBDQ score varies between 32

and 224, and the higher score reflects a better quality of life [165].

2.3.1.2. Crohn's disease activity index

CDAI calculation is based on symptoms: including the number of liquid

stools, abdominal pain, general well-being, extraintestinal complications,

usage of antidiarrhoeal drugs, abdominal mass, hematocrit, and body weight

(Annex 1) [51]. The measured score varies from 0 to 600, and the higher

score corresponds to more severe disease. Values below 150 suggest

quiescent disease (remission), and values above 450 are associated with

very severe disease [51]. Severe disease is thought to be above 300.

However, some researchers have arbitrarily labeled CDAI scores of 150–

219 as mildly active disease and scores of 220–450 as a moderately active

disease [52].

2.3.1.3. Harvey-Bradshaw Index

The HBI is a more simple index than CDAI. The index considers five

clinical parameters only: general well-being, abdominal pain, number of

daily liquid stools, abdominal mass, complications [166]. For each

parameter, a specific score is assigned (Annex 2).

HBI<5 is defined as clinical remission, HBI between 5 and 7 as a mild

disease, HBI between 8 and 16 as the moderate disease, and HBI>16 as a

severe disease [56, 166–167].

34

2.3.2. Blood tests

Routine blood tests were performed. Normal values were established

according to laboratory standards.

2.3.3. Faecal calprotectin

Patients have provided a stool sample within a week after the MR-EC

examination, which was used for FC measurement.

FC was analyzed by a sandwich enzyme-linked immunosorbent assay

(Calprotectin ELISA; Bühlmann Laboratories AG, Basel, Switzerland)

(Fig. 2.3.3.1) using a monoclonal capture antibody specific for calprotectin,

according to the manufacturer's instructions.

The calprotectin's measurement range was between 0 and 300 µg/g, and

samples were diluted to obtain calprotectin levels above the upper limit.

Levels 0<50 µg/g were considered normal, >200 µg/g active process with

inflammation.

Fig. 2.3.3.1. Quantum Blue®

– Calprotectin reader

2.3.4. Endoscopy with histology

An experienced gastroenterologist performed the endoscopy to evaluate

lesions in the colon and terminal ileum blinded to MR-EC results. To assess

the severity and activity of endoscopic inflammation, CDEIS was

calculated. Conventional colonoscopy was performed using standard

equipment (Olympus, Tokyo, Japan). Suspicious inflammatory segments

were recorded, and biopsy samples were collected. Also, the biopsy sample

was collected from healthy-looking bowel segments.

According to the Hospital of Lithuanian University of Health Sciences

Kauno klinikos standard protocol, all tissue sections were stained with

hematoxylin and eosin. The histopathologist applied an endoscopic biopsy

acute inflammatory score (eAIS) based on the typical morphological

features of CD Table 2.3.4.1 [168].

35

Table 2.3.4.1. Histopathology grading for endoscopic acute inflammation

score (eAIS)

Histological variable Grade

Erosion or ulceration 0=No, 1=Yes

Polymorphs in the lamina propria 0=No, 1=Yes

Cryptitis 0=No, 1=Yes

Crypt abscess formation 0=No, 1=Yes

Inflammatory exudates 0=No, 1=Yes

Granulomas 0=No, 1=Yes

2.3.5. Magnetic resonance enterocolonography protocol

The applied MR-EC protocol included bowel cleaning and pre-

examination fasting overnight.

On the examination day, about the one-hour before the examination,

each patient has received an orally 2.5% 1500–2000 mL solution of

mannitol. Before starting the MR-EC examination and injection of contrast

media, 20 mg/mL N-Butyl Scopolamine (Buscopan, Boehringer, Ingelheim,

Germany) was injected intravenously, inhibiting bowel peristalsis. The

imaging protocol consisted of the following sequences Table 2.3.5.1.

Table 2.3.5.1. Imaging sequences at 1.5T

Plane Slice thickness

(mm) FOV

TR/TE

(ms)

Flip

angle

True-FISP Coronal 4 400 4.18/2.09 70

T2-HASTE Axial 5 360 1200/124 150

T2-HASTE fat saturation Axial 5 360 1200/124 150

T2-HASTE Coronal 5 440 1200/124 150

T1VIBE Coronal 1.8 400 2.93/1.36 10

T1VIBE Axial 3 420 4.49/2.16 10

DWI Axial 6 380 1500/74 –

True-FISP – Fast imaging with steady precession, HASTE – Half Fourier acquisition

single-shot turbo spin-echo, VIBE – Volumetric interpolated breath-hold examination,

DWI – diffusion-weighted imaging.

A single dose of (0.2 mg/kg) IV gadolinium-based contrast media

(Magnevist Bayer Schering Pharma, Berlin Germany) was injected into an

arm vein at 2 mL/sec, followed by a saline solution (10 mL).

36

All MR-EC scans were performed on 1.5 Tesla MRI unit (Siemens

Healthcare GmbH, Erlangen, Germany) using the manufacturer's phased-

array body coils in the prone position Table 2.3.5.2.

Table 2.3.5.2. The protocol of MR enterocolonography with gadolinium

injection for the detection and evaluation of suspected Crohn's disease

Patient fasted overnight

Oral administration of 1500–2000 mL of 2.5% of mannitol solution (60 min before

MRI)

Patient placed in the prone position in an MR scanner

Buscopan injection

Axial and coronal T2W, T1W images

Axial DWI (b values=50, 400 and 800 s/mm2)

Buscopan injection

Axial and coronal T1W images with contrast media

Patient placed in the supine position in an MR scanner

Coronal T2W images

2.3.5.1. MR image interpretation

MR-EC images were evaluated on the picture archiving and communi-

cation system (PACS, Syngo.via, Siemens Healthineers) workstation.

The bowel was divided into nine segments: jejunum, proximal ileum,

terminal ileum, caecum, ascending colon, transverse colon, descending

colon, sigmoid colon, rectum [169].

The jejunum is considered a segment I, assumed in the abdomen's left

upper quadrant, bowel with a typical feathery fold pattern. The proximal and

middle ileum represented segment II, located in the left lower quadrant. The

terminal ileum – represented segment III as the 10 cm of ileum immediately

proximal to the ileocaecal valve [112].

2.3.5.2. Evaluation of MR-EC parameters

The small bowel and colon each segment was evaluated for:

1. Mural wall thickness (≥3 mm estimated as a thickening).

2. Mural edema, T2W fs mural signal intensity was scored 0

(definitely normal), 1 (dark grey), 2 (light grey), or 3 (grey-white).

3. Mural contrast enhancement at 70 seconds after contrast admission

was scored 0 (definitely normal), 1 (markedly less than), 2 (slightly

less than), or 3 (equal to arteries in the arterial phase).

37

4. Contrast enhancement pattern was also graded (normal, stratified

pattern and homogeneous),

5. Inflammated segment length measured via electronic calipers,

6. Ulcers, phlegmon, fistulae or abscesses, lymph nodes ≥1 cm (short

axis diameter), comb sign also were evaluated.

7. Stenosis defined as luminal narrowing of more than 80% compared

with unaffected adjacent bowel segments, and the diameter and

length of stricturing parts were measured using electronic calipers.

8. On DWI, using a b value of 800 sec/mm2, the mural SI was graded.

We used 4-point scale: 0 (normal), 1 (probably normal), 2

(probably abnormal), 3 (abnormal).

9. ADC maps used for quantitative analysis of DWI data. Two

regions of interest (ROI) were placed manually on the ADC map

on the wall of the most abnormal bowel wall area and the other

normal looking intestine wall segments without including the

bowel content. The average ADC of these measurements for each

patient was calculated.

2.3.5.3. Crohn's disease classification

2.3.5.3.1. Active inflammation

Bowel wall edema increased the signal of the BW compared with

normal BW evaluated on T2W sequences.

Inflammatory stenosis associated with a segment of thick-walled

bowel, high signal intensity on T2W images (Fig. 2.3.5.3.1.1).

Fig. 2.3.5.3.1.1. T2W HASTE (A), T2W HASTE (B) with fat suppression

active CD, bowel wall edema increased signal comparing

with other bowel loops (arrow), mural thickening 1.2 cm

38

Increased intensity of the segmental mural hyperenhancement

compared with normal bowel wall appearance after intravenous

contrast administration.

Mural stratification visualization of two/ three layers within the

BW ("target" or "double halo") appearance (Fig. 2.3.5.3.1.2).

Fig. 2.3.5.3.1.2. T1W with contrast media mural stratification

with hyperenhancement and superficial ulceration (arrow)

"Comb sign" increased vascularity of the vasa recta supplying the

small bowel or colon perpendicularly to the gut (Fig. 2.3.5.3.1.3).

Fig. 2.3.5.3.1.3. The coronal postcontrast T1W image shows

the "comb sign" (arrow)with vascular engorgement

in the mesentery, a finding suggestive of active CD

39

Lymphoid node enlargement of more than 5 mm measured in the

shortest diameter.

Fig. 2.3.5.3.1.4. The coronal postcontrast T1W image shows

the "comb sign" (arrow)

Deep transmural ulceration/fistulation – thin linear

structures/protrusions with high signal intensity on T2W images

surrounded by a zone of a lower signal intensity exceeding the

mucosal layer and/or penetrating the thickened BW (Fig.

2.3.5.3.1.5, 2.3.5.3.1.6).

Fig. 2.3.5.3.1.5. T2W HASTE images entero-enteric fistula (arrows)

40

Fig. 2.3.5.3.1.6. T2W HASTE images show abscess (long white arrows),

a fistula between intestine and abscess (grey arrow),

thickened bowel walls (short white arrows)

2.3.5.3.2. Chronic inflammation

Reparative changes: regenerative polyps, luminal narrowing, hete-

rogeneous mild to moderate wall enhancement, fibrofatty prolife-

ration, lymphadenopathy, low to moderate T2W signal intensity

(Fig. 2.3.5.3.2.1).

Fig. 2.3.5.3.2.1. TRUFI coronal image is showing

regenerative polyps (arrow)

41

Pseudodiverticula (Fig. 2.3.5.3.2.2) asymmetrical bowel fibrosis

and shortening due to ulceration of the mesenteric side of the

bowel.

Fig. 2.3.5.3.2.2. T2W HASTE with fat suppression long-standing

CD pseudodiverticula (omega sign) (arrow)

Fibrotic stenosis – fixed narrowing, low to moderate T2W signal

intensity, minor nonhomogeneous contrast enhancement without

any edema/ surrounding mesenteric inflammation (Fig. 2.3.5.3.2.3).

Fig. 2.3.5.3.2.3. T2W HASTE with fat suppression significant stenosis

(white arrow) with prestenotic dilatation up to 5 cm

42

2.3.5.4. Crohn's disease activity grading

2.3.5.4.1. Bowel damage assessment

Lemann index (LI) is an innovative tool based on imaging measuring an

appropriate individual's cumulative digestive tract damage at the moment

[170].

LI calculation also includes the esophagus, stomach, duodenum [171].

The whole digestive tract per segment is analyzed from mouth to anus. Each

portion is graded for stricturing and penetrating lesions according to

severity. Also, a history of organ resection is included [170].

Before starting the LI analysis, the gastrointestinal tract was divided

into segments: small bowel 20 segments, colon/rectum six segments, anus

one segment. We calculated bowel segments according to LI calculation

instructtions. We used a Microsoft Excel (Microsoft Corporation, Redmond,

WA, USA) – based calculator provided by the LI score creator group

(Annex 4). LI was assessed basing on the following three visible features:

stricturing lesions, penetrating lesions, and the history of surgery. For each

element, grading from 0 (none) to 3 was performed [16] and 10 for each

resected segment. LI ranging between 0 – was considered as "no bowel

damage", and 140, – as "the most massive bowel damage" [27].

2.3.5.4.2. Crohn's disease activity evaluation

MaRIA is the first developed MRI index for grading disease activity

and severity [172]. The reference standard for the MaRIA index was CDEIS

[155].

MaRIA was calculated according to the formula by Rimola et al. [24].

MaRIA Global (MaRIA-G) was calculated as the sum of all segments of

each patient. MaRIA (segment) = 1.5 × wall thickness (mm) + 0.02 × RCE

+ 5 × edema + 10 × ulceration. RCE is calculated according to the following

formula: RCE = [(wall signal intensity (WSI) postgadolinium – WSI pre-

gadolinium)/(WSI pre-gadolinium)] × 100 × (SD noise pre-gadolinium /SD

noise postgadolinium) [24].

mMaRIA calculated according to the formula mMaRIA (segment) =

1.5 × wall thickness (mm) + 5 × edema + 10 × ulceration [142]. mMaRIA

Global (mMaRIA-G) was calculated as the sum of all segments of each

patient.

Clermont index calculation is performed by the following formula:

−1.321 × ADC (mm2/s) + 1.646 × wall thickening + 8.306 × ulcers + 5.613

× edema + 5.039 [145]. Clermont Global (G) calculated as the sum of all

segments of each patient.

43

2.4. Statistical analysis

Data analysis was performed using the program package SPSS 20.0

(Statistical Package for Social Sciences, SPSS Inc., USA) and Windows

Excel (Microsoft Corporation, Redmond, WA, USA) programs.

Shapiro-Wilk test was used to check data normality. Having determined

that we have no reason to reject the nil hypothesis of the normal distribution

of the data analyzed, we continued to use standard methods for analyzing

averages and dispersions of the normal distribution data. Otherwise, we

used the non-parametric statistics criterion. For descriptive statistics,

frequencies, means, medians, and standard deviations were calculated.

We compared the Student t criterion or the non-parametric Mann-Whitney

U test between the two quantitative parameters. Comparing the quantitative

parameters of more than two groups, we used a parametric analysis of

dispersion ANOVA and non-parametric analysis of Kruskal-Wallis.

The Spearman rho was used to calculate the correlation. Correlation

coefficients were interpreted accordingly: correlation was considered very

weak if 0.0 < |R| < 0.2; weak, if 0.2 < |R| < 0.4; moderate, if 0.4 < |R| < 0.7;

strong, if 0.7 < |R| < 0.9; and very strong, if 0.9 < |R| < 1.0 [173].

The chi-square (χ2) criterion was used to analyze qualitative data. Areas

under the receiver operating characteristic (ROC) curve were calculated and

points for the best specificity and sensitivity were established, positive

predictive value (PPV), negative predictive value (NPV), and accuracy

estimated. The susceptibility and specificity of the investigated features are

computed according to the following formulas: Sensitivity = ca a +,

Specificity = db d +, where: a – the number of positive cases; b – number of

false-positive cases; c – the number of false-negative cases; d – the actual

number of negative cases. P-values less than 0.05 were considered to be

statistically significant.

The required minimum number of patients to get statistically reliable

conclusions was calculated using the formula:

2

2 )1(

zn

– the frequency of the event; z – normal distribution N (0.1) 2

1 P

quantum; Δ – the probability assessment accuracy. The event's frequency

was based on the Epicom population study [39], and the disease incidence

rate in the Eastern European centers was 3.3%. The minimum number of

patients to get reliable results was 49.

44

3. RESULTS

3.1. Study population characteristics

Two hundred twenty-nine patients were included in the study: 100 pa-

tients with confirmed CD diagnosis according to Copenhagen diagnostic

criteria and 129 controls without diagnosed gastrointestinal tract organic

disorder. More than half of the CD patients were male (55%). The mean age

of the study population was 36.85 years (range, 18-67). The youngest

patient was 18, the oldest 67 years old. Forty-one patients were newly

diagnosed with CD. The control group consisted of 69 (53.48%) men and 60

(46.52%) women, the mean age of 36 years (range, 19-69). The demogra-

phic and clinical characteristics of the patients and controls are presented in

Table 3.1.1.

Complete ileocolonoscopy in the CD group was performed for 68

(68%) patients. The most common reasons for failure to intubate the ileum

were the severe colonic or ileal disease for 32 (32%) patients. Complete

ileocolonoscopy in the control group was performed for all 129 (100%)

patients.

There was no statistically significant difference regarding age and

gender distribution between CD patients and controls (P>0.05). IBDQ was

lower in the CD group comparing to controls (P<0.001). CDAI, WBC, and

CRP results were higher in CD patients (P<0.001) Table 3.1.1.

Table 3.1.1. Demographic and clinical data of patient and control

population

Characteristics CD (n=100 ) Controls (n=129) P

Gender, n (%):

Male/Female

55 (55.0)/45 (45.0)

69 (53.48)/60 (46.52)

0.44

Age at inclusion median (IQR), years 34.5 (26–47) 37 (26–46) 0.235

Previous surgery, n (%):

Yes/ None

9 (9.0)/91 (91.0)

0 (0)/129 (100)

<0.001

Tobacco use, n (%)

Never

Previous

Current

61 (61)

4 (4)

35 (35)

116 (89.9)

5 (3.9)

8 (6.2)

<0.001

CDAI median (IQR) 170.5 (100–228) 16 (12–28) <0.001

IBDQ median (IQR) 170 (151–188) 213 (207–219) <0.001

C reactive protein median (IQR), mg/L 2.86 (1–23.47) 1 (1–2) <0.001

CDAI – Crohn’s disease activity index, IBDQ – inflammatory bowel disease questionnaire.

45

The disease duration median for CD patients was one year. Disease

location was mostly ileal (n=49, 49%). Disease behavior prevalently was

non-stricturing, non-penetrating (n=54, 54%). Extraintestinal symptoms

occurred in 12 patients.

Twenty-nine patients (29%) were treated with anti-TNF antibodies, 71

(71%) with non-anti-TNF medicine. Additional clinical data of CD patients

is shown in Table 3.1.2.

Table 3.1.2. Clinical data of CD patients

Characteristics CD (n=100)

Disease duration at inclusion median (IQR), years/month 1 (4)/ 14 (44)

Age at diagnosis, n (%)

A1/ A2/ A3

2 (2)/ 66 (66)/ 32 (32)

Disease location, n (%)

L1/ L2/ L3

49 (49)/ 15 (15)/ 36 (36)

Disease behavior, n (%)

B1/ B2/ B3

54 (54)/ 20 (20)/ 26 (26)

Treatment

anti-TNF antibodies, n (%)

non-Anti-TNF antibodies, n (%)

29 (29)

71 (71)

Extraintestinal symptoms, n (%)

Yes/None

12 (12)/ 88 (88)

Anti-TNF – antibodies directed against tumor necrosis factor, A1 – below 16 years, A2 –

between 17 and 40 years, A3 above 40 years, L1 – ileal, L2 – colonic, L3 – ileocolonic, B1 –

non-stricturing, non-penetrating, B2 – stricturing, B3 – penetrating.

3.1.1. Inflammatory bowel disease questionnaire

Patients' quality of life was assessed by IBDQ. The figure shows the

mean IBDQ distribution in the disease location and behavior according to

the Montreal classification. We observed that IBDQ is lower in patients

with colonic (mean 152.2±13.5) and ileocolonic (mean 156.52±28.79)

comparing to ileal (mean 181.1±21.14). As well as in patients with non-

stricturing, non-penetrating (mean 181.70±18.12) CD comparing to

stricturing (mean 150.65±

25.43) and penetrating (mean 152.38±26.53) disease (Fig. 3.1.1.1). The

mean IBDQ was 167.87±26.55.

46

Fig. 3.1.1.1. Showing IBDQ distribution in different CD localization (L) and

behavior (B) according to Montreal classification

IBDQ – inflammatory bowel disease questionnaire.

3.2. Overall diagnostic value of MR-EC

For prognostic MR-EC value calculation, all patients (n=229) with

suspicious and established CD were included. The gold standard was

fulfilling at least 2 of 4 Copenhagen diagnostic criteria. MR-EC had an

overall sensitivity and specificity of 74% and 90%. Positive predictive value

(PPV) 97% and Negative predictive value (NPV) 46% for diagnosing CD.

Sensitivity and specificity for the diagnosis of CD of the terminal ileitis

were – 85.9% and 92.3%, respectively, with PPV 97.4% and NPV 65.8%,

respectively.

MRI presented average sensitivity and specificity for detecting

abscesses – 88.7% and 100%, respectively, with PPV 100% and NPV 92 %.

Also, MRI presented average sensitivity and specificity for detecting fistu-

las – 75.2% and 100%, respectively, with PPV 100% and NPV 93.3%, res-

pectively. MRI presented average sensitivity and specificity for the

detection stenosis – 81.1% and 91.5%, respectively, with PPV 91.5% and

NPV 77%.

47

3.3. MR-EC parameters

3.3.1. Length, location of abnormal segments

Among the 100 patients with CD, the mean length of bowel segments

identified on MR imaging was 98.89±78.31 mm (range, 10–500 mm). Among

129 controls, there were no segments with lesions on MR imaging.

The distribution of the 109 inflamed segments included one (0.92%)

jejunum, 7 (6.42%) proximal ileum, 52 (47.8%) terminal ileum, 6 (5.6%)

cecum and 7 (6.42%) ascending colon, 8 (7.34%) transverse colons, 12

(11%) descending colons and 9 (8.26%) sigmoids, 7 (6.42%) rectum.

3.3.2. Bowel wall thickening

Overall, the mean maximal wall thickness in patients with the disease

was 7.13±2.52 mm (Fig.3.3.2.1) and in the control group, 1.37±0.485 mm.

The mean maximal wall thickness measured on MR-EC was significantly

higher in the group of patients with CD (P<0.01) than in controls. On a per-

segment basis, a value of 4 mm or greater for abnormal bowel wall

thickening has a sensitivity of 84.4% and a specificity of 97.1% for Crohn's

disease (Table 3.3.5.1).

Fig. 3.3.2.1. Axial T2W image shows marked wall thickening

in the terminal ileum. A finding suggestive of active disease

48

3.3.3. Bowel wall hyperintensity on T2W images

In most patients with CD, the abnormal bowel segment was isointense

or slightly hyperintense to the m. psoas on T2W imaging. On T2W fs

abnormal bowel wall was from dark grey to almost white, similar to the

bowel content. Also, the bowel wall signal intensity of segments with

lesions in the CD group was significantly higher than in the control group

(Table 3.3.5.1).

3.3.4. Bowel wall enhancement

In the active CD, T1W contrast enhancement identified in the inflamed

bowel segments on MR imaging was significantly higher than those of the

normal-appearing bowel loops after the intravenous administration

(P<0.01), and no such segments were admitted in controls (Table 3.3.5.1).

3.3.5. Bowel wall pattern of enhancement

Of the 109 segments in which MR imaging identified CD, the enhance-

ment pattern of abnormal bowel was homogeneous in 51 segments and

stratified (Fig. 3.3.5.1) in 58 parts. We have not obtained such changes in

the control group, which showed statistical significance compared to the CD

group (Table 3.3.5.1).

Fig. 3.3.5.1. Postcontrast coronal T1W image in a young man

with Crohn's disease. Marked terminal ileal wall thickening is seen in

the right lower quadrant (arrow). The segment of the bowel also shows

layered postcontrast hyperenhancement suggesting active inflammation

49

Table 3.3.5.1. MR Imaging Findings distribution in patients with Crohn’s

Disease and controls on a per-segment basis

Parameter CD

(n=100)

Controls

(n=129) P

Bowel wall thickness, (mean±SD), mm 7.13±2.52 1.37±0.485 <0.001

BW signal intensity in T2 HASTE with fs, n (%):

Normal

Dark grey

Light grey

White, almost like bowel content

791 (87.88)

31 (3.45)

38 (4.22)

40 (4.45)

1161 (100)

0

0

0

<0.001

T1W contrast enhancement comparing with

normal BW, n (%):

Equivalent to normal BW

Minor

Moderate

Significant

791 (87.88)

32 (3.5)

35 (3.9)

42 (4.8)

1161

0

0

0

<0.001

Contrast enhancement pattern, n (%):

Normal

Stratified pattern

Homogeneous

791 (87.88)

58 (6.45)

51 (5.67)

1161 (100)

0

0

<0.001

Length of the involved segment (mean±SD), mm 98.89±78.31 0 <0.001

DWI Signal, n (%)

Normal

Probably normal

Probably abnormal

Abnormal

791 (87.88)

23 (2.55)

43 (4.78)

43 (4.79)

1161 (100)

0

0

0

<0.001

BW ADC (mean±SD), ×10–3 mm2/s 1.086±0.09 1.623±0.097 <0.001

ADC – apparent diffusion coefficient, BW – bowel wall, DWI – diffusion-weighted

imaging.

3.3.6. Extraluminal changes and complications

An increase in the mesenteric vascularity was seen in 56% of patients

with CD, and none of the patients had this sign in the control group

(P<0.001). On a per-patient basis, increase vascularity of mesentery had a

sensitivity of 75.5% and a specificity of 82% for CD patients.

Mesenteric lymphadenopathy was frequently observed among our

patients with CD (52%), ulcers found in 83%, stenosis 12%, fistula 16%

(Fig. 3.3.6.1), abscesses in 6% of patients. These findings were not

presented in the control group (Table 3.3.6.1).

50

Fig. 3.3.6.1. Postcontrast coronal T1W image shows large enteroenteric

fistula and multiple tethered small bowel loops, creating the "star sign"

(arrows) consisting of the stellated mesenteric enhancement pattern

extending between small bowel loops. This sign is typical for

penetrating/ fistulizing disease

Table 3.3.6.1. Magnetic resonance imaging findings distribution in patients

with Crohn’s disease and controls on a per-patient basis

Parameter CD (n=100) Controls (n=129) P

Comb sign n, %

Absent/Present

44/56

100/0

<0.001

Enlarged lymph node, %

Absent/Present

48/52

100/0

<0.001

Ulcers, %

Absent/Present

17/83

100/0

<0.001

Stenosis, %

Absent/Present

88/12

100/0

<0.001

Fistula, %

Absent/Present

84/16

100/0

<0.001

Abscess, %

Absent/Present

94/6

100./0

<0.001

51

3.3.7. MR-EC and clinical disease activity

According to CDAI, we have divided patients into two groups:

CDAI<150 and CDAI>150. Of the 42 patients with a clinically inactive CD,

5 (11.9%) patients had abnormal MR-EC. Of the 58 patients with

CDAI>150, 10 (17.85%) had normal MR-EC. We decided to compare these

two small patients groups and determine discrepancies between clinical

disease activity and MR-EC.

Table 3.3.7.1. The patient's demographic characteristics, clinical activity,

and MR-EC indices findings distribution in both groups according to CDAI

CDAI<150 (n=5) CDAI>150 (n=10) P

Age, years (mean) 38.2±11.4 30.9±9.1 0.647

Disease duration, years (mean) 6.0±6.3 3.6±3.8 0.232

Disease location, n (%)

L1/L2/L3

1 (20)/0/4(80)

7(70)/2(20)/1(10)

Disease behavior, n (%)

B1/B2/B3

0/3(60)/2(40)

6(60)/2(20)/2(20)

IBDQ (mean) 158.6±14.9 175.2±19.2 0.581

CRP (mean) 56.17±10.7 6.33±13.4 0.005

CDEIS (mean) 1.8±2.7 6.4±1.5 0.236

MaRIA-G (mean) 65.04±36.3 46.05±11.42 0.061

mMaRIA-G (mean) 61.51±33.13 42.6±12.15 0.018

Clermont-G (mean) 89.68±29.7 71.5±11.9 0.042

Lemann index (mean) 1.55±1.92 1.37±2.5 0.862

Fistula, n (%) 0 0 -

Stenosis, n (%) 1 (20) 1 (10) -

Abscess, n (%) 0 0 -

CDAI – Crohn’s disease activity index, IBDQ – inflammatory bowel disease questionnaire,

CRP – C reactive protein, CDEIS – Crohn’s Disease Endoscopic Index of Severity, MaRIA-G –

Magnetic Resonance Index of Activity global, mMaRIA-G modified Magnetic Resonance

Index of Activity global.

Table 3.3.7.1 summarizes the patient's demographic characteristics,

clinical activity, and MR-EC indices distribution in both groups than

CDAI<150 and CDAI>150. There was no difference between patients

regarding age 38.2±11.4 vs. 30.9±9.1 (P=0.647) and disease duration

6.0±6.3 vs. 3.6±3.8 (P=0.232). In the clinically inactive group (n=5), the

disease location was mostly ileocolonic (L3), and disease behavior mostly

stricturing. In the clinically active group (n=10), the disease location was

mostly terminal ileum (L1), disease location mostly non-stricturing, non-

52

penetrating (B1). There was a significant difference between both clinical

activities disease groups between CRP 56.17±10.7 vs. 6.33±13.4 (P<0.005),

as well as between MR-EC indices: MaRIA-G, mMaRIA-G, and Clermont-

G (Table 3.3.7.1). In both groups, one patient had a stenosing disease. No

fistulas or abscesses were estimated in both groups. We noted that MR-EC

could reveal CD features in 11.9% of patients with normal CDAI.

3.4. Correlation between the Crohn's disease activity indices

LI and IBDQ values were eligible for Spearman's rank correlation analysis.

However, LI and IBDQ (r=0.813, P<0.01) showed a strong negative corre-

lation (Fig. 3.4.1). As summarized in Table 3.4.1, IBDQ also demonstrated the

strong negative correlation with other MR-EC indices MaRIA-G, mMaRIA-G

and Clermont-G (r=0.731, r=0.749, r=0.726, P=0.01) respectively.

Fig. 3.4.1. Correlation of Lemann Index and the Inflammatory

Bowel Disease Questionnaire

IBDQ – inflammatory bowel disease questionnaire.

Moreover, there was a moderate correlation between MaRIA-G and

CDEIS, MaRIA-G and LI, respectively (r=0.698 and r=0.658, P=0.01). As well

as MaRIA-G and LI, other MR-EC indices mMaRIA-G and Clermont-G

53

showed a good correlation with CDEIS (r=0.580 and r=0.585, P=0.01).

However, weak correlation between LI and CDEIS (r=0.320, P=0.01) (Table

3.4.1) as well as IBDQ and CDEIS (r=–0.332, P=0.01) were obtained.

Table 3.4.1. Correlation between different indices

IBDQ CDEIS CRP CDAI HBI eAIS-T

MaRIA-G –0.731,

P=0.01

0.698,

P=0.01

0.495,

P=0.01

0.501,

P=0.01

0.582,

P=0.01

0.609,

P=0.01

mMaRIA-G –0.749,

P=0.01

0.580,

P=0.01

0.56,

P=0.01

0.514,

P=0.01

0.591,

P=0.01

0.627,

P=0.01

Clermont-G –0.726,

P=0.01

0.585,

P=0.01

0.522,

P=0.01

0.468,

P=0.01

0.557,

P=0.01

0.601,

P=0.01

Lemann index –0.813,

P=0.01

0.320,

P=0.01

0.386,

P=0.01

0.431,

P=0.01

0.403,

P=0.01

0.472,

P=0.01

CDAI – Crohn’s disease activity index, CDEIS – Crohn’s Disease Endoscopic Index of

Severity, CRP – C reactive protein, eAIS-T – endoscopic biopsy acute inflammatory score,

HBI – Harvey-Bradshaw Index, IBDQ – inflammatory bowel disease questionnaire,

MaRIA-G – Magnetic Resonance Index of Activity global, mMaRIA-G modified Magnetic

Resonance Index of Activity global.

We also evaluated the correlation between MR-EC indices, and the strong

correlation was obtained between MaRIA-G, mMaRIA-G (Fig. 3.4.2), and

Clermont-G, respectively (r=0.975 and r=0.970, r= 0.975, P=0.01).

Fig. 3.4.2. (A) Scatter plot showing the correlation between

MaRIA-G and mMaRIA-G. (B) Scatter plot showing

the correlation between Clermont-G and mMaRIA-G

MaRIA-G – Magnetic Resonance Index of Activity global, mMaRIA-G modified

Magnetic Resonance Index of Activity global.

54

The agreement between the eAIS-T, IBDQ, CDAI, and HBI, CRP, and

CDEIS was calculated. IBDQ, CDEIS, HBI and CRP showed better agree-

ment with eAIS-T respectively (r=0.505, r=0.531, and r=0.421, r=0.414,

P=0.01), than compared to with CDAI much lower (r=0.342, P =0.01).

A significantly stronger correlation was between eAIS-T and MR-EC

indices MaRIA-G, mMaRIA-G, Clermont-G (r=0.609, r=0.627, and

r=0.601, P=0.01), respectively comparing to clinical activity and CDEIS.

However, eAIS-T and LI correlation were lower than other MR-EC indices

(r=0.472, P=0.01).

As CRP is the most widely used inflammatory marker for CD, we cal-

culated bivariate correlations with different activity indices. There was a

moderate correlation between CRP and MaRIA–G (r=0.495, P<0.01). Also,

there was a moderate correlation between CDEIS and CRP (r=0.460,

P<0.01). However, there was a weak, statistically significant correlation

between CRP and LI, as well as with IBDQ (r=0.386 and r=–0.361,

P=0.01).

3.5. Diffusion-weighted imaging (DWI) and apparent

diffusion coefficient (ADC)

Mean bowel wall ADC measurements were as follows: ADC values of

inflammatory bowel wall were significantly lower (1.086±0.09) × 10-3

mm2/s, comparing to normal bowel wall (1.623±0.097) × 10

-3 mm

2/s and m.

psoas (1.46±0.07) × 10-3

mm2/s (P<0.001). ADC distribution is shown in

(Fig. 3.5.1). The ADC mean values in segments with lesions of terminal

ileum (n=51) and colon (n=47) were (1.074±0.09) ×10-3

mm2/sec and

(1.098±0.08) × 10-3

mm2/s, respectively.

The ADC cut-off value of 1.30 × 10-3

mm2/s detected by the peak of the

receiver operating characteristic (ROC) curve yielded 73.8% sensitivity and

98% specificity for the discrimination of inflammatory bowel from healthy

(Fig. 3.5.2).

55

Fig. 3.5.1. The differences in ADC values between m. psoas,

normal bowel wall, and inflamed bowel wall

ADC – apparent diffusion coefficient, BW – bowel wall.

Fig. 3.5.2. ROC curve analysis of cutoff values for ADC

between patients with Crohn's disease and controls

56

Using a DWI score ≥ 2 as the cut-off level for diagnosing active CD in

ileocolonic and colonic disease, the sensitivity 70.59%, specificity 65.31%,

PPV 67.92%, and NPV 68.1% of DWI were detected, respectively.

Moreover, diagnosing active terminal ileum CD, the sensitivity 72.7%,

specificity 61.5%, PPV 61.5%, and NPV 72.7% of DWI were respectively.

Using a DWI score ≥ 2 as the cut-off level, 96.9% sensitivity and 82.3%

specificity, 82.6% PPV and 96.4% were for diagnosing active CD.

The DWI scores and ADC values corresponding to different CD

activity scores, according to CDEIS, are summarized in Table 3.5.1. The

DWI SI increased, and ADC values decreased with increasing activity of

CD. The differences in DWI scores and ADC values among inactive, mild,

moderate-severe disease were significant (P<0.005).

Table 3.5.1. DWI and ADC values among inactive, mild, and moderate-

severe Crohn disease

Inactive

CD CDEIS

<3 (n=20)

Mild CD

CDEIS 3–8

(n=59)

Moderate-

severe CD

CDEIS ≥9

(n=21)

P

DWI hiperintensity (median) 0 (0–2) 2 (0–3) 3 (2–3) <0.005

ADC values, × 10–3 mm2/s (mean) 1.42±0.19 1.12±0.26 0.96±0.07 <0.005

ADC – apparent diffusion coefficient, CD – Crohn's disease, CDEIS – Crohn’s Disease

Endoscopic Index of Severity, DWI – diffusion-weighted imaging.

Overall, the correlation of ADC values with CDEIS and eAIS-T was

moderate (r=0.552, r=0.46 P=0.001), respectively. The strong correlation

was detected between the ADC measurement and Clermont-G index

(r=0.722, P=0.001), moderate correlation – between ADC and MaRIA-G

(r=0.69, P=0.001).

3.6. Faecal calprotectin

FC was performed for 132 patients. 86 patients were diagnosed with

CD and 46 – controls.

FC's overall sensitivity and specificity for predicting active disease was

61.54% and 62.96%, respectively (with PPV 61.54% and NPV 62.96%).

In the patients with ileal CD (n=49), FC level ≥200 µg/g had a

sensitivity of 50%, the specificity of 44.9% in predicting active disease,

respectively. The PPV and NPV were 53.7% and 41.3%, respectively.

57

In the patients with ileocolonic and colonic CD (n=37), FC level

≥200 µg/g had a sensitivity of 55.1%, specificity of 50% in predicting active

disease. The PPV and NPV were 46.3% and 58.7%, respectively.

3.6.1. Faecal calprotectin and disease behavior

We further investigated the noninvasive disease activity marker FC

according to disease behavior, and we have found no differences between

behavior groups. A non-stricturing, non-penetrating (B1) phenotype was

identified in 42 (48.3%) patients with mean FC 183.67±15.7 µg/g, whereas

25 (28.7%) were diagnosed with a stricturing (B2) showing FC mean

202.08±20.44 µg/g and 19 (22.1%) patients with a penetrating phenotype

(B3) showed mean FC 192.8±17.68 µg/g (P=0.23).

3.6.2. Crohn's disease activity indices and faecal calprotectin level

According to FC concentration, we have divided patients into two

groups if the FC level was <200 µg/g – the test was considered negative,

and if FC ≥200 µg/g test was considered positive, showing active CD.

Table 3.6.2.1 summarizes the distribution of IBDQ, clinical activity

CDAI, CRP, endoscopy index CDEIS, and MR-EC indices: MaRIA-G,

mMaRIA-G, Clermont-G, LI among both negative and positive FC groups.

There was a significant difference between both negative and positive

FC groups between IBDQ (175.01±22.52 vs. 159.68±24.63) and CDAI

(128.62±

57.62 vs. 192.95±71.49) (P<0.001). The IBDQ values in the negative FC

group were higher, reflecting a better quality of life than in the FC positive

group. Contrary, CDAI levels in FC negative group were lower, showing

clinically quiescent disease.

However, the CRP level, CDEIS, MR-EC indices (Table 3.6.2.1) did

not differ according to the FC level (≥200 µg/g).

58

Table 3.6.2.1. Clinical, endoscopic, and MR-EC indices according to FC

concentration

Faecal calprotectin <200 (n=45) ≥200 (n=41) P

IBDQ 175.01±22.52 159.68±24.63 0.001

CDAI 128.62±57.62 192.95±71.49 0.001

CRP 12.64±2.28 24.08±8.01 0.122

CDEIS 4.78±3.41 5.58±3.99 0.32

MaRIA-G 50.04±24.51 53.93±22.28 0.44

mMaRIA-G 44.67±21.6 49.68±20 0.26

Clermont-G 75.03±22.84 79.75±22.23 0.329

Lemann index 1.54±2.5 1.71±2.63 0.765

CDAI – Crohn’s disease activity index, CDEIS – Crohn’s Disease Endoscopic Index of

Severity, CRP – C reactive protein, IBDQ – inflammatory bowel disease questionnaire,

MaRIA-G – Magnetic Resonance Index of Activity global, mMaRIA-G modified Magnetic

Resonance Index of Activity global.

59

4. DISCUSSION

4.1. Characteristics of MR-EC for predicting Crohn's disease

Crohn's disease is characterized by remitting and recurrent episodes that

predetermine frequent and periodic evaluation enabling to plan the proper

medical or surgical therapy [124].

Unfortunately, an ideal reference standard method to define disease

activity does not exist. It is usually assessed by a combination of clinical

symptoms, physical findings, laboratory tests, ileocolonoscopy, and cross-

sectional imaging [124, 174, 175].

The present study demonstrated the MR-EC sensitivity of 74% and

specificity of 90% in detecting CD lesions by employing Copenhagen diag-

nostic criteria as the gold standard. Khaters et al. showed a slightly higher

sensitivity at 82% and specificity at 80% [176], Rieder et al. found MR-EC

sensitivity and specificity at 78% and 85%, respectively [177]. Thus, we

found MR-EC to be a valid and reliable method for detecting CD compared

to endoscopy. Lunder et al. study showed that more when half of the CD

features were detected only on MRI [178].

The non-invasive nature of the MR-EC and its ability to accurately

diagnose CD and incorporate this modality is even more applicable to

evaluate novel agents and their efficacy in treatment studies. Ilias et al.

confirmed MRI impact on patient better management and precocious

therapy optimization [179].

We think that MR-EC's sensitivity and specificity on a per-patient basis

are beneficial because the presence of active disease imaging, regardless of

the number of sections involved, can significantly alter the treatment plan,

which is tailored to individual patients rather than individual segments.

Our MR-EC based results for detecting abscesses showed outstanding

results with sensitivity and specificity of 88.7% and 100%, respectively. The

detection of fistulas sensitivity and specificity were 75.2%, 100%, respecti-

vely. MR-EC detection of stenosis sensitivity and specificity was 81.1%,

91.5%.

MR-EC is a proper investigation for the evaluation of CD

complications. Schill et al. [180] performed a study evaluating disease

behavior. The study results showed higher sensitivity diagnosing fistulas

(94.9%), abscesses (93.8%), and strictures (96.2%) but with lower specifi-

city comparing to our results. MR-EC is a preferable method for diagnosing

strictures and fistulas [46, 181, 182].

60

4.2. MR-EC parameters for evaluating disease activity

Our study showed that normal bowel wall thickness was less than

3 mm, and the value of more than 4 mm is a minimum thickness for CD.

Our result agrees with other studies performed by Gourtsoyiannis et al.

[129] and Horsthuis et al. [67].

In the present study, we found that bowel wall thickening of more than

4 mm was valuable in predicting activity. Punwani et al. [126] and Ziech et

al. [183] confirmed such results that mural thickness increases with acute

inflammation, which is associated with histologic findings of edema and

inflammation. Zappa et al. [184] conducted a study in which results confir-

med that wall thickness was shown to be significantly increased with

disease activity. Zappa et al. found a threshold of 6 mm, which can be used

to distinguish between patients with inactive disease and active disease. The

threshold 11 mm could depict severe active CD [184].

Also, Gucer et al. [185] found that wall thickness was the only one MR

finding that correlated with both acute inflammatory score (AIS) and eAIS.

As expected, we found a statistically significant difference in CD and

controls in a high T2W wall signal (P<0.001). We observed a marked wall

hyperintensity on T2W fs images comparing to controls. We did not detect

the increased T2W signal intensity of the bowel wall in the control group.

Our results are entirely similar to Maccioni et al. [130]. Quaia et al. also

reported high T2W values of the bowel wall in CD [186]. E. Tielbeek et al.

[187] study results have shown that a higher mural T2W signal was

associated with a higher degree of inflammation.

Our study results per segment basis showed significant contrast

enhancement in 4.8%, moderate enhancement in 3.9% segments of CD

patients. F. Maccioni [130] also observed marked contrast enhancement in

active disease. Qi et al. noticed that sometimes the mucosa's hyperenhan-

cement might be the only manifestation of active inflammation without any

significant bowel thickening [188]. Zappa et al. show that the degree of wall

enhancement on delayed T1W sequences is the only finding to differentiate

histologically inactive CD from moderately active and severely active CD

[184].

A stratified contrast enhancement pattern was noted in 6.4% of

segments in patients with CD, and none of the segments with a layered

pattern was in the control group. Similar results were obtained in Koh et al.

[121] study the layered pattern of enhancement was observed only in

segments with active disease. Del Vescovo et al. also stated that active

disease occurs a layered enhancement pattern in contrast to inactive one in

which contrast uptake is homogeneous [124]. Ippolito et al. [189] reported

61

that distinguishing the enhancement pattern is the main clue. The enhance-

ment intensity is mostly subjective, and he suggested that perfusion

parameters can be useful for assessing inflammation activity and follow-up

of patients with CD.

Interestingly Punwani et al. results are contrary to ours and the above-

mentioned other authors. Punwani stated that a layered contrast

enhancement pattern was associated with histological fibrosis while a

homogeneous pattern with the absence of fibrosis[126].

An increased mesenteric vascularity trend was observed in patients with

CD [190]. Our results showed a statistically significant difference between

CD patients and controls evaluating mesenteric vascularity.

Other perienteric changes, such as mesenteric lymphadenopathy, was

seen in 52% of CD patients. Fistulas were presented in 16%, abscesses in

6% of CD patients.

4.3. MR-EC indices for evaluating Crohn's disease activity

It is essential to objectively measure the inflammatory activity of CD in

order to select the patients that are suitable for more aggressive therapy and

to evaluate the effectiveness of treatment or even select for surgery [191].

The selection of the most suitable index for identifying patients with

active CD, which may help predict the disease's course, response to

treatment, is a problematic target [192].

The increased bowel damage evaluated by LI in this study was

associated with decreased IBDQ. This finding proves the suggestion that LI

could be used for a more global assessment of CD to patients' health status

[27]. Knowles et al. observed that life quality is significantly poorer for

individuals when their disease is more active than quiescent. The quality of

life concerning mental functioning is also essential [193].

In the prospective study, Prevost et al. have not found a correlation

between LI and IBD disability index [194].

However, we observed only moderate negative correlations of MaRIA-

G, mMaRIA-G, and IBDQ. We can assume that life quality does not always

depend on inflammatory changes assessed by imaging methods per se.

Stricturing and penetrating lesions that are more significant when calculating

LI could be more critical for the IBDQ score. The MaRIA index is used for

the disease activity and severity evaluation [24, 46], but not for the

complications caused by CD [195].

In the study, we detected that MaRIA-G and LI correlation was

moderate, Fiorino et al. confirmed a weak correlation [195]. This finding

62

could be related to the fact that MaRIA-G involves only the colon and

terminal ileum, whereas LI includes all GI tract segments. Lesions that are

evaluated in both indices are wall thickening and ulcers, but not fistulas nor

strictures.

Rozendor et al. observed that LI, which involves stricturing and

penetrating characteristics of the disease, has a better value for prognosing

surgery than MaRIA, which cannot predict the more aggressive course of

the disease [155].

Pita et al. investigated the significant drawbacks of the LI. He noted its

complexity and need for multiple examinations required for complete gut

structural evaluation [170].

CDEIS had a weak correlation with IBDQ and LI. Jauregui-Amezaga et

al. established that patients with endoscopically severe inflammation may

still be asymptomatic [196]. The quality of life could be affected by more

complex factors.

The CDEIS and MaRIA-G correlation in this study is lower (r=0.698)

than reported by Rimola et al. (correlation coefficient 0.8) [24], but similar

to the one estimated by Coimbra et al. (r=0.63) [197], Kim et al. (r=0.737)

[140], and Sato et al. (r=0.6) [147]. Kim et al. noticed that different phases

with contrast media could pervert MaRIA calculating results [140].

The correlation between CRP and LI, CRP, and IBDQ was weak. How-

ever, the CRP and CDEIS correlation were moderate. We can assume that

the CRP level is nonspecific and is beneficial in assessing and monitoring

disease activity but cannot describe global structural damage of the disease

[72].

We observed a moderate, statistically significant correlation between

eAIS-T and IBDQ, HBI, also CDEIS. Nonetheless, these data strongly

suggest that both quality of life questioner, endoscopic activity measured by

CDEIS, can be used for disease activity quantification [198].

We compared MaRIA and mMaRIA relationships and found that these

scores have a robust significant correlation. Also, the scores have the same

degree of correlation with CDEIS. Elimination of calculation RCE makes

mMaRIA calculation much easier and faster. Scarpandane et al. also found

that MaRIA to mMaRIA can be calculated with an excellent interobserver

agreement and have the same degree of correlation with the endoscopic

score [46, 142].

Clermont-G correlation with MaRIA-G and mMaRIA-G was also

highly significant. Recently similar data were confirmed by Williet et al.

[199]. The MaRIA score only requires standard MRI sequences, but only

the MaRIA score has been validated in many patients [172, 200]. However,

the drawbacks of the MaRIA score include the fact that it requires a

63

complicated formula for calculation and intravenous contrast injection.

Compared to the indices mentioned above, the Clermont index is a mix of

conventional and DWI MRI parameters that might overcome some of these

limitations [136].

4.4. ADC and DWI for predicting CD activity

This study found that DWI findings may help differentiate moderate to

severe CD activity from less severe forms of the disease, which may be

incredibly helpful for disease monitoring.

The ADC measured from the inflamed bowel wall was significantly

lower than the unaffected bowel wall. DWI MR imaging signal intensities

increased, and ADC decreased with increasing activity of CD.

The mean ADC of 1.086±0.09 × 10-3

mm2/s in the inflamed bowel wall

in our study was slightly lower compared to the 1.28±0.47 × 10-3

mm2/s

reported by Li et al. [201] and 1.2 × 10-3

mm2/s by Neubauer et al. [202] but

much lower than in the studies performed by Oto et al. [203] and Pendse et

al. [154].

Differences in the ADC among studies may be related to the different

samples and scan parameters, including the b values. We used three b values

of 50, 400, and 800 s/mm2. For example, Seo et al. used two b values 0 and

900 s/mm2 [204], and Oto et al. also used two b values 0 and 600 s/mm

2

[203].

The ultimate threshold value for ADC, which can distinguish active

from inactive CD, is not yet established. The ability to calculate quantitative

parameters such as ADC may lead to a more objective evaluation of the

disease [137].

Li et al. Studies reported that DWI could distinguish inflamed segments

from normal segments with similar diagnostic accuracies as conventional

MRE [201]. Another study performed by Seo et al. [204] showed no statisti-

cally significant difference in the abilities of DWI and contrast-enhanced

MRI to detect terminal ileitis.

In the present study, we investigated whether MR-EC and DWI signal

can distinguish inactive, mild, and moderate-severe active CD, as defined by

CDEIS and found only significant associations for moderate to severe

disease activity.

Furthermore, we demonstrate excellent agreement between low ADC

and increasing DWI signal increasing in gut inflammation measured by

CDEIS. Also, lots of prior studies established the same results [151, 204,

205]. Lower ADC and higher DWI signals reflected the higher degrees of

64

bowel inflammation, which was in agreement with previous studies

performed by Li et al. [152], Pendse et al. [154], Yu et al. [206].

ADC was only used in the Clermont index calculation. Elimination of

calculation RCE makes it more simple. Rimola et al. had admitted the

introduction of this measure in clinical trials would have the advantage of

avoiding the use of gadolinium contrast [144, 170, 172].

4.5. Faecal calprotectin for monitoring Crohn's disease

In the treatment of CD, re-evaluation is often required to monitor illness

activity, which poses a significant economic burden and the risk of unexpec-

ted complications for patients. The results of this study showed that FC

levels provided clinically relevant data on the CD. Non-invasive procedures

for patients are more accessible to tolerate compared to endoscopy.

Our results have shown sensitivity 61.54% and specificity 62.96% for

predicting active CD than FC ≥200 μg/g. The sensitivity and specificity

were similar in ileocolonic and colonic disease comparing to only small

bowel disease (55.1% and 50% vs. 50% and 44.9%),

The FC cut of value in our study for predicting active CD was ≥200

μg/g. Meanwhile, Lin et al. [207] suggested 50 μg/g as a cut-off screening

value for further endoscopy examination in clinical practice, with a 60%

specificity and sensitivity of 92%. Other experts suggested a higher cut-off

level >100 μg/g for more precise diagnostic results [208]. Sipponen et al.

[209] proposed a cut-off FC level of 200 μg/g to identify endoscopically

inactive CD with sensitivity and specificity (70% and 92%). D'Haens et al.

found that the FC level of more than 250 μg/g predicts active CD [210].

We have found no FC level differences between both small bowel and

colonic disease locations. Our results agree globally with those obtained by

af Bjorkesten et al. [211] and Jensen et al. [212] and others [213- 214],

studies data showed no FC level effect on disease location.

Also, we have found no differences between CD behavior and FC level.

Patients with elevated FC values have a significantly worse quality of

life as compared to patients with lower FC levels.

We have found no statistically significant difference between FC level

(<200 μg/g and ≥200 μg/g) and MR-EC indices, CRP, CDEIS in our study.

Somwaru et al. results are contrary to ours. They have found a positive

correlation between FC and MRE, CDEIS and FC [215]. Somwaru et al.

results could be positive because they evaluated patients with colonic CDs

only.

65

CONCLUSIONS

1. The sensitivity and specificity of MR-EC in detecting CD lesions were

respectively 74% and 90%; sensitivity and specificity for the diagnosis

of terminal ileitis were higher – 85.9% and 92.3%. MR-EC had high

diagnostic accuracy for the diagnosing of CD complications: abscesses

sensitivity 88.7%, and specificity of 100%, fistulas sensitivity 75.2%,

specificity 100%, stenosis sensitivity 81.1%, specificity 91.5%.

2. Signs of disease activity on MR-EC of CD patients were determined:

bowel wall thickening of more than 4 mm, increased bowel wall

enhancement, and stratified enhancement pattern after the intravenous

contrast media, increased mesenteric vascularity.

3. A robust negative correlation between the Lemann index and the quality

of life measured by IBDQ was determined. This correlation was less

pronounced when using the MaRIA-G index. The CRP showed a good

correlation with CDEIS and MARIA-G, but not with the Lemann index

and IBDQ.

4. DWI was able to discriminate between mild, moderate, and severe CD

activity.

5. Overall sensitivity and specificity of FC for predicting active disease

was 61.54% and 62.96%, respectively. Predictive values for the active

ileal disease were lower than for ileocolonic and colonic disease. FC

levels did not differ between different disease behavior groups. Patients

with elevated FC had poorer quality of life and higher CDAI.

66

PRACTICAL RECOMMENDATIONS

1. MR-EC provides an accurate assessment of disease behavior and

activity and enables evaluating the whole intestines. MR-EC is able to

diagnose disease complications such as fistula, abscesses, which allows

optimizing treatment strategy.

2. Lemann index is a beneficial disease activity index providing compre-

hensive information of total bowel damage and complications.

3. The DWI sequence does not replace the conventional MR-EC but adds

additional qualitative and quantitative information regarding disease

activity.

67

REFERENCES

1. Deepak P, Fletcher JG, Fidler JL, Barlow JM, Sheedy SP, Kolbe AB, et al.

Predictors of Durability of Radiological Response in Patients With Small Bowel

Crohn's Disease. Inflamm Bowel Dis. England; 2018;24:1815–25.

2. Torres J, Mehandru S, Colombel J-F, Peyrin-Biroulet L. Crohn's disease. Lancet.

Elsevier; 2017;389:1741–55.

3. Deepak P, Park SH, Ehman EC, Hansel SL, Fidler JL, Bruining DH, et al. Crohn's

disease diagnosis, treatment approach, and management paradigm: what the

radiologist needs to know. Abdom Radiol (NY). Springer US; 2017;42:1068–86.

4. Boyapati R, Satsangi J, Ho G. Pathogenesis of Crohn's disease. F1000 prime reports.

2015.

5. Qin X. Etiology of inflammatory bowel disease : A unified hypothesis. World J

Gastroenterol. 2012;18:1708–22.

6. Church PC, Turner D, Feldman BM, Walters TD, Greer M, Amitai MM, et al.

Alimentary Pharmacology and Therapeutics Systematic review with meta-analysis :

magnetic resonance enterography signs for the detection of inflammation and

intestinal damage in Crohn' s disease. 2015;153–66.

7. Peyrin-Biroulet L, Reinisch W, Colombel J-F, Mantzaris GJ, Kornbluth A, Diamond

R, et al. Clinical disease activity, C-reactive protein normalisation and mucosal

healing in Crohn's disease in the SONIC trial. Gut. 2014;63:88 LP – 95.

8. Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular

and serological classification of inflammatory bowel disease : Report of a Working

Party of the 2005 Montreal World Congress of Gastroenterology. Can J

Gastroenterol. 2005;19 Suppl A:5A-36A.

9. Peyrin-Biroulet L, Sandborn W, Sands BE, Reinisch W, Bemelman W, Bryant R V,

et al. Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE):

Determining Therapeutic Goals for Treat-to-Target. Am J Gastroenterol. United

States; 2015;110:1324–38.

10. Yoon K, Chang K, Lee HJ. MRI for Crohn's Disease : Present and Future. Biomed

Res Int. 2014;2015.

11. Kilcoyne A, Kaplan JL, Gee MS. Inflammatory bowel disease imaging: Current

practice and future directions. World J Gastroenterol. 2016;22:917–32.

12. Varyani F, Samuel S. "Can Magnetic Resonance Enterography (MRE) replace ileo-

colonoscopy for evaluating disease activity in Crohn's disease?". Best Pract Res Clin

Gastroenterol. Netherlands; 2019;38–39:101621.

13. Ojidu H, Palmer H, Lewandowski J, Hampton J, Blakeborough T, Epstein O, et al.

Patient tolerance and acceptance of different colonic imaging modalities: an

observational cohort study. Eur J Gastroenterol Hepatol. England; 2018;30:520–5.

14. Panes J, Bouhnik Y, Reinisch W, Stoker J, Taylor SA, Baumgart DC, et al. Imaging

techniques for assessment of inflammatory bowel disease: Joint ECCO and ESGAR

evidence-based consensus guidelines. J. Crohn's Colitis. European Crohn's and

Colitis Organisation; 2013;7:556–85.

15. Puylaert CAJ, Nolthenius CJT, Tielbeek JAW, Makanyanga JC, Rodriguez-Justo M,

Brosens LAA, et al. Comparison of MRI Activity Scoring Systems and Features for

the Terminal Ileum in Patients With Crohn Disease. AJR Am J Roentgenol. United

States; 2019;212:W25–31.

68

16. Bruining DH, Zimmermann EM, Loftus E V, Sandborn WJ, Sauer CG, Strong SA.

Consensus Recommendations for Evaluation, Interpretation, and Utilization of

Computed Tomography and Magnetic Resonance Enterography in Patients With

Small Bowel Crohn's Disease. Radiology. Radiological Society of North America;

2018;286:776–99.

17. Park SH. DWI at MR enterography for evaluating bowel inflammation in Crohn

disease. Am J Roentgenol. 2016;207:40–8.

18. Ayling RM, Kok K. Chapter Six - Fecal Calprotectin. In: Makowski GSBT-A in

CC, editor. Adv Clin Chem. Elsevier; 2018. p. 161–90.

19. Gomollón F, Dignass A, Annese V, Tilg H, Van Assche G, Lindsay JO, et al. 3rd

European evidence-based consensus on the diagnosis and management of Crohn's

disease 2016: Part 1: Diagnosis and medical management. J Crohn's Colitis. 2017;

11:3–25.

20. Prezzi D, Bhatnagar G, Vega R, Makanyanga J, Halligan S, Taylor SA. Monitoring

Crohn's disease during anti-TNF-alpha therapy: validation of the magnetic

resonance enterography global score (MEGS) against a combined clinical reference

standard. Eur Radiol. Germany; 2016;26:2107–17.

21. Vilela EG, Torres HODG, Martins FP, Ferrari MDLDA, Andrade MM, Cunha AS

Da. Evaluation of inflammatory activity in Crohn's disease and ulcerative colitis.

World J Gastroenterol. 2012;18:872–81.

22. Guyatt G, Mitchell A, Irvine EJAN, Singer J, Williams N, Goodacre R, et al. A new

measure of health status for clinical trials in inflammatory bowel disease. Gastro-

enterology. 1989;804–10.

23. Mary JY, Modigliani R. Development and validation of an endoscopic index of the

severity for Crohn's disease: a prospective multicentre study. Groupe d'Etudes

Therapeutiques des Affections Inflammatoires du Tube Digestif (GETAID). Gut.

1989;30:983–9.

24. Rimola J, Ordas I, Rodriguez S, Garcia-Bosch O, Aceituno M, Llach J, et al.

Magnetic resonance imaging for evaluation of Crohn's disease: validation of

parameters of severity and quantitative index of activity. Inflamm Bowel Dis.

England; 2011;17:1759–68.

25. Pariente B, Cosnes J, Danese S, Sandborn WJ, Lewin M, Fletcher JG, et al.

Development of the Crohn's disease digestive damage score, the Lémann score.

Inflamm Bowel Dis. 2011;17:1415–22.

26. Pariente B, Torres J, Burisch J, Arebi N, Barberio B, Duricova D, et al. OP05

Validation of the Lémann index in Crohn's disease. J. Crohn's Coliti. 2020;14:S005–

6.

27. Pariente B, Mary J-Y, Danese S, Chowers Y, De Cruz P, D'Haens G, et al.

Development of the Lémann Index to Assess Digestive Tract Damage in Patients

With Crohn's Disease. Gastroenterology. Elsevier, Inc; 2015 148:52-63.e3.

28. Sousa HT de, Brito J, Magro F. New cross-sectional imaging in IBD. Curr Opin

Gastroenterol. United States; 2018;34:194–207.

29. Bonnaud G, Bouhnik Y, Hagege H, Hebuterne X, Pariente B, Roblin X, et al.

Monitoring of inflammatory bowel disease in 2019: A French consensus for clinical

practice. Dig liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver. Nether-

lands; 2020;52:704–20.

30. Panes J, Jairath V, Levesque BG. Advances in Use of Endoscopy, Radiology, and

Biomarkers to Monitor Inflammatory Bowel Diseases. Gastroenterology. United

States; 2017;152:362-373.e3.

69

31. Minordi LM, Larosa L, Belmonte G, Scaldaferri F, Poscia A, Gasbarrini A, et al.

Crohn's disease activity before and after medical therapy evaluated by MaRIA score

and others parameters in MR Enterography. Clin Imaging. 2020;62:1–9.

32. Hansel SL, McCurdy JD, Barlow JM, Fidler J, Fletcher JG, Becker B, et al. Clinical

Benefit of Capsule Endoscopy in Crohn's Disease: Impact on Patient Management

and Prevalence of Proximal Small Bowel Involvement. Inflamm Bowel Dis.

England; 2018;24:1582–8.

33. Prassopoulos P, Papanikolaou N, Grammatikakis J, Rousomoustakaki M, Maris T,

Gourtsoyiannis N. MR enteroclysis imaging of Crohn disease. Radiographics. 2001;

21 Spec No: S161–72.

34. Lauenstein TC, Schneemann H, Vogt FM, Herborn CU, Ruhm SG, Debatin JF.

Optimization of oral contrast agents for MR imaging of the small bowel. Radiology.

2003;228:279–83.

35. Mako EK, Mester AR, Tarjan Z, Karlinger K, Toth G. Enteroelysis and spiral CT

examination in diagnosis and evaluation of small bowel Crohn's disease. Eur J

Radiol. Ireland; 2000;35:168–75.

36. Charif I, Abid H, Benajah D, Addou O, Kamaoui I, Tizniti S, et al. Is there a

correlation between endoscopy and imaging findings in Crohn's disease. Open J

Gastroenterol. 2013;03:138–41.

37. Maaser C, Sturm A, Vavricka SR, Kucharzik T, Gionata Fiorino et al. ECCO-

ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis,

monitoring of known IBD, detections of complications. Journal of Crohn's & colitis.

2018; 144-164.

38. Frolkis AD, Dykeman J, Negrón ME, Debruyn J, Jette N, Fiest KM, et al. Risk of

Surgery for Inflammatory Bowel Diseases Has Decreased Over Time: A Systematic

Review and Meta-analysis of Population-Based Studies. Gastroenterology. Elsevier,

Inc; 2013;145:996–1006.

39. Burisch J, Pedersen N, Čuković-Čavka, Brinar M, Kaimakliotis I, Duricova D, et al.

East-West gradient in the incidence of in flammatory bowel disease in Europe : the

ECCO-EpiCom inception cohort. Gut. 2014;588–97.

40. Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol

Hepatol. 2015;12(12):720-727.

41. Kaplan GG, Ng SC. Understanding and Preventing the Global Increase of

Inflammatory Bowel Disease. Gastroenterology. Elsevier; 2017;152:313-321.e2.

42. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al.

Worldwide incidence and prevalence of inflammatory bowel disease in the 21st

century: a systematic review of population-based studies. Lancet. Elsevier;

2017;390:2769–78.

43. Burisch J, Jess T, Martinato M, Lakatos PL. The burden of inflammatory bowel

disease in Europe. J Crohn's Colitis. European Crohn's and Colitis Organisation;

2013; 7:322–37.

44. Burisch J. Crohn's disease and ulcerative colitis. Occurrence, course and prognosis

during the first year of disease in a European population-based inception cohort.

Dan Med J. 2014;61:1–32.

45. Vindigni SM, Zisman TL, Suskind DL, Damman CJ. The intestinal microbiome,

barrier function, and immune system in inflammatory bowel disease : a tripartite

pathophysiological circuit with implications for new therapeutic directions. Therap

Adv Gastroentero. 2016;606–25.

70

46. Pous-Serrano S, Frasson M, Pàmies-Guilabert J, Rudenko P, Puchades-Román I,

Beltrán B, et al. Use of magnetic resonance index of activity (MaRIA) in the

preoperative assessment of small bowel Crohn's disease. Cir Esp. Spain; 2019;97:

582–9.

47. Spekhorst LM, Visschedijk MC, Alberts R, Festen EA, Wouden E Van Der,

Spekhorst LM, et al. Performance of the Montreal classification for inflammatory

bowel diseases. World J Gastroenterol. 2014;20:15374–81.

48. Satsangi J, Silverberg MS, Vermeire S, Colombel J-F. The Montreal classification

of inflammatory bowel disease: controversies, consensus, and implications. Gut.

2006;55:749–53.

49. Ha F, Khalil H. Crohn's disease : a clinical update. Therap Adv Gastroenterol. 2015;

352–9.

50. Charpentier C, Salleron J, Savoye G, Fumery M, Merle V, Laberenne J-E, et al.

Natural history of elderly-onset inflammatory bowel disease: a population-based

cohort study. Gut. 2014;63:423 LP – 432.

51. Best WR, Becktel JM, Singleton JW, Kern F Jr. Development of a Crohn's disease

activity index. National Cooperative Crohn's Disease Study. Gastroenterology. The

Williams & Wilkins Co.; 1976;70:439–44.

52. Sostegni R, Daperno M, Scaglione N, Lavagna A, Rocca R, Pera A. Review article:

Crohn's disease: monitoring disease activity. Aliment Pharmacol Ther. 2003;17

Suppl 2:11–7.

53. Sturm A, Maaser C, Calabrese E, Annese V, Fiorino G, Kucharzik T, et al. ECCO

Guideline / Consensus Paper ECCO-ESGAR Guideline for Diagnostic Assessment

in IBD Part 2 : IBD scores and general principles and technical aspects. J Crohns

Colitis. 2018; 273-284.

54. Freeman H-JJ. Use of the Crohn's disease activity index in clinical trials of

biological agents. World J Gastroenterol. 2008/07/14. The WJG Press and

Baishideng; 2008;14: 4127–30.

55. Yoshida EM. The Crohn's Disease Activity Index, its derivatives and the Inflamma-

tory Bowel Disease Questionnaire : A review of instruments to assess Crohn's

disease. Can. J. Gastroenterol. 1999; 65-73.

56. Vermeire S, Schreiber S, Sandborn WJ, Dubois C, Rutgeerts P. Correlation Between

the Crohn's Disease Activity and Harvey – Bradshaw Indices in Assessing Crohn's

Disease Severity. Clin. Gastroenterol. Hepatol. 2010;8:357–63.

57. Best WR. Predicting the Crohn's Disease Activity Index from the Harvey-Bradshaw

Index. Inflamm Bowel Dis. 2006;12:304–10.

58. Sajadinejad MS, Asgari K, Molavi H, Kalantari M, Adibi P. Psychological Issues in

Inflammatory Bowel Disease : An Overview. Gastroenterol Res Pract. 2012; 1-11.

59. Feagan BG, Hanauer SB, Coteur G, Schreiber S. Evaluation of a daily practice

composite score for the assessment of Crohn's disease: The treatment impact of

certolizumab pegol. Aliment Pharmacol Ther. 2011;33:1143–51.

60. Coremans G, Rutgeerts P, Geboes K, Van den Oord J, Ponette E, Vantrappen G. The

value of ileoscopy with biopsy in the diagnosis of intestinal Crohn's disease.

Gastrointest Endosc. Elsevier; 1984;30:167–72.

61. Romagnuolo J, Enns R, Ponich T, Springer J, Armstrong D, Barkun AN. Canadian

credentialing guidelines for colonoscopy. Can J Gastroenterol. 2008;22(1):17-22.

62. Al-Sohaily S, Leong R. The yield of ileoscopy at colonoscopy. J Gastroenterol

Hepatol. 2008;23:4–5.

71

63. Navaneethan U, Kochhar G, Phull H, Gk P, Remzi FH, Kiran RP, et al. Severe

disease on endoscopy and steroid use increase the risk for bowel perforation during

colonoscopy in inflammatory bowel disease patients ☆. J Crohn's Colitis. European

Crohn's and Colitis Organisation; 2012;6:470–5.

64. Lohsiriwat V, Sujarittanakarn S, Akaraviputh T, Lertakyamanee N, Lohsiriwat D,

Kachinthorn U. What are the risk factors of colonoscopic perforation ? BMC

Gastroenterol. 2009;6:1–6.

65. Stange EF, Travis SPL, Vermeire S, Beglinger C, Kupcinskas L, Geboes K, et al.

European evidence based consensus on the diagnosis and management of Crohn' s

disease : definitions and diagnosis. Gut. 2006;1–15.

66. Horsthuis K, Bipat S, Bennink RJ, Stoker J. Inflammatory bowel disease diagnosed

with US, MR, scintigraphy, and CT: meta-analysis of prospective

studies. Radiology. 2008;247(1):64-79.

67. Horsthuis K, Stokkers PCF, Stoker J. Detection of inflammatory bowel disease:

diagnostic performance of cross-sectional imaging modalities. Abdom Imaging.

2008; 33:407–16.

68. Marshall JK, Cawdron R, Zealley I, Riddell RH, Somers S, Irvine EJ. Prospective

Comparison of Small Bowel Meal with Pneumocolon versus Ileo-Colonoscopy for

the Diagnosis of Ileal Crohn's Disease. Am J Gastroenterol. The American College

of Gastroenterology; 2004;99:1321.

69. Samuel S, Bruining DH, Loftus EV Jr, et al. Endoscopic skipping of the distal

terminal ileum in Crohn's disease can lead to negative results from

ileocolonoscopy. Clin Gastroenterol Hepatol. 2012;10(11):1253-1259.

70. Jain S, Gautam V, Naseem S. Acute-phase proteins: As diagnostic tool. J Pharm

Bioallied Sci. Medknow Publications; 2011;3:118–27.

71. Sproston NR, Ashworth JJ. Role of C-Reactive Protein at Sites of inflammation and

infection. Front Immunol. 2018;9:1–11.

72. Iskandar HN, Ciorba MA. Biomarkers in inflammatory bowel disease: current

practices and recent advances. Transl Res. Elsevier; 2012;159:313–25.

73. Cappello M, Morreale GC. The Role of Laboratory Tests in Crohn's Disease. Clin

Med Insights Gastroenterol. Libertas Academica; 2016;9:51–62.

74. Peyrin-Biroulet L, Panés J, Sandborn WJ, Vermeire S, Danese S, Feagan BG, et al.

Defining Disease Severity in Inflammatory Bowel Diseases: Current and Future

Directions. Clin Gastroenterol Hepatol. 2016;14:348-354.e17.

75. A. G. Røseth P. N. Schmidt MKF. Correlation between Faecal Excretion of Indium-

111-Labelled Granulocytes and Calprotectin, a Granulocyte Marker Protein, in

Patients with Inflammatory Bowel Disease. Scand J Gastroenterol. Taylor &

Francis; 1999;34:50–4.

76. Alibrahim B, I Aljasser M, Salh B. Fecal Calprotectin Use in Inflammatory Bowel

Disease and Beyond: A Mini-Review. Can J Gastroenterol Hepatol. 2015;29:157–

63.

77. Zhong J, Rao X. S100 Proteins As an important Regulator of Macrophage

inflammation. Front Immunol. 2018;8:1–11.

78. Fukunaga S, Kuwaki K, Mitsuyama K, Takedatsu H, Yoshioka S, Yamasaki H, et al.

Detection of calprotectin in inflammatory bowel disease: Fecal and serum levels and

immunohistochemical localization. Int J Mol Med. 2018;41:107–18.

79. Carroccio A, Iacono G, Cottone M, Di Prima L, Cartabellotta F, Cavataio F, et al.

Diagnostic Accuracy of Fecal Calprotectin Assay in Distinguishing Organic Causes

72

of Chronic Diarrhea from Irritable Bowel Syndrome: A Prospective Study in Adults

and Children. Clin Chem. 2003;49:861 LP – 867.

80. Velikova T, Shentova R, Spassova Z, Tumangelova-Yuzeir K, Krasimirova E,

Ivanova-Todorova E, et al. Comparative Evaluation of Four Methods for Fecal

Calprotectin Testing : One-Step Card Test, A Point-of-care Lateral Flow Assay, A

Standard and an Automated ELISA. Scimaze Gastroenterol Hepatol (2018) 1:101.

81. Mooiweer E, Severs M, Schipper MEII, Fidder HH, Siersema PD, Laheij RJFF, et

al. Low fecal calprotectin predicts sustained clinical remission in inflammatory

bowel disease patients: A plea for deep remission. J. Crohn's Colitis. 2015;9:50–5.

82. Tibble JA, Sigthorsson G, Foster R, Scott D, Fagerhol MK, Roseth A, et al. High

prevalence of NSAID enteropathy as shown by a simple faecal test. Gut. 1999;45:

362–6.

83. Matsuura R, Watanabe O, Nakamura M, Yamamura T, Matsushita M, Suhara H, et

al. Fecal calprotectin reflects endoscopic activity in patients with small-bowel

Crohn's disease according to double-balloon endoscopy findings. Nagoya J Med Sci.

Nagoya University; 2018;80:257–66.

84. Smith LA, Gaya DR, Smith LA, Gaya DR, Diseases IB. Utility of faecal calprotectin

analysis in adult inflammatory bowel disease. World J Gastroenterol. 2012;18:6782–

9.

85. Iwamoto F, Matsuoka K, Motobayashi M, Takenaka K, Kuno T, Tanaka K, et al.

Prediction of disease activity of Crohn's disease through fecal calprotectin evaluated

by balloon-assisted endoscopy. J Gastroenterol Hepatol. 2018. 1984-1989.

86. Taylor SA, Avni F, Cronin CG, Hoeffel C, Kim SH, Laghi A, et al. The first joint

ESGAR/ ESPR consensus statement on the technical performance of cross-sectional

small bowel and colonic imaging. Eur Radiol. European Radiology; 2016;27: 2570-

2582.

87. Cronin CG, Lohan DG, Mhuircheartaigh JN, McKenna D, Alhajeri N, Roche C, et

al. MRI Small-Bowel Follow-Through: Prone Versus Supine Patient Positioning for

Best Small-Bowel Distention and Lesion Detection. Am J Roentgenol. American

Roentgen Ray Society; 2008;191:502–6.

88. Fiorino G, Bonifacio C, Padrenostro M, Sposta FM, Spinelli A, Malesci A, et al.

Comparison between 1.5 and 3.0 Tesla magnetic resonance enterography for the

assessment of disease activity and complications in ileo-colonic Crohn's disease. Dig

Dis Sci. United States; 2013;58:3246–55.

89. Jiang X, Asbach P, Hamm B, Xu K, Banzer J. MR imaging of distal ileal and

colorectal chronic inflammatory bowel disease--diagnostic accuracy of 1.5 T and 3

T MRI compared to colonoscopy. Int J Colorectal Dis. Germany; 2014;29:1541–50.

90. Grand DJ, Beland MD, Machan JT, Mayo-Smith WW. Detection of Crohn's disease:

Comparison of CT and MR enterography without anti-peristaltic agents performed

on the same day. Eur J Radiol. Ireland: Elsevier Ireland Ltd; 2012;81:1735–41.

91. Cronin CG, Dowd G, Mhuircheartaigh JN, DeLappe E, Allen RH, Roche C, et al.

Hypotonic MR duodenography with water ingestion alone: feasibility and technique.

Eur Radiol. Germany; 2009;19:1731–5.

92. Jesuratnam-Nielsen K, Løgager VB, Rezanavaz-Gheshlagh B, Munkholm P, Thom-

sen HS. Plain magnetic resonance imaging as an alternative in evaluating inflamma-

tion and bowel damage in inflammatory bowel disease – a prospective comparison

with conventional magnetic resonance follow-through. Scand J Gastroenterol.

Taylor & Francis; 2015;50:519–27.

73

93. Allocca M, Danese S, Laurent V, Peyrin-Biroulet L. Use of Cross-Sectional Imaging

for Tight Monitoring of Inflammatory Bowel Diseases. Clin Gastroenterol Hepatol

Off Clin Pract J Am Gastroenterol Assoc. United States; 2020;18:1309-1323.e4.

94. Ippolito D, Invernizzi F, Galimberti S, Panelli MR, Sironi S. MR enterography with

polyethylene glycol as oral contrast medium in the follow-up of patients with Crohn

disease : comparison with CT enterography. Abdom Imaging. United States; 2010;

35:563–70.

95. Laghi A, Paolantonio P, Iafrate F, Borrelli O, Dito L, Tomei E, et al. MR of the

small bowel with a biphasic oral contrast agent (polyethylene glycol): technical

aspects and findings in patients affected by Crohn's disease. Radiol Med.

2003;106:18—27.

96. Maccioni F, Viscido A, Marini M, Caprilli R. MRI evaluation of Crohn's disease of

the small and large bowel with the use of negative superparamagnetic oral contrast

agents. Abdominal Imaging. 2002;393:384–93.

97. Evrimler S, Algin O. MR enterography with oral contrast agent composed of

methylcellulose, low-dose barium sulfate, sorbitol, and lactulose: assessment of

diagnostic performance, reliability, image quality, and patient tolerance. Clin

Imaging. Elsevier; 2016;40:523–30.

98. Ajaj W, Goyen M, Schneemann H, Kuehle Ch, Nuefer M, Ruehm SG, Goehde SC,

Lauenstein TC. Oral contrast agents for small bowel distension in MRI : influence of

the osmolarity for small bowel distention. Eur Radiol. 2005; 1400-1406.

99. Wang Y-R, Yu X-L, Peng Z-Y. Evaluation of different small bowel contrast agents

by multi-detector row CT. Int J Clin Exp Med. e-Century Publishing Corporation;

2015;8:16175–82.

100. Gee MS, Harisinghani MG. MRI in patients with inflammatory bowel disease. J

Magn Reson Imaging. 2011;33:527–34.

101. Khatri G, Coleman J, Leyendecker JR. Magnetic Resonance Enterography for

Inflammatory and Noninflammatory Conditions of the Small Bowel. Radiol Clin

North Am. United States; 2018;56:671–89.

102. Ram R, Sarver D, Pandey T, Guidry CL, Jambhekar KR. Magnetic resonance

enterography: A stepwise interpretation approach and role of imaging in

management of adult Crohn's disease. Indian J Radiol Imaging. India; 2016;26:173.

103. Hidalgo LH, Moreno EA, Arranz JC, Alonso RC, Fernández VMDV. Magnetic

resonance enterography : Review of the technique for the study of Crohn ’ s disease.

Radiología (English Edition). 2011; 421-433.

104. Lee SS, Kim AY, Yang S, Chung J, Kim SY, Park SH, et al. Crohn disease of the

small bowel: comparison of CT enterography, MR enterography, and small-bowel

follow-through as diagnostic techniques. Radiology. 2009;251:751–61.

105. Masselli G, Casciani E, Polettini E, Gualdi G. Comparison of MR enteroclysis with

MR enterography and conventional enteroclysis in patients with Crohn's disease.

Eur Radiol. Germany; 2008;18:438–47.

106. Sinha R, Rajiah P, Murphy P, Hawker P, Sanders S. Utility of high-resolution MR

imaging in demonstrating transmural pathologic changes in Crohn disease.

Radiographics. United States; 2009;29:1847–67.

107. Tolan DJM, Greenhalgh R, Zealley IA, Halligan S, Taylor SA. MR enterographic

manifestations of small bowel Crohn disease. Radiographics. United States;

2010;30: 367–84.

108. Gutzeit A, Binkert CA, Koh D-M, Hergan K, von Weymarn C, Graf N, et al.

Evaluation of the anti-peristaltic effect of glucagon and hyoscine on the small

74

bowel: comparison of intravenous and intramuscular drug administration. Eur

Radiol. Germany; 2012;22:1186–94.

109. Florie J, Wasser MNJM, Arts-Cieslik K, Akkerman EM, Siersema PD, Stoker J.

Dynamic contrast-enhanced MRI of the bowel wall for assessment of disease

activity in Crohn's disease. AJR Am J Roentgenol. United States; 2006;186:1384–

92.

110. Maccioni F, Bruni A, Viscido A, Colaiacomo MC, Cocco A, Montesani C, et al. MR

imaging in patients with Crohn disease: value of T2-versus T1-weighted

gadolinium-enhanced MR sequences with use of an oral superparamagnetic contrast

agent. Radiology. United States; 2006; 238:517–30.

111. Low RN, Sebrechts CP, Politoske DA, Bennett MT, Flores S, Snyder RJ, et al.

Crohn disease with endoscopic correlation: single-shot fast spin-echo and

gadolinium-enhanced fat-suppressed spoiled gradient-echo MR imaging. Radiology.

United States; 2002;222:652–60.

112. Makanyanga JC, Pendse D, Dikaios N, Bloom S, McCartney S, Helbren E, et al.

Evaluation of Crohn's disease activity: initial validation of a magnetic resonance

enterography global score (MEGS) against faecal calprotectin. Eur Radiol.

Germany; 2014;24:277–87.

113. Maglinte DDT, Gourtsoyiannis N, Rex D, Howard TJ, Kelvin FM. Classification of

small bowel Crohn's subtypes based on multimodality imaging. Radiol Clin North

Am. 2003;41:285–303.

114. Rimola J, Rodríguez S, García-Bosch O, Ricart E, Pagès M, Pellisé M, et al. Role of

3.0-T MR Colonography in the Evaluation of Inflammatory Bowel Disease.

RadioGraphics. 2009;29:701–19.

115. Albert JG, Martiny F, Krummenerl A, Stock K, Lesske J, Gobel CM, et al.

Diagnosis of small bowel Crohn's disease: a prospective comparison of capsule

endoscopy with magnetic resonance imaging and fluoroscopic enteroclysis. Gut.

England; 2005;54:1721–7.

116. Gourtsoyiannis N, Papanikolaou N, Grammatikakis J, Papamastorakis G, Prassopou-

los P, Roussomoustakaki M. Assessment of Crohn's disease activity in the small

bowel with MR and conventional enteroclysis: preliminary results. Eur Radiol. Ger-

many; 2004;14:1017–24.

117. O'Malley RB, Al-Hawary MM, Kaza RK, Wasnik AP, Liu PS, Hussain HK. Rectal

imaging: part 2, Perianal fistula evaluation on pelvic MRI--what the radiologist

needs to know. AJR Am J Roentgenol. United States; 2012;199:W43-53.

118. Negaard A, Paulsen V, Sandvik L, Berstad AE, Borthne A, Try K, et al. A

prospective randomized comparison between two MRI studies of the small bowel in

Crohn's disease, the oral contrast method and MR enteroclysis. Eur Radiol.

Germany; 2007; 17:2294–301.

119. Amzallag-Bellenger E, Oudjit A, Ruiz A, Cadiot G, Soyer PA, Hoeffel CC.

Effectiveness of MR enterography for the assessment of small-bowel diseases

beyond Crohn disease. Radiographics. United States; 2012;32:1423–44.

120. Gourtsoyiannis NC, Papanikolaou N, Karantanas A. Magnetic resonance imaging

evaluation of small intestinal Crohn's disease. Best Pract Res Clin Gastroenterol.

Netherlands; 2006;20:137–56.

121. Koh DM, Miao Y, Chinn RJ, Amin Z, Zeegen R, Westaby D, et al. MR imaging

evaluation of the activity of Crohn's disease. AJR Am J Roentgenol. United States;

2001;177:1325–32.

75

122. Madsen SM, Thomsen HS, Schlichting P, Dorph S, Munkholm P. Evaluation of

treatment response in active Crohn's disease by low-field magnetic resonance

imaging. Abdom Imaging. United States; 1999;24:232–9.

123. Sempere GAJ, Martinez Sanjuan V, Medina Chulia E, Benages A, Tome Toyosato

A, Canelles P, et al. MRI Evaluation of Inflammatory Activity in Crohn's Disease.

Am J Roentgenol. American Roentgen Ray Society; 2005;184:1829–35.

124. Del Vescovo R, Sansoni I, Caviglia R, Ribolsi M, Perrone G, Leoncini E, et al.

Dynamic contrast enhanced magnetic resonance imaging of the terminal ileum:

differentiation of activity of Crohn's disease. Abdom Imaging. 2008;33:417–24.

125. Knuesel PR, Kubik RA, Crook DW, Eigenmann F, Froehlich JM. Assessment of

dynamic contrast enhancement of the small bowel in active Crohn's disease using

3D MR enterography. Eur J Radiol. Ireland; 2010;73:607–13.

126. Punwani S, Rodriguez-Justo M, Bainbridge A, Greenhalgh R, De Vita E, Bloom S,

et al. Mural inflammation in Crohn disease: location-matched histologic validation

of MR imaging features. Radiology. United States; 2009;252:712–20.

127. Leyendecker JR, Bloomfeld RS, DiSantis DJ, Waters GS, Mott R, Bechtold RE. MR

enterography in the management of patients with Crohn disease. Radiographics.

2009;29:1827–46.

128. Schmidt S, Chevallier P, Bessoud B, Meuwly J-Y, Felley C, Meuli R, et al.

Diagnostic performance of MRI for detection of intestinal fistulas in patients with

complicated inflammatory bowel conditions. Eur Radiol. Germany; 2007;17:2957–

63.

129. Gourtsoyiannis NC, Grammatikakis J, Papamastorakis G, Koutroumbakis J,

Prassopoulos P, Rousomoustakaki M, et al. Imaging of small intestinal Crohn's

disease: comparison between MR enteroclysis and conventional enteroclysis. Eur

Radiol. Germany; 2006;16:1915–25.

130. Maccioni F, Viscido A, Broglia L, Marrollo M, Masciangelo R, Caprilli R, et al.

Evaluation of Crohn disease activity with magnetic resonance imaging. Abdom

Imaging. United States; 2000;25:219–28.

131. Schunk K, Kern A, Oberholzer K, Kalden P, Mayer I, Orth T, et al. Hydro-MRI in

Crohn's disease: appraisal of disease activity. Invest Radiol. United States; 2000;

35:431–7.

132. Dohan A, Taylor S, Hoeffel C, Barret M, Allez M, Dautry R, et al. Diffusion-

weighted MRI in Crohn's disease: Current status and recommendations. J Magn

Reson Imaging. United States; 2016;44:1381–96.

133. Qayyum A. Diffusion-weighted imaging in the abdomen and pelvis: concepts and

applications. Radiographics. United States; 2009;29:1797–810.

134. Stejskal EO, Tanner JE. Spin Diffusion Measurements: Spin Echoes in the Presence

of a Time Dependent Field Gradient. J Chem Phys. American Institute of Physics;

1965;42:288–92.

135. Koh D-M, Collins DJ. Diffusion-weighted MRI in the body: applications and

challenges in oncology. AJR Am J Roentgenol. United States; 2007;188:1622–35.

136. Pouillon L, Laurent V, Pouillon M, Bossuyt P, Bonifacio C, Danese S, et al.

Diffusion-weighted MRI in inflammatory bowel disease. Lancet Gastroenterol

Hepatol. Elsevier Ltd; 2018;3:433–43.

137. Oto A, Fan X, Mustafi D, Jansen S, Zhu F, Kulkarni K, et al. Evaluation of

diffusion-weighted MR imaging for detection of bowel inflammation in patients

with Crohn's disease. Acad Radiol. 2009/03/17. 2009;16:597–603.

76

138. Ninivaggi V, Missere M, Restaino G, Gangemi E, Di Matteo M, Pierro A, et al. MR-

enterography with diffusion weighted imaging: ADC values in normal and patholo-

gical bowel loops, a possible threshold ADC value to differentiate active from

inactive Crohn's disease. Eur Rev Med Pharmacol Sci. Italy; 2016;20:4540–6.

139. Klang E, Kopylov U, Eliakim R, Rozendorn N, Yablecovitch D, Lahat A, et al.

Diffusion-weighted imaging in quiescent Crohn's disease: correlation with

inflammatory biomarkers and video capsule endoscopy. Clin Radiol. Elsevier;

2017;72:798.e7-798.e13.

140. Kim JS, Jang HY, Park SHSH, Kim K-JJ, Han K, Yang S-KK, et al. MR

Enterography Assessment of Bowel Inflammation Severity in Crohn Disease Using

the MR Index of Activity Score: Modifying Roles of DWI and Effects of Contrast

Phases. Am J Roentgenol. 2017;208:1022–9.

141. Rimola J, Rodriguez S, Garcı O, Orda I, Ayala E, Aceituno M, et al. Magnetic

resonance for assessment of disease activity and severity in ileocolonic Crohn's

disease. Gut. 2009;1113–20.

142. Scardapane A, Ambrosi A, Salinaro E, Mancini ME, Principi M, Di Leo A, et al.

Assessment of Disease Activity in Small Bowel Crohn's Disease: Comparison

between Endoscopy and Magnetic Resonance Enterography Using MRIA and

Modified MRIA Score. Gastroenterol Res Pract. 2015;2015:10–7.

143. Ordás I, Rimola J, Alfaro I, Rodríguez S, Castro-Poceiro J, Ramírez-Morros A, et al.

Development and Validation of a Simplified Magnetic Resonance Index of Activity

for Crohn’s Disease. Gastroenterology. United States; 2019;157:432-439.e1.

144. Capozzi N, Ordás I, Fernandez-Clotet A, Castro-Poceiro J, Rodríguez S, Alfaro I, et

al. Validation of the Simplified Magnetic Resonance Index of Activity [sMARIA]

Without Gadolinium-enhanced Sequences for Crohn's Disease. J. Crohn's Colitis.

2020.

145. Buisson A, Joubert A, Montoriol P-F, Da Ines D, Hordonneau C, Pereira B, et al.

Diffusion-weighted magnetic resonance imaging for detecting and assessing ileal

inflammation in Crohn's disease. Aliment Pharmacol Ther. England; 2013;37:537–

45.

146. Hordonneau C, Buisson a, Scanzi J, Goutorbe F, Pereira B, Borderon C, et al.

Diffusion-weighted magnetic resonance imaging in ileocolonic Crohn's disease:

validation of quantitative index of activity. Am J Gastroenterol. 2014;109:89–98.

147. Sato H, Tamura C, Narimatsu K, Shimizu M, Takajyo T, Yamashita M, et al.

Magnetic resonance enterocolonography in detecting erosion and redness in

intestinal mucosa of patients with Crohn's disease. J Gastroenterol Hepatol. 2015.

30:667–73.

148. Apine I, Pitura R, Franckevica I, Pokrotnieks J, Krumina G. Comparison between

Diffusion-Weighted Sequences with Selective and Non-Selective Fat Suppression in

the Evaluation of Crohn's Disease Activity: Are They Equally Useful? Diagnostics

(Basel, Switzerland). Switzerland; 2020;10.

149. Buisson A, Hordonneau C, Goutorbe F, Allimant C, Goutte M, Reymond M, et al.

Bowel wall healing assessed using magnetic resonance imaging predicts sustained

clinical remission and decreased risk of surgery in Crohn's disease. J Gastroenterol.

Japan; 2019;54:312–20.

150. Buisson A, Hordonneau C, Goutte M, Boyer L, Pereira B, Bommelaer G. Diffusion-

weighted magnetic resonance imaging is effective to detect ileocolonic ulcerations

in Crohn's disease. Aliment Pharmacol Ther. England; 2015;42:452–60.

77

151. Caruso A, D'Inca R, Scarpa M, Manfrin P, Rudatis M, Pozza A, et al. Diffusion-

weighted magnetic resonance for assessing ileal Crohn's disease activity. Inflamm

Bowel Dis. England; 2014;20:1575–83.

152. Li X-H, Sun C-H, Mao R, Huang S-Y, Zhang Z-W, Yang X-F, et al. Diffusion-

weighted MRI Enables to Accurately Grade Inflammatory Activity in Patients of

Ileocolonic Crohn's Disease: Results from an Observational Study. Inflamm Bowel

Dis. England; 2017;23:244–53.

153. Huh J, Kim KJ, Park SH, Park SH, Yang S-K, Ye BD, et al. Diffusion-Weighted

MR Enterography to Monitor Bowel Inflammation after Medical Therapy in Crohn's

Disease: A Prospective Longitudinal Study. Korean J Radiol. Korea (South); 2017;

18:162–72.

154. Pendse DA, Makanyanga JC, Plumb AA, Bhatnagar G, Atkinson D, Rodriguez-

Justo M, et al. Diffusion-weighted imaging for evaluating inflammatory activity in

Crohn's disease: comparison with histopathology, conventional MRI activity scores,

and faecal calprotectin. Abdom Radiol (NY). 2017;42:115–23.

155. Rozendorn N, Amitai MM, Eliakim RA, Kopylov U, Klang E. A review of magnetic

resonance enterography-based indices for quantification of Crohn's disease

inflammation. Therap Adv Gastroenterol. 2018;11:175628481876595.

156. Lichtenstein GR, Loftus E V, Isaacs KL, Regueiro MD, Gerson LB, Sands BE.

ACG Clinical Guideline: Management of Crohn's Disease in Adults. Am J

Gastroenterol. 2018;113:481–517.

157. Deepak P, Bruining DH. Update on the Medical Management of Crohn's Disease.

Curr Gastroenterol Rep. United States; 2015;17:41.

158. Gonczi L, Bessissow T, Lakatos PL. Disease monitoring strategies in inflammatory

bowel diseases: What do we mean by "tight control"? World J Gastroenterol. 2019;

25:6172–89.

159. Torres J, Bonovas S, Doherty G, Kucharzik T, Gisbert JP, Raine T, et al. ECCO

Guidelines on Therapeutics in Crohn's Disease: Medical Treatment. J Crohns

Colitis. England; 2020;14:4–22.

160. Ordas I, Feagan BG, Sandborn WJ. Early use of immunosuppressives or TNF

antagonists for the treatment of Crohn's disease: time for a change. Gut. England;

2011;60:1754–63.

161. Sandborn WJ. Crohn's disease evaluation and treatment: clinical decision tool.

Gastroenterology. United States; 2014;147:702–5.

162. Terdiman JP, Gruss CB, Heidelbaugh JJ, Sultan S, Falck-Ytter YT. American

Gastroenterological Association Institute guideline on the use of thiopurines, metho-

trexate, and anti-TNF-alpha biologic drugs for the induction and maintenance of

remission in inflammatory Crohn's disease. Gastroenterology. United States; 2013;

145:1459–63.

163. Colombel JF, Sandborn WJ, Reinisch W, Mantzaris GJ, Kornbluth A, Rachmilewitz

D, et al. Infliximab, azathioprine, or combination therapy for Crohn's disease. N

Engl J Med. United States; 2010;362:1383–95.

164. Irvine EJ. Development and Subsequent Refinement of the Inflammatory Bowel

Disease Questionnaire: A Quality-of-Life Instrument for Adult Patients with Inflam-

matory Bowel Disease. J Pediatr Gastroenterol Nutr. 1999; S23-S27.

165. Pallis AG, Vlachonikolis IG, Mouzas IA. Assessing health-related quality of life in

patients with inflammatory bowel disease, in Crete, Greece. BMC Gastroenterol.

2002;2:1

78

166. Harvey RF, Bradshaw JM. A simple index of Crohn's-disease activity. Elsevier;

1980;315:514.

167. Sandborn J, Feagan BG, Hanauer SB, Lochs H, Modigliani R, Present DH, et al. A

Review of Activity Indices and Efficacy Endpoints for Clinical Trials of Medical

Therapy in Adults With Crohn's Disease. Gastroenterology. 2002;512–30.

168. Steward MJ, Punwani S, Proctor I, Adjei-Gyamfi Y, Chatterjee F, Bloom S, et al.

Non-perforating small bowel Crohn's disease assessed by MRI enterography:

Derivation and histopathological validation of an MR-based activity index. Eur J

Radiol. Elsevier Ireland Ltd; 2012;81:2080–8.

169. Straksyte V, Kiudelis G, Gineikiene I, Janciauskas D, Basevicius A, Lukosevicius S,

et al. Lemann Index for Assessment of Crohn's Disease: Correlation with the Quality

of Life, Endoscopic Disease Activity, Magnetic Resonance Index of Activity and C-

Reactive Protein. Open Med (Warsaw, Poland). 2019;14:785–91.

170. Pita I, Magro F. Advanced imaging techniques for small bowel Crohn's disease:

what does the future hold? Therap Adv Gastroenterol. SAGE Publications Ltd STM;

2018;11:1756283X18757185.

171. D'Incà R, Caccaro R. Measuring disease activity in Crohn's disease: what is

currently available to the clinician. Clin Exp Gastroenterol. 2014;7:151-161.

172. Rimola J, Alvarez-Cofiño A, Pérez-Jeldres T, Ayuso C, Alfaro I, Rodríguez S, et al.

Comparison of three magnetic resonance enterography indices for grading activity in

Crohn’s disease. J Gastroenterol. 2017;52:585—593.

173. Obuchowski NA, Blackmore CC, Karlik S, Reinhold C. Fundamentals of clinical

research for radiologists. American Journal of Roentgenology. 2005;184:364–372.

174. Cibor D, Szczeklik K, Mach T, Owczarek D. Levels of tissue factor pathway

inhibitor in patients with inflammatory bowel disease. Polish Arch Intern Med.

Poland; 2019;129:253–8.

175. Eder P, Katulska K, Lykowska-Szuber L, Stawczyk-Eder K, Krela-Kaźmierczak I,

Linke K. Simple Enterographic Activity Score for Crohn's Disease: comparison with

endoscopic, biochemical, and clinical findings. Pol Arch Med Wewn. Poland; 2013;

123:378–85.

176. Khater NH, Fahmy HS, Ali HI. Value of MR enterography in assessment of Crohn's

disease: Correlation with capsule endoscopy and colonoscopy. Egypt J Radiol Nucl

Med. Egyptian Society of Radiology and Nuclear Medicine; 2017;48:51–60.

177. Rieder F, Zimmermann EM, Remzi FH, Sandborn WJ. Crohn's disease complicated

by strictures: a systematic review. Gut. BMJ Publishing Group; 2013;62:1072–84.

178. Lunder AK, Jahnsen J, Bakstad LT, Borthne A, Hov JR, Vatn M, et al. Bowel

Damage in Patients With Long-term Crohn's Disease, Assessed by Magnetic

Resonance Enterography and the Lemann Index. Clin Gastroenterol Hepatol.

Elsevier; 2018; 16:75-82.e5.

179. Ilias A, Lovasz BD, Gonczi L, Kurti Z, Vegh Z, Sumegi LD, et al. Optimizing

Patient Management in Crohn's Disease in a Tertiary Referral Center: the Impact of

Fast-Track MRI on Patient Management and Outcomes. J Gastrointestin Liver Dis.

Romania; 2018;27:391–7.

180. Schill G, Iesalnieks I, Haimerl M, Müller-Wille R, Dendl L-M, Wiggermann P, et al.

Assessment of Disease Behavior in Patients with Crohn's Disease by MR

Enterography. Inflamm Bowel Dis. 2013;19:983–90.

181. Rieder F, Bettenworth D, Ma C, Parker CE, Williamson LA, Nelson SA, et al. An

expert consensus to standardise definitions, diagnosis and treatment targets for anti-

79

fibrotic stricture therapies in Crohn's disease. Aliment Pharmacol Ther.

2018;48:347–57.

182. Schulberg JD, Wright EK, Holt BA, Sutherland TR, Hume SJ, Hamilton AL, et al.

Magnetic resonance enterography for predicting the clinical course of Crohn's

disease strictures. J Gastroenterol Hepatol. Australia; 2020;35:980–7.

183. Ziech MLW, Bipat S, Roelofs JJTH, Nio CY, Mearadji B, Van Doorn S, et al.

Retrospective comparison of magnetic resonance imaging features and

histopathology in Crohn's disease patients. Eur J Radiol. Elsevier Ireland Ltd;

2011;80:e299–305.

184. Zappa M, Stefanescu C, Cazals-Hatem D, Bretagnol F, Deschamps L, Attar A, et al.

Which magnetic resonance imaging findings accurately evaluate inflammation in

small bowel Crohn's disease? A retrospective comparison with surgical pathologic

analysis. Inflamm Bowel Dis. 2011;17:984–93.

185. Gucer FI, Senturk S, Ozkanli S, Yilmabasar MG, Koroglu GA, Acar M. Evaluation

of Crohn's disease activity by MR enterography: Derivation and histopathological

comparison of an MR-based activity index. Eur J Radiol. Ireland; 2015;84:1829–34.

186. Quaia E, Sozzi M, Gennari AG, Pontello M, Angileri R, Cova MA. Impact of

gadolinium-based contrast agent in the assessment of Crohn's disease activity: Is

contrast agent injection necessary? J Magn Reson Imaging. 2016;43:688–97.

187. Tielbeek JAW, Ziech MLW, Li Z, Lavini C, Bipat S, Bemelman WA, et al.

Evaluation of conventional, dynamic contrast enhanced and diffusion weighted MRI

for quantitative Crohn's disease assessment with histopathology of surgical

specimens. Eur Radiol. 2014;24:619–29.

188. Qi F, Jun S, Qi QY, Chen PJ, Chuan GX, Jiong Z, et al. Utility of the diffusion-

weighted imaging for activity evaluation in Crohn's disease patients underwent

magnetic resonance enterography. BMC Gastroenterol. 2015;15:12.

189. Ippolito D, Lombardi S, Talei Franzesi C, Drago SG, Querques G, Casiraghi A, et

al. Dynamic Contrast-Enhanced MR with Quantitative Perfusion Analysis of Small

Bowel in Vascular Assessment between Inflammatory and Fibrotic Lesions in

Crohn's Disease: A Feasibility Study. Contrast Media Mol Imaging. England;

2019;2019: 1767620.

190. Sakurai T, Katsuno T, Saito K, Yoshihama S, Nakagawa T, Koseki H, et al.

Mesenteric findings of CT enterography are well correlated with the endoscopic

severity of Crohn's disease. Eur J Radiol. Ireland; 2017;89:242–8.

191. Röttgen R, Grandke T, Grieser C, Lehmkuhl L, Hamm B, Lüdemann L.

Measurement of MRI enhancement kinetics for evaluation of inflammatory activity

in Crohn's disease. Clin Imaging. Elsevier; 2010;34:29–35.

192. D'Amico F, Chateau T, Laurent V, Danese S, Peyrin-Biroulet L. Which MRI Score

and Technique Should Be Used for Assessing Crohn's Disease Activity? J Clin Med.

Switzerland; 2020;9.

193. Knowles SR, Keefer L, Wilding H, Hewitt C, Graff LA, Mikocka-Walus A. Quality

of Life in Inflammatory Bowel Disease: A Systematic Review and Meta-analyses—

Part II. Inflamm Bowel Dis. 2018;24:966–76.

194. dit Prevost C, Azahaf M, Nachury M, Branche J, Gerard R, Wils P, et al. Bowel

damage and disability in Crohn's disease: a prospective study in a tertiary referral

centre of the Lémann Index and Inflammatory Bowel Disease Disability Index.

Aliment Pharmacol Ther. 2020;51:889–98.

195. Fiorino G, Morin M, Bonovas S, Bonifacio C, Spinelli A, Germain A, et al.

Prevalence of Bowel Damage Assessed by Cross-Sectional Imaging in Early Crohn's

80

Disease and its Impact on Disease Outcome. J Crohns Colitis. England; 2017;

11:274–80.

196. Jauregui-Amezaga A, Cabezón R, Ramírez-Morros A, España C, Rimola J, Bru C,

et al. Intraperitoneal Administration of Autologous Tolerogenic Dendritic Cells for

Refractory Crohn’s Disease: A Phase I Study. J Crohns Colitis. 2015;9:1071–8.

197. Coimbra AJF, Rimola J, O'Byrne S, Lu TT, Bengtsson T, De Crespigny A, et al.

Magnetic resonance enterography is feasible and reliable in multicenter clinical

trials in patients with Crohn's disease, and may help select subjects with active

inflammation. Aliment Pharmacol Ther. 2016;43:61–72.

198. Menys A, Puylaert C, Tutein Nolthenius CE, Plumb AA, Makanyanga J, Tielbeek J,

et al. Quantified Terminal Ileal Motility during MR Enterography as a Biomarker of

Crohn Disease Activity: Prospective Multi-Institution Study. Radiology. United

States; 2018;289:428–35.

199. Williet N, Jardin S, Roblin X. The Simplified Magnetic Resonance Index of Activity

(MARIA) for Crohn's Disease Is Strongly Correlated With the MARIA and

Clermont Score: An External Validation. Gastroenterology. United States; 2020. p.

282–3.

200. Buisson A, Pereira B, Goutte M, Reymond M, Allimant C, Obritin-Guilhen H, et al.

Magnetic resonance index of activity (MaRIA) and Clermont score are highly and

equally effective MRI indices in detecting mucosal healing in Crohn's disease. Dig

liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver. Netherlands; 2017;

49:1211–7.

201. Li X-H, Sun C-H, Mao R, Zhang Z-W, Jiang X-S, Pui MH, et al. Assessment of

Activity of Crohn Disease by Diffusion-Weighted Magnetic Resonance Imaging.

Medicine (Baltimore). United States; 2015;94:e1819.

202. Neubauer H, Pabst T, Dick A, Machann W, Evangelista L, Wirth C, et al. Small-

bowel MRI in children and young adults with Crohn disease: retrospective head-to-

head comparison of contrast-enhanced and diffusion-weighted MRI. Pediatr Radiol.

Germany; 2013;43:103–14.

203. Oto A, Kayhan A, Williams JTB, Fan X, Yun L, Arkani S, et al. Active Crohn's

disease in the small bowel: evaluation by diffusion weighted imaging and

quantitative dynamic contrast enhanced MR imaging. J Magn Reson Imaging.

United States; 2011;33:615–24.

204. Seo N, Park SH, Kim K-J, Kang B-K, Lee Y, Yang S-K, et al. MR Enterography for

the Evaluation of Small-Bowel Inflammation in Crohn Disease by Using Diffusion-

weighted Imaging without Intravenous Contrast Material: A Prospective

Noninferiority Study. Radiology. United States; 2016;278:762–72.

205. Choi SH, Kim KW, Park SH, Lee JY, Kim K-J. Diffusion-weighted Magnetic

Resonance Enterography for Evaluating Bowel Inflammation in Crohn's Disease: A

Systematic Review and Meta-analysis. Inflamm Bowel Dis. 2015;22:669–79.

206. Yu H, Shen Y-Q, Tan F-Q, Zhou Z-L, Li Z, Hu D-Y, et al. Quantitative diffusion-

weighted magnetic resonance enterography in ileal Crohn's disease: A systematic

analysis of intra and interobserver reproducibility. World J Gastroenterol.

2019;25:3619–33.

207. Lin J-F, Chen J-M, Zuo J-H, Yu A, Xiao Z-J, Deng F-H, et al. Meta-analysis: fecal

calprotectin for assessment of inflammatory bowel disease activity. Inflamm Bowel

Dis. England; 2014;20:1407–15.

81

208. von Roon AC, Karamountzos L, Purkayastha S, Reese GE, Darzi AW, Teare JP, et

al. Diagnostic precision of fecal calprotectin for inflammatory bowel disease and

colorectal malignancy. Am J Gastroenterol. United States; 2007;102:803–13.

209. Sipponen T, Savilahti E, Kolho K-L, Nuutinen H, Turunen U, Farkkila M. Crohn's

disease activity assessed by fecal calprotectin and lactoferrin: correlation with

Crohn's disease activity index and endoscopic findings. Inflamm Bowel Dis.

England; 2008; 14:40–6.

210. D'Haens G, Ferrante M, Vermeire S, Baert F, Noman M, Moortgat L, et al. Fecal

calprotectin is a surrogate marker for endoscopic lesions in inflammatory bowel

disease. Inflamm Bowel Dis. England; 2012;18:2218–24.

211. af Bjorkesten C-G, Nieminen U, Turunen U, Arkkila P, Sipponen T, Farkkila M.

Surrogate markers and clinical indices, alone or combined, as indicators for endo-

scopic remission in anti-TNF-treated luminal Crohn's disease. Scand J

Gastroenterol. England; 2012;47:528–37.

212. Jensen MD, Kjeldsen J, Nathan T. Fecal calprotectin is equally sensitive in Crohn's

disease affecting the small bowel and colon. Scand J Gastroenterol. England;

2011;46:694–700.

213. Schoepfer AM, Beglinger C, Straumann A, Trummler M, Vavricka SR, Bruegger

LE, et al. Fecal calprotectin correlates more closely with the Simple Endoscopic

Score for Crohn's disease (SES-CD) than CRP, blood leukocytes, and the CDAI.

Am J Gastroenterol. United States; 2010;105:162–9.

214. Goutorbe F, Goutte M, Minet-Quinard R, Boucher A-L, Pereira B, Bommelaer G, et

al. Endoscopic Factors Influencing Fecal Calprotectin Value in Crohn's Disease. J

Crohns Colitis. England; 2015;9:1113–9.

215. Somwaru AS, Khanijow V, Katabathina VS. Magnetic resonance enterography,

colonoscopy, and fecal calprotectin correlate in colonic Crohn's disease. BMC

Gastroenterol. 2019;19:210.

82

LIST OF PUBLICATIONS

Publication related to the results of the dissertation

1. Strakšytė V, Gineikienė I, Kiudelis G, Basevičius A, Puidokaitė E.

Uždegiminių žarnyno ligų diagnostikos naujovės. Medicinos teorija ir

praktika. 2013, t. 20, Nr. 3. p. 238-244.

2. Strakšytė V, Gineikienė I, Kiudelis G, Basevičius A, Puidokaitė E,

Valantienė I, Kupčinskas L. Magnetinio rezonanso enterokolonografijos

reikšmė diagnozuojant uždegimines žarnyno ligas. Sveikatos mokslai.

2014, t. 24, Nr. 3(94). p. 66-71.

3. Strakšytė V, Gineikienė I, Mikšaitė J, Kiudelis G, Basevičius A. MRT

difuzijos reikšmė diagnozuojant Krono ligą. Medicinos teorija ir prakti-

ka. 2015, t. 21, Nr. 4.1. p. 571-575.

4. Demenytė I, Strakšytė V, Gineikienė I, Basevičius A. Magnetinio rezo-

nanso enterokolonografijos pritaikymo galimybės žarnyno ligų diag-

nostikoje: literatūros apžvalga. Medicinos teorija ir praktika. 2015, t.

21, Nr. 4.1. p. 566-570.

5. Straksyte V, Kiudelis G, Gineikiene I, Janciauskas D, Basevicius A,

Lukosevicius S, Kupcinskas L. Lemann Index for Assessment of

Crohn's Disease: Correlation with the Quality of Life, Endoscopic

Disease Activity, Magnetic Resonance Index of Activity and C-

Reactive Protein. Open Med (Wars). 2019 Nov 7;14:785-791.

6. Strakšytė V, Kiudelis G, Gineikienė I, Basevičius A, Lukoševičius S,

Kupčinskas L. Diffusion-weighted magnetic resonance enterocolono-

graphy in assessing Crohn's disease activity. Pol Arch Intern Med. 2020

Other publications

1. Strakšytė V, Gineikienė I, Kiudelis G, Basevičius A, Puidokaitė E,

Valantienė I. Plonųjų žarnų piktybiniai navikai ir jų radiologinės diag-

nostikos galimybės. Sveikatos mokslai. 2013, t. 23, Nr. 4. p. 160-165.

2. Vilčinskas M, Gineikienė I, Švagždys S, Strakšytė V. The Diagnostic

value of free intraperitoneal air amount while diagnosing gastro-

intestinal tract complications after intra-abdominal operations. Radio-

logy update. 2018, vol. 2(3). p. 21-30.

3. Utakienė E, Strakšytė V, Gineikienė V, Švagždys S, Jančiauskas D,

Kiudelis G, Basevičius A, Vilčinskas M. Intestinal pseudo-obstruction:

adult Hirschsprung’s disease and Ogilvie’s syndrome. Clinical case

report. Radiology update. 2018, vol. 2(3). p. 1-12.

83

LIST OF SCIENTIFIC CONFERENCES

The results of the dissertation were presented in the scientific

conferences:

1. 1st Baltic Congress of Gastroenterology, Kaunas, Lithuania, January

31 – February 1, 2014. Poster presentation. “Magnetic resonance

enterocolonography in diagnosing inflammatory bowel disease.”

2. 7th

Baltic Congress of radiology – BCR: 4–6 October 2018, Kaunas,

Lithuania. Oral presentation. "MRI differential diagnosis of inflamma-

tory bowel disease."

3. 7th

Baltic Congress of radiology – BCR: 4–6 October 2018, Kaunas,

Lithuania. Poster presentation. "Magnetic resonance enterocolono-

graphy comparison with Crohn's disease activity index in the evaluation

of Crohn's disease."

4. 7th

Baltic Congress of radiology – BCR: 4–6 October 2018, Kaunas,

Lithuania. Poster presentation. "Comparison of magnetic resonance

enterocolonography indices with clinical activity in Crohn’s disease."

5. 15th

Congress of ECCO "Inflammatory Bowel Diseases." February 12–

15, 2020, Vienna, Austria. Poster presentation. Lemann Index for

Assessment of Crohn's disease association with the quality of life,

endoscopic disease activity and magnetic resonance indices of activity.

6. 15th

Congress of ECCO "Inflammatory Bowel Diseases." February 12–

15, 2020, Vienna, Austria. Poster presentation. Value of Diffusion-

weighted magnetic resonance enterocolonography for assessing Crohn's

disease activity.

7. ESGAR 2020, May 19–22. Virtual Congress. E- Poster. Fecal Calpro-

tectin for Assessment of Crohn’s Disease association with the Quality

of Life, Endoscopic Disease activity, and Magnetic Resonance Indices

of Activity.

8. UEG Week Virtual 2020, October 11–13. Virtual Congress. E-Poster.

Diffusion-weighted Magnetic Resonance Enterocolonography and

CDEIS in assessing Crohn's Disease Activity.

84

SUMMARY IN LITHUANIAN

Sutrumpinimai

anti-TNF antikūnai, nukreiptais prieš naviko nekrozės faktorių

CDEIS Krono ligos sunkumo endoskopijos indeksas

CRB C-reaktyvus baltymas

KT-EK kompiuterinės tomografijos enterokolonografija

IBDQ uždegiminės žarnyno ligos klausimynas

IK išmatų kalprotektinas

KL Krono liga

KLAI Krono ligos aktyvumo indeksas

LI Lemanno indeksas

MaRIA magnetinio rezonanso aktyvumo indeksas

MR-EK magnetinio rezonanso enterokolonografija

MRT magnetinio rezonanso tomografija

ĮVADAS

Krono liga (KL) yra lėtinė uždegiminė liga, kuri gali pažeisti bet kurią

virškinamojo kanalo dalį [1–2], bet dažniausiai uždegimo pokyčiai atsiranda

plonojoje žarnoje [3].

Vakarų Europos šalyse KL serga daugiau kaip 2,5 mln. žmonių. Besi-

vystančiose šalyse sergamumas šia liga nuolat didėja [4].

KL dažniausiai serga jauni žmonės, liga išlieka neišgydoma. Pacien-

tams visą gyvenimą reikalingi medikamentai, ligai progresuojant – operaci-

nis gydymas [5].

Pirmą kartą diagnozavus ligą dažniausiai yra nustatoma uždegiminė

KL, tačiau laikui bėgant ji progresuoja į spindį siaurinančią ar penetracinę

formas 3,8–7,5 proc. dažnumu per metus [6].

Aktyviosios KL simptomai, pavyzdžiui, pilvo skausmas ir viduriavimas

mažai susiję su ligos sunkumu ir pobūdžiu (uždegiminė, penetracinė ar

spindį siaurinanti) [7]. Be to, liga yra įvairialypė, apimanti kelis fenotipus,

kurie priklauso nuo susirgusiojo amžiaus, ligos lokalizacijos ir formos [8].

Ileokolonoskopija ir viršutinio virškinamojo kanalo endoskopija yra

laikomi aukso standartu gleivinės uždegimui įvertinti bei biopsijai paimti

[6]. Šiais metodais įvertinama tik proksimalioji plonosios žarnos dalis ir

galinė klubinė žarna (lot. ileum). Be to, endoskopijos tyrimu įvertinami tik

gleivinės pokyčiai, tuo tarpu gilesni žarnos sienelės sluoksniai ir pakitimai

už jos ribų (fistulės, abscesai) lieka neįvertinami [10]. Visai plonajai žarnai

įvertinti reikalingi kiti tyrimo metodai [10–11].

85

Magnetinio rezonanso tomografija (MRT) papildo endoskopinį tyrimą,

leidžia visiškai įvertinti plonąją žarną ir tarpvietę. Be to, šio tyrimo

privalumas yra tas, kad– įvertinama visa žarnos sienelė ir už jos ribų esantys

pokyčiai [14]. MRT svarbus nustatant ir patvirtinant KL diagnozę, kompli-

kacijas, vertinant ligos sunkumą ir atsaką į gydymą [11].

Pacientams, sergantiems KL, dėl ligos pobūdžio dažniausiai reikia

atlikti kartotinius vaizdo tyrimus. Magnetinio rezonanso enterokolonografija

(MR-EK) suteikia nekintamos ir kintamos trimatės informacijos apie ploną-

ją žarną, minkštųjų audinių kontrastą bei sukelia mažiau nepageidaujamų

požymių, palyginti su kompiuterinės tomografijos enterokolonografija [17].

Kartotinių vaizdo tyrimų poreikis padidėjo pradėjus taikyti intensyvesnį

gydymą, naudojant biologinius ar imunosupresinius vaistus.

Išmatų kalprotektinas (IK) yra naudingas KL diagnozės biologinis

žymuo, suteikiantis informacijos apie ligos atkrytį, gleivinės gijimą, poreikį

koreguoti gydymą [18]. Be to, IK yra naudingas tyrimo metodas, padedantis

atskirti pacientus, kuriems kolonoskopijos reikia dėl įtariamos KL [19].

KL aktyvumo vertinimas yra labai svarbus [20], siekiant objektyviai

įvertinti ligos klinikinius simptomus, eigą, sunkumą, išplitimą ir vertinant

atsaką į brangų gydymą [21]. Sukurta daug rodiklių ir indeksų ligos

aktyvumui ir sunkumui vertinti. Geriausiai žinomas gyvenimo kokybei

vertinti vartojamas uždegiminės žarnyno ligos klausimynas (IBDQ) [22],

endoskopinės ligos sunkumui vertinti – Krono ligos endoskopinis sunkumo

indeksas (CDEIS) [23] ir magnetinio rezonanso aktyvumo indeksas

(MaRIA) [24].

Naujas kiekybinis KL virškinamojo kanalo pažeidimo vertinimas –

Lemanno indeksas (LI) [25]. Jis sujungia visų virškinamojo kanalo segmentų

klinikinius, chirurginius, endoskopinius ir vaizdinius patologinius radinius į

vieną sudėtinį balą [27].

Dabartiniai gydymo būdai apima tradicinius medikamentus nuo uždegi-

mo, imunomoduliatorius, biologinius vaistus turinčius antikūnų, nukreiptais

prieš naviko nekrozės faktorių (anti-TNF) [4], antibiotikus ir operacinį

gydymą. Dėl modernaus gydymo pakito gydymo tikslas – nuo simptomų

kontrolės iki visiško gleivinės išgijimo. Todėl reikia periodiškai atlikti

vaizdo tyrimus, norint įvertinti atsaką į gydymą [6].

86

1. TIKSLAS IR UŽDAVINIAI

1.1. Tikslas

Tyrimo tikslas įvertinti MR-EK ir išmatų kalprotektino įtaką Krono

ligai diagnozuoti ir vertinti.

1.2. Uždaviniai

1. Įvertinti MR-EK prognozines vertes diagnozuojant KL.

2. Palyginti pacientų, sergančių KL, ir kontrolinės grupės MR-EK

požymius.

3. Nustatyti koreliaciją tarp MR-EK Krono ligos aktyvumo indeksų,

CDEIS, klinikinio aktyvumo rodiklių ir IBDQ.

4. Nustatyti tariamojo difuzijos koeficiento (ADC) ir difuzijos (DWI)

vertę, vertinant KL uždegimo aktyvumą.

5. Įvertinti išmatų kalprotektiną kaip neinvazinį KL aktyvumo žymenį

ir IK koreliaciją su įvairiais aktyvumo rodikliais.

1.3. Darbo naujumas

KL diagnostika išlieka – iššūkis dėl nespecifinių simptomų ir silpnos

koreliacijos tarp simptomų ir ligos aktyvumo [32].

Technologijų raida lėmė vaizdo tyrimo metodų pažangą, skatindama

vaizdo tyrimų poreikį pacientams, sergantiems KL. Tobulesnė MRT laikinė

ir erdvinė skiriamoji geba, atsiradusios enterinės kontrastinės medžiagos,

užtikrino kokybišką žarnyno ir perienterinių audinių vizualizavimą, atlie-

kant MR-EK tyrimą [33–36]. MR-EK laikomas plonosios žarnos KL nusta-

tymo aukso standartu [14].

Šiuolaikinė biologinė ir imunomoduliatorių terapija padidino poreikį

žarnyno vaizdo tyrimo metodų, kurie padeda diagnozuoti, nustatyti stadiją,

klasifikuoti ligą į uždegiminę, penetracinę, siaurinančią spindį, pasirinkti

tinkamą gydymo strategiją, vertinti atsaką į gydymą [37]. Iki 50 proc.

pacientų, sergančių aktyviąja plonosios žarnos liga, uždegimas gali aplenkti

galinę klubinės žarnos dalį arba būti intramuralinis ir likti nenustatytas

ileokolonoskopijos tyrimo metu [38].

MR-EK metodika pradėta taikyti 2013 m. Lietuvos sveikatos mokslų

universiteto ligoninėje Kauno klinikų Radiologijos klinikoje. Šis klinikinis

tyrimas yra pirmasis Lietuvoje, siekiant įvertinti KL išplitimą ir aktyvumą,

todėl jis turi didelę mokslinę ir praktinę vertę optimizuojant MRT naudo-

jimą KL diagnostikoje.

Atlikome pirmąjį perspektyvųjį MR-EK tyrimą Lietuvoje, kuris apima

daugiadalykį KL vertinimą. Įvertinome klinikinius KL aktyvumo rodiklius:

87

Krono ligos aktyvumo indeksą (KLAI) ir Harvey Bradshaw indeksą, taip pat

IBDQ – gyvenimo kokybę. Laboratorinius tyrimus: bendrąjį kraujo tyrimą,

CRB, IK. Endoskopijos metu atlikta biopsija ir MR-EK tyrimo – aktyvumo

indeksų apskaičiavimas

Be to, MR-EK protokolą pritaikėme klinikinėje praktikoje. Iki šiol buvo

nepriimtas rutininis KL pacientų tyrimas. Taip pat atlikome gyvenimo koky-

bės analizę, naudodami IBDQ anketas.

Iki šiol mes neradome jokio tyrimo, kuriame būtų ieškoma Krono ligos,

Lemanno indekso ir pacientų gyvenimo kokybės sąsajos.

2. METODIKA

2.1. Tyrimo eiga

Tyrimas atliktas Lietuvos sveikatos mokslų universiteto ligoninės

Kauno klinikų Gastroenterologijos ir Radiologijos klinikose 2013–2018

metais, gavus Kauno regioninio Biomedicinos tyrimų etikos komiteto

leidimą (BE-2-48).

Pacientai, kuriems įtariama ar patvirtinta KL, atitinkantys įtraukimo

kriterijus, neturintys neįtraukimo kriterijų bei pasirašę Informuoto asmens

sutikimo formą, buvo įtraukti į tyrimą. Surinkti demografiniai ir klinikiniai

tiriamųjų duomenys. Pacientams atlikti šie tyrimai: CRB, BKT. Pacientai

užpildė pateiktas anketas, atliekant endoskopiją, paimti mėginiai histologin-

iam ištyrimui, padarytas MR-EK, išmatų kalprotektino tyrimas (nuo 2014

metų). Tyrimo eiga pavaizduota 2.1 pav.

MR-EK tyrimas buvo atliekamas nevalgiusiems pacientams, kurių

žarnynas buvo išvalytas.

Pacientai vieną valandą prieš tyimą pradėdavo gerti 2,5 proc. manitolio

tirpalą 1500–2000 ml. Prieš pradedant tyrimą ir prieš leidžiant kontrastinę

medžiagą, kad būtų nuslopinta žarnų peristaltika pacientams buvo

sušvirkščiama 20 mg/ml N-butyl scopolamine (Buscopan, Boehringer,

Ingelheim, Vokietija). MR-EK protokolas sudarytas iš standartinių T1W ir

T2W, ir difuzijos sekų.

Visi MR-EK tyrimai atlikti 1,5 teslos MRT aparatu (Siemens Medical

Systems, Erlangen, Vokietija) naudojant gamintojo rites, pacientui gulint ant

pilvo.

88

2.1 pav. Pacientų tyrimo schema

Statistinė duomenų analizė atlikta vartojant SPSS 20.0 bei Excel prog-

ramą. Shapiro-Wilko testas naudotas patikrinti, ar duomenys atitinka nor-

malųjį skirstinį. Klinikinių indeksų, CDEIS ir gyvenimo kokybės koreliacija

apskaičiuota vartojant Spearmano koreliaciją. ROC kreivės panaudotos

MR-EK prognozinėms vertėms apskaičiuoti.

3. REZULTATAI

Į tyrimą įtraukti 229 pacientai: 100 pacientų, kuriems KL diagnozė

patvirtinta pagal Kopenhagos diagnostikos kriterijus, ir 129 pacientai,

kuriems tiek MR-EK tyrimu, tiek ir endoskopiniu tyrimais nebuvo nustatyta

virškinamojo kanalo patologijos, kontrolinė grupė. Pacientų demografiniai,

klinikiniai ir laboratoriniai duomenys pateikti 3.1 lentelėje.

89

3.1 lentelė. Demografiniai, klinikiniai ir laboratoriniai pacientų duomenys

Charakteristikos KL grupė

(n=100)

Kontrolinė grupė

(n=129) p

Lytis, n (proc.):

vyrai/moterys

55 (55,0)/45 (45,0)

69 (53,48)/60 (46,52)

0,44

Amžiaus mediana (IQR), metais 34,5 (26–47) 37 (26–46) 0,235

Prieš tai buvusios operacijos,

n (proc.)

Taip/ Ne

9 (9,0)/91 (91,0)

0 (0)/129 (100)

<0,001

Rūkymas, n (proc.)

Nerūkantis,

Rūkęs anksčiau,

Rūkantis

61 (61)

4 (4)

35 (35)

116 (89,9)

5 (3,9)

8 (6,2)

<0,001

KLAI mediana (IQR) 170.5 (100–228) 16 (12–28) <0,001

IBDQ median (IQR) 170 (151–188) 213 (207–219) <0,001

C reaktyvaus baltymo mediana

(IQR), mg/l

2,86 (1–23,47) 1 (1–2) <0,001

IBDQ – uždegiminė žarnyno ligos anketa, KL – Krono liga, KLAI – Krono ligos aktyvumo

indeksas.

Pacientų gyvenimo kokybę vertinome naudodami IBDQ anketas.

3.1 paveiksle pavaizduotas IBDQ skirstinys pagal Montrealio klasifikaciją.

Pastebėjome, kad IBDQ yra mažesnis pacientų sergančių kolitu (vidutinis

152,2±13,5) ir ileokolitu (vidutinis 156,52±28,79), palyginti su plonosios

žarnos KL (vidutinis 181,1±21,14).

Pagal ligos pobūdį pacientų IBDQ buvo: nepenetracinės, nesiauri-

nančios spindžio (vidutinis 181,70±18,12), stenozuojančios (vidutinis

150,65±25,43) ir penetruojančios (vidutinis 152,38±26,53) KL (3.1 pav.).

Vidutinis IBDQ buvo 167,87±26,55.

90

3.1 pav. IBDQ skirstinys pagal KL vietą (L) ir pobūdį (B)

IBDQ – uždegiminės žarnyno ligos anketa.

3.1. Magnetinio rezonanso enterokolonografijos

diagnostinė vertė

MR-EK prognozinei vertei apskaičiuoti buvo įtraukti visi pacientai

(n=229), kuriems įtariama ir serga KL. Aukso standartas buvo Kopenhagos

diagnostikos kriterijai. MR-EK bendras jautrumas ir specifiškumas buvo

74 proc. ir 90 proc. Teigiamoji prognozinė vertė (PPV) buvo 97 proc. ir neigia-

moji prognozinė vertė (NPV) – 46 proc. diagnozuojant KL. Diagnozuojant

galinės klubinės žarnos dalies uždegimą jautrumas ir specifiškumas buvo

didesni 85,9 proc. ir 92,3 proc., atitinkamai PPV 97,4 proc. ir NPV 65,8 proc.

MRT pūlinių diagnozavimo jautrumas buvo 88,7 proc. ir specifiškumas

100 proc., PPV 100 proc. ir NPV 92 proc. Fistulės – 75,2 proc. jautrumas ir

100 proc. specifiškumas, PPV 100 proc. ir NPV 93,3 proc. Nustatant steno-

zę, MRT jautrumas ir specifiškumas atitinkamai buvo 81,1 proc. ir

91,5 proc., PPV 91,5 proc. ir NPV 77 proc.

3.2. Magnetinio rezonanso enterokolonografijos parametrai

KL sergančių pacientų (n=100) vertinome vidutinį pakitusių žarnos seg-

mentų ilgį, kuris buvo 98,89±78,31mm (ribos, tarp 10– 500 mm).

Pakitusios žarnos sienelės storio vidurkis buvo 7,13±2,52 mm, o kont-

rolinės grupės tiriamųjų 1,37±0,485 mm (p<0,01). Analizuojant tam tikrus

segmentus sienelės storesnės nei 4 mm nustatytas 84,4 proc. jautrumas ir

97,1 proc. specifiškumas diagnozuojant KL (3.2.1 lentelė).

91

Visų pacientų sergančių KL, T2W sekose MRT vaizduose nustatytas

pakitęs žarnos segmentas buvo izointensinis arba šiek tiek hiperintensinis

palyginti su juosmens raumeniu (m. psoas). T2W su fs vaizduose

uždegimiškai pakitusi sienelė buvo nuo tamsiai pilkos iki beveik baltos

spalvos (panaši į žarnyno turinį). Be to, KL grupėje žarnos sienelės signalo

intensyvumas taip pat buvo gerokai didesnis nei kontrolinės grupės

tiriamųjų (3.2.1 lentelė).

KL grupėje T1W sekos kontrastiniuose vaizduose sienelės signalo

intensyvumas buvo didesnis uždegimo paveiktų segmentų. Kontrolinės

grupės tiriamiesiems tokių segmentų nenustatyta (p<0,01).

109 uždegimo pakitę segmentai buvo pasiskirstę atitinkamai: vienas

segmentas tuščiojoje žarnoje (0,92 proc.), proksimaliojoje klubinės žarnos

dalyje – 7 (6,42 proc.), galinėje klubinės žarnos dalyje – 52 (47,8 proc.),

aklojoje žarnoje – 6 (5,6 proc.) ir kylančiojoje žarnoje – 7 (6,42 proc.),

skersinėje – 8 (7,34 proc.), nusileidžiančiojoje – 12 (11 proc.), riestinėje – 9

(8,26 proc.), tiesiojoje žarnoje – 7 (6,42 proc.). Vertinant 109 pakitusius

segmentus MRT vaizduose 51 segmente buvo nustatytas patologinis homo-

geniškas kontrasto kaupimas, 58 – sluoksninis. Kontrolinės grupės tiriamie-

siems tokių segmentų nebuvo nustatyta.

3.2.1 lentelė. KL ir kontrolinės grupių MR požymių skirstinys

Parametrai KL

(n=100)

Kontrolė

(n=129) p

Žarnos sienelės storis, (vidurkis±SD), mm 7,13±2,52 1,37±0,485 <0,001

Sienelės signalo intensyvumas T2 HASTE su fs,

n (proc.):

Normalus

Tamsiai pilkas

Šviesiai pilkas

Baltas, kaip žarnos turinys

791 (87,88)

31 (3,45)

38 (4,22)

40 (4,45)

1161 (100)

0

0

0

<0,001

T1W kontrasto kaupimas lyginant su sveika

žarnos sienele, n (proc.):

Lygiavertis sveikai ŽS

Mažas

Vidutinis

Ryškus

791 (87,88)

32 (3,5)

35 (3,9)

42 (4,8)

1161

0

0

0

<0,001

ŽS kontrastavimosi pobūdis, n (proc.):

Normaliai

Sluoksniais

Homogeniškai

791 (87,88)

58 (6,45)

51 (5,67)

1161 (100)

0

0

<0,001

Pakitusio segmento ilgis (vidurkis±SD), mm 98,89±78,31 0 <0,001

92

3.2.1 lentelė. KL ir kontrolinės grupių MR požymių skirstinys

Parametrai KL

(n=100)

Kontrolė

(n=129) p

DWI signalas, n (proc.)

Normalus

Tikėtina normalus

Tikėtina nenormalus

Nenormalus

791 (87,88)

23 (2,55)

43 (4,78)

43 (4,79)

1161 (100)

0

0

0

<0,001

ŽS ADC (vidurkis±SD), ×10–3 mm2/s 1,086±0,09 1,623±0,097 <0,001

ADC – tariamasis difuzijos koeficientas, DWI – difuzija, ŽS – žarnos sienelė.

3.3. Krono ligos aktyvumo indeksų koreliacija

Naudojant Spearmano koreliaciją buvo nustatyta stipri atvirkštinė LI ir

IBDQ (r=0,813, p<0,01) koreliacija (3.3.1 pav.). IBDQ taip pat parodė

stiprią neigiamą koreliaciją su kitais MR-EK rodikliais MaRIA-G, mMaRIA-G

ir Clermont-G (r=0,731, r=0,749, r=0,726, p=0,01) (3.3.1 lentelė).

3.3.1 pav. Lemanno indekso ir uždegiminės žarnyno ligos

klausimyno koreliacija

IBDQ – uždegiminės žarnyno ligos klausimynas.

93

Be to, buvo nustatyta vidutinio stiprumo koreliacija tarp MaRIA-G ir

CDEIS, taip pat MaRIA-G ir LI (r=0,698 ir r=0,658, p=0,01). Kaip ir

MaRIA-G ir LI, taip ir kiti MR-EK indeksai mMaRIA-G ir Clermont-G

gerai koreliavo su CDEIS (r=0,580 ir r=0,585, p=0,01). Tačiau buvo gauta

silpna koreliacija tarp LI ir CDEIS (r=0,320, p=0,01) (3.3.1 lentelė), taip pat

tarp IBDQ ir CDEIS (r=–0,332, p=0,01).

3.3.1 lentelė. Koreliacija tarp KL aktyvumo indeksų

IBDQ CDEIS CRB KLAI HBI eAIS-T

MaRIA-G –0,731,

p=0,01

0,698,

p=0,01

0,495,

p=0,01

0,501,

p=0,01

0,582,

p=0,01

0,609,

p=0,01

mMaRIA-G –0,749,

p=0,01

0,580,

p=0,01

0,56,

p=0,01

0,514,

p=0,01

0,591,

p=0,01

0,627,

p=0,01

Clermont-G –0,726,

p=0,01

0,585,

p=0,01

0,522,

p=0,01

0,468,

p=0,01

0,557,

p=0,01

0,601,

p=0,01

Lemann indeksas –0,813,

p=0,01

0,320,

p=0,01

0,386,

p=0,01

0,431,

p=0,01

0,403,

p=0,01

0,472,

p=0,01

IBDQ – uždegiminė žarnyno ligos anketa, CDEIS – Krono ligos endoskopinis indeksas,

CRB – C reaktyvus baltymas, KLAI – Krono ligos aktyvumo indeksas, HBI – Harvey-

Bradshaw indeksas, eAIS-T – endoskopinis biopsijos aktyvaus uždegimo balas, MaRIA-

G – magnetinio rezonanso aktyvumo indeksas, bendras; mMaRIA-G – modifikuotas

magnetinio rezonanso aktyvumo indeksas.

Taip pat įvertinome koreliaciją tarp MR-EK indeksų ir buvo nustatyta

labai stipri koreliacija tarp MaRIA-G, mMaRIA-G ir Clermont-G (r=0,975

ir r=0,970, r=0,975, p=0,01).

Apskaičiavus ryšį tarp eAIS-T, IBDQ, KLAI ir HBI, CRB ir CDEIS.

IBDQ, CDEIS, HBI ir CRB parodė nustatyta geresnė koreliacija su eAIS-T

atitinkamai (r=0,505, r=0,531, ir r=0,421, r=0,414, p=0,01) ir ženkliai daug

mažesnė su KLAI (r=0,342, p=0,01).

Statistiškai patikima stipri koreliacija buvo tarp eAIS-T ir MR-EK

indeksų MaRIA-G, mMaRIA-G, Clermont-G (r=0,609, r=0,627 ir r=0,601,

p=0,01), palyginti su klinikiniu aktyvumu ir CDEIS. Tačiau eAIS-T ir LI

koreliacija buvo mažesnė nei kitų MR-EK indeksų (r=0,472, p=0,01).

Kadangi CRB yra plačiausiai naudojamas KL uždegimo žymuo, todėl

apskaičiavome skirtingų ligos aktyvumo rodiklių koreliaciją. Vidutinė

koreliacija buvo tarp CRB ir MaRIA-G (r=0,495, p<0,01), taip pat vidutinė

koreliacija buvo tarp CDEIS ir CRB (r=0,460, p<0,01). Silpna statistiškai

reikšminga koreliacija buvo gauta tarp CRB ir LI, bei IBDQ (r=0,386 ir r=–

0,361, p=0,01).

94

3.4. Difuzija (DWI) ir tariamasis difuzijos koeficientas (ADC)

Žarnos sienelės ADC vidurkis buvo toks: uždegimo pažeistos- ADC

vertės buvo daug mažesnės (1,086±0,09) × 10-3

mm2/s, palyginti su sveikai

atrodančia žarnos sienele (1,623±0,097) × 10-3

mm2/s ir juosmens raumeniu

(1,46±0,07) × 10-3

mm2/s (p<0,01). ADC skirstinys pavaizduotas

(3.4.1 pav.). ADC vidutinės vertės pakitusiuose segmentuose galinės klubi-

nės žarnos dalies (n=51) ir storosios žarnos sienelėse (n=47) atitinkamai

buvo (1,074±0,09) × 10-3

mm2/s ir (1,098±0,08) × 10

-3 mm

2/s.

3.4.1 pav. ADC verčių skirtumai tarp juosmens raumens, normalios žarnos

sienelės, ir uždegimiškai pakitusios žarnos sienelės

BW – žarnos sienelė, ADC – tariamosios difuzijos koeficientas.

Naudojant DWI vertes ≥2 kaip slenkstines aktyviajam KL kolitui ir

ileokolitui diagnozuoti, nustatytas jautrumas 70,59 proc., specifiškumas

65,31 proc., PPV 67,92 proc. ir NPV 68,1 proc. Be to, diagnozuojant

aktyvųjį klubinės žarnos distaliosios dalies uždegimą, 72,7 proc. jautrumas,

61,5 proc specifiškumas., PPV 61,5 proc. ir NPV 72,7 proc. atitinkamai

buvo. Naudojant DWI vertes ≥2 kaip aktyviajai KL diagnozuoti 96,9 proc.

jautrumas ir 82,3 proc. specifiškumas, 82,6 proc. PPV ir 96,4 proc. NPV.

Remiantis ROC testu, nustatyta ADC slenkstinė vertė ‒ 1,30 × 10–3

mm2/s

(jautrumas – 73,8 proc., specifiškumas – 98 proc.).

DWI duomenys, taip pat ADC vertės, atitinkančios skirtingus KL

aktyvumus pagal CDEIS, yra apibendrintos 3.4.1 lentelėje. DWI SI padi-

dėjo, o ADC mažėjo, didėjant KL aktyvumui. DWI ir ADC verčių skirtumai

95

tarp neaktyvios, lengvos, vidutinio sunkumo ir sunkios ligos buvo statis-

tiškai reikšmingi (p<0,005).

3.4.1 lentelė. DWI ir ADC verčių skirstinys tarp neaktyvios, lengvos ir

vidutinio-sunkaus aktyvumo Krono ligos

Neaktyvi KL

CDEIS<3

(n=20)

Lengva KL

CDEIS 3–8

(n=59)

Vidutinė-sunki

KL CDEIS ≥9

(n=21)

p

DWI hiperintensinis signalas

(mediana)

0 (0–2) 2 (0–3) 3 (2–3) <0,005

ADC vertės, × 10-3 mm2/s

(vidurkis)

1,42±0,19 1,12±0,26 0,96±0,07 <0,005

DWI – difuzija, ADC – tariamasis difuzijos koeficientas, KL – Krono liga, CDEIS – Krono

ligos sunkumo endoskopijos indeksas.

ADC verčių koreliacija su CDEIS ir eAIS-T buvo vidutiniška

statistiškai patikima (r=0,552, r=0,46, p=0,001). Stipri koreliacija buvo

tarp ADC ir Clermont-G indekso (r=0,722, p=0,001) vidutinė koreliacija

tarp ADC ir MaRIA-G (r=0,69, p=0,001).

3.5. Išmatų kalprotektino tyrimas

Tyriamąją grupę sudarė 132 pacientai, kuriems buvo atliktas išmatų

kalprotektino (IK) tyrimas, iš jų 86 pacientams buvo diagnozuota KL ir 46,

kuriems KL nepatvirtinta, sudarė kontrolinę grupę.

Bendras IK jautrumas ir specifiškumas prognozuojant aktyviąją KL

buvo atitinkamai 61,54 proc. ir 62,96 proc., PPV 61,54 proc. ir NPV

62,96 proc. Pacientams, sergantiems plonosios žarnos KL (n=49), aktyvioji

KL prognozuojama, kai IK yra ≥200 µg/g jautrumas 50 proc., specifiškumas

44,9 proc., PPV 53,7 proc. ir NPV 41,3 proc. Prognozavome aktyvųjį KL

(IK≥200 µg/g) ileokolitą ir kolitą (n=37) 55,1 proc. jautrumas, 50 proc.

specifiškumas, 46,3 proc. PPV ir 58,7 proc. NPV.

3.5.1. Išmatų kalprotektinas ir KL pobūdis

Tyrėme neinvazinio ligos aktyvumo žymenį IK pagal ligos pobūdį skir-

tumo tarp grupių nenustatėme. Pacientų, kurių vidutinis IK buvo

183,67±15,7 µg/g nustatyta nepenetracinė, spindžio nesiaurinanti (B1) KL

(n=42, 48,3 proc.), tuo tarpu 25 ligoniams (28,7 proc.) diagnozuota spindį

siaurinanti (B2), IK vidurkis 202,08±20,44 µg/g ir 19 (22,1 proc.) pacientų,

kuriems diagnozuotas penetracinės KL fenotipas (B3), vidutinė IK vertė –

192,8±17,68 µg/g (p=0,23).

96

3.5.2. Krono ligos aktyvumo rodikliai ir išmatų kalprotektinas

Pagal IK koncentraciją pacientus suskirstėme į dvi grupes, kai: jei IK

buvo <200 µg/g – laikėme, kad testas yra neigiamas, o IK≥200 µg/g testas

buvo teigiamas rodantis aktyviąją KL.

3.6.2.1 lentelėje apibendrinti gyvenimo kokybės, klinikinio aktyvumo,

endoskopijos indekso, MR-EK rodiklių tarp neigiamųjų ir teigiamųjų IK

grupių skirstinys.

Statistiškai reikšmingi skirtumai (p<0,001) buvo nustatyti tarp IBDQ

(175,01±22,52 vs 159,68±24,63) ir KLAI (128,62±57,62 vs 192,95±71,49).

IBDQ vertės (<200 µg/g) grupėje buvo didesnė ir rodė geresnę pacientų

gyvenimo kokybę nei IK (≥200 µg/g) teigiamosios grupės pacientų.

Priešingai, KLAI, lygiai kaip ir IK (<200 µg/g) grupės buvo mažesni,

kliniškai rodantys ligos remisiją.

Tačiau CRB vertės, CDEIS, MR-EK indeksai (3.5.2.1 lentelė) pagal IK

grupes statistiškai reikšmingai nesiskyrė.

3.5.2.1 lentelė. Klinikiniai ir endoskopijos, MR-EK indeksai pagal IK kon-

centraciją

Išmatų kalprotektinas < 200 (n=45) ≥200 (n=41) p vertė

IBDQ 175,01±22,52 159,68±24,63 0,001

KLAI 128,62±57,62 192,95±71,49 0,001

CRB 12,64±2,28 24,08±8,01 0,122

CDEIS 4,78±3,41 5,58±3,99 0,32

MaRIA-G 50,04±24,51 53,93±22,28 0,44

mMaRIA-G 44,67±21,6 49,68±20 0,26

Clermont-G 75,03±22,84 79,75±22,23 0,329

Lemanno indeksas 1,54±2,5 1,71±2,63 0,765

IBDQ – uždegiminės žarnyno ligos anketa, KLAI – Krono ligos aktyvumo indeksas,

CRB – C reaktyvusis baltymas, CDEIS – Krono ligos sunkumo endoskopijos indeksas,

MaRIA-G – magnetinio rezonanso aktyvumo indeksas, suminis; mMaRIA-G modifikuotas

magnetinio rezonanso aktyvumo indeksas, suminis.

97

IŠVADOS

1. MR-EK jautrumas ir specifiškumas nustatant KL buvo atitinkamai

74 proc. ir 90 proc.; jautrumas ir specifiškumas diagnozuojant klubinės

žarnos galinės dalies uždegimą buvo didesnis – 85,9 proc. ir 92,3 proc.

MR-EK tiksliau nustatomos KL komplikacijos: abscesai (jautrumas

88,7 proc. ir specifiškumas 100 proc.), fistulės (jautrumas 75,2 proc. ir

specifiškumas 100 proc.), stenozė (jautrumas 81,1 proc. ir specifišku-

mas 91,5 proc.).

2. Krono liga sergančių pacientų, palyginti su kontroline grupe, MR-EK

buvo nustatyti ligos aktyvumo požymiai: storesnė kaip 4 mm žarnos

sienelė, intensyvus ir sluoksninis intraveninės kontrastinės medžiagos

kaupimasis, ryški mezenterinė kraujotaka.

3. Nustatyta tvirta neigiamoji koreliacija tarp Lemanno indekso ir gyvenimo

kokybės – IBDQ. Ši koreliacija buvo mažesnė vartojant MaRIA-G

indeksą. CRB koreliacija su CDEIS ir MARIA-G buvo gera, priešingai

nei su LI ir IBDQ.

4. DWI gali atskirti lengvą, vidutinį ir sunkų KL aktyvumą.

5. Bendras IK jautrumas ir specifiškumas prognozuojant aktyviąją ligą

buvo atitinkamai 61,54 proc. ir 62,96 proc. Prognozuojamos klubinės

žarnos aktyviosios ligos jautrumas ir specifiškumas buvo mažesni nei

ileokoloninės ir storosios žarnos ligos. IK – skirtingo pobūdžio KL

grupėse nesiskyrė. Pacientų, kurių IK buvo padidėjęs, gyvenimo koky-

bė buvo blogesnė, o KLAI vertė didesnė.

98

ANNEXES

Annex 1

Krono ligos aktyvumo indeksas

Diena Visos 7 dienos

–7 –6 –5 –4 –3 –2 –1

1. Skysčio arba labai skystų išmatų kiekis 2 =

2. Skysčio arba labai skystų išmatų kiekis

(0 = nėra, 1 = švelniai,

2 = vidutiniškai, 3 = ryškiai)

5 =

3. Gera bendra savijauta (0 = gerai,

1 = geriau nei vidutiniškai, 2 = blogai,

3 = labia blogai, 4 = siaubingai)

7 =

4. Dabartiniai papildomi požymiai:

artritas / artralgija

iritas / uveitas

mazginė eritema / gangreninė pioderma / alfa stomatitas

analinė įplėša, fistulė arba abscesas

kita fistulė

karščiavimas virš 37,8 C per praeitą savaitę

Visos patikrinti punktai 20 =

5. Imodiumas / opiatai viduriavimui per paskutines 7 dienas (0 = ne, 1 = taip)

30 =

6. Čiuopamos pilvo masės (0 = nėra, 2 = abejotina, 5 = aišku) 10 =

7. Vietinis hematokritas (proc. suapvalintas

vyras bendras skaičius)

Vyras 47 – = 6 =

Moteris 42 – (jei neigiama, įveskite nulį)

100 =

(suapvalintas bendras skaičius)

8. Kūno svoris Standartinis svoris kg – Kūno svoris kg 100 =

Standartinis svoris kg

(suapvalintas bendras skaičius)

(Viršsvorį turintiems pacientams substrato maksimumas lygus 10. Neturi viršyti maksimumo pacientai, turintys

viršsvorį.)

Bendras KLAI =

99

Annex 2

Harvey-Bradshaw Indeksas (HBI)

Paciento vardas, pavardė: _______________________________________________

HBI skaičiavimo data: _______________________________________________

Prašau pažymėti po vieną atsakymą (išskyrus 5 klausimą):

1. Gera bendra savijauta (vakar) labai gera = 0

blogiau nei vidutiniškai = 1

bloga = 2

labai bloga = 3

siaubinga = 4

2. Pilvo skausmas (vakar) nėra = 0

švelnus = 1

vidutiniškas = 2

stiprus = 3

3. Skysčio arba labai skystų išmatų kiekis per dieną (vakar) ______________________

4. Čiuopiamos pilvo masės nėra = 0

abejotina = 1

aišku = 2

aišku ir tempimo jausmas = 3

5. Komplikacijos (pažymėkite visus tinkamus nėra

atsakymus; po vieną balą už kiekvieną teiginį, artralgija

išskyrus pirmąjį) uveitas

mazginė eritema

aftinės opos

gangreninė pioderma

išangės fizura

nauja fistulė

abscesas

_________________________________________________________________________

Harvey-Bradshaw indekso balai (balų suma)

Remisija <5

Silpnai išreikšta liga 5–7

Vidutiniškai išreikšta liga 8–16

Sunki liga >16

____________________________________________________________________________________________

Literatūra: Harvey RF, Bradshaw JM. A simple index of Crohn‘s-disease activity. Lancet 1980;315(8167):514.

100

Annex 3

KLAUSIMYNAS „UŽDEGIMINĖS ŽARNYNO LIGOS“

Gydytojo vardas, pavardė, parašas _______________________________________

Data metai mėnuo diena

DOKUMENTINĖ DALIS

1. Paciento vardas, pavardė _______________________________________

2. Adresas _______________________________________

3. Telefonas

4. Svoris (kg)

5. Ūgis (cm)

6. Paciento kortelės numeris

7. Asmens kodas

8. Paciento numeris

(pateiktas atskirame lape)

9. Gimimo data: metai mėnuo diena

10. Lytis vyras

moteris

11. Rūkymas Rūkantis(-i)

Nerūkantis(-i) Rūkęs(-iųsi) anksčiau

Jeigu rūkote/rūkėte anksčiau kiek metų: nuo ________ iki ________

kiek cigarečių per dieną: _________________

12. Alkoholio vartojimas vartojantis(-a) kasdien vartojantis(-a), bet nereguliariai

negeriantis(-i)

Jeigu vartojate: kiek metų: nuo ________ iki ________

Jūs išgeriate 1–2 taures (200 ml) vyno arba 1 butelį alaus arba 100 ml stipriųjų gėrimų

(degtinės, konjako, romo ar kt.)

kiekvieną dieną 1 kartą per 3 mėnesius

1 kartą per savaitę 1 kartą per 6 mėnesius

1 kartą per mėnesį 1 kartą per 1 metus

101

KLINIKINIAI DUOMENYS

13. Diagnozė Krono liga

opinis kolitas

nedeterminantinis kolitas

14. Diagnozė nustatyta pirmą kartą: metai mėnuo diena

15. Ligos aktyvumas paūmėjimas

remisija

16. Atvejis naujas

anksčiau diagnozuotas

Jei liga buvo diagnozuota anksčiau pažymėkite paūmėjimų skaičių:

1 kartą per metus 1 kartą per 4–5 metus

1 kartą per metus 1 kartą per 5–10 metų

1 kartą per 2–3 metus

17. Opinio kolito išplitimas Proktitas

Proktosigmoiditas

Kairės pusės kolitas

Pankolitas

18. Krono ligos išplitimas Terminalinis ileitas, L1 Kolitas, L2 Ileokolitas, L3 Viršutinė VT dalis, L4

19. Krono išplitimo modifikacija Terminalinis ileitas+ Viršutinė VT dalis, L1+L4

Kolitas + Viršutinė VT dalis, L2+L4

Ileokolitas + Viršutinė VT dalis, L3+L4

20. Krono ligos formos Uždegiminė (nestenozuojanti, nepenetruojanti), B1

Stenozuojanti, B2

Penetruojanti, B3

21. Krono ligos formų modifikacija Uždegiminė (nestenozuojanti, nepenetruojanti) + perianalinė, B1p

Stenozuojanti +perianalinė, B2p

Penetruojanti+ peranalinė, Bp3

22. Ekstraintestiniai požymiai Taip Ne

Jeigu TAIP nurodykite Kaulų-sąnarių

Odos Akių

Hepatobilijinės sistemos Diagnozė _________________________________________________________________

102

23. UŽL serga pirmos eilės giminaičiai Taip Ne

Jei TAIP nurodykite giminystės ryšius su pacientu Motina

Tėvas

Brolis, sesuo

Kita

24. Chirurginis gydymas Taip Ne

Jei TAIP nurodykite operacijos tipą

Totalinė kolektomija su ileostomija

Totalinė kolektomija su „kišenės“ (angl. pouch)

suformavimu

Totalinė kolektomija paliekant tiesiąją žarną Segmentinė storosios žarnos rezekcija

Striktūroplastika

Segmentinė plonųjų žarnų + storosios žarnos rezekcija

Fistulių chirurginis gydymas

25. Anamnezėje apendektomija Taip Ne

26. Gydymas Šiuo metu naudojami Ankstesnis gydymas

Mesalazinas oralinis Mesalazinas oralinis Mesalazinas rektalinis Mesalazinas rektalinis Sulfasalazinas Sulfasalazinas

Gliukokortikoidai Gliukokortikoidai

Sisteminiai >10 mg Sisteminiai >10 mg

Sisteminiai ≤10 mg Sisteminiai ≤10 mg

Rektalinė forma Rektalinė forma

Budenozidas oralinis Budenozidas oralinis Azatioprinas Azatioprinas Metotreksatas Metotreksatas

Infliksimabas Infliksimabas

Kiti biologiniai vaistai Kiti biologiniai vaistai Ciklosporinas Ciklosporinas Metronidazolis Metronidazolis Kiti antibiotikai Kiti antibiotikai

Probiotikai Probiotikai

Loperamidas Loperamidas

Kiti Kiti

27. Šeiminė vėžio anamnezė (pirmos eilės giminaičiai) Taip Ne Nežinau

Jei TAIP pildykite lentelę

103

Šeimos nariai

Su

tuo

ktin

is/-ė

Mo

tina

Tėv

as

Sesu

o 1

Sesu

o 2

Sesu

o 3

Bro

lis 1

Bro

lis 2

Bro

lis 3

Du

ktė

1

Du

ktė

2

Du

ktė

3

nu

s 1

nu

s 2

nu

s 3

Kita

Kita

Sirgo vėžiu (pažymėkite, jei TAIP)

Mirė (pažymėkite, jei TAIP)

Storosios žarnos vėžys

Skrandžio vėžys

Kraujo vėžys

Prostatos vėžys

Kepenų vėžys

Šlapimo pūslės vėžys

Kiaušidžių vėžys

Gimdos vėžys

Kita vėžio forma (įrašyti)

104

Uždegiminių žarnų ligų klausimynas (IBDQ)

Šis klausimynas skirtas įvertinti kaip jūs jautėtės per pastarąsias 2 savaites. Jums bus

užduoti klausimai apie simptomus, kuriuos patyrėte dėl uždegiminės žarnų ligos, apie

bendrą jūsų savijautą, nuotaiką.

1. Kaip dažnai per pastaras dvi savaites jūs tuštinotės? (pažymėkite atsakymą, pasirink-

dami vieną iš duotų variantų)

1) taip dažnai, kaip niekada nebuvo; 5) vidutiniškai, kiek padažnėjęs tuštinimasis;

2) ypatingai dažnas tuštinimasis; 6) nežymiai padažnėjęs tuštinimasis;

3) labai dažnas tuštinimasis; 7) normalus tuštinimasis.

4) saikingai padažnėjęs tuštinimasis;

2. Kaip dažnai per pastarąsias dvi savaites jūs jautėtės pavargęs ar išsekęs? (pažymėkite

atsakymą, pasirinkdami vieną iš duotų variantų)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

3. Kaip dažnai per pastarąsias dvi savaites jautėte nerimą, nusivylimą? (pasirinkite vieną

atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

4. Kaip dažnai dėl varginančių simptomų jūs nebuvote darbe ar mokymosi įstaigoje?

(pasirinkite vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

5. Kaip dažnai per pastaras dvi savaites viduriavote? (pasirinkite vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

6. Kiek per pastarąsias dvi savaites turėjote energijos? (pasirinkite vieną atsakymą)

1) visiškai neturėjau energijos 5) užtektinai

2) labai mažai 6) daug

3) šiek tiek 7) labai daug

4) truputį

105

7. Kaip dažnai per pastarąsias dvi savaites nerimaudavote dėl tikimybės, kad jus reikės

operuoti dėl žarnyno ligos? (pasirinkite vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

8. Kaip dažnai per pastarąsias dvi savaites jums reikėjo delsti ar atidėti visuomeninius

darbus dėl žarnyno negalavimų? (pasirinkite vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

9. Kaip dažnai per pastarąsias dvi savaites jautėte spazminius pilvo skausmus?

(pasirinkite vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

10. Kaip dažnai per pastarąsias dvi savaites jautėte bendrą silpnumą? (pasirinkite vieną

atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

11. Kaip dažnai jautėte baimę, kad negalėsite viešojoje vietoje surasti tualeto? (pasirinkite

vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

12. Kaip dažnai per pastaras dvi savaites dėl žarnyno problemų jautėte nepatogumų

laisvalaikio metu ar sunkumų, atliekant įprastus fizinius, sportinius pratimus?

(pasirinkite vieną atsakymą)

1) Labai daug; veikla buvo neįmanoma

2) Daug

3) Pakankamai daug

4) Nedaug

5) Šiek tiek

6) Beveik neiškilo sunkumų

7) Neiškilo jokių sunkumų: žarnyno problemos neribojo laisvalaikio ar sportinės

veiklos

106

13. Kaip dažnai per pastarąsias dvi savaites jus vargino pilvo skausmai? (pasirinkite vieną

atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

14. Kaip dažnai per pastarąsias dvi savaites jus vargindavo nemiga ar prabudimai naktį?

(pasirinkite vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

15. Kaip dažnai per pastarąsias dvi savaites jautėtės prislėgtas? (pasirinkite vieną

atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

16. Kaip dažnai per pastarąsias dvi savaites jūs turėjote vengti dalyvauti įvairiuose rengi-

niuose, nes šalia nebuvo tualeto ar vonios kambario? (pasirinkite vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

17. Ar per pastarąsias dvi savaites jus vargino didelio kiekio dujų pasišalinimas? (pasirin-

kite vieną atsakymą)

1) tai buvo labai didelė problema 5) maža problema

2) didelė problema 6) beveik nebuvo problemų

3) pakankamai reikšminga problema 7) nebuvo problemų

4) nedidelė problema

18. Ar per pastarąsias dvi savaites turėjote problemų norėdami palaikyti ar pasiekti

norimą kūno svorį? (pasirinkite vieną atsakymą)

1) tai buvo labai didelė problema 5) maža problema

2) didelė problema 6) beveik nebuvo problemų

3) pakankamai reikšminga problema 7) nebuvo problemų

4) nedidelė problema

19. Daugelis pacientų, su žarnyno problemomis, nuolat jaučia nerimą ir susirūpinimą dėl

to, kad jų sveikatos būklė niekada nepagerės; dėl galimo vėžio išsivystymo ar dėl ligos

atsinaujinimo. Kaip dažnai per pastaras dvi savaites jūs jautėte nerimą ar

susirūpinimą? (pasirinkite vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

107

20. Kaip dažnai per pastarąsias dvi savaites jus vargino pilvo pūtimas? (pasirinkite vieną

atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

21. Kaip dažnai per pastarąsias dvi savaites jautėtės atsipalaidavę ir neįsitempę? (pasirin-

kite vieną atsakymą)

1) niekada 5) didžiąją laiko dalį

2) retai 6) beveik visą laiką

3) kartais 7) visą laiką

4) gana dažnai

22. Kaip dažnai per pastarąsias dvi savaites jus vargino kraujavimas tuštinimosi metu?

(pasirinkite vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

23. Kaip dažnai per pastarąsias dvi savaites dėl žarnyno problemų jautėtės sutrikęs?

(pasirinkite vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

24. Kaip dažnai per pastarąsias dvi savaites jūs jausdavote norą eiti į tualetą, nors jūsų

žarnynas būdavo tuščias? (pasirinkite vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

25. Kaip dažnai per pastarąsias dvi savaites jautėtės liūdnas ir prislėgtas? (pasirinkite

vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

26. Kaip dažnai per paskutines dvi savaites turėjote problemų dėl atsitiktinio apatinių

kelnaičių sutepimo išmatomis? (pasirinkite vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

108

27. Kaip dažnai per pastarąsias dvi savaites jautėte pyktį dėl žarnyno problemų?

(pasirinkite vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

28. Kaip smarkiai jūsų žarnų liga apribojo jūsų lytinius santykius per pastarąsias dvi

savaites? (pasirinkite vieną atsakymą)

1) dėl žarnyno ligos negalėjau turėti jokių lytinių santykių

2) dėl žarnyno ligos reikėjo labai riboti lytinius santykius

3) dėl žarnyno ligos reikėjo vidutiniškai riboti lytinius santykius

4) dėl žarnyno ligos reikėjo nedaug riboti lytinius santykius

5) dėl žarnyno ligos reikėjo truputį riboti lytinius santykius

6) dėl žarnyno ligos beveik nereikėjo riboti lytinių santykių

7) dėl žarnyno ligos lytinių santykių visiškai nereikėjo riboti.

29. Kaip dažnai per pastarąsias dvi savaites jautėte pykinimą ir skrandžio negalavimus?

(pasirinkite vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

30. Kaip dažnai per pastarąsias dvi savaites jautėtės dirglus? (pasirinkite vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

31. Kaip dažnai per pastarąsias dvi savaites jautėtės nesuprastas kitų žmonių? (pasirinkite

vieną atsakymą)

1) visą laiką 5) retai

2) labai dažnai 6) labai retai

3) dažnai 7) nė karto

4) kartais

32. Ar per pastarąsias dvi savaites jautėtės laimingas ir patenkintas savo gyvenimu?

(pasirinkite vieną atsakymą)

1) labai nepatenkintas, nelaimingas beveik visą laiką

2) iš esmės nepatenkintas, nelaimingas

3) šiek tiek nepatenkintas, nelaimingas

4) iš esmės patenkintas, laimingas

5) patenkintas beveik visą laiką, laimingas

6) labai patenkintas, beveik visą laiką laimingas

7) ypatingai patenkintas, negalėčiau būti labiau patenkintas arba laimingas

109

Annex 4

Segmentas

ir organas

Rezekcija

(proc.)

Striktūra Penetruojantis

pažeidimas

Indeksas

1 l

aip

snis

2 l

aip

snis

3 l

aip

snis

Ind

eksa

s

1 l

aip

snis

2 l

aip

snis

3 l

aip

snis

Ind

eksa

s

Stemplė

Skrandis

12-pirštė žarna

Viršutinė virškinimo sistemos dalis (segmentų suma / 3)

Plonoji žarna 1

...

Plonoji žarna 20

Plonoji žarna (segmentų suma / 20)

Akloji žarna

Kylančioji žarna

Skersinė žarna

Nusileidžiančioji

žarna

Riestinė žarna

Tiesioji žarna

Gaubtinė žarna/Tiesioji žarna(segmentų suma / 6)

Išangė

Išangė (1 segmentas)

Lemann indeksas

110

CURRICULUM VITAE

Name, Surname: Vestina Strakšytė

Address: Hospital of Lithuanian University of Health

Sciences Kauno klinikos, Department of Radiology.

Eivenių 2, LT-50009 Kaunas, Lithuania

E-mail: [email protected]

Workplace:

from 2011 till present Hospital of Lithuanian University of Health

Sciences Kauno klinikos, Department of Radiology;

radiologist

from 2019 till present Lithuanian University of Health Sciences, Medical

Academy; lecturer

Education:

September 2000 – Kaunas University of Medicine, Lithuania

June 2006 Master Degree in Medicine

September 2006 – University Hospital of Klaipėda, Lithuania

June 2007 Internship

August 2007 – Lithuanian University of Health Sciences, Lithuania

June 2011 Residency in Radiology

September 2011 – Lithuanian University of Health Sciences, Lithuania

June 2018 Ph.D. Student

Membership at professional societies:

Lietuvos radiologų asociacijos narė (LRA),

Kauno krašto radiologų draugijos (KKRD) narė,

ESR – European Society of Radiology,

ESGAR – European Society of Gastrointestinal and Abdominal Radiology,

ESOI – European Society of Oncologic Imaging,

ESER – European Society of Emergency Radiology,

ESTI – European Society of Thoracic Imaging.