75
Northeastern Illinois University c 2004-2020 G. Anderson Thermal Physics slide 1 / 72 Thermal Physics Free Energy and Chemical Thermodynamics Greg Anderson Department of Physics & Astronomy Northeastern Illinois University Spring 2020

Thermal Physics

Embed Size (px)

Citation preview

Northeastern

Illinois

University

c©2004-2020 G. Anderson Thermal Physics – slide 1 / 72

Thermal PhysicsFree Energy and Chemical Thermodynamics

Greg Anderson

Department of Physics & AstronomyNortheastern Illinois University

Spring 2020

Northeastern

Illinois

University

Outline

c©2004-2020 G. Anderson Thermal Physics – slide 2 / 72

Potentials

Legendre Transforms

Phase Transformations

van der Waals

Mixtures

Northeastern

Illinois

University

James Clerk Maxell (1831-1879)

c©2004-2020 G. Anderson Thermal Physics – slide 3 / 72

Scottish physicist, James Clerk Maxwell wasone of the 19th centuries greatest scientist.In addition to formulating the equations thatunified electricity and magnetism, and con-tributing to the fields of optics and photogra-phy, Maxwell made important contributionsto thermal physics.

• Kinetic theory of gasses

• Maxwell’s demon paradox

• Maxwell relations, example:

(

∂T

∂V

)

S

= −

(

∂P

∂S

)

V

=

(

∂2U

∂V ∂S

)

Northeastern

Illinois

University

Potentials

Maxwell

PotentialsThermodynamicPotentialsThermodynamicPotentials

Enthalpy

Enthalpy inChemicalProcessesStandardConditionsEnthalpy ofFormationStandardThermodynamicQuantities

Electrolysis I

Electrolysis II

Lead AcidBatteriesLead-AcidBattery

Lead AcidBattery

LegendreTransforms

PhaseTransformations

van der Waals

Mixturesc©2004-2020 G. Anderson Thermal Physics – slide 4 / 72

Northeastern

Illinois

University

Thermodynamic Potentials

c©2004-2020 G. Anderson Thermal Physics – slide 5 / 72

These slides covers the application of thermodynamics to chemicalreactions, phase transitions, and other transformations of matter.

Constant temperature: The Helmholtz free energy, F is theenergy that must be provided as work to create the system out ofnothing in a constant temperature environment.

Constant temperature and pressure: The Gibbs free energy, Gis the energy that must be provided as work to create the systemin an environment with constant temperature and pressure.

Northeastern

Illinois

University

Thermodynamic Potentials

c©2004-2020 G. Anderson Thermal Physics – slide 6 / 72

U is the energy required to create an isolated system. Creating asystem from nothing in a thermal environment:

• Q = T∆S of “free energy” is available from the heat bath.

• P∆V of expansion work is required to make room for the system.

Enthalpy

H = U + PV

Helmholtz free energy

F = U − TS

Gibbs free energy

G = U − TS + PV

U

F G

H

+PV

−TS

Northeastern

Illinois

University

Enthalpy

c©2004-2020 G. Anderson Thermal Physics – slide 7 / 72

Enthalpy, H, the total energy required to create a system U and tomake room for it PV , at constant pressure.

H = U + PV

In a system at constant pressure:

dH = d(U + PV ) = dU + d(PV ) = dU + PdV

Enthalpy can increase by adding energy to or expanding the system.Using the first law: dU = d Q+ dW :

dH = [d Q+ dW ] + PdV

= [d Q− PdV + dWother] + PdV

= d Q+ dWother1

1Eventually Wother ends up as heat added to the system, but unlike Q it is nottaken from a reservoir. It increases the entropy of the universe.

Northeastern

Illinois

University

Enthalpy in Chemical Processes

c©2004-2020 G. Anderson Thermal Physics – slide 8 / 72

Enthalpy is the heat transferred during a constant pressure process.

CP =

(

d Q

dT

)

P

=

(

∂H

∂T

)

P

Chemical reactions in open containers and in biological systems oftentake place at constant pressure. For a chemical process:reactants −→ products, the change in enthalpy is:

∆H = Hproducts −Hreactants

• ∆H > 0: endothermic reaction, heat absorbed.

• ∆H < 0: exothermic reaction, heat is released.

• ∆H = 0: no heat is lost or gained.

Northeastern

Illinois

University

Standard Conditions

c©2004-2020 G. Anderson Thermal Physics – slide 9 / 72

Notation you will find in the chemistry reference material:

• Enthalpy change in a chemical reaction:

∆Hr = ∆H = Hproducts −Hreactants

In the standard enthalpy change of reaction ∆H⊖

r often the r isleft off (it is assumed).

• A Plimsoll symbol indicates that the process is carried out atstandard conditions

p⊖ = 1 barr = 105 PaT⊖ = 25◦ C = 298 K

• ∆H⊖

f (Standard enthalpy of formation): the enthalpy required toform one mole of substance from its constituent elements in theirstandard states.

Northeastern

Illinois

University

Enthalpy of Formation

c©2004-2020 G. Anderson Thermal Physics – slide 10 / 72

Formation of nitrogen dioxide from elements in their standard states:

1

2N2(g) + O2(g) −→ NO2(g)

Standard enthalpy of formation:

∆H⊖

f = 33.2 kJ/mol− 0 kJ/mol = 34 kJ/mol

Production of ammonia:

1

2N2(g) +

3

2H2(g) −→ NH3(g)

Standard enthalpy of formation:

∆H⊖

f = −45.9 kJ/mol− 0 kJ/mol = −45.9 kJ/mol

Northeastern

Illinois

University

Standard Thermodynamic Quantities

c©2004-2020 G. Anderson Thermal Physics – slide 11 / 72

Compound ∆H⊖

f (kJ/mol) ∆G⊖

f (kJ/mol) S⊖ (J/mol K)

C(s, graphite) 0 0 5.7C(s, diamond) 1.9 2.9 2.4

CO(g) -110.5 -137.2 197.9CO2(g) -393.5 -394.4 213.8H+(aq) 0 0 0H2(g) 0 0 130.7H2O(l) -285.8 -237.1 70.0H2O(g) -241.8 -228.6 188.8N(g) 472.7 344.4 153.3N2(g) 0 0 191.6NH3(g) -45.9 -16.4 192.8O(g) 249.2 231.7 161.1O2(g) 0 0 205.2Pb(s) 0 0 64.8

PbO2(s) -277.4 -217.3 68.6PbSO4(s) -920 -813 148.5

SO2−4 (aq) -909.3 -744.5 20.1

Northeastern

Illinois

University

Electrolysis I

c©2004-2020 G. Anderson Thermal Physics – slide 12 / 72

Consider the electrolysis of liquid water intohydrogen and oxygen gas:

H2O(l) −→ H2(g) +1

2O2(g)

The change in enthalpy gives the heat tran-ferred during a constant pressure process.∆H for this reacion is 286 kJ.

For the reverse process, if you burned a mole of molecular hydrogen,the heat energy released (enthalpy of combustion for hydrogen) is:

∆H =∑

H(products)−∑

H(reactants)

∆H = HH20(l) −HH2(g) −12HO2(g) = −286 kJ

How much of that heat can be used to do work? Do we need tosupply 286 kJ of work for the electrolysis of a mole of liquid water?

Northeastern

Illinois

University

Electrolysis II

c©2004-2020 G. Anderson Thermal Physics – slide 13 / 72

Change in enthalpy:

∆H = U + P∆V = 286 kJ

Entropy per mole:

SH2O = 70 J/K, SH2= 131 J/K, SO2

= 205 J/K

∆U = 282

H2O(l) −→ H2(g) +12O2(g)

System

P∆V = 4 kJpushing atmosphere

∆G = 237 kJ

electrical work

T∆S = 49 kJ

heat

Change in entropy:

∆S = SH2 +1

2SO2 −SH2O = 131 J/K+

1

2205 J/K− 70 J/K = 163 J/K

Change in Gibbs free energy:

∆G = ∆H − T∆S

237 kJ = 286 kJ − (298 K)(163 J/K)

Northeastern

Illinois

University

Lead Acid Batteries

c©2004-2020 G. Anderson Thermal Physics – slide 14 / 72

Lead-acid batteries, aka lead storage batteries.

• Invented by French physicist Gaston Plante in 1859.

• The world’s oldest rechargable battery

– The products of reactants at both the anode and cathode(lead sulfate) are insoluble. Thus, available to participate inthe reverse reaction.

• Theoretical cell voltage 2V.

– Typical 6 cell car battery: 12V.

• Growing, global lead-acid battery market: $46.6 billion (2015).

– Car batteries

– Storage for backup power supplies (UPS)

Northeastern

Illinois

University

Lead-Acid Battery

c©2004-2020 G. Anderson Thermal Physics – slide 15 / 72

PbO2(s)+ Dilute

H2SO4(aq)Pb(s)

Fully charged

Positive electrode, discharging: E0 = 1.685 V.

PbO2(s) + HSO−

4 (aq) + 3H+(aq) + 2e− −→ PbSO4(s) + 2H2O(l)

Negative electrode, discharging: E0 = −0.356 V.

Pb(s) + HSO−

4 (aq) −→ PbSO4(s) + H+(aq) + 2e−

PbSO4Dilute

H2SO4

PbSO4

Fully discharged

Northeastern

Illinois

University

Lead Acid Battery

c©2004-2020 G. Anderson Thermal Physics – slide 16 / 72

Total reaction:

Pb(s) + PbO2(s) + 2H2SO4(aq) −→ 2PbSO4(s) + 2H2O(l)

Change in Gibbs free energy (source):

∆G⊖ = 2∆G⊖

f (PbSO4(s)) + 2∆G⊖

f (H2O(l))

− ∆G⊖

f (Pb(s))−∆G⊖

f (PbO2(s))− 2∆G⊖

f (H2SO4(aq))

= {2(−813) + 2(−237.1)− 0− (−217.3)− 2(−744.5)} kJ/mol

= −393.9 kJ/mol

Electrical work per electron:

We =∆G⊖

2NA

=393.9 kJ

2(6.022× 1023 molecules/mol)= 3.27×10−19 J = 2.04 eV

Battery voltage at zero current: E0cell = 1.685 V − (−0.356 V) = 2.041 V.

Northeastern

Illinois

University

Legendre Transforms

Maxwell

Potentials

LegendreTransforms

Legendre Trans.

ThermodynamicIdentity

Potentials &Transforms

Helmholtz I

Helmholtz II

Helmholtz

F Decreases

Gibbs IGibbs FreeEnergy

Gibbs II

Gibbs III

Gibbs IV

Gibbs V

G & µ

Grand Potenial

Summary

PhaseTransformations

van der Waals

Mixtures

c©2004-2020 G. Anderson Thermal Physics – slide 17 / 72

Northeastern

Illinois

University

Legendre Transformation

c©2004-2020 G. Anderson Thermal Physics – slide 18 / 72

Given a function of one varibles F (x),

dF =∂F

∂xdx ≡ sdx

a Legendre transformation of F changes a differential i.e. fromdx to ds with the transformation:

G(s) = F (x(s))− sx(s)

where

dG = dF − sdx− xds= sdx− sdx− xds= −xds

Thenx ≡ −∂G/∂s

x

y

y = F (x)

y=

sx+

G(s

)

Northeastern

Illinois

University

Thermodynamic Identity

c©2004-2020 G. Anderson Thermal Physics – slide 19 / 72

Infinitesimal change in entropy:

dS =

(

∂S

∂U

)

V,N

dU +

(

∂S

∂V

)

U,N

dV +

(

∂S

∂N

)

U,V

dN

The thermodynamic identity:

dS =1

TdU +

P

TdV −

µ

TdN

where

1

T≡

(

∂S

∂U

)

N,V

T≡ −

(

∂S

∂N

)

U,V

,P

T≡

(

∂S

∂V

)

U,N

In terms of dUdU = TdS − PdV + µdN

Northeastern

Illinois

University

Potentials & Transforms

c©2004-2020 G. Anderson Thermal Physics – slide 20 / 72

U (S, V,N)

F (T, V,N) G(T, P,N)

H (S, P,N)

+PV−TS

dU(S, V,N) = TdS − PdV + µdN

Northeastern

Illinois

University

Helmholtz Free Energy

c©2004-2020 G. Anderson Thermal Physics – slide 21 / 72

Helmholtz free energy, F: energy required to create a system U , minusthe heat energy TS that can be acquired from the environment.

F ≡ U − TS

For a system in contact with a heat bath at temperature T :

dF = d(U − TS) = dU − TdS

= [d Q+ dW ]− TdS

= dW + (d Q− TdS)

Given dS ≥ d Q/T , d Q ≤ TdS, d Q− TdS ≤ 0 , and

dF ≤ dW when T = const.

F is the work-energy required to create the system from nothing, it is the

maximum useful work obtainable from a closed system at constant

temperature.

Northeastern

Illinois

University

Helmholtz Free Energy II

c©2004-2020 G. Anderson Thermal Physics – slide 22 / 72

Thermodynamic identity for U(S, V,N)

dU = TdS − PdV + µdN

Definition of F:F ≡ U − TS

Thermodynamic identity for F (T, V,N):

dF = d(U − TS)

= dU − TdS − SdT

= (TdS − PdV + µdN)− TdS − SdT

= −SdT − PdV + µdN

Northeastern

Illinois

University

Helmholtz Function: Summary

c©2004-2020 G. Anderson Thermal Physics – slide 23 / 72

Definition:F = U − TS

Thermodynamic identity for F (T, V,N):

dF = −SdT − PdV + µdN

Differential relations:

S = −

(

∂F

∂T

)

V,N

, P = −

(

∂F

∂V

)

T,N

, µ = +

(

∂F

∂N

)

T,V

Maxwell relation:(

∂S

∂V

)

T

=

(

∂P

∂T

)

V

= −

(

∂2F

∂V ∂T

)

Northeastern

Illinois

University

F Decreases

c©2004-2020 G. Anderson Thermal Physics – slide 24 / 72

For a sytem with fixed T, V, N,the free energy always decreases:

dStotal = dS + dSR

ReservoirSR, UR, T

System

S,U, T

dU = −dUR

dV = 0

dN = 0

Recall

dS =1

TdU +

P

TdV −

µ

TdN

Thus, dSR = dUR/T = −dU/T , and:

dStotal = dS − 1T dU

= − 1T (dU − TdS)

= − 1T dF

Northeastern

Illinois

University

Gibbs Function

c©2004-2020 G. Anderson Thermal Physics – slide 25 / 72

Gibbs Free Energy, G: the energy required to create asystem U , minus the heat energy TS that can be acquiredfrom the environment plus the work done to make room

G ≡ U − TS + PV = F + PV = H − TS

For a system in contact with a heat bath T , at constantpressure P

dG = d(U − TS + PV ) = dU − TdS + PdV

= [d Q+ dW ]− TdS + PdV

Given d Q− TdS ≤ 0 , and dW = −PdV + dWother:

dG ≤ dWother when T, P = const.

Northeastern

Illinois

University

Gibbs Free Energy

c©2004-2020 G. Anderson Thermal Physics – slide 26 / 72

∆G is an indicator of whether a reaction willspontaneously occur at contant temperature and pressuresince, in the absence of applied, non-mechanical work:

∆G ≤ 0

• A system at constant pressure in contact with a heatbath evolves to a state which minimizes G.

• Spontaneous processs lower the Gibbs function.

Northeastern

Illinois

University

Gibbs Free Energy II

c©2004-2020 G. Anderson Thermal Physics – slide 27 / 72

Thermodynamic identity for F (T, V,N)

dF = −SdT − PdV + µdN

Definition of G:

G ≡ U − TS + PV = F + PV = H − TS

Thermodynamic identity for G(T, P,N):

dG = d(U − TS + PV ) = d(F + PV )

= dF + PdV + V dP

= (−SdT − PdV + µdN) + PdV + V dP

= −SdT + V dP + µdN

Northeastern

Illinois

University

Gibbs Free Energy III

c©2004-2020 G. Anderson Thermal Physics – slide 28 / 72

DefinitionG = U − TS + PV

Thermodynamic identity for G(T, P,N):

dG = −SdT + V dP + µdN

Differential relations:

S = −

(

∂G

∂T

)

P,N

, V = +

(

∂G

∂P

)

T,N

, µ = +

(

∂G

∂N

)

T,P

Maxwell relation:

(

∂S

∂P

)

T

=

(

∂V

∂T

)

P

=

(

∂2G

∂P∂T

)

Northeastern

Illinois

University

Gibbs Free Energy IV

c©2004-2020 G. Anderson Thermal Physics – slide 29 / 72

For a system with fixed T, P, N,the Gibbs function always decreases:

dStotal = dS + dSR

ReservoirSR, UR, T

System

S,U, T

dU = −dUR

dP = 0

dN = 0

Recall

dS =1

TdU +

P

TdV −

µ

TdN

Thus, dSR = (dUR + PdVR)/T = −(dU + PdV )/T , and:

dStotal = dS − 1T (dU + PdV )

= − 1T (dU − TdS + PdV )

= − 1T dG

Northeastern

Illinois

University

Gibbs Free Energy

c©2004-2020 G. Anderson Thermal Physics – slide 30 / 72

Partial derivative relation for chemical potential:

µ = +

(

∂G

∂N

)

T,P

For fixed T, P , µ = const. Thus,

G = Nµ

System

dG = µ

Northeastern

Illinois

University

The Gibbs Function and µ

c©2004-2020 G. Anderson Thermal Physics – slide 31 / 72

RecallG = U − TS + PV = µN

For an ideal gas, PV = NkT :

∂µ

∂P=

1

N

∂G

∂P=

V

N=

kT

P

Multiply by dP and integrate:

µ(T, P )− µ(T, P⊖) =

∫ P

P⊖

(

∂µ

∂P

)

dP = kT

∫ P

P⊖

dP

P

By convention, the reference pressure P⊖ = 1 bar.

µ(T, P ) = µ(T, P⊖) + kT ln

(

P

P⊖

)

Northeastern

Illinois

University

Grand Potenial

c©2004-2020 G. Anderson Thermal Physics – slide 32 / 72

Grand free energy or grand potential, Φ:

Φ ≡ U − TS − µN = F − µN = −PV

Thermodynamic identity for F (T, V,N):

dF = −SdT − PdV + µdN

Thermodynamic identity for Φ(T, V, µ):

dΦ = dF − µdN −Ndµ= −SdT − PdV −Ndµ

Differential relations:

S = −

(

∂Φ

∂T

)

V,µ

, P = −

(

∂Φ

∂V

)

T,µ

, N = −

(

∂Φ

∂µ

)

T,V

Northeastern

Illinois

University

Summary

c©2004-2020 G. Anderson Thermal Physics – slide 33 / 72

U (S, V,N)

F (T, V,N)G(T, P,N)

H(S, P,N)

+PV

−TS

• U, V = constant: dS ≥ 0

• T, V = constant: dF ≤ 0

• T, P = constant: dG ≤ 0

Extensive Variables : V, N, S, U, H, F, GIntensive Variables : P, µ, T

U = TS + µN − PV

F = U − TS = µN − PV

G = U − TS + PV = F + PV = H − TS = µN

Northeastern

Illinois

University

Phase Transformations

Maxwell

Potentials

LegendreTransforms

PhaseTransformations

Phases of MatterPhaseTransitionsEhrenfest’sClassificationClausius-Clapeyron

Phase Diagramfor H2O

WaterPhase Diagramfor CO2

Carbon Dioxide

Helium

Helium 4

G of C

PT CarbonCalciumCarbonateFree energy offormationCalciumCarbonate PhaseDiagram

van der Waalsc©2004-2020 G. Anderson Thermal Physics – slide 34 / 72

Northeastern

Illinois

University

Phases of Matter

c©2004-2020 G. Anderson Thermal Physics – slide 35 / 72

Four elements:Earth

Air

Water Fir

e

Four phases of matter:

Solid

Gas

Liquid

Plasm

a

Greek Philosopher Empedocles, Agrigentum, Sicily, 5th Century BCE

Northeastern

Illinois

University

Phase Transitions

c©2004-2020 G. Anderson Thermal Physics – slide 36 / 72

Plasma

Gas

Liquid SolidMelting

Vaporization D

eposition

Ionization

Condensation Sublim

ation

Freezing

Recombination

Northeastern

Illinois

University

Ehrenfest’s Classification

c©2004-2020 G. Anderson Thermal Physics – slide 37 / 72

The order of a phase transition is the order of the lowestdifferential of the Gibbs functions which shows adiscontinuity.

dG = −SdT + V dP + µdN

First order: Involve latent heat. Examples: solid-liquid,solid-vapour, liquid-vapour, superconducting transitions inmagnetic field.

Second order: Superconducting transitions in zero field.

Third order: Curie point of ferromagnets.

Modern usage is to call all higher-order phase transitions continuousphase transitions.

Northeastern

Illinois

University

Clausius-Clapeyron Relation

c©2004-2020 G. Anderson Thermal Physics – slide 38 / 72

Recall that thermodynamic identity for the Gibbs function:

dG = −SdT + V dP + µdN

Along a phase boundary:

dGα = dGβ

−SαdT + VαdP = −SβdT + VβdP

(Vα − Vβ)dP = (Sα − Sβ)dT

dPdT

=Sα−Sβ

Vα−Vβ

With ∆S = L/T :

dP

dT=

L

T∆VdT

dP

P

T

Northeastern

Illinois

University

Phase Diagram for H2O

c©2004-2020 G. Anderson Thermal Physics – slide 39 / 72

−100 0 100 200 300 40010−4

10−3

10−2

10−1

100

101

102

103

Triple Point

(0.01,0.006)

Critical Point(374,221)

Solid (Ice)

Gas (Steam)

Liquid

Temperature (◦C)

Pressure

(bar)

b

T (◦C) Pv (bar) L (kJ/mol)

−40 0.00013 51.16−20 0.00103 51.13

0 0.00611 51.07

0.01 0.00612 51.07

25 0.0317 43.9950 0.1234 40.92100 1.013 40.66150 4.757 38.09200 15.54 34.96250 39.74 30.90300 85.84 25.30350 165.2 16.09374 220.6 0.00

Northeastern

Illinois

University

Phase Diagram for CO2

c©2004-2020 G. Anderson Thermal Physics – slide 41 / 72

−120 −80 −40 0 400

10

20

30

40

50

60

70

80

Triple Point(-56.6,5.18)

Critical Point

(31,75)

Solid

Gas

Liquid

Temperature (◦C)

Pressure

(bar)

T (◦C) Pv (bar)

−120 0.0124−100 0.135−80 0.889

−78.6 1.0−60 4.11

−56.6 5.18

−40 10.07−20 19.72

0 34.8520 57.231 73.8

Northeastern

Illinois

University

Helium

c©2004-2020 G. Anderson Thermal Physics – slide 43 / 72

• Abundance

– 4He: 99.9998%

– 3He: 0.0002%

• Helium is the only element that re-mains a liquid at T = 0. The solidphase requires very high pressures.

• 4He has two distinct liquid phases, anormal phase called Helium I, and asuperfluid phase called Helium II. Su-perfluids have zero viscosity.

• The solid-liquid boundary for 3He hasa negative slope below T . 1 K!

Northeastern

Illinois

University

Diamond and Graphite

c©2004-2020 G. Anderson Thermal Physics – slide 45 / 72

Gm

Pressure (kbar)

5 10 15 20

Diamo

nd(Vm

= 3.34 cm

3 )

Graphite(Vm

=5.30 cm3 )

(

∂G∂T

)

P,N= −S

(

∂G∂P

)

T,N= V

Gm(P ) = G⊖

m + Vm(P − P⊖)

2.9kJ

S(graphite) = 5.75

S(diamond) = 2.38 J/K

Northeastern

Illinois

University

Calcium Carbonate

c©2004-2020 G. Anderson Thermal Physics – slide 47 / 72

The limestone, chalk, marble, tufa and travertine rocksare made from calcium carbonate CaCO3. Calciumcarbonate exists in three mineral forms: calcite,aragonite, and vaterite.

Calcite Aragonite

Northeastern

Illinois

University

Free energy of formation

c©2004-2020 G. Anderson Thermal Physics – slide 48 / 72

The enthalpy of formation ∆fH, (Gibbs free energy of formation:∆fG) is the change in H (G) upon forming one mole of material fromits elements. Consider for example calcium carbonate:

Ca(s) + C(s) + 11

2O2(g) −→ CaCO3(s)

where (s) = solid, (l) = liquid, (g) = gas, and (aq) = aqueous.

CaCO3 ∆fH(kJ) ∆fG(kJ) S(J/K) CP (J/K) V (cm3)

Calcite -1206.9 -1128.8 92.9 81.88 36.93Aragonite -1207.1 -1127.8 88.7 81.25 34.15

The Gibbs free energy of calcite is less than the Gibbs free energy ofaragonite at standard pressure:

G◦(aragonite)−G◦(calcite) = ∆fG(aragonite)−∆fG(calcite) = 1 kJ

Northeastern

Illinois

University

van der Waals Model

Maxwell

Potentials

LegendreTransforms

PhaseTransformations

van der Waals

Model

a & b

dimensionless

Gibbs Function

Parametric Plot

Parametric Plot

Parametric Plot

Parametric Plot

Maxwell Const.Fig. 5.22Isotherm

PV Diagram

PV Diagram

PT Diagram

Mixtures

c©2004-2020 G. Anderson Thermal Physics – slide 50 / 72

Northeastern

Illinois

University

The van der Waals Model

c©2004-2020 G. Anderson Thermal Physics – slide 51 / 72

Johannes Diderik Van der Waals Ph.D. Thesis 1873:(

P + aN2

V 2

)

(V −Nb) = NkT

or

P =NkT

V −Nb− a

N2

V 2

• Attraction: short-range intermolecular forces.

U/N ⊃ −aN

V, P = −

(

∂U

∂V

)

S

⊃ −aN2

V 2

• Repulsion: b = finite molecular volume.

P → ∞ as V → Nb

Northeastern

Illinois

University

Empirical Constants

c©2004-2020 G. Anderson Thermal Physics – slide 52 / 72

b a/bSubstance A3 (eV)

Water 50.7 0.188

Sulfur dioxide 94.7 0.125

Carbon dioxide 71.3 0.0884

Oxygen 52.9 0.0451

Argon 53.8 0.0439

Nitrogen 64.3 0.0367

Hydrogen 44.3 0.00966

Helium-4 39.4 0.00152

Northeastern

Illinois

University

Dimensionless van der Walls equation

c©2004-2020 G. Anderson Thermal Physics – slide 53 / 72

1 2 3 40

−1

−2

−3

1

2

3

4

p=

P/P

c

v = V/Vc

t = 1.2, 1.1, . . . , 0.7, 0.6

Equation of State

P =NkT

V −Nb− a

N2

V 2

Dimensionless EoS

p =8t

3v − 1−

3

v2

Dimensionless variablesv ≡ V/Vc, Vc = 3Nb

p ≡ P/Pc, Pc =127

ab2

t ≡ T/Tc, kTc =827

ab

At the critical temperature Tc: P′(Vc) = P ′′(Vc) = 0.

Northeastern

Illinois

University

Dimensionless van der Walls equation

c©2004-2020 G. Anderson Thermal Physics – slide 53 / 72

1 2 3 40

−1

−2

−3

1

2

3

4

p=

P/P

c

v = V/Vc

t = 1.2, 1.1, . . . , 0.7, 0.6

Equation of State

P =NkT

V −Nb− a

N2

V 2

Dimensionless EoS

p =8t

3v − 1−

3

v2

Dimensionless variablesv ≡ V/Vc, Vc = 3Nb

p ≡ P/Pc, Pc =127

ab2

t ≡ T/Tc, kTc =827

ab

At the critical temperature Tc: P′(Vc) = P ′′(Vc) = 0.

Northeastern

Illinois

University

Gibbs Function of a van der Waals Gas

c©2004-2020 G. Anderson Thermal Physics – slide 54 / 72

Thermodynamic identity for G:

dG = −SdT + V dP + µdN

Differential relation:(

∂G∂V

)

N,T= V

(

∂P∂V

)

N,T= V ∂

∂V

(

NkTV−Nb − aN2

V 2

)

N,T

= − (NkT )Nb(V−Nb)2 +

2aN2

V 2

Integrating with respect to V :

G = −NkT ln(V −Nb) +(NkT )Nb

V −Nb−

2aN 2

V+ c(T )

Northeastern

Illinois

University

Parametric van der Waals Plot

c©2004-2020 G. Anderson Thermal Physics – slide 55 / 72

Dimensionless equation of state for a van der Waals gas:

p =8t

3v − 1−

3

v2

g =G

PcVc

=8t

3

[

1

3v − 1− ln(3v − 1)

]

−6

v+ c(T )

1 20.4

0.2

0.6

0.8

1.0

PPc

v = V/Vc

t = 0.95

b1

b2b

3b

4b

5

b6

b7

0.7 0.8 0.9−6.7

−6.6

−6.5

−6.4

t = 0.95

g

p = P/Pc

b

1

b3

b4b

2,6b5

b7

gas

liquid

Northeastern

Illinois

University

Parametric van der Waals Plot

c©2004-2020 G. Anderson Thermal Physics – slide 56 / 72

Dimensionless equation of state for a van der Waals gas:

p =8t

3v − 1−

3

v2

g =G

PcVc

=8t

3

[

1

3v − 1− ln(3v − 1)

]

−6

v+ c(T )

1 2 30.2

0

0.4

0.6

0.8

1.0

PPc

v = V/Vc

t = 0.9

b 1b 2

b3

b4

b

5

b6

b7

0.3 0.5 0.7 0.9−7.0

−6.8

−6.6

−6.4

−6.2

t = 0.9

g

p = P/Pc

b1

b3

b5

b

2,6

b4b

7

gas

liquid

Northeastern

Illinois

University

Parametric van der Waals Plot

c©2004-2020 G. Anderson Thermal Physics – slide 57 / 72

Dimensionless equation of state for a van der Waals gas:

p =8t

3v − 1−

3

v2

g =G

PcVc

=8t

3

[

1

3v − 1− ln(3v − 1)

]

−6

v+ c(T )

0 1 2 3 40.2

0.4

0.6

0.8

1.0

PPc

v = V/Vc

t = 0.85

b1b

2

b3

b4

b5

b6

b7

−0.1 0.1 0.3 0.5 0.7 0.9−7.0

−6.8

−6.6

−6.4

−6.2

t = 0.85

g

p = P/Pc

b1

b

3

b5

b

2,6

b

4

b

7

gas

liquid

Northeastern

Illinois

University

Parametric van der Waals Plot

c©2004-2020 G. Anderson Thermal Physics – slide 58 / 72

Dimensionless equation of state for a van der Waals gas:

p =8t

3v − 1−

3

v2

g =G

PcVc

=8t

3

[

1

3v − 1− ln(3v − 1)

]

−6

v+ c(T )

0 1 2 3 4−0.3

−0.1

0.1

0.3

0.5

PPc

v = V/Vc

t = 0.80b1b

2

b3

b4

b5

b6

b7

−0.5 0 0.5−7.0

−6.8

−6.6

−6.4

−6.2

−6.0

t = 0.80

g

p = P/Pc

b 1

b3

b

5

b

2,6

b4

b

7

gas

liquid

Northeastern

Illinois

University

Maxwell Construction

c©2004-2020 G. Anderson Thermal Physics – slide 59 / 72

The homogeneous states are unstable.

At fixed temperature and pressure, the equilibrium state of thesystem minimizes G, the minima follow from the thermodynamicidentity for G

dG = −SdT + V dP + µdN

For fixed N and T , dG = V dP . The integral around the closed loopcontaining unstable states must vanish.

0 =

loop

dG =

loop

(

∂G

∂P

)

T,N

dP =

loop

V dP

Maxwell construction: For each isotherm T the vapor pressure isthe presure at which the liquid-gas tranformation takes place.

c©Addison-Wesley

Northeastern

Illinois

University

PV Phase Diagram

c©2004-2020 G. Anderson Thermal Physics – slide 61 / 72

1 2 3 40

−1

1

2

3

p=

P/P

c

v = V/Vc

t = 1.2, 1.15, . . . , 0.85, 0.8

Northeastern

Illinois

University

PV Phase Diagram

c©2004-2020 G. Anderson Thermal Physics – slide 62 / 72

1 2 3 40

−1

1

2

3

p=

P/P

c

v = V/Vc

t = 1.2, 1.15, 1.1, . . . , 0.8

Northeastern

Illinois

University

Van der Waals Phase Diagram

c©2004-2020 G. Anderson Thermal Physics – slide 63 / 72

0 0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

1.0

1.2p=

P/P

c

t = T/Vc

b

Liquid

Gas

Critical point

Northeastern

Illinois

University

Mixtures

Maxwell

Potentials

LegendreTransforms

PhaseTransformations

van der Waals

Mixtures

Mixology

Entropy ofMixing

Free Energy &Mixing

Free Energy &Mixing II

Fig. 5.26 Mixing

Free Energy &Mixing III

Fig. 5.27 Mixing

Further Study

c©2004-2020 G. Anderson Thermal Physics – slide 64 / 72

Northeastern

Illinois

University

Mixology

c©2004-2020 G. Anderson Thermal Physics – slide 65 / 72

Change in Gibbs free energy G = U + PV − TS upon mixing:

∆Gmix = ∆Hmix − T∆Smix

Miscible: can be mixed in all proportions. Example water and

ethanol.

Immiscible: can not undergo mixing or blending. Example: oil

and water.

Ideal Mixing: U and V do not change upon mixing: ∆Hmix = 0

Solubility gap (Miscibiliy gap): a region in a phase diagram for amixture of components where the mixture exits and two or morephases. This occurs when the Gibbs free energy of the separatedsystem is lower than the fully mixed system.

Northeastern

Illinois

University

Entropy of Mixing

c©2004-2020 G. Anderson Thermal Physics – slide 66 / 72

Two ideal gas species, N = Nα +Nβ, which are initially separated at

equal P , T . Let x =Nβ

N=

V.

b

b

bb

b

b

b

b

bb

b

b

b

b

b

bb

b

bb

b

b

b

b

b

b

b

b

b

bb b

b

bb

b

b

bb

b

b b

b b

bb

b

b

b

bb

b

b

b

b

b

b

bbb

b

b

bb

b bb

b

b

bb

b

bbb

bb

b

bb

b

bb

bb

b

b

b

b

bb

b

b

b

b

bb

b

b bbbb b

b

b

b

b

b

b

bbb

bb b

b

bb

b

b

b

b

b

bb

b

b

b b

b

b

b

bb

bb

b b

b

b

b

b

b

b

b b bb

b

bb

b

b

b

b

b

b

b b

b

b

bb

b

bb

b

b b

b

b

b

b

b

bb

b

b b

b

b b

bb

b bb

b

bb

b

bb

b

b

b

b

bb

bb

b

b

b

bb

b

b

b

b

b

b

b

b

bb

b

bb

b

b bb

b

bbb

bbb

b

b

b

bb b

bbb

b

bb

b

b b

bb b

bb

b

bb

b

bb

b

b

b

bb

b

bb

b b

b

b b

b

b

b

b

b

bb

bb

b

b

bbb

bb

b

b

b

b

b

b b

b

b

b b b

b

b

Vα Vβ

bb

b

b

b

b

b

bb

b

b

b

bb

b

b

b

b

bb

b

b

b

b

b

bb

b

bbb

b b

bb

b bb

bb

b

b

b

bb

b

bb b

b bb

b

bb

bb

b

bb

b

b

b

b

bb b

bb

b

bb

bb

bb

b

b

b b

b

bb

bb

bbb

b

bb

b

b

b

b

bb

b

bb

bb

bb

b

b

b

bb

b

b

b

bb

b

b

bb

b

b

bb

bb b

b

b

bb

b

b

bb b

bb

b

b b

bb

b

b bb

b

b

bb

b

b

b

b

b

b

b

b

b bb

b

bb bb

b

bb

b

b

b

bb

b

b

b

bb

b b

bb

b

bb

b

b

b

bb

bb

bbb

b b

bb

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

bb

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

bb

b

bb

bbbb

b

b

bb

b

b

b

b b

b

b

b

b

bb

b

bb

b

b

bb

b

bb

b

b

b

bb

b bb

b

b

b

b b

b

b

b b

b

b

b

bb b

V = Vα + Vβ

Recall that the entropy of an ideal gas satisfies:

S = Nk lnV + · · ·

∆Sα = Sα(V )− Sα(Vα)= Nαk lnV −Nαk lnVα

= (1− x)Nk lnV − (1− x)Nk ln(1− x)V= −(1− x)Nk ln(1− x)

∆Sβ = Nβk lnV −Nβk lnVβ

= xNk lnV − xNk ln xV= −xNk ln x

Northeastern

Illinois

University

Entropy of Mixing

c©2004-2020 G. Anderson Thermal Physics – slide 66 / 72

Two ideal gas species, N = Nα +Nβ, which are initially separated at

equal P , T . Let x =Nβ

N=

V.

b b

b

bb

b

b

b

b

b

b

b

b

b

b

b

bb

bb

b

bb

bb

bb

b

b

b

b bb

bb

b

b

b

b

bb

bb

b

b bb

bb

b

bb

b

b

b

bb

b

bb

b

b

bb

b

b

b

b

b

bbb

bb

b

bb

b

bb

bb b

b

b

b b

b

b

b

b b

b

bb

b

b

b b

b

b

bb

b

bb

b

b

bb

b b

b

b

bb

b

bb

bb

b

b b

b

b

b

bb

b

b

b

b b

b

bb

bb

b

b

b

b

b

bb

b

bbb

b

b

b

b

b

b

b b

b

b bb

b

b b

b

b

b

b

b

b bbb

bb

b

bb

b

b

b

b

b

bb

b

b bb

b

b

bb

b

b

b

b

b

b

b

b bbb

bb

b

b b

b

b

b

b

b

b

b

bb

b

b

b

b

b

bb

b

b

b

b

b

bb

b

b

b

bb

b

b

b

b

b

b

bb

bb

bb

bb

b

b

b

b

b

b

b

bb

b

b

b

b

b

bb

b

bbb

b b

bb

b

bb

b

bbb

b

b

b

bb b

b

b

b

b

b

b

bb

b

b

b

Vα Vβ

b

b b

b

bbbb

b

b

b

b

bbb b

bbb

b

b

b

b

b

b

b

b

b

bb

bb

b

b

b

b

bbb

b b

bbbb b

b

b b

b

b

bbbb

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

bb

b

b

b

bb

b

bb

b

b

b

b

b b

bb

b

bb

b

bb bb

b

bbb

b

b

bb

b

b

b

bb

bb

bb

bb

b

bb

bb

b

b

b

b

b

b

b

bb

b

b

b b

b

b

b

bb

b

b

b

b

b

bb

b

bb

b

b b

b

b

b

b

b

b

b

b

b

b

b

bb

b

bb

b

b

b b

b

bb

bb

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

bb

b b b

b

bb

bb

b

bb

bb

b

bb

b

b

b

b

b

b

b

b b b

b

b

b bb

b

b

bb

bb

b

bb

b

b

b b

b

b

bb b

b

b

b bb

b

bb

b

b

b

b b

b b

bb

b

bbb b

b

b

b

b

bb

b

b

b b

b

bb

b

b

b

bb

b b

b

b

bb

b

bb

b bb

b

b

b

b

V = Vα + Vβ

∆Sα = −(1− x)Nk ln(1− x)

∆Sβ = −xNk ln x

∆Smix = −Nk [x ln(x) + (1− x) ln(1− x)]

0 0.2 0.4 0.6 0.8 1.0−1

0

∆SR

Northeastern

Illinois

University

Free Energy & Mixing

c©2004-2020 G. Anderson Thermal Physics – slide 67 / 72

bb

b

b

b

bbb

b bb

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

bb

bb

bb

b

b

b

b

b

b

bb

b b

b

b

b

bb

bb

b

bb

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

bb

bb

b

b

b

b b

b

bb

b

b

b

b

b

bb

b

b

b

bb

b

b

bbb

b

b

b

b

b

bb

b

b

b b

b

bb

b

b

b

b b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

bb

bb

b b

b

b

b

bb

b

bb

b

b

b

b

b

bb

b

b

b

bbbb

b

b

b

bb

b

b

b

b b

b

bbb

bb

b

bb b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

bb

bb

b

b

b

bbb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b bb

bb

b

b

b

b

b

b

b

bbb

bb

bb

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

bb

b

bb b

b

bb

bb

b

b

b

bb b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

bb

b

bb

b

b

b

b

b

bb

b

b

bb

b

bb

b

b

b

bb

b

b

b

b

b

b

b

b

b

bb

b

b

b

bb

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b bb

b

b b

b

b

bb

b

b

b

b

b

b

b

b

bbb

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b bb

b

b

bb

bb

bb

b

bb

b

bb b

b

b b

b

b

bb

b b

b

b

b

b

b

bb

b

b

b

bb

b

b

b

b

b

b

b bb

bb

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

bb

b

bb

b b

b

G = U + PV − TS

Unmixed:

G = (1− x)G◦

α + xG◦

β, x =Nβ

Nβ +Nα

0 0.2 0.4 0.6 0.8 1.00

1

G0α

G0β

Northeastern

Illinois

University

Free Energy & Mixing

c©2004-2020 G. Anderson Thermal Physics – slide 67 / 72

b

b b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

bb

bb

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

bb

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

bb

b

bb

b

b

b

b

b

b

b

b

bb

b

b

b

bb

b

b

b

bb

b

b

bb

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

bb

bb

b

bb

b

bb

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

bb b

bb

bb

b

b

b

b

bbb

b

b b

b

b

b

b

b

b

b

bb

bb

b

b

b

b

b

b

b

b

b

b

bbb

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

bb

b

b

b

b

b

bb

b

bb

b

b

b

b

b

b b

b

b

bb

b

b

b

b

bb b

b

b

b

b

b

b

b

b

bb

b

b

b

b

bbb

b

b

b

b

b

bb

b b

b

b

bbb

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

bb

b

b

b

bb

bb

b

b b

b

b

b

b b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b bb

b

b

b

b

b

b

b b

bb

b bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

bb

bb

b

bb

b

b

bb

b

b

b

b

b

b b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

bb

bb

b

bb

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

bb

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b b

b

b

b

b

b

b

b

b

bb b

b

b

b

b

b

b

b

b b

bb

b

b b

b

b

b

b

b

b

b

b

b

bb

b

bb

b

bb

bbb

G = U + PV − TS

Ideal mixture:

G = (1− x)G◦

α + xG◦

β +RT [x ln(x) + (1− x) ln(1− x)]

no mixing

ideal m

ixing

0 0.2 0.4 0.6 0.8 1.00

1

x

G0α

G0β

Northeastern

Illinois

University

Free Energy & Mixing II

c©2004-2020 G. Anderson Thermal Physics – slide 68 / 72

Entropy mixing:

∆Smix = −Nk [x ln(x) + (1− x) ln(1− x)] (5.60)

Ideal mixing:

G = (1− x)G◦

α + xG◦

β +RT [x ln(x) + (1− x) ln(1− x)] (5.61)

Equilibrium phases almost always contain impurities:

limx→0

d(∆Smix)

dx= ∞, lim

x→0

dG

dx= ∞

Everything else being equal, substances tend to mix. Exceptions tothis trend occur when mixing two substances increases the energy.

Northeastern

Illinois

University

Free Energy & Mixing III

c©2004-2020 G. Anderson Thermal Physics – slide 70 / 72

G = U + PV − TS

Entropy mixing:

∆Smix = −Nk [x ln(x) + (1− x) ln(1− x)]

• For T 6= 0 there is a competition between U and −TS.

• A concave-down G indicates an unstable mixture.

• Connect any two points on the curve by a straight line: thestraight line gives G of the inhomogeneous, unmixed combination.

Northeastern

Illinois

University

Further Study

c©2004-2020 G. Anderson Thermal Physics – slide 72 / 72

• Read page 192–194 on the experimental phase diagram fornitrogen and oxygen at atmospheric pressure.

• Read page 202–204 on osmotic pressure.