89
KR0000224 KAEW/AR-542/99 Simultaneous Determination of Inorganic and Organic Anions by Ion Chromatography 4/ 31 / 40

Simultaneous Determination of Inorganic and Organic Anions

Embed Size (px)

Citation preview

KR0000224

KAEW/AR-542/99

Simultaneous Determination of Inorganic and Organic

Anions by Ion Chromatography

4/ 31 / 40

Please be aware that all of the Missing Pages in this document wereoriginally blank pages

KAERJ/AR-542/99

Simultaneous Determination of Inorganic and Organic

Anions by Ion Chromatography

1999.

7]

II

*r Cr, SO42"

III.

271151

-g-

-^-£1- ^7W?lt:K fluoride^

1 -

JL

M]

71 #71

4-§-*H

B] ^[o]

1,000

IV.

^sfl ^- 4 7l

c i t r a t e , EDTA

phthalate

fe oxalate,

SUMMARY

I . Title

Simultaneous determination of inorganic and organic anions by

ion chromatography.

II. Objective and Importance

The dertermination of the anions(Cr, SO42", EDTA, etc. ) is

required for the management of the cooling water and the radio

active wastes from a nuclear power plant, as well as for the manage-

ment of the waste water from an industrial plant.

The objective of this report is the proposal of the suitable

method to be applied to the samples from nuclear power industry and

environment after several methods were investigated to determine

anions in aqueous solutions.

III. Discussion of several methods for simultaneous determination.

Four methods were investigated.

The first is a column coupled system. A special technique

switching two columns is needed for this system. The anions are

separated in short time. However, the system needs many equipments

and still has low sensitivity for organic acids.

The second is a gradient elution system with an anion exchange

column. The concentration of an eluant is varied to separate the

- in -

anions with a weak and a strong relation to the stationary phase.

There is disadvantage of taking a long time for a sample.

The third is the system with a mixed-mode stationary phase. The

mixed-mode is consisted of reverse phase and anion exchange func-

tional groups of 1:1 ratio. This system is simple to operate. But

the chromatogram is complicated because too many peaks are detected.

The fourth is the system without an ion suppressor, and with an

anion exchange column and an eluant of low conductivity. This system

is very simple to operate and is useful to separate organic anions

with one to three carboxylic groups. The aqueous solution sample is

injected directly and anions of high concentration(l, 000 ppm) can be

determined. However, it takes long time to analyze a sample and the

sensitivity is not good.

IV. Proposal for Applications

The gradient elution system is suitable for applicaton to

domestic sewage, factory waste water, the cooling water and the

waste water from a nuclear power plant.

To determine oxalate, citrate and EDTA used to remove radio

active elements in nuclear power plant, the system is proposed that

has the anion exchanger and the phthalate eluant and no ion

suppressor.

CONTENTS

Chap. 1. Introduction 1

Chap. 2. Simultaneous analysis of inorganic and organic anions 4

Section 1. Column - column coupled system 4

1. Anion exchange column - ion exclusion column 5

2. Anion exchange column - anion exchange column 19

Section 2. Gradient elution system 28

1. Prediction of retention time 29

2. Separation by gradient elution 31

3. Sample analysis. 36

Section 3. Mixed-mode stationary phase system 55

1. Mixed-mode stationary phase 55

2. Factors related to seperation 56

Section 4. Single column and no suppressor system 70

Chap. 3. Conclusion 75

Chap. 4. References 77

v -

1 % ^ 1

2 # ^7l4<>1*3f •fr7l*ol^. ^ ] ^ ^ 4

1 C ^ - ^ ^ ^ 1 ^ ^ 4

1. - § -o ]£^ ^ - ^ - o)£yjf4 ^^i 5

2. ^^1^-12.% ^ - ^ 1 ^ 3 . % ^ ^ 19

28

29

2. 7 l#7 l -§-5]<Hl ^?> rel 31

3. MS. r^4 36

55

1. ^ 3 . ^ 3.^^ 55

2. ^ e l ^ l <$*££: *]*]*= <&*} 56

4 ^. T£<Q. Al- t .^ 70

3 ^ ^ -g- 75

4 ^ ^3.^A 77

- vi -

*\\ 1 S-. M

feed water, boiler water, steam condensate water, cooling water<>|]

•n"7]^§-o|^r#Tg: steam generator tubing, recirculating

piping, turbin# -

BJ|

o

ion-exchange) «o

1 -

tcj-ef

71-1-71

l-b HoV^-^-^- fluoride^- U ] ^ * ! X\

(8'25"31)

- 2 -

(32-39) - 37H51

A]5.

- 3 -

2 g-.

(Column - column coupled system)

^ 4 Si® ^.

fluoride, chloride, carbonate, bromide ^ ^ -1

}. Giddingso] ZL

capacity, n)$} o]g.^(n)S. ^-^5]fe ^ ^ ^ S # X[o}$]

n = 1 + l/4[ N1/2ln(Vx/V0) ]

t fluoride,

chloride, carbonate, bromide, formate, acetate, propionate-S] 77}^]

JL, Vx/Vo=3

- 4 -

37fl

4

1. ^

lfe fluoride, glycolate,

formate, acetate, propionate, butyrate, iodate§<>l

fluoride, phosphate^]-

-g-oj^-o] chloride, bromide, nitrated,

- 5 -

0.5 9 10

11

12

13

A'18 15Minutes

£6

Fig.1. Attempted anion-exchange separation of a mixture of thirteen

organic and inorganic anions .

Conditions: column, Waters IC PAK Anion( 5X0.46cm I.D. ); eluent, 3

mM sodium octanesulfonate; flow-rate, 1 ml/min; sample, 100/z£ of a

mixture of thirteen anions; detection, Waters M 430 conductivity de-

tector. Anions: l=fluoride(0.5ppm); 2=glycolate(2.Oppm); 3=forrnate

l.Oppm); 4=acetate(10.Oppm); 5=propionate(20.Oppm); 6=butyrate(20.0

ppm); 7=iodate(50.0ppm); 8=chloride(l.Oppm); 9=bromide(2.Oppm); 10=

nitrate(2.Oppm); ll=iodide(20. Oppm); 12=sulfate(2.Oppm); 13=thiocya-

nate(5.Oppm).

- 6 -

0.3

fluoride 0.5 ppm

Fraction 0 1 2 3

5 6 7Minutes

Fig.2. Ion-exclusion chromatogram of six inorganic anions^ .

The scale indicates the intervals during which the four fractions

were collected. Conditions: columns, two Waters Ion Exclusion( 15X

0.78cm I.D. ) in series; eluent, 1 mM octanesulfonic acid; flow-rate,

1.2 ml/min; sample, 1 0 0 ^ of 0.5ppm fluoride, 2ppm chloride, 4ppm

bromide, 4ppm nitrate, 6ppm phosphate and 4ppm sulfate; detection,

Waters M430 conductivity detector.

- 7 -

«P?-(void volume,

K ^ ^ 1 }- # 7 1 1(DET 1)^- ol£yflafl(ion-exclusion)

2(DET 2)fe l^Jl%(anion-

exchange) ^ ^ ^ ^ ^ 5 ] ^ ^ K d] l ^ o f e 47j[^ six-port high-

pressure switching valves( TEV, 1TV, 2TV, MIV )7\

h 1 ppm O)

7>. i ^ £ ^^ ] (ppm range)

O.^ 4 ^ - ^ 7 1 ^ 4 ^ 7 ] ^ - o l ^ ^ ^ £ 7 | . ! ppm

fe cartridge!CON)if TEP, TEV# A}-g-*fxl

A}7l# 4-g-*H ^r-^^-S. A l S # 4-1 *>3.(step 1), ^ ^

injection valve, MIV)# ^-sfl A | S . § <a*>t;}(step 2)

nfl -B] timer7} 4"§-5]7l AJ^f^.,

^l*|^t:K S l6fl>H event 5fe ^

sample loopW ^l^- l - 4"T-fe ^ ^ # ^ K H ^ - , event 6 ^ 2TV< |

K event 8£ ^#^^fl- «^^

^ TEV

id volume)7} 2TV^H -f-^(loop)<^ ^B^^l^f. step

CON

2TV

TEP

MIV

Fig.3. General configuration of the coupled ion exclusion - anionexchange system .

Pump 1 and detector 1 (DET 1) are used in conjunction with the ionexclusion column. Pump 2 and detector 2 are parts of the anion ex-change system. TEP= Single piston trace enrichment pump; C0N= precolumnused for trace enrichment; TEV= high pressure switching valve utilizedfor connecting the precolumn into the sample stream for a known periodof time; 1TV= first transfer valve connecting both pumps to the pre-column; 2TV= second transfer valve which makes it possible to transferfractions of the ion exclusion column eluate to the anion exchangecolumn; MIV= manual injection valve used for sample introduction incases that do not require preconcentration (ppm range).

9 -

CON CON

MIV

STEP1

PUMP 1MIV

PUMP 1

TEP

STEP 2

CON

TEP

CON

MIVPUMP1

STEP 3

PUMP 1

STEP 4

Fig.4. Column coupling at relatively high concentrations (ppm range) .

Refer to the description presented in the Experimental section and tothe program given in Table 3. step 1= Manually load sample into loopvia syringe; step 2- manual injection into system 1; step 3=transfervoid volume from system 1 to system 2; step 4= transfer valve returnsto the original position, the two systems are separated again.

- 10 -

Table 1. Program for the fraction transfer between two systems (manual

injection)

Refer to Fig. 4 for the positions of the second transfer valve(2TV)

controlled by the events 5 and 6. Events 1-4 and 7 have been assigned to

various functions of the sample preconcentration procedure explained in

Table 2 and in Fig. 6.

EventsStep Time „ ...v, / . \ DescriptionNo. (min. )

Loading the sample into the sample loop ofthe manual injection valve. N=on, F=off signifying two different levels of voltage on one of the eight pairs of contacts (8 events)in the M590 event box

Manual injection onto the ion-exclusion col-umn. Data acquisition by system 1 is activa-ted by a direct signal connection betweenthe manual injector and the system interface(SIM)

Transfer of 500/uK from the ion-exclusion se-4.5 F N P paration to the anion-exchange column. A si-

gnal pulse P (event 8) starts the data acqu-isition on system 2

2 5 Q N „ p 2TV returns to its original position separa-ting the two systems

- 11 -

void volume^

step flH ^ ^ l ^ f l l # } # } ^

(ppb range)

-71^-cl^^ ^ £ 7 } ! p p m n l

1 Til ^lt;>. o]v^B] S S 4 ^ ^ . S

S ^ l ^ ^ t : } . S 2ofl>H event 1-4-fe

*H ^-S.«l ^ ^ - ^ S . event 12} 2fe TEV# S^*>JL, event 33} 4fe lTV-f-

1).

^ ( s t e p 2),

3)( ojJjLyjj^l ^J^^A-l -g-ejij*'

2] -*l:§.(void volume)7}

4). loop<>ll ^B-^l^SiI1?! -

6). 'Mit.^Tr ^ w Ao"Efl - ^ ] # o } ^ ^ ( s t e p 7).

ZLB£o] H^l 7*11 UBfu} $X^-\. 5 - 2 5 ppb

# 4 -fr7l^£- 87.1 - 95.4 %£. ^ ^ r ^ ^ l ^^-tf, ^ l ^ - o l ^ - ^ ) ^ - ° -

^ • 5 9 . 7 - 84.4 %S. $\^c-&r<>] ^ f ( S 3). ^ l - g - o l ^ r is-^tf chloride

- 12 -

0.13 .S

f

0.19 yS

11

13

20 Minutes

Fig.5. Simultaneous separation of weakly and strongly acidic anions ona coupled system .Conditions: flow-rate, 1 ml/min for both separation systems; sample, 100fd of a mixture of strong and weak acid anions. Other conditions wereidentical with those in Fig.1 (anion exchange) and in Fig.2 (ion ex-clusion). Anions: l=fluoride(0. 5ppm); 2=glycolate(2. Oppm); 3=forrnate(1.0ppm); 4=acetate(10.0ppm); 5=propionate(20.Oppm); 6=butyrate(20.Oppm); 7-iodate(50. Oppm); 8=chloride(1.0ppm); 9=bromide(2. Oppm); 10=nitrate(2.0ppm); ll=odide(20.0ppm); 12=sulfate(2.0ppm); 13=thiocyanate(5.0ppm).

- 13 -

Table 2. Program for the fraction transfer between two systems (with{ft \

sample preconcentration)

Step TimeNo. (min)

EventsDescription

1 0 . O F N N F N F F F Equilibrate precolumn

2 2 . 0 N F N F N F N F Load sample

3 1 2 . 0 F N F N N F N P Inject part 1

4 12. O F N N F N F F F Inject part 2

5 13.0 N F N F N F F F End injection

6 1 6 . 5 N F N F F N F F Transfer

7 3 6 . 5 N F N F N F F F Reset valves

Refer to Fig. 6 for the positions of the valves controlled by the events1-6. TEV, event 1 and 2; 1TV, events 3 and 4; 2TV, events 5 and 6; TEP, event7. Data acquisition for both separations, event 8. N=on, F=off.

- 14 -

STEP 1 STEP 2

STEP 3 STEP 4

Fig.6. Simultaneous trace enrichment of the weak and strong anionsfollowed by concurrent ion-exclusion and anion-exchange separations'8'.

Table 2 describes the details of the column switching program. Stepl=Purge sample line/equilibrate concentrator/TEP on; step 2=load sampleonto concentrator/TEP on; step 3=inject sample with eluent 2/TEP off;step 4=inject sample with eluent 1; step 5=end of injection; step 6=transfer void volume to system 2; step 7=reset valves to the initialposition.

- 15 -

CON

STEP 5 STEP 6

STEP 7

Fig. 6. Continued

- 16 -

_J

1.2

4.4

f20 minuses

Fig.7. Chromatogram of ppb concentrations of carboxylic acids andinorganic anions(8>.

Conditions: anion-exchange eluent, 2.1 mM sodium octanesulfonate; sample,33ml of the low-ppb mixture of anins were preconcentrated on a precolumn(CON, Fig. 3). All other conditions were as given in Fig. 5. It should benoted that because of the delayed start of data acquisition for the upperchromatogram (ion exclusion) 2.8 min. should be added to the retentiontimes for peaks 1-4. Anions: l=fluoride(5ppb); 2=formate(5ppb); 3=acetate(lOppb); 4=propionate(25ppb); 5=chloride(25ppb); 6=bromide; 7=nitrate(25ppb); 8=iodide(25ppb); 9=sulfate(25ppb).

- 17 -

Table 3. Recoveries at ppm and ppb levels

. . Concentration Injection/preconcentration Recovery(ppm) volume (ml) {%)

0.1 74.1

0.1 80.3

35 84.4

35 91.2

35 95.4

35 87.1

35 59.7

35 60.2

For acceptable recoveries of weak acids the pH of the preconcentrated

samples has to be sufficiently high to ensure a full dissociation of

analytes.

Chloride

Nitrate

Fluoride

Formate

Acetate

Propionate

Chloride

Nitrate

2

4

0.0033

0.0067

0.0167

0.0333

0.0067

0.0133

- 18 -

if nitrate-b V ^ H ! ^ 7i*]x] a*^ 2ppm£) chloride^]- 4ppm£| nitrate

3} H1.5LSW ^l^r^-0] ^ 15-20 %

2.

capacity)0]

^Jicfe c2

carbonated}

chloride7}

—^°1I:K s 4-b

Jt:]-. d 2 } ul3.*I|

^^Jl "D 3.7] ttfl-

^^* ^^fenitrite7f *\SL

-g- s] 5] *j ^-fe-t:}.

~S" ^S-]1?! ^17} J

fe^l 35^-^ A]^<

W c2^^i

^517} ^

C 2 ^ ^ # >

>1 ^JS .5 ]^

^5] packing

3.^.n}S.Hei

^ ^ - 4 -§•

E]JL, C 2 ^ ^

t.}-g-Sj{A| 97}

•E}u} $Xt\.

chloride-2}

material^ •^•'^•§-

-§-^( ion-exchange

|s] 2: i }c>]]A-] d ^ :

•Bi^t:}. d ^ ^ l ^ l ^ i

<>|] A-] -fe- carbonate^}

phosphate °]^:7}^]

carbonate7} -^:S]5|

(a) C ^ J I S . A|S.7} ^<a€t} . (b) Ci^^

^-, fluoride, chloride, carbonate*}

el7l- • y ^ ^ } . (c) o]nj column switching^ 4 - § ^ h Ci<>fl-H C2#

. (d) ^if^AS dOT# ^

- 19 -

Table 4. Comparison of the properties of the packing materials in columns

d and C2(10)

Property AS4A(Ci) AS10(C2)

Support PellicularPoly(styrene-divinybenzene)

Diameter

Cross-Link

Pore Size

Layer

Diameter

Cross-Link

Functional group

15/flQ

4%

<1A

Latex

200nm

0.5%

AlkanolQuaternary amine

Ion-exchange capacity 20 Uequiv.

Column dimensions 250mm x 4.6mm I.D.

MacroporousEthy1vinylbenzene-divinylbenzene

8. bfm

55%

2,000A

Latex

65nm

5%

AlkanolQuaternary amine

170 Uequiv.

250mm X 4.6mm I.D.

- 20 -

30

20

10

0

4,5

dd 8

I I 1 I I I I I f 1 I I I 1 I M j I I It I I M M M

0 5 10 15 20 25 30 35

Minutes

Fig.8. Chromatogram of a nine-anion standard solution on columnC2(io)_

Peaks: l=2ppm fluoride; 2=10ppm acetate; 3=10ppm formate; 4=3ppm

chloride; 5=100ppm carbonate; 6=10ppm nitrite; 7=5ppm sulphate; 8=

lOppm nitrate; 9=15ppm phosphate.

- 21 -

a Injection — I M M ' ' ' ' |—

all anions

b Switching valveat position 1

PO4 NO3 SO4 other anions

c Switching valveat position 2

other anions

1'.'.'.'.] iz~ii Hill',

PO4 NO3 SO4

d Before PO4-etution

NO3CO3CI PO4

Fig.9. Elution sequence during column switching'10

- 22 -

sulphate, nitrate7f C2 «Hg-§- ^ W

# 7 H ] u}BfUjL(-L^ l(M l o ] f e 7, 8<4 2J3) , phos-

C2 ^ # 3 ^ * H ^l 1?! 3-^

^ 9]-H d, C 2# 71^ C H d^- f - ^ H -g-BlSj^ fluoride^

4^& -fM-*K 1-3 =!3.)JiL^ -k-4 -g-515]^ Ci-C2-Ci# "f2f*hb chloride,

carbonate, nitrite7l- f^]S. -g-el t:]-.

AlS.71- ^ ^ £ 1 ^ d^^^-^-f-Bi fluoride, -fM^-ol^r, chloride,

nitrite7f *[x\ -g-B\5\B.g. nitrite7}- ^i*] ^-e|^J ^-1^^] switching

pointy A] |-o)j7.f sulphate, nitrate, phosphate7]-

sulphate^) -§-el7l- X\^^ 47} switching point7}

A]S. *h<$ ¥• 3^] &m$) switching

pointojt:}. z } ^ >i^^*M ^ H m ^ ^ ( ^ ^ 10)1- C2 ^ « K ^

chloride-^} carbonate7} ^

] z£3\7\ ZL j 12<H] T-M-u]- ^c]-. chloride(2|aL A)S\ carbonate

i]3. 5)7)- ^-el^lu}. spiked water^) 3 ^ . n f S 3 . ^ o ] n^ i 13< ) ufE}u}

K fluorideif acetate, formate, butyrate -n-7]*>o] •g-s|3£]t^ phos-

phateif nitrite-1- 20-g: ^°\] ^ ^ ^ 41 £X K

) switching^]

- 23

30

20

10

0 _Jt i i i | i r i i j i i i i | i i M [-

0 5 10 15 20Minutes

Fig.10. Chromatogram of a nine-anion standard solution using

column switching .

Peaks: l=2ppm fluoride; 2=10ppm acetate; 3=l0ppm formate; 4=3

ppm chloride; 5=100ppm carbonate; 6=10ppm nitrite; 7=5ppm sul-

phate; 8=10 ppm nitrate; 9=15ppm phosphate.

- 24 -

10 15 20

Minutes

Fig.11. Chromatograms of a nine-anion standard solution using

column switching at different times . Switching point after (a)

2.7, (b) 2.8, (c) 2.9, (d) 3.0 and (e) 3.1 min.

25 -

80

60

40

20

0

84i: 5

i i 1 i i i i r ] r r i i ] I i l

0 10 15 20

Minutes

Fig.12. Chromatogram of a drinking water sample using columnswitching'10'. Peaks: 7=sulphate; 8=nitrate; 4=chloride; 5=carbonate;S=switching peak.

5.0

4.0

3.0

FS 2.0

1.0

0.0

7- -8 4-

T i i i i i r i | i i i i i • i T i r

0 5 10 15 20

Minutes

Fig. 13. Chromatogram of a spiked drinking water sample usingcolumn switching( . Peaks". 7- sulphate; 8= nitrate; 4= chloride;5= carbonate; S=switching peak. Spikes: 1= 0. lppm fluoride; 2=0. lppm acetate; += 0. lppm butyrate; 3= 0.lppm formate; 6= 0. 3ppmnitrite; 9= 0. lppm phosphate.

log H = — Y ~ l o § [ ^ + lQg C o n 5 ^ i <3)

30]] c q ^ log[£7H ^B*l log k'

%-S.7> 1 mM ^ nfl Cost,-

71 #7171 - § - S H 1 A ^ n l^ - l -# it' tfl-tl ( ^ - t i)/ l i AS . S^«>cK -i] 4fe 7]

= Const g R {4)

- t ^-31](retention

; ^ void volumn f ^ r :} . Jojji, Const^ 7l#7l

^7f^rfe 71 #71 (slope, mM/ml )olJl, /4,£fe ^

} log# ^1*}^ q 57}

log F / ?y Vm - A / J

g log/?+log Cons^ (5)

Ro]

-71 -g-eH iTO 41 5 ^ - -g-Bfl -§-eHl tfltl ^ 3 ^

- 30 -

log (vR - vm)/vm ^ ^

£ # 4-§-^ 4, -l, -2, -3-1/2, -2/3, -3/4 3.

2.

-. 71 #71

^^^Al^o] fo}xfe ^ S # ^ ^ 511 ]-. 4

$) 7l#7l(slope) ^ ^ o]

5).

nQ us} o.^ 15611 ujEfu} a i^ ^ : § # ol-g-*H 71^71 -§-el*j

7l-i-7l-g-Bl SSZL^^A- ]^ computer

simulation^ A}-g-tr>< xi\

2 - 9^- -g-6f -g-Bl«?5| ^ £ # 2.5 - 18.5

sulfateif nitrate7} -g-BlS|5tl #3. *}i4^ 3tl3.S

2 - 9 ^ - ^^> -g-Bm^ - ^ S # 2.5 - 22.5 mM 7}x] ^ - 7 W ^ , sulfate

nitrate7> ^-315]^ -2 ^ ^ - ^ sulfate7}

- 31 -

1.2

1.0

0.8

0.6

ogk1

0.4'

0.2

0

-0.2

NitraleX \-0.95 N \

Chloride<s-1.03

IB

1

\ Fumarate\ -2.03

\ ^ A

, SulfateX\ -2.10

\

\ Citrate\-3.68

\

1.0 1.2 1.4 1.6 1.8 2.0log IEI]

Fig.14. Log k' vs. log eluent concentration for HPIC-AS5A withisocratic elution .

Eluent is diluted from lOOmM sodium hydroxide. X axis is in units

of log (mM). Each point is the average of two measurements.

Concentrations of anions used: chloride, 3ppm; nitrate, 5ppm;

sulfate, lOppm; fumarate, 5ppm; citrate, 50ppm.

- 32 -

1.2

1.0

0.8

log Jfc

0.6

0.4

0.2 JL _L0.2 0.4 0.6 0.8

log R1.0

Citrate -0.77Fumarate -0.65Nitrate -0.47

Sulfate -0.67

Chloride -0.50

1.2

Fig. 15. Log(Vs-Va)/Vm vs. logtf for HPIC-AS5A with gradient elution(11).

Eluent is diluted from lOOmM sodium hydroxide. J axis is in units oflog (mM/mC). Each point is the average of two measurements. Concen-trations of anions used: chloride, 3ppm; nitrate, 5ppm; sulfate, 10ppm; fumarate, 5ppm; citrate, 50ppm.

- 33 -

Table 5. Parameters from isocratic and gradient log-log plots

Isocratic

Slope

-A/E

Consti*

Gradient

Slope

-A/(A+E)

Constg

Constg(calc)***

Chloride

-1.03

-1

27

-0.50

-0.5

7.4

7.0

Nitrate

-0.95

-1

110

-0.47

-0.5

15

14

Sulfate

-2.10

-2

3,900

-0.67

-0.67

20

19

Fumarate

-2.03

_2

7,800

-0.65

-0.67

26

24

Citrate

-3.58

-3

9,800,000

-0.77

-0.75

42

65

Data is from Figs. 14 and 15.

* Inverse log of y intercept from Fig. 14. Represents k' for a 1 mM

sodium hydroxide eluent.

#* Inverse log of y intercept from Fig. 15. Represents (Vn-Va)/Va for

gradient elution with a ramp slope of lmM/ml.

*#* Calculated from Consti using eqn.

- 34 -

(a) (b) (c)

Fig.16. Effect of gradient ramp on elution for HPIC-AS6 with p-

cyanophenate eluent .

The gradient program is shown below each chromatogram. Increasing

either the gradient ramp slope or the final isocratic eluent concen-

tration separates nitrate and sulfate.

- 35 -

)M-fe 2 - 5g±

2.5 - 18.5 mM 77}*] 4 ^[

sulfatei} nitrate7f ^ 1 5 ) ^ 1 •§•£]£.(resolution)7} # £

fe Dionex IonPac ASH

. 3 . e m formate if butyrate7}

^71 $m 7^Q Dionex OmniPac PAX-500

^1BJI^(selectivity)

71 #71

3.

6) . 3 7 W ^ f S . ( l mM, 5 mM, 200 mM)^ NaOHif

^ ^ -fi-7lA># ^el-6-1-71 ^l*H 1 5 ^ 7 M 0.5 m

7} ^ - 7 l # o l ^ - 2 } 7lEf ^ - 7 l ^ > # ^el^r}7l ^l*fl 18^- -§•*> 0.5 mMofl 44

mM 7 M

- 36 -

Table 6. NaOH step gradient for the simultaneous separation of organic

and inorganic anions on a Dionex PAX-500 column(12)

Time %Eluent 1 %Eluent 2 %Eluent 3 *Eluent 4 Eluent(min. ) (DI water) (lmM NaOH) (5mM NaOH) (200mM NaOH) C°"C

nu ,r u\

NaUH (,mM;

0

9.5

12.0

15.0

25.0

30.0

33. 0a

65

65

90

0

0

78

78

35

35

0

0

0

0

0

0

0

10

100

94

0

0

0

0

0

0

6

22

22

0.35

0.35

0.5

5.0

16.7

44

44

Late-eluted acids, such as citric and sebacic acid, require the last

gradient step to be held for an additional 5 min.

- 37 -

10 r32

Fig.17. Separation of thirteen organic acids and eight inorganic

anions on a Dionex OmniPac PAX-500 column, 250x4mm(12>.

Injection volume was lOfd. gradient pump, conductivity detector, self-

regenerating suppressor (ASRS, 4mm). gradient condition in Table 6.

Peaks:l=fluoride(5ppm), 2=acetate(10ppm), 3=propionate, 4=butyrate(10ppm)

, 5=iso-valerate(1Oppm),6=formatedOppm),7=valerate(20ppm),8=iso-capro-

ate(20ppm), 9=pyruvate(20ppm),10=sec-caproate(20ppm),ll=chloride(5ppm),

12=nitrite(l0ppm),13=benzoate(20ppm), 14=bromide(10ppm), 15=nitrate(10

ppm),16=carbonate(10ppm),17=malonate(10ppm),18=sulfate(5ppm), 19=oxal-

ate(lOppm),20=phthalate(20ppm),21^phosphate(1Oppm).

}. propionateif butyrate£| -§-B|# -k r<H acetate, propionate,

butyrate*) &B]7\ 7 F ^ W . -1 &*}$) ^.7)^0)^.

K -2

7f. sample matrices

matrices^

sample matrices

o ] § ^-71 matrices-!

polymeric reversed-phase cartridge-^- •Al-§-*l-0^ -n-7) ^ lS -^ matrices-^-

p-toluenesulfonic acid (PTSA)# ^ # ^ nfl, H ^ 18a^ matrix s]

3.7]- *Ife 3^.nl-5-3.^o]JL, ZL^ 18b^ SPE cartridge# A|~g.*fl matri-

ce s# ^|7lt> ^*fl ^ -c : ^ l S # ^-^*> ^.S-DJ-SZL^oli:}. p-toluene-

sulfonic acid x}3.7\ &T§*}7]] t±t}\*v\m cfS. ^ ^ . <g^^. ester^I^l,

*fe -S-7lS>-g- ^^#of l^ 4 ^ ester7} U ^ c j . . Na0H -g-

4 , MS. ^ ^ ester7]- ^Tfl -^-71^^.5. «>3fl<H -B-7l > ^

51HS. -S-7lt> ^ e l ^ ^ # *}7l 611 ester

2-propanol acetate7f ^ ; ^ # -f-af*}^^

acetate J S

- 39 -

60 -

01

o

: i A 1

r i

2

(c)

11/1

10

Time (min)

15 20

Fig.18. Removal of sample matrices by solid-phase extraction(12)

Dionex OnGuard-RP cartridge and a 5mM NaHCC>3 buffer at pH 8. 5. column,

Dionex lonPac AS4A, 250x4mm; Eluent, 1.7 mM NaHCO3 - 1.8 mM Na2C03.

Flow-rate, 1.0 ml/min; Detection, suppressed conductivity using ASRS

in recycle mode. a= Sample before SPE; b= sample after SPE; c= p-

touenesulfonic acid standard. Peaks: 1= p-toluenesulfonic acid, 2-

maleic acid and 3= futnaric acid.

- 40 -

0 12

Time (min)

(12)Fig. 19. Removal of esters by SPE

Dionex OnGuard-RP cartridge and a 5 mM NaHC03 buffer at pH 8.5. a=

Before SPE, acetate was detected as a result of hydrolysis of 2-

propanol acetate on-column. b= after SPE, no acetate was detected,

indicating total removal of 2-propanol acetate. Dionex OmniPac PAX-500

column, 250X4mm. Injection volume was 10/d. gradient pump, conducti-

vity detector, self-regenerating suppressor (ASRS, 4mm). gradient con-

dition in Table 6. Peak: 1= acetate.

41 -

2-propanol acetate! SPE cartridge*!] -f-iW^l - ofl ^#^> ^ 4 ° ] ^

acetate B] 3.7} ^#5 ]x | <>fe4. polymeric RP^ 4^-^-3) C18

cartridges^ -fr7l matrix 4 7 ^ e j o | ^ 7<HT 4 4 4 $114. Dionex

OnGuard-RP cartridge7f & 7<i 4 4 4 &fe ^ ^ ^ 4 -fM matrix! afl

Ti^rfe^ ^ 4 ^ ° 1 4 . S 8- g: Dionex OnGuard-RP cartridge^ 4-§-

-fi-71 matrix!- 4^*> ^ , ^-7l^>^ S ] ^ ^ - ^ 4 4 M U ^14. 5

NaHCO3 -?+^-§-^(pH 8.5)4 5 mM NaOH -g-< (pH 11.7)# -g-5l<^^.^

5«# r4, 10 ppm ^£<>fl^ BV^ 7} !_4ol ^7l>L>4 5 ] - r # ^ 100% ) 7}

4ester7} ^5\°] $X^= *}3- ^ 4 ^ - 7 l ^ # -g:^*>3.^1- ^ nfl-b 5 mM

NaHC03 ^^-§-<^^>l 5 mM NaOH £x\ ^ ^ # ^ ^ 4 . ^ 1 4 ^ ^ ester^ 5

mM NaHC03 % ^ - 8 - ^ H *\*\*] 7}^^^o] acetateS.

SPE cartridge^] 4*fl ^]7i5]^L, 5 mM

acetateS ^5f£|°.S. ester#

5. ester7> S ^ £ H ^Ife *]3M -gr^^fe^l, -$-^1^ 5 mM NaHC03

^°1 4 -rr-§-*f4. ^-^ 20a^ 5 mM NaHC03 -§-el^4 SPE cartridge! 4

•§-*H ester!- ^>\$± ^ -fr7J>iM- ^-^«1 ^ 4 O 1 ^ . , 3-Q 20bfe 5 mM

NaOH -§-el«J}# 4-§-*fl ester7f

sensitivity)4 ^#*]:^]( limit of detection)-^-

*> ^ ^ 4 10 - loonfl 4 # 4 .

a. loofl 4 4 4

- 42 -

Table 7. Removal of organic compounds by various SPE cartridges(12)

Type of SPE cartridge

% Removal a(n=3)

ethyl „ MBAMBAc'a

Aceto- Ethyl

acetate formate phenone benzeneTBHP6

Dionex OnGuard-RP

Waters Sep-Pak Plus

Rainin Spice C18

All tech Maxi-Clean C18

Alltech Maxi-Clean IC-RP

100 100 100 100 100

19 80

65 85

11

75

100

100 100

88 90 100 100

17 20

85

10

100 100 35

100 40

90

Organic compounds (0.lg) were added individually to 10ml of deionizedwater, shaken to mix, and allowed to equilibrate. The water layers werethen passed through different SPE cartridges and analyzed by GC or HPLCfor remaining organic compounds, the percentage removal was thencalculated based on the organic content in the water layer before andafter SPE.Determined by GC.a-Methylbenzyl alcohol.Determined by HPLC-UV.tert. -Butyl hydroperoxide.

- 43 -

Table 8. Recoveries of organic acids after SPE using Dionex OnGuard-RP

cartridges (12)

Organic acid —

Formic acid

Acetic acid

Propionic acid

Butyric acid

Valeric acid

Isocaproic acid

Oxalic acid

Malonic acid

Benzole acid

Phthalic acid

Recovery {%,

5 mM NaHC03

99

101

100

96

92

85

102

95

94

98

n=5)a

5 mM NaOH

99

102

100

100

99

96

102

101

97

100

Solution containing 10 ppm of each organic acid was used.

- 44 -

40

E

Inte

nsity

10

-

:

- 1 2A A: M.

jj

J8

Time (min)

12 16

Fig.20. Determination of esters by ion chromatography .

a=Sample with esters removed by SPE using a Dionex On-guard RP C18

cartridge and a 5 mM NaHCCb buffer at pH 8.5. b=Sample with esters

hydrolyzed using 10 mM NaOH. Dionex OmniPac PAX-500 column, 250X4mm.

Injection volume was 10/^. gradient pump, conductivity detector, self-

regenerating suppressor (ASRS, 4mn). gradient condition in Table 6.

Peaks: l=acetate, 2=propionate and 3=formate.

- 45

Table 9. Sensitivity and limit of detection by ion-exchange and ion-

exclusion methods

Analyte

Fluoride

Chloride

Bromide

Nitrite

Ni trate

Sulfate

Phosphate

Formate

Acetate

Propionate

Butyrate

Valerate

Isocaproate

Pyruvate

Oxalate

Malonate

Benzoate

Phthalate

Limit of detect iona(ng)

Ion-exchange Ion-exclusion

0.1

0.2

1

0.5

1

0.5

1

0.5

1

1

2

2

2

2

1

1

2

2

b

-

-

-

-

-

-

50

100

100

100

-

-

-

-

-

-

-

Sensitivity

Ion-exchange

12X10'

7.4X10'

6.7X10'

5.2X10'

(area count/ng)

Ion-exclusion

1.8X10'

0.63X10"

0.56X10'

0.44X10'

Based on S/N=3.

Could not be determined by the method used.

- 46 -

Table 10. Summary of leachate compositions for 23 samples reported byRobinson , illustrating reported chemical species and typical values.

pH valueCODBODTOC

Volatile fatty acids (as C)AceticPropionicIsobutyricn-ButyricIsovalericn-ValericIsohexanoicn-Hexanoic

Ammoniacal-NNitrate-NNitrite-NOrthophosphate (as P)

ChlorideSulphate

SodiumMagnesiumPotassiumCalciumChromiumManganeseIronNickelCopperZincCadmiumLead

COD=chemical oxygen demand.

Minimum6.266<221

<2ndndndndndndndnd

5<0.4<0.02<0.02

7055

431220130

<0.0050.190.09<0.020.0040.020.0030.003

BOD=biochemical oxygen demand(5 day test).T0C=total organic carbon. All values in mg/1

Maximum7.61160080004440

3672132113712375622343029.4197

730851.844.43

2777465

250048065011500.1426.53800.160.150.950.0130.22

(except pH).

Mean-

20941314792

54021913122.469.534.536.71.224.8

1514.30.20.46

782242

6101262083690.0373.7975.20.030.020.23<0.0050.06

- 47 -

r}. VFA i H M tflt^rfe acetate*} propionate°l JL

- f M ^ S . i H r ^ H Sll K 4 4 ^ - acetate ^e<M 10,000 mg/£ , propion

ate ^ c M 3,000 mg/ £ ofl 0JS.7IS *>^, chloride( <10,000

sulphate( <2,000 mg/ £ )£f bicarbonate( <9,000 mg/i )%•$] -&

- ^ Na , K, Mgi} Ca -f-o]

#-cr humic acids, colloidal, suspended matter

ofl^ *$*$# ^ # ^ ^ ^ VFA

^(maturity),

] l f l H, l ^ 1 aromatic carb-

oxylic acids, humic acidsSj- ZL l ^ ^ ! # J ^ - ^ A ] ^ 7 } ^ ^ O ] ^ [ ^ A^a.

Dionex OnGuard-P cartridge^] -f-ij- ^]tl^f

2,000«fl

H ^ 21). ^ ^ ^ £ ^ 1 -8-7)^-01,2-21- Chloride7l- ^

Dionex OnGuard-Ag Si} OnGuard-H cartridge-!-

chloride^ -g-^o]^£-# ^M^b ^ , sulphate^}- r}^

22). cartridge^ 4 ^ B t ^ S j chloride

valerate, hexanoate, heptanoate ^-^] g

23). ^ # ^ r •%•$] -§-°l^ri- OnGuard-P cartridges^} <>]J2-

- 48 -

Table 11. Typical gradient programme used for inorganic anions (Dionex

4000i with ASH ion-exchange column)(24)

Time(min)

0.0

0.1

0.2

2.0

7.0

7.1

Injectionvalve

off

off

off

off

off

off

El (*)

50

50

50

50

85

50

E2 (*)

0

0

0

0

15

0

E3 (*)

50

50

50

50

0

50

Eluent El: 18 MQ water.Eluent E2: 200 mM NaOH.Eluent E3: 0.75 mM NaOH.Eluent flow-rate: 2 ml/mini sample loop:

- 49 -

3.0

2.0

1.0

Chloride-

Acetate

Prc ionateButyrate

Valeralti

Immature leachateDiluted xZOOO

Carbonate

Sulphate

i i i i i i i i i i i i i i i i i j i i i i i i i i i i i i i i i i i i 1 \ i t i \ ] r

2 3 4 5 6 7 8 9 10

Minutes

Fig.21. Ion chromatogram (4000i/ASll gradient) for immature leachate(X2000 dilution)m )

- 50 -

40

Ps20

10

Immature leachateDiluted xlO

On guard-A g treated

Sulphate

Organics

CarboiThiosulphate

Phosphate

1 r " T2 3

5 6

Minutes

T T T f t I I I I ) > k 1 I

Fig.22. Ion chromatogram (4000i/ASll gradient) for immature leachate(X10 dilution)(24)

- 51

18

16

14

12

10

8

6

4

2

0

Chloride-

Organics

Mature leachateDiluted x20

Sulphate

Carbot

Nitrate'

LfJ

rte

TTTTTT I " " « k i i j i i i i | i

4 5 6 7

Minutes

i | i I) | [ i ; | | j I II 1 | l

10

Fig.23. Ion chromatogram (4000i/ASll gradient) for mature leachate

(X20 dilution)(24)

- 52 -

Table 12. Examples of anion compositions (mg/1) of leachates determined

by ion chromatography

Chloride

Sulphate

Acetate

Propionate

Isobutyrate

n-Butyrate

Isovalerate

n-Valerate

Immature

8,830

1,720

6,940

2,810

320

3,380

280

1,460

Intermediate

2,060

5

670

200

0

5

5

5

Mature

650

10

0

0

0

0

0

0

- 53 -

cartridgesl- matricesl-

3.

- 54 -

3*1. 5r^KS~E. (Mixed-Mode) .2/8 -§-

.^^(mixed-mode stationary phase)

Pinkerton^f Hagestam^ * H ^ 2 } ifc^rAj# 3.^ ?W3- ll-fe- packing

material^ S-^^^-t:-!]'26), c| packing material-^

Hartwick^} §-^

H ^L^^-i- S4M^f(2?"29). °1 JL^^^r oligonucleotides, oligodeoxy-

ribonucleotides, H $]$] nucleic acid constituents if ^r

& o l ^ ion-pairing reagent#

), o]

1.

x]*]m silica-based

support W *]#S.7\ ^fr^[^-Sl<H $a^ BflS, o| Bl^V^fe

2]-§-7](dialkylamine)7} HI H]#S

- 55 -

7} 18, 8, 4 •§•*] * H 1 - ^feu]-. o| ^5l?f # ^ nfl-SHl -§-e]^^| pH7} 2 -

(mixed mode) J l^^ofl $l-fe-

2.

7}. Alkyl group^ %>

phthalic acid -§-5]<^(38)# Af-g-^ nfl alkyl group

3.71^}(capacity factor, k')S.

. alkyl

^ ^ ^ 4 . chloride

acetic acidu} propionic acid^j

i -O

Si -O

= C4,C8orC18

Fig.24. Structure of mixed-mode reversed-phase and anion-exchange/or \

stationary phase .

- 56 -

«a Chloride• Acetic0 Propionic

10Number of carbon on the alkyl group

Fig.25. Relationship between anion retention time and the carbon

numbers on the alkyl group .

- 57 -

oj.nl

alkyl groups Z\^ ^ ^ H <&o] *Hr^} a] chloride

. ^, alkyl groups ± ^ o \ ^

S3}(shielding effect)7} ^ ^ H

7} ^7}*}^ alkyl group l

25). propionic acidfe acetic acid Jit;} ^ f ^ o ] cj 3.7]

cj 1h?_E5. aCetic acidic}

o}n]7](pKa

)fe PH7} " ^ ^ M rc}B} o l ^ ^ o ] ^ 7 }5]fec l PH 9

7} ^^i* l o]^5}5it;}. ZL^HS. ^]^1^)7} *ol-^ 100% ol

% ^ ^ 1 ^ ^ &>l| 5 ] ^ ^ PH 6.5 o]tr}# ^lSflo>

^ pH 6.5 o l * H ^ ^ ^ ^ 1 - ^ -o f l i #^-*}jL pH7}

- 58 -

I 1 ^ 26). a o)-°~^ PH7} phthalate

ionic s t rengthH tflsfl <8*<M- Bl*|7l 4 # ° 1 4 . phthalic

i^f pKz 3Jt r 4 4 2.95, 5.41°14. ^ , pH7}

phthalic acid^ * I ^ -2^1^ -1 ,

-. PH 4 o l^H^ l phthalate

-251 ^ * f # 4 f e sulfatel- ^ ^ « > A]

pH 3 - 6.

<§*o^ n l ^ K -g-el^^ pH7}

pKa ^ o ] > > ] ^ ^ 1 1 ^ } ] ^ l

pH7}

U ^ 27). ^-7}^$ v]^S.^ - g - e ^ ^ pH7l-

. formic ac id^ pH7} 4 ^

formic acidfe ±^°] ^ - f ^<^ J=L

formic acid^ ^ - ^ 1 ^ : -15]

- 59 -

-a- Chloride-•- Nitrite-«- Bromide-«- Nitrate-•- Suffate

3 4 5pH of 4mM Phthallc add

Fig.26. Effect of pH on the retention time of inorganic anions.

60 -

-B- Acetic«•• Propionic••• Isobutyric-•- Butyric••- Formic

3 4 5 6pH of 4mM Phthailc acid

Fig.27. Effect of pH on the retention time of carboxylic acids (25)

- 61 -

ionic strength)7>

61^-5

o} formic

1 - 4 phthalic acid 4 4 ^ 1 " 5.4), -g-e]

nitrileo]

•n-71^

acid*]

] organic modifier7} n]^]^ ^%>^- U}E}

4 mM phthalic acid -§-Bm^l organic modifier^ aceto-

S%^ol S -fe- phthalic acidi]- X\3. ^ ^

^ } ( 5 0 ) . acetonitrile^l %7}S. phthalic

., acetonitrile^l

f acetonitrileo)

S. -7}^^r acetonitrile

^ . S , acetonitrile^l

rc}e> ^ ^ - #

phthalic acid

phthalate

. acetonitrile^*]

*\.S-S.(conductance)7}

-71

^ l ^ i - o l S 14ofl ufBl-L,} alt:}.

ojnl 67fl^ ^ 6 > Af-g-si ser ial number 03271UA ^ 3 } 4$. ^

ser ial number 11151OP^]- 11201 IP ^ o f l cfl*fl t^-f.^-

- 62 -

0 1 2 3 4 5Phthallc acid concentration (mM), pH 5.4

•o- Chloride••- Formate-«• Bromide-•- Nitrite• Nitrate-o- Suifate

Fig.28. Effect of ionic strength on the retention time of inorganic,(25)

anions

- 63 -

Table 13. Effect of acetonitrile as eluant modifier on the capacityfactors, k', of anions and carboxylic acids

CH3CN k 'in eluant

(%) chloride bromide n i t r i te nitrate acetic propionic btyric isobutyric

0 1.52 2.86 4.20 5.68 2.58 3.72 6.13 7.31

25 3.61 5.72 8.07 9.38 3.18 3.46 4.37 5.38

50 8.09 10.68 15.32 15.32 -a -a 2.98 3.72

Peaks are not detected due to poor s ens i t i v i t y .

- 64 -

Table 14. Nitrate and Propionic Acid Retention Reproducibility

on the Mixed-Mode Columna(25)

coumnserial number

0327UA

05281CA

111510P

11201IP

retention

nitrate

5.86

6.37

6.95

7.69

timeb (min)

propionic acid

6.80

7.22

7.88

8.49

Eluant: 4 mM phthalic acid, pH 4.5.Calculated mean of three injections.

- 65 -

phthalate -g-sl^n^ ^^=^£.35. j^} tgsg u] ^ A H l

phthalate

PH7} ^ ^ D] UVC.^

^ ^ ; ^ # ^JL,

3113. 3.7]-b

phthalate

PH7f ^©.

3] pE7\ ^ ^ . ^ ^-7]A>ol ^.6] 2] 3.1- vMuflxlnl; ^ i 7 f Cj # t } . pH

4.55]

71^7]

- 66

B12

VI

10 20 30 Min. 10 20 Min.

Fig.29. Separation of inorganic anions and carboxylic acids on themixed-mode RP C18/Anion column using 4 mM phthalic acid eluant at(A) pH 4.1 and (B) pH 5. 5(25).

(A) Peak identification: (1) Chloride(20ppm), (2) formate(50ppm),(3) bromide(40ppm), (4) nitrite(50ppm), (5) nitrate(50)ppm, (6)sulfate (70 ppm). Peak identification : (1) acetic acid(lOOppm), (2)propionic acid (lOOppm), (3) butyric acid(lOOppm), (4) isobutyricacid(lOOppm); flow rate: 1.0 mL/min. Detector: conductivity, 0.1 JJSfull scale. Detector polarity is set at "positive" for A and"negative" for B. Injection volume: 100/d.

- 67 -

Table 15. Effect of Eluant pH on Peak Area of Acetic and Propionic

Acids(25)

peak areaapH of 4 mM

acetic (200 ppm) propionic (200 ppm)

3.0 +74,870 +61,547

3.5 +59,355 +42,919

4.0 +21,803 +11,989

4.5 -19,257 -28,991

5.0 -86,789 -88,431

5.5 -147,118 -146,828

6.0 -183,496 -181,166

6.5 -187,289 -184,822

Peak area reported as positive (+) or negative (-) peaks.

- 68 -

u\r\t^

9 18MIn.

Fig.30. Simultanious separation of inorganic anions and carboxylacids using 4 mM phthalic acid, pH 4. 5(25>.

1C

Peak identification: (1)chloride(20ppm), (2)acetate(200ppm), (3)propionic acid(200ppm), (4)nitrite(50ppm), (5)nitrate(50ppm). Flowrate: 1.0 mL/min. Detector: conductivity (positive polarity), 0.1 JJSfull scale. Injection volume: 0.1 fd.

- 69

(No Suppressor) A|^.

fluoride ^ ^ fl^ ^(32'33). ZLe]uf 1, 2, 371151 9>e.

*>t:K

5,39)

Potassium phthalate(KHPh)

^r Silt;}. ZL^U acetic

lactic acids, ascorbic acid# ^ - ^ ^ nfl-b 3il3.7}

H2P04" if ascorbic acidfe *\3. &Z\7\

-M 0.75 mmol/^ KHPh f 0.25 mmol/

. 0.75 mmol/^ KHPhif 0.25 mmol/

- 70 -

11

45

Time / min

Fig.31. Chromatogram of standard mixture of organic acids and inorganicanions(39).

Column, Shim-pack IC All temperature, 40°C; eluent, mixture of 0.75mmol/1 potassium hydrogenphthalate and 0.25 mmol/1 phthalic acid (pH3.5); flow-rate, 1.0 ml/min. ; detector, conductance (1/zs/cm). Peaks: 1 =acetic; 2=ascorbic; 3=succinic; 4=H2P(V; 5=malic; 6=C1"; 7=malonic and

_ o

NO2 ; 8=citr ic; 9=N03"; 10=tartaric; ll=S04 "; sp=system peak.

- 71 -

-§-S]«J|-i- A H W S S.S. 3i|a7} <$*\ &-§• U ^ M ^ H2P04" $\ ascorbic

acid7|- ^ 5 1 ^ 4 . *} X\& ^ # o ] £ ^ ^ # 5 ] a.Sn}£-Leflo] ^ 32

>. 0.75 mmol/£ KHPhi} 0.25 mmol/£ H2Ph# ^ ^ l j PH

3.5< 1 ^^--g-em-i- 4-8-*fl'H ^ " ^ t t ^ i H l ^ f e 1.0 mmol/^ KHPh(pH

-*11>H ^ ^ ?Jtic} 2 - 6HH U] ^ ^ ^ £ ^ 1 -§•

>. 0.75 mmol/ £ KHPhi} 0.25 mmol/

O ^ 162 ^S/cmOl «>^611 1.0 mmol/.e

fe 197

16^]

^r regression coefficient(rz)7> 0.996 - 1.000S.

nfl-f #^.n^ l

) l.OOOppm

oxalic acid, c i t r i c acid ^-$] Q^k0] 7>^-tr}i^ ^-&>7} ^ ^ EDTA

-71 >th

- 72 -

4 6

10

10

sp

11

sp

1*5 §*5 3*3

11

45 3*51*5 2*5 5*5

Time/min

Fig.32. Chromatograms of green tea (top) and Japanese tea (bottom)(39)

Column, Shim-pack IC Al; temperature, 40°C; eluent, mixture of 0.75mmol/1 potassium hydrogenphthalate and 0.25 mmol/1 phthalic acid (pH3.5): flow-rate, 1.0 ml/min; detector, conductance (l//s/cm). Peaks:l=acetic; 2=ascorbic; 3=succinic; 4=H2P04"; 5=malic; 6=C1"; 7=malonic and

; 8= citric; 9=N03"; 10=tartaric; ll=S042"; sp=system peak.

- 73 -

Table 16. Detection limit (S/N=3) and linear range of organic acids and

inorganic anions

Compound

Acetic acid

Ascorbic acid

Succinic acid

Formic acid

Malic acid

Citric acid

Tartaric acid

H2PO4"

Cl"

N02"

Br"

N03"

S04z"

Detection

KHPh/H2Ph

0.58

0.96

1.04

0.50

0.58

1.34

0.48

0.12

0.044

0.13

0.14

0.11

0.19

limit (mg/1)

KHPh

1.04

2.90

2.08

1.32

2.18

7.80

3.38

0.71

0.063

0.22

0.19

0.18

0.37

Linearity

range (mg/1)

4-1000

4-1000

4-1000

5-1000

5-1000

5-2000

5-1500

2-1000

1-1000

1-1000

2-1000

2-1000

4-1000

0.999

0.998

0.996

1.000

0.999

0.997

0.999

1.000

1.000

1.000

0.999

0.998

0.998

- 74 -

3 a. a

fluorides}

7]#71

- 37B

1,000

- 75 -

Stlfe

4 71 -71

^71 ^lsfl 7(14

oxalate, citrate, EDTA

oxalate, citrate^- EDTA

Phthalate

phthalate^

- 76 -

4

1. P.R. Haddad, P.E.Jackson, Ion Chromatography Principles and Applica-

tions, Elsevier, Amsterdam, 1990, Ch.7, p.195 and Ch.18, p.593

2. D.T.Gjerde, J.S.Fritz, Ion Chromatography, Huthig, Heidelberg, 2nd

ed., 1987, Ch. 10, p. 235

3. J.S.Fritz, J.Chromatogr., 546 (1991) 111

4. B.K.Glod, W.J.Kemula, J.Chromatogr., 366 (1986) 39

5. D.T.Gjerde, H.Mehra, Advances in Ion Chromatography, Vol.1, Century

International, Medfield, MA, 1989, p. 139

6. D.P.Lee, A.D.Lord, LC-GC, 4 (1987) 261

7. J.B.Morris, J.S.Fritz, LC-GC, 11 (1993) 513

8. W.R.Jones, P.Jandik, M.T.Swartz, J.Chromatogr., 473 (1989) 171

9. M.H.Dunn, LC-GC, 7 (1989) 138

10. C.Umile, J.F.K.Huber, J.Chromatogr., 640 (1993) 27

11. R.D.Rocklin, C.A.Pohl, J. A.Schibler, J.Chromatogr., 411 (1987) 107

12. Jian Chen, J.chromatogr.A, 739 (1996) 273

13. A.A.Ammann, T.B.Ruttimann, J. Chromatogr. A, 706 (1995) 259

14. C.Scheuer, B.dimmer, H.Bischof, L.Nguyen, J.Maguhn, P.Spitzauer, A.

Kettrup, D.Waoner, J.Chromatogr.A, 706 (1995) 253

15. M.Y.Ding, H.K.Koizumi, Y.Suzuki, Anal.Sci., 11 (1995) 239

16. M.P.Cano, E.Torija, M.A.Marin, M.Camara, Z.Lebensm Unters Forsch,

199 (1994) 214

17. S.Rabin, J.Stillian, V.Barreto, K.Friedman, M.Toofan J.Chromatogr.,

640 (1993) 97

- 77 -

18. M.Legrand, M.D.Angelis, F.Maupetit, J. Chromatogr., 640 (1993) 251

19. E.D.Zlotorzynska, J.F.Dlouhy, J. Chromatogr., 640 (1993) 217

20. D.M.Davies, J.P. Ivey, Anal. Chi m.Acta, 194 (1987) 275

21. J.P.Ivey, D.M.Davies, Anal.Chim.Acta, 194 (1987) 281

22. D.Brocco, R. Tappa, J. Chromatogr., 367 (1986) 240

23. C.Saigne, S.Kirchner, M.Legrand, Anal.Chim.Acta, 203 (1987) 11

24. D.A.C.Manning, A.Bewsher J. Chromatogr.A, 770 (1997) 203

25. R.Saari-Nordhaus, J.M.Anderson Jr., Anal.Chem. , 64 (1992) 2283

26. T.C.Pinkerton, H.Hagestam, Anal.Chem., 57 (1985) 508

27. J.Crowther, S.Fasio, R.Hartwick, J. Chromatogr., 282 (1983) 619

28. T.Floyd, L. Yu, R.Hatwick, Chromatographia, 21 (1986) 402

29. T.Floyd, J.Crother, R.Hartwick, LC Mag., 3 (1985) 508

30. H.Issaq, J.Gutierrez, J.Liq. Chromatogr., 11 (1988) 2851

31. All tech associates Product data sheet, Bulletin no. 168, 1989

32. H.Yu, Q.L.Liu, L. Z. Guan, Sepu(Chromatography, China), 11 (1993) 109

33. V.Cheam, Analyst, 117 (1992) 1137

34. M.Y.Ding, Y.Suzuki, H.Koizumi, Anal.Sci., 11 (1995) 239

35. M.Y.Ding, Y.Suzuki, H.Koizumi, Bunseki Kagaku, 42 (1993) T129

36. T.A.Walker, T.V.Ho, N.Akbari, J.Liq.Chromatogr., 14 (1991) 1351

37. C.R.Ludwig, J.Chromatogr., 592 (1992) 101

38. D.T.Gjerde, J.S.Fritz, Ion Chromatography, Huthig, NewYork, 1987,

Chapter 7, p. 133

39. M.Y.Ding, P.R.Chen, G.A.Luo, J. Chromatogr.A, 764 (1997) 341

40. Guidelines for Pure Water, Technical Document 1-85, Semiconductor

Equipment and Materials Institute, Mt.View, CA, 1985

- 78 -

41. J.P.Denoncourt, Y.Egozy, Ultrapure Water, 3 (1986) 40

42. M.M.Plechaty, LC-GC, Mag.Liq.GasChromatogr., 2 (1984) 684

43. G.D.Burns, R.C.Nolan, J. E. Crutchfield, T.O.Passel, Proceedings 47th

International Water Conference, Pittsburgh, October 27-29, 1986,

Engineer's society of Western Pennsylvania, Pittsburgh, PA, Paper

No.12, p.105-119

44. J.C.Giddings, Anal.Chem., 56 (1984) 1259 A

45. J.C.Giddings, J.High Resolut. Chromatogr. Chromatogr. Commun., 10

(1987) 319

46. J.C.Giddings, in H.J.Cortes (Editor), Multidimensional Chromatogra-

phy: Techniques and Applications, Marcel Dekker, New York, in press

47. J.A.Owen, D.A. C.Manning, App.Geochem., in press

48. H.D.Robinson, A Review of the Composition of Leachates from Domest-

ic Wastes in Landfill Sites. Project Report DE0918A/FR1, Department

of the Environment, London, Anal.Chem., 19 (1985) 175

49. T.A.Walker, T.V.Ho, N. Akbari, In Advances in Ion Chromatography, P.

Jandik, R.M.Cassidy, Century International, Inc., MA, 1990, Vol. 2,

p 271

50. P.R. Haddad, M.Y. Croft, Chromatographia, 21 (1986) 648

- 79 -

INIS

KAERI/AR-542/99

1999

88 p. 3.71 30 Cm.

# 1:1

BIBLIOGRAPHIC INFORMATION SHEETPerforming Org.

Report No.Sponsoring Org.

Report No.Standard Report No. INIS Subject Code

KAERI/AR-542/99

Title / Subtitle Simultaneous Determination of Inorganic and OrganicAnions by Ion Chromatography

Main Authorand Department

Park, Yang-soon; Nuclear Chemistry Research Team

Researcher andDepartment

Joe, Ki-soo; Han, Sun-ho; Park, Soon-dal;Choi, Kwang-soon; Nuclear Chemistry Research Team

PublicationPlace

Publisher KAERI PublicationDate

1999

Page 88 p. 111. & Tab. Yes(O), No( ) Size 30 Cm.

Note

Classified0pen(0), Restricted(

Class DocumentReport Type State of Art Report

Sponsoring Org. Contract No.

Abstract (15-20 Lines)

Four methods were investigated for the simultaneous determination

of several inorganic and organic anions in aqueous solution by ion

chromatography. The first is two columns coupled system. The second

is the gradient elution system with an anion exchange column. The

third is the system with a mixed-mode stationary phase. The fourth is

the system with an anion exchange column and the eluant of low

conductivity without ion suppressor. The advantages and disadvantages

of individual systems were discussed. The suitable methods were

proposed for the application to the samples of the nuclear power

industry and the environment.

Subject Keywords(About 10 words)

Ion Chromatography, organic anion, inorganic anion,simultaneous analysis