20
SIMULATING FLEXIBLE FIBER SUSPENSIONS USING A SCALABLE IMMERSED BOUNDARY ALGORITHM * JEFFREY K. WIENS AND JOHN M. STOCKIE Abstract. We present an approach for numerically simulating the dynamics of flexible fibers in a three- dimensional shear flow using a scalable immersed boundary (IB) algorithm based on Guermond and Minev’s pseudo- compressible fluid solver. The fibers are treated as one-dimensional Kirchhoff rods that resist stretching, bending, and twisting, within the generalized IB framework. We perform a careful numerical comparison against experiments on single fibers performed by S. G. Mason and co-workers, who categorized the fiber dynamics into several distinct orbit classes. We show that the orbit class may be determined using a single dimensionless parameter for low Reynolds flows. Lastly, we simulate dilute suspensions containing up to hundreds of fibers using a distributed- memory computer cluster. These simulations serve as a stepping stone for studying more complex suspension dynamics including non-dilute suspensions and aggregation of fibers (also known as flocculation). Key words. flexible fibers, immersed boundary method, fluid-structure interaction, Kirchhoff rod theory, pseudo-compressibility method, parallel algorithm AMS subject classifications. 74F10, 76D05, 76M12, 65Y05 1. Introduction. The behaviour of long, flexible fibers in a suspension plays an impor- tant role in many applications, including pulp and paper manufacture, polymer melts, and fiber- reinforced composite materials [21, 46]. The dynamics of such suspensions depend heavily on the shape and flexibility of the individual fibers as well as the interactions between fibers. Because of the complexity of the fiber motion in suspensions, many researchers have developed numerical methods that afford valuable insight into both individual fiber dynamics and the resulting aggre- gate suspension rheology [20, 37, 46]. These simulations can complement physical experiments by providing information that is not easily obtained through direct measurement. In this paper, we develop an approach for simulating a suspension of flexible fibers that is based on the immersed boundary (IB) method [36], which is a mathematical framework originally developed by Peskin [35] to capture the two-way interaction between a fluid and an immersed deformable structure. Here, the fluid deforms the elastic structure while the structure exerts forces onto the fluid. The IB method has been used to study a wide variety of biological and engineering applications including blood flow through heart valves [13, 35], cell growth and deformation [38], jellyfish locomotion [17], evolution of dry foams [24] and parachute aerodynamics [23]. We treat the flexible fibers as one-dimensional Kirchhoff rods [7] described using the generalized IB framework developed by Lim et al. [28]. In this approach, the fibers are represented as 1D space curves using a moving Lagrangian coordinate, wherein at each Lagrangian point an orthonormal triad of vectors describes the orientation and “twist state” of the rod. This permits the fiber to generate not only a force but also a torque that is applied to the surrounding fluid. The primary objective of this paper is to develop an efficient methodology for simulating suspensions containing a large number of flexible fibers. Since solving the full fluid-structure in- teraction problem comes at the expense of additional computational work, the underlying parallel algorithm is purposely designed to scale efficiently on distributed-memory computer clusters. This permits non-dilute suspensions to be simulated efficiently by spreading the work over multiple pro- cessors. The numerical algorithm is based on the work of Wiens and Stockie [53] who implemented a pseudo-compressible fluid solver developed by Guermond and Minev [15, 16] in the IB frame- work. We extend this original algorithm to use the Eulerian–Lagrangian discretization employed by Griffith and Lim [12] which employs a predictor-corrector procedure to evolve the immersed boundary. Here, two separate force spreading and velocity interpolation steps are applied at each time step which improves the spatial convergence rate of the method. We begin in Section 2 by reviewing theoretical and experimental results in the literature pertaining to the hydrodynamics of suspensions containing flexible fibers, as well as discussing * We acknowledge support from the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Postgraduate Scholarship (JKW) and a Discovery Grant (JMS). The numerical simulations in this paper were performed using computing resources provided by WestGrid and Compute Canada. Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6 ([email protected], js- [email protected]). 1

Simulating flexible fiber suspensions using a scalable

Embed Size (px)

Citation preview

SIMULATING FLEXIBLE FIBER SUSPENSIONS USING A SCALABLEIMMERSED BOUNDARY ALGORITHM ∗

JEFFREY K. WIENS† AND JOHN M. STOCKIE†

Abstract. We present an approach for numerically simulating the dynamics of flexible fibers in a three-dimensional shear flow using a scalable immersed boundary (IB) algorithm based on Guermond and Minev’s pseudo-compressible fluid solver. The fibers are treated as one-dimensional Kirchhoff rods that resist stretching, bending,and twisting, within the generalized IB framework. We perform a careful numerical comparison against experimentson single fibers performed by S. G. Mason and co-workers, who categorized the fiber dynamics into several distinctorbit classes. We show that the orbit class may be determined using a single dimensionless parameter for lowReynolds flows. Lastly, we simulate dilute suspensions containing up to hundreds of fibers using a distributed-memory computer cluster. These simulations serve as a stepping stone for studying more complex suspensiondynamics including non-dilute suspensions and aggregation of fibers (also known as flocculation).

Key words. flexible fibers, immersed boundary method, fluid-structure interaction, Kirchhoff rod theory,pseudo-compressibility method, parallel algorithm

AMS subject classifications. 74F10, 76D05, 76M12, 65Y05

1. Introduction. The behaviour of long, flexible fibers in a suspension plays an impor-tant role in many applications, including pulp and paper manufacture, polymer melts, and fiber-reinforced composite materials [

21,

46].Thedynamicsofsuchsuspensionsdependheavilyontheshapeandflexibilityoftheindividualfibersaswellastheinteractionsbetweenfibers.Becauseofthecomplexityofthefibermotioninsuspensions,manyresearchershavedevelopednumericalmethodsthataffordvaluableinsightintobothindividualfiberdynamicsandtheresultingaggre-gatesuspensionrheology[

20,

37,

46].Thesesimulationscancomplementphysicalexperimentsbyprovidinginformationthatisnoteasilyobtainedthroughdirectmeasurement.Inthispaper,wedevelopanapproachforsimulatingasuspensionofflexiblefibersthatisbasedontheimmersedboundary(IB)method[

36],whichisamathematicalframeworkoriginallydevelopedbyPeskin[

35]tocapturethetwo-wayinteractionbetweenafluidandanimmerseddeformablestructure.Here,thefluiddeformstheelasticstructurewhilethestructureexertsforcesontothefluid.TheIBmethodhasbeenusedtostudyawidevarietyofbiologicalandengineeringapplicationsincludingbloodflowthroughheartvalves[

13,

35],cellgrowthanddeformation[

38],jellyfishlocomotion[

17],evolutionofdryfoams[

24]andparachuteaerodynamics[

23].Wetreattheflexiblefibersasone-dimensionalKirchhoffrods[

7]describedusingthegeneralizedIBframeworkdevelopedbyLimetal.[

28].Inthisapproach,thefibersarerepresentedas1DspacecurvesusingamovingLagrangiancoordinate,whereinateachLagrangianpointanorthonormaltriadofvectorsdescribestheorientationand“twiststate”oftherod.Thispermitsthefibertogeneratenotonlyaforcebutalsoatorquethatisappliedtothesurroundingfluid.Theprimaryobjectiveofthispaperistodevelopanefficientmethodologyforsimulatingsuspensionscontainingalargenumberofflexiblefibers.Sincesolvingthefullfluid-structurein-teractionproblemcomesattheexpenseofadditionalcomputationalwork,theunderlyingparallelalgorithmispurposelydesignedtoscaleefficientlyondistributed-memorycomputerclusters.Thispermitsnon-dilutesuspensionstobesimulatedefficientlybyspreadingtheworkovermultiplepro-cessors.ThenumericalalgorithmisbasedontheworkofWiensandStockie[

53]whoimplementedapseudo-compressiblefluidsolverdevelopedbyGuermondandMinev[

15,

16]intheIBframe-work.WeextendthisoriginalalgorithmtousetheEulerian–LagrangiandiscretizationemployedbyGriffithandLim[

12]whichemploysapredictor-correctorproceduretoevolvetheimmersedboundary.Here,twoseparateforcespreadingandvelocityinterpolationstepsareappliedateachtimestepwhichimprovesthespatialconvergencerateofthemethod.WebegininSection

2byreviewingtheoreticalandexperimentalresultsintheliteraturepertainingtothehydrodynamicsofsuspensionscontainingflexiblefibers,aswellasdiscussing

∗WeacknowledgesupportfromtheNaturalSciencesandEngineeringResearchCouncilofCanada(NSERC)throughaPostgraduateScholarship(JKW)andaDiscoveryGrant(JMS).ThenumericalsimulationsinthispaperwereperformedusingcomputingresourcesprovidedbyWestGridandComputeCanada.†DepartmentofMathematics,SimonFraserUniversity,Burnaby,BC,Canada,V5A1S6(

[email protected],

[email protected]).

1

2 J. K. WIENS AND J. M. STOCKIE

several prominent computational approaches. In Sections

3and

4,westatethegoverningequationsunderlyingourIBmodelforfluid-fiberinteraction,aswellasthenumericalalgorithmusedtoapproximatetheseequations.InSection

5,wepresentsimulationsoffiberdynamicsinbothsingle-andmulti-fibersystems,andcomparetheseresultstopreviouslypublishedexperimentalwork.

2.Background:PulpFibers.

2.1.TheoryandExperiments.TheoreticalinvestigationsofthedynamicsoffibersinashearflowdatebacktoJefferyinthe1920s[

19],whoderivedananalyticalsolutionforthemotionofasinglerigid,neutrally-buoyantellipsoidalparticleimmersedinanincompressibleNewtonianfluid(specifically,inaStokesflow).Jefferyfoundthatsuchafiberrotateswithawell-definedperiodicorbithavingconstantperiodbutnon-uniformangularvelocity.ItwaslatershownbyBretherton[

3]thatJeffery’sanalyticalsolutioncouldbeextendedtomoregeneralaxisymmetricparticleswithnon-ellipticalcross-sectionsbyreplacingtheellipsoidalaspectratioarbyaneffectiveaspectratioa∗r.Althoughthetheoryforrigidfiberdynamicsisrelativelywell-developed,farlessisknownaboutfibersthatexperiencesignificantbending.Forthisreason,experimentalobservationsareofcriticalimportanceinunderstandingthedynamicsandrheologyofsuspensionscontainingflexiblefibers.Unlikerigidfibers,flexiblefibersundergoamuchwiderandricherrangeofmotionwhensubjectedtoabackgroundlinearshearflowgivenwithvelocityfieldu=(Gy,0,0).ThisproblemwasstudiedinthepioneeringworkofMasonandco-workers[

1,

10,

11]whocategorizedthefiberdynamicsintoseveraldistinctorbitclasses.Whenmotionsareconfinedtothexy-plane,fiberdynamicsfallintooneoffourorbitclasses–rigid,springy,flexible,andcomplexrotations–whichareillustratedinTable

1.TheexperimentsofMasonetal.involvedprimarilysyntheticfibers(madeofrayonanddacron)immersedinhighlyviscousfluids(suchascornsyrup)althoughtheiroriginalmotivationwastheapplicationtonaturalwoodpulpfibersuspensions.

Table1Two-dimensionalorbitclassesforflexiblefiberswhoseunstressedstateisintrinsicallystraight.AdaptedfromForgacsetal.[

11].

OrbitClass

IRigidrotation

IISpringyrotation

IIIaLooporSturn

IIIbSnaketurn

IVComplexrotation

Theseexperimentsonfibersuspensionsdemonstratethatvaryingeitherthehydrodynamicdragforceorthefiberflexibilitygovernsthetransitionbetweenthevariousplanarorbitclasses.InclassIorbits,thefiberremainsrigidandrotatesaspredictedbyJeffery’sequation.Whenasmall

IB SIMULATIONS OF FLEXIBLE FIBER SUSPENSIONS 3

flexibility is introduced into the fiber, it undergoes a springy rotation (class II) in which it bendsinto a shallow arc as it rotates outside the horizontal plane of shear. When the fiber flexibility isincreased, it experiences significant deformations that take the form of S turns (class IIIa) or snaketurns (class IIIb). Note that S turns require a high degree of initial symmetry so that snake turnsare actually far more prevalent in actual suspensions [

1,

10].Whenthefiberflexibilityisincreasedevenfurther,thefibermayneverstraightenoutasitreturnstothehorizontal,inwhichcasetheorbitisclassifiedasacomplexrotation(classIV).Forthelargestvaluesofflexibilityencounteredinthread-likesyntheticfibers,thefibercantransitionbeyondtheclassofcomplexrotationsandundergoconvolutedself-intersectionsasobservedbyForgacsandMason[

10]inexperiments.Inmanycases,thefiberrotationisnotconstrainedtothexy-planebutinsteadundergoesagenuinelythree-dimensionalorbitthatprotrudesor“buckles”outalongthez-direction,althoughthexy-projectionofthefibermaystillbelongtooneoftheplanarorbitclassesI–IVdescribedabove.Notethatrealsuspensionssuchaswoodpulpalsocontainirregularly-shapedfibersthatareeitherintrinsicallycurvedorcontainkinksorothernon-uniformities;consequently,fiberorbitaldynamicsinsuchsuspensionsarenotnecessarilyconfinedtotheseidealizedorbitclasses.Indeed,theexperimentsofArlovetal.[

1]wereusedtoclassifyamuchbroaderclassofgenuinelythree-dimensionalorbitsforwoodpulpfibershavinganintrinsiccurvature.Weclosethisdiscussionbydefiningadimensionlessparameterthatcanbeusedtoconvenientlyclassifyandpredicttheorbitclasstowhichaspecificfiberbelongs.ForlowReynoldsnumberflows(withRe/1),thehydrodynamicdragforceexperiencedbyafiberisproportionalto

Fd=µGD,(2.1)

whereµisthefluidviscosity,Gistheshearrate,andDisthediameterofthefiber[

51].Bybal-ancingthisdragforcewiththecorrespondingfiberbendingforce,asingledimensionlessparametercanbederivedthatcapturesthefiberflexibility[

42]

χ=µDGL3

EI,(2.2)

whereListhefiberlength,EisYoung’smodulusofthematerial,andIismomentofareaintheplaneofbending.Theparameterχmayalsobeinterpretedasaratiooffiberdeflectiontofiberlength.Inaseriesof2Dnumericalsimulations[

44],theparameterχwasshowntoprovideausefulmeasureoffiberflexibilitythatcharacterizeseachorbitclassoverawiderangeoffluidandfiberparameters.ThisdimensionlessflexibilityparameterhasalsoappearedinthecomputationalstudiesofRossandKlingenberg[

39](wheretheyreferredtoitasadimensionlessshearrate)andWherrettetal.[

50](whereχ−1iscalledabendingnumber).

2.2.OverviewofComputationalApproaches.Apopularclassofnumericalmethodsforsimulatingflexiblefibersistheso-calledbeadmodelsinwhichaflexiblefiberistreatedasastringofrigidbeadsthatarelinkedtogetherbyflexibleconnectors.ThisapproachoriginatedwiththeworkofYamamotoandMatsuoka[

56]whotreatedfibersaschainsofbondedspheresthatarefreetostretch,bendandtwistrelativetoeachother.TheirapproachwasextendedbyRossandKlingenberg[

39]whomodelledfibersaschainsofrigidprolatespheroidsconnectedbyballandsocketjoints.ThedynamicsofthebeadnetworkaregovernedbyNewton’slawsthroughabalanceoflinearandangularmomentumthatincorporatesthehydrodynamicandinterparticleforcesactingoneachbead.Morerecently,Klingenberg’sgrouphasvalidatedtheirmodelresultsagainstexperimentsforsinglefiberdynamics[

41]aswellasdevelopingamulti-fiberextensionthathasbeenusedtosimulateflocculation[

45].AsignificantshortcomingofKlingenberg’smodelandrelatedvariants[

48,

50,

56]isthattheyfailtocapturethefullfluid-structureinteractioninfibersuspensions.Althoughtheirapproachdoesincludethehydrodynamicforceexertedbythefluidonthefiber,thefiberdoesnotitselfexertanyforcebackontothefluid;therefore,thefluidisapassivemediumthatobviouslyneglectsanyofthecomplexfluiddynamicsthatmustoccurintheregionimmediatelyadjacenttoadynamicallydeformingfiber.Severalrecentbead-typemodelshaveattemptedtoaddressthislimitation,forexampleWuandAidunwhoproposedamodelforrigid[

55]andflexible[

54]fibersthatincorpo-ratesthefullfluid-structureinteractionusingaLatticeBoltzmannapproach.Similarly,Lindstr¨om

4 J. K. WIENS AND J. M. STOCKIE

and Uesaka proposed an alternative model for rigid [

31]andflexible[

29,

30]fibersthatusestheincompressibleNavier–Stokesequationstomodelthefluid.

Acompletelydifferentapproachforcapturingflexiblefiberdynamicsisbasedontheslenderbodytheory[

2]whichexploitsapproximationstothegoverningequationsbasedonasmallfiberaspectratio.ThisistheapproachtakenbyTornbergandShelley[

47]whostudiedflexiblefilamentsinaStokesflowbyderivingasystemofone-dimensionalintegralequations.Theysolvedtheseintegralequationsnumericallyusingasecond-ordermethodthatalsocapturesinteractionsbetweenmultiplefibers.ThisapproachhasbeenfurtherextendedbyLietal.[

26]whousedasimilarmethodologytoinvestigatetheproblemofsedimentation(orsettling)offlexiblefibers.Unlikethebeadmodelsdescribedearlier,thisslender-bodyapproachcleanlyseparatesthefibermodelfromitsnumericaltreatment,whichmakesthemodelmoreamenabletomathematicalanalysisandalsopermitsthenumericaldiscretizationtobeindependentlytestedthroughconvergencestudies.Furthermore,becausethefluidhasbeensimplifiedbyassumingaStokesflowregime,theseslender-bodydiscretizationsdonotrequireafluidgridbecauseoftheavailabilityofnumericalmethodsbasedonGreen’s-functionsolutionsthatgreatlyreducethecomputationalcomplexity.Theonlysignificantdisadvantageofthisapproach,besidetheStokesflowrestriction,isthatthereareasyetnoresultsthatincorporateanyeffectsoffibertwist[

34].

AnalternativeapproachthatpermitssimulatingflexiblefibersimmersedinhigherReynoldsflowsistheimmersedboundarymethod.ThisistheapproachtakenbyStockieandGreen[

44]whosimulatedasingleflexiblefiberintwodimensionsusingasimplerepresentationofthefiberintermsofspring-likeforcesthatresiststretchingandbending.Stockie[

43]laterextendedtheseresultstoasingle3Dwoodpulpfiberusingamuchmoredetailedandrealisticmodelthatexplicitlycapturestheinterwovenmulti-layernetworkofcellulosefibrilsmakingupthewoodcellwall.Morerecently,NguyenandFaucistudieddiatomchainsusingtheIBmethodwithasimilarlydetailedfibermodel[

33].TheIBmethodproperlycapturesthefullinteractionbetweenthefluidandimmersedstructurebyincludingtheappropriateno-slipboundaryconditionalongthefiber,althoughitdoescomeatanadditionalcost.Firstofall,incomparisonwithslender-bodymodels,thefluidsolverportionoftheIBalgorithmcanbesignificantlymoreexpensivebecauseitsolvestheNavier-Stokesequationsonafinitedifferencegrid.Secondly,becausetheIBmethodaimstocapturethedetailedfluidflowaroundthefiber,thefluidgridneedstobeadequatelyrefinedinordertoresolvedetailsontheorderofthefiberdiameter,whichinturnplacespracticallimitationsonthefiberaspectratiothatcanbecomputed.Thirdly,adetailedcharacterizationofthestructureofathree-dimensionalfibersuchasin[

33,

43]typicallyrequiresthousandsofIBpointstoresolveandisthereforecomputationallyimpracticalforsimulatingsemi-dilutesuspensionsofmultiplefibers.

Inthispaper,weapplytheIBapproachtosimulateflexiblefibers,andwehavechosentotreateachfiberinsteadasaone-dimensionalKirchhoffrodthatresistsstretching,bendingandtwisting,asdescribedinthegeneralizedIBmethodofLimetal.[

28].Additionally,weemployahighlyscalableimplementationofthegeneralizedIBalgorithm[

53]thatspreadsthecomputationalworkoveralargenumberofprocessors,therebypermittingustosimulatehydrodynamicinteractionsinsuspensionscontaininglargenumbersofflexiblefibers.

3.GoverningEquations.ConsideraNewtonian,incompressiblefluidthatfillsarectangulardomainΩhavingdimensionsHx×Hy×HzandwhosestateisspecifiedusingEuleriancoordinatesx=(x,y,z).Immersedwithinthefluidisaneutrally-buoyantelasticfiberoflengthL.Thefiberisdescribedbyaone-dimensionalspacecurveΓ⊂Ω,parameterizedbytheLagrangiancoordinates∈[0,L].Thespatialconfigurationoftherodattimetisgiveninparametricformasx=X(s,t)anditsorientationand“twiststate”aredefinedintermsoftheorthonormaltriadofvectorsD1(s,t),D2(s,t),D3(s,t),wherethethirdtriadvectorD3remainstangenttothespacecurveX.Notethatbecauseofnumericalconsiderations(describedshortly),D3(s,t)isnotexactlytangenttothespacecurveXbutisratherpenalizedinawaythatitisonlyapproximatelyinthetangentialdirection.

Thefluidvelocityu(x,t)andpressurep(x,t)atlocationxandtimetaregovernedbythe

IB SIMULATIONS OF FLEXIBLE FIBER SUSPENSIONS 5

incompressible Navier–Stokes equations

ρ

(∂u

∂t+ u · ∇u

)+∇p = µ∇2u + f +

12∇× n,(3.1)

∇ · u = 0,(3.2)

where ρ is the fluid density and µ is the dynamic viscosity (both constants). The Eulerian forceand torque densities, f and n, are written as

f(x, t) =∫Γ

F (s, t) Φw(x−X(s, t)) ds and(3.3)

n(x, t) =∫Γ

N(s, t) Φw(x−X(s, t)) ds,(3.4)

wherein the integrals spread the Lagrangian force and torque densities, F (s, t) and N(s, t), ontopoints in the fluid. The interaction between Eulerian and Lagrangian quantities is mediated usingthe smooth kernel function

Φw(x) =1

w3φ

(x1

w

(x2

w

(x3

w

),(3.5)

where

φ(r) =

18 (3− 2|r|+

√1 + 4|r| − 4r2) if 0 ≤ |r| < 1,

18 (5− 2|r| −

√−7 + 12|r| − 4r2) if 1 ≤ |r| < 2,

0 if 2 ≤ |r|.(3.6)

Here, w represents an effective thickness of the rod which is set to some multiple of the fluid meshwidth h; that is, w = Ch for some integer multiple C ∈ Z+. Note that if w = h, the kernel Φw(x) isidentical to the discrete delta function employed in many immersed boundary methods [

14,

25,

32].TherodismodeledasaKirchhoffrod[

7]usingthegeneralizedimmersedboundaryframeworkofLim[

28].BalancinglinearandangularmomentumyieldstheLagrangianforceandtorquedensities

F=∂Frod

∂s,(3.7)

N=∂Nrod

∂s+∂X

∂s×Frod,(3.8)

intermsoftheinternalforceFrod(s,t)andmomentNrod(s,t)transmittedacrossasegmentoftherod.InternalquantitiesareexpandedinthebasisD1,D2,D3as

Frod=F1D1+F2D2+F3D3,(3.9)

Nrod=N1D1+N2D2+N3D3,(3.10)

wherethecoefficientfunctionsaredefinedbytheconstitutiverelations

N1=a1

(∂D2

∂s·D3−κ1),N2=a2

(∂D3

∂s·D1−κ2),N3=a3

(∂D1

∂s·D2−τ),(3.11)

F1=b1

(D1·∂X∂s

),F2=b2

(D2·∂X∂s

),F3=b3

(D3·∂X∂s−1).(3.12)

Equations(

3.11)incorporatetheresistanceoftherodtobendingandtwisting,witha1anda2beingthebendingmoduli(aboutaxesD1andD2respectively)whilea3isthetwistingmodulus.Theconstants(κ1,κ2,τ)definetheintrinsictwistvectoroftherodwhereκ:=√κ21+κ22istheintrinsiccurvatureandτistheintrinsictwistinthestress-freeconfiguration.Theremainingforceterms(

3.12)acttokeepthetriadvectorD3approximatelyalignedwiththetangentcurve∂X/∂s

6 J. K. WIENS AND J. M. STOCKIE

and also penalize any stretching of the rod from its equilibrium configuration. Accordingly, thegeneralized IB method can be viewed as a type of penalty method in which the rod is only approx-imately inextensible and approximately aligned with the orthonormal triad, and the constants b1,b2 and b3 play the role of penalty parameters.

The final equations required to close the system are evolution equations for the rod configura-tion and triad vectors

∂X

∂t(s, t) = U(s, t),(3.13)

∂Dα

∂t(s, t) = W (s, t)×Dα(s, t),(3.14)

where α = 1, 2, 3, and U(s, t) and W (s, t) are the linear and angular velocities along the axis of therod respectively. These equations require that the rod translate and rotate according to the localaverage linear and angular velocity of the fluid, and are interpolated in the standard IB fashion as

U(s, t) =∫Ω

u(x, t) Φw(x−X(s, t)) dx,(3.15)

W (s, t) =12

∫Ω

∇× u(x, t) Φw(x−X(s, t)) dx.(3.16)

By using the same kernel function Φw as in (

3.3)–(

3.4),weensurethatenergyisconservedduringtheEulerian–Lagrangianinteractions[

28].

3.1.ProblemGeometryandInitialConditions.TheproblemgeometryisillustratedinFigure

1,showingafiberΓimmersedinarectangularfluiddomainΩ.Periodicboundaryconditionsareimposedonthefluidinthex-andz-directions,whilethefluidisshearedinthevertical(y)direction.Theshearflowisinducedbyimpartingahorizontalmotiontothetopandbottomboundaries,withthetopwallmovingatspeedUtopandthebottomwallintheoppositedirectionatspeedUbot.Inpractice,weimposeUtop=Ubot:=Uandsettheinitialfluidvelocitytothelinearshearprofileu(x,0)=(G(y−Hy/2),0,0)thatwoulddevelopintheabsenceofthefiber,withshearrateG=2U/Hy.ThefiberoflengthLisplacedatthecenterofthefluiddomain

Fig.1.ProblemgeometryforasinglefiberΓlocatedatthecenterofaperiodic,rectangularchannelΩofdimensionHx×Hy×Hz.Aplanarshearflowisgeneratedbyforcingthetopandbottomwallstomovewithconstantvelocities±Utop.

whichisspecifiedbytheconstantX0,andweconsiderthreedifferentinitialconfigurationsforthefiber:

IB SIMULATIONS OF FLEXIBLE FIBER SUSPENSIONS 7

Configuration 1. The fiber is initially straight and is parameterized by

X(s, 0) = ((ε0 + 1)s, 0, 0) + X0,

D1(s, 0) = (0, 1, 0) ,

D2(s, 0) = (0, 0, 1) ,

D3(s, 0) = (1, 0, 0) ,

where 0 ≤ s < L and ε0 is a perturbation parameter that initially stretches the fiber.Configuration 2. The fiber is curved in the xy-plane with

X(s, 0) = (r0 cos(s/r0 + π), r0 sin(s/r0 + π), 0) + X0,

D1(s, 0) = (0, 0, 1) ,

D2(s, 0) = (cos(s/r0 + π), sin(s/r0 + π), 0) ,

D3(s, 0) = (sin(s/r0), cos(s/r0 + π), 0) ,

where αbr0π ≤ s < αer0π, and αb and αe are constants with 0 ≤ αb < αe ≤ 1. Here,the fiber is a segment of a circle of radius r0 lying in the xy-plane and having lengthL = (αe −αb)πr0. Choosing a sufficiently large radius r0 generates fiber with small initialcurvature.

Configuration 3. Similar to Configuration 2, except that the fiber is curved in the xz-plane with

X(s, 0) = ((ε0 + r0) cos(s/r0), 0, (ε0 + r0) sin(s/r0)) + X0,

D1(s, 0) = (0, − 1, 0) ,

D2(s, 0) = (cos(s/r0), 0, sin(s/r0)) ,

D3(s, 0) = (sin(s/r0 + π), 0, cos(s/r0)) ,

where αbr0π ≤ s < αer0π, and αb and αe are constants satisfying 0 ≤ αb < αe ≤ 1.For all three configurations, the rod has open ends so that boundary conditions are required ats = 0 and L. We assume that the internal force and moment vanish at the endpoints, correspondingto F rod

−1/2 = F rodNs−1/2 = 0 and N rod

−1/2 = N rodNs−1/2 = 0, which are consistent with the boundary

conditions applied by Lim [

27].

4.NumericalMethod.Here,weprovideonlyaverybriefoverviewofthenumericalmethodusedtosolvethegoverningequations,whileadetaileddescriptionofthemethodanditsparallelimplementationcanbefoundin[

52,

53].Whendiscretizingthegoverningequationsweusetwoseparatecomputationalgrids,oneeachfortheEulerianandLagrangianvariables.ThefluiddomainisdividedintoanNx×Ny×Nz,uniform,rectangularmeshwhereeachcellhassidelengthh.Weemployamarker-and-cell(MAC)discretization[

18]whereinthepressureisapproximatedatcellcenterpointsxi,j,kfori,j,k=0,1,...,N−1,whilevelocitycomponentsarelocatedoncellfaces.TheLagrangianvariablesarediscretizedatNsuniformly-spacedpointsdenotedbys`=`∆sfor`=0,1,...,Ns−1with∆s=L/Ns.Sinceourcurrentimplementationisrestrictedtoperiodicfluiddomains,thetopandbottomwallboundaryconditionsareimposedbyslightlyincreasingthesizeofthefluiddomaininthey-directionandintroducingplanesofIBtetherpointsalongy=0andHythatareattachedbyverystiffspringstopointsmovingatthespecifiedvelocitiesUtopandUbot.Wedidthisforconvienceonly,sinceneitherthegoverningequationsnorthefluidsolverisrestrictedtoperiodicdomains.TheIBequationsareapproximatedusingafractional-stepmethoddescribedbyWiensandStockie[

53]inwhichthecalculationoffluidvariablesisdecoupledfromthatoftheimmersedboundary.Forintegratingthefluidequations,weusethepseudo-compressibilitymethoddevel-opedbyGuermondandMinev[

15,

16],whichemploysadirectional-splittingstrategythatreducestoaseriesofone-dimensionaltridiagonalsystems.Theselinearsystemscanbesolvedefficientlyondistributed-memoryclustersbycombiningThomas’salgorithmwithaSchur-complementtech-nique.

8 J. K. WIENS AND J. M. STOCKIE

When integrating the rod position and orthonormal triad vectors forward in time, we use thepredictor-corrector procedure devised by Griffith and Lim [

12].Thisdifferentiatesournumericalmethodfromtheapproachtakenin[

53],whereanAdams–Bashforthextrapolationwasusedtoevolvetheimmersedboundaryintime.Althoughthepredictor-correctorprocedureintroducesadditionalwork,thischangeisnecessaryinordertoobtainsecond-orderconvergenceratesinspace.Lastly,theconstitutiverelations(

3.7)–(

3.12)arediscretizedinthesamemannerasinLimetal.[

28],withthemaindifferencebeinginhowtheorthonormaltriadvectorsareinterpolatedontohalfLagrangianstepss`+12=(`+12)∆s.Here,weusetheRodrigues’rotationformulaasdescribedin[

52]insteadoftakingtheprincipalsquarerootusedbyLimetal.[

28].Ifweassumethatthestatevariablesareallknownattimetn,theIBalgorithmforasingletimestep∆tproceedsasfollows.1.InterpolatethelinearandangularfluidvelocitiesontotherodusingthethedeltakernelΦw(x)toobtainUnandWn.

2.PredicttherodpositionXn+1,∗andorthonormaltriadvectors(Dα)n+1,∗attimetn+1=(n+1)∆ttofirstorderforα=1,2,3.

3.CalculatetheLagrangianforceandtorquedensities,FandN,attimestnandtn+1usingthediscretizationemployedbyLimetal.[

28].

4.SpreadtheLagrangianforceandtorquedensitiesjustcalculatedontofluidgridpoints.ThenapproximatetheEulerianforceandtorquedensity,fn+12andnn+12,attimetn+12=(n+12)∆tusinganarithmeticaverage.

5.IntegratetheincompressibleNavier–Stokesequationstotimetn+1using(fn+12+12∇×nn+12)astheexternalbodyforce.

6.CorrecttherodpositionXn+1andorthonormaltriad(Dα)n+1tosecondorder.Thisrequiresinterpolatingthelinearandangularfluidvelocityattimetn+1ontotherodloca-tion.

5.NumericalResults.

5.1.IntrinsicallyStraightFibers.Webeginbyconsideringthebehaviourofasingleflex-iblefiberimmersedinashearflow,wheretheequilibriumfiberstateisintrinsicallystraight(withnobend,notwist).AsdescribedearlierinSection

2,experimentalobservationsshowthatsuchfibersarecharacterizedbyawell-definedorbitalmotionthatcanbeseparatedintooneofsev-eraldistinctorbitclassesaccordingtoafiberflexibilityparameterχthatcapturestheratiooffiberbendingforcetohydrodynamicdrag.Thissectionaimstoinvestigatethefullrangeofthesetwo-dimensionalorbitalmotions.Inallsimulations,weusethenumericalparameterslistedinTables

2and

3.Sincethefibermotionisconfinedtothexy-plane,wesignificantlyreducetheexecutiontimeofasimulationbyshrinkingthedomaindepthHz,whichallowsustorun100+simulationsinareasonabletimeframe.Notethattheseresultsarevirtuallyidenticaltosimulationsusingalargerdomain(Hz=2),whichweconfirmedthroughnumerouscomputationalexperiments.Inallsimulations,wechoosephysicalparametersthatareconsistentwithnatural(unbeaten)kraftpulpfibers,takingafiberlengthof0.1−0.3cmandflexuralrigidityof0.001−0.07gcm3/s2[

8,

9].Becausefibersinournumericalsimulationshavediameterthatisproportionaltotheeffectivethicknessw,oursimulatedfibersareactuallythickerthananaturalpulpfiber.Forexample,weuseadeltafunctionregularizationcorrespondingtow≈80µm,whereasanaturalpulpfiberhasadiameterbetween20–80µm.Sincetheprecisedependenceofthesimulatedfiberdiameteronwisunknown,weappealtotheworkofBringleyandPeskin[

4]wheretheyobservedthataone-dimensionalarrayofrigidIBpointshasaneffectivenumericalthicknessofD≈2w.Althoughtheseresultsmaynotbestrictlyapplicableinthepresentsetting,thisapproximationissufficientforourpurposes.Anyremainingdiscrepancyinthefiberdiametercanthenbeaccommodatedforbyadjustingthevalueoffiberdragforce(seeFdfromequation(

2.1)).InFigures

2and

3,wedisplaysnapshotsofthedynamicsofafiberwithinitialconfigurationlyinginthexy-planeandforsixvaluesofthedimensionlessflexibilityparameterχbetween0.19and

IB SIMULATIONS OF FLEXIBLE FIBER SUSPENSIONS 9

Table 2Numerical and physical parameter values used in rigid fiber simulations.

Parameter Symbol Value

Size of fluid domain Ω Hx ×Hy ×Hz 2× 12× 16h cm

Number of fluid grid points Nx ×Ny ×Nz 256× 64× 16Fluid mesh width h 1/128 cmFluid density ρ 1.0 g/cm3

Fluid viscosity µ 10.0 g/(cm·s)Speed of moving plates Utop = Ubot 8 cm/sShear rate G 32 s−1

Time step ∆t 1e−5 sFiber length L 0.3 cmFiber mesh width ∆s L/120 cmBending and twisting modulus (EI) a1 = a2 = a3 0.7 dyne · cm2

Shear and stretch modulus b1 = b2 = b3 540 dyne · cm2

Fiber effective thickness w 0.0078125 cmIntrinsic twist vector (κ1, κ2, τ) (0, 0, 0)Fiber length perturbation ε0 0.001Support of delta kernel C 4

Table 3Parameter modifications for the flexible fiber simulations in Figures

2and

3.OnlythoseparametersthathavechangedrelativetovaluesindicatedinTable

2areshownhere.

OrbitClassConfigurationParameters

Springy2r0=0.45,αb=0.4,αe=0.6,EI=2.5e−2,∆s≈1.25e−3,L≈0.282

Sturn1EI=3.0e−3

Snaketurn2r0=0.45,αb=0.4,αe=0.6,EI=3.0e−3,∆s≈1.25e−3,L≈0.282

Complex2r0=0.4,αb=0.4,αe=0.6,µ=15,EI=1.0e−3,∆s≈1.25e−3,L≈0.251

Coiled1G=64,µ=90,EI=1.0e−4,L=0.5

1.125e5.Asexpected,thesimulationsexhibitarangeofdifferentorbitalmotionsthattransitionbetweenthevariousorbitclasses(rigid,springy,flexible,complex,coiled)astheflexibilityincreases.Wealsonotethatwithintheintermediaterangeofχvalues,weobservebothSturnsandsnaketurnsdependingonthesymmetryoftheinitialfiberconfiguration.Despitebeingveryrareinactualfibersuspensions,Sturnsturnouttoberemarkablystableinouridealizedsettingwithaplanarshearflow;indeed,itisonlywhenasymmetryisintroducedinthefiberthrough(forexample)theinitialshapeoralength-dependentstiffnessthatsnaketurnsareobservedinsteadofSturns.TheseresultsareconsistentwiththoseofMasonandco-workers[

1,

10]whoobservedthatSturnsrequiredahighdegreeofsymmetrythatisrarelyachievedinexperiments.Forthelargestvalueofχ=1.125e5inFigure

3

(c)weobserveacoiledorbitwithself-entanglement,andalthoughthistypeofbehaviourisnotpertinenttopulpfibers,ForgacsandMason[

10]didobservesuchcoilingwiththread-likesyntheticfibers.Eventually,thisfiberformsacomplexwrithingbundleasthefiberundergoesself-contact,butbecauseourmodeldoesn’tincorporateanycontact(fiber-on-fiber)forceswemakenoclaimthattheseresultscorrespondtophysicallyaccuratecoilingdynamics.Whentheinitialfiberconfigurationisrotatedintothexz-plane,theresultingdynamicsarenon-planarbutstillfolloworbitsqualitativelysimilartothosederivedbyJeffery[

19].Examplesofthesenon-planarorbitsaregiveninthefirstauthor’sdoctoralthesis[

52],whichshowthattheflexiblefiberundergoesamotionconsistingofarotationsinthexy-planesuperimposedona

10 J. K. WIENS AND J. M. STOCKIE

0.80.9

1.01.1

1.2x

0.0

0.1

0.2

0.3

0.4

0.5

y

t=0.0000

0.80.9

1.01.1

1.2x

t=0.3500

0.80.9

1.01.1

1.2x

t=0.4400

0.80.9

1.01.1

1.2x

t=0.5000

0.80.9

1.01.1

1.2x

t=0.6500

−160

−120

−80

−40

0 40 80 120

160

(a)

Rig

idO

rbit

(χ=

0.1

9,E

I=

7.0

e−1,L

=0.3

)

0.80.9

1.01.1

1.2x

0.0

0.1

0.2

0.3

0.4

0.5

y

t=0.0000

0.91.0

1.11.2

x

t=0.2500

0.91.0

1.11.2

x

t=0.3500

0.91.0

1.11.2

x

t=0.4000

1.01.1

1.21.3

x

t=0.6000

−100

−80

−60

−40

−20

0 20 40 60 80 100

(b)

Sprin

gy

Orb

it(χ

=4.4

9,E

I=

2.5

e−2,L≈

0.2

82)

0.80.9

1.01.1

1.2x

0.0

0.1

0.2

0.3

0.4

0.5

y

t=0.0000

0.91.0

1.11.2

x

t=0.1500

0.91.0

1.11.2

x

t=0.2500

0.91.0

1.11.2

x

t=0.3500

0.91.0

1.11.2

x

t=0.6000

−100

−80

−60

−40

−20

0 20 40 60 80 100

(c)Snake

Orb

it(χ

=37.3

8,E

I=

3.0

e−3,L≈

0.2

82)

Fig

.2.Snapsh

ots

offiber

positio

nand

fluid

vorticity

inth

exy-p

lane

for

ahalf-ro

tatio

nin

arigid

,sp

ringy

and

snake

orbit.

Para

meter

valu

esare

listedin

Tables

2and 3.

IB SIMULATIONS OF FLEXIBLE FIBER SUSPENSIONS 11

0.80.9

1.01.1

1.2x

0.0

0.1

0.2

0.3

0.4

0.5

y

t=0.0000

0.80.9

1.01.1

1.2x

t=0.2500

0.80.9

1.01.1

1.2x

t=0.3500

0.80.9

1.01.1

1.2x

t=0.4000

0.80.9

1.01.1

1.2x

t=0.6000

−100

−80

−60

−40

−20

0 20 40 60 80 100

(a)

SO

rbit

(χ=

45.0

0,E

I=

3.0

e−3,L

=0.3

)

0.80.9

1.01.1

1.2x

0.0

0.1

0.2

0.3

0.4

0.5

y

t=0.0000

0.80.9

1.01.1

1.2x

t=0.1500

0.80.9

1.01.1

1.2x

t=0.3500

0.80.9

1.01.1

x

t=0.5500

0.70.8

0.91.0

x

t=0.8000

−100

−80

−60

−40

−20

0 20 40 60 80 100

(b)

Com

plex

Orb

it(χ

=119.0

6,E

I=

1.0

e−3,and

L≈

0.2

51)

0.80.9

1.01.1

1.2x

0.0

0.1

0.2

0.3

0.4

0.5

y

t=0.0000

0.80.9

1.01.1

1.2x

t=0.1000

0.80.9

1.01.1

1.2x

t=0.2000

0.80.9

1.01.1

1.2x

t=0.3000

0.80.9

1.01.1

1.2x

t=0.3500

−100

−80

−60

−40

−20

0 20 40 60 80 100

(c)C

oiled

Orb

it(χ

=1.1

25e5

,E

I=

1.0

e−4,and

L=

0.5

)

Fig

.3.Snapsh

ots

offiber

positio

nand

fluid

vorticity

inth

exy-p

lane

for

an

Stu

rn,co

mplex

and

coiled

orbit.

Para

meter

valu

esare

listedin

Tables

2and 3.

12 J. K. WIENS AND J. M. STOCKIE

100 101 102

Dimensionless Flexibility (χ)

10−3

10−2

10−1

EI

IIIIIIIV

(a)

100 101 102

Dimensionless Flexibility (χ)10−2

10−1

100

101

102

Dra

gR

ate

(Fd)

IIIIIIIV

(b)

Fig. 4. Summary of all simulations showing the relationship between orbit class and different values of thedimensionless flexibility χ, flexural rigidity EI and drag rate Fd. Open markers denote the experimental data shownin Table

4whereE=3GPa.

rockingmotionbackandforthaboutthez-axisinthexz-plane.Wenextexploreinmoredetailthedependenceofthefiberorbitclassonthedimensionlessflexibilityparameterχ.Tothisend,weperformamuchlargerseriesofsimulationswithvaryingfiberlength(L=0.1–0.3cm),diameter(D≈156–312µm),flexuralrigidity(EI=0.001–0.1dyne·cm2),shearrate(G=20–120s−1)andviscosity(µ=0.07–100.0g/(cm·s))correspondingtoReynoldsnumberslyingintherange0.0027–23.9.Foreachsimulation,weassignthefiberdynamicstooneofthefourorbitclassesI–IVbycalculatingthetotalfibercurvature

λ(t)=∫L0

∣∣∣∣∂D3∂s(s,t)∣∣∣∣ds,andusingthemaximumcurvatureoverahalf-rotationt0≤t≤t1toapplythefollowingcriteria:•I:Theorbitisrigidifmaxt0≤t≤t1λ(t)<0.4.

•II:Theorbitisspringyif0.4≤maxt0≤t≤t1λ(t)<3.7.

•III:TheorbitisanSorsnaketurnif3.7≤maxt0≤t≤t1λ(t)andλ(t1)<2.5.

•IV:Theorbitiscomplexif3.7≤maxt0≤t≤t1λ(t)and2.5≥λ(t1).

NotethatS/snaketurnsandcomplexrotationshavethesamerangeofmaximumcurvature,andthatweusethefibercurvatureλ(t1)attheendofthehalf-rotationtodeterminewhetherornotthefiberhasstraightenedout.SimulationsaredepictedgraphicallyinFigure

4intermsoftwoplotsofflexuralrigidityEIanddragforceFdversusdimensionlessflexibilityχ.Eachpointontheplotcorrespondstoasimulationusingaspecificchoiceofphysicalparameters,andthepointtypeisassignedbasedontheorbitclassificationcriteriaabove.Fromthesetwoplots,itisevidentthatthereisacleardivisionoforbitsintoclassesI,IIandIIIalongverticaldivisionsthatcorrespondtovaluesofχ∼=3.85andχ∼=20.0.TheboundarybetweenclassesIIIandIVisnotassharplydefined,butcanstillbeassignedtoavalueofflexibilityχ≈65.0.Basedontheseobservations,weconcludethatthedimensionlessflexibilityχprovidesausefulmeasureforcharacterizingorbitclassesatthelowerReynoldsnumbersconsideredhere.WeconcludethissectionbyperformingafurthercomparisonofournumericalsimulationswiththeexperimentsofForgacsandMason[

10]ondacronfibersincornsyrup.Firstofall,welisttheparametersandobservedorbitclassforseveraloftheseexperimentsinTable

4.Basedon

IB SIMULATIONS OF FLEXIBLE FIBER SUSPENSIONS 13

values of χ · EI, we see that this rescaled flexibility parameter may be used to classify each orbit,assuming that EI is constant in all experiments. However, we emphasize that since Forgacs andMason did not provide a value for the flexural rigidity (EI), we were unable to determine the valueof χ explicitly.

Table 4Experimental results obtained from Forgacs and Mason [

10]forsyntheticdacronfibers.

OrbitClassχ·EIG(s−1)µ(g/(cm·s))L(cm)D(µm)

Rigid1.96e−43.92111.40.17787.8Rigid1.01e−35.14391.20.14047.8Springy1.43e−34.76311.40.32297.8Springy2.39e−35.96591.20.17787.8Springy4.91e−34.87991.20.24187.8Flexible1.16e−24.82591.20.32297.8

Becausetheseexperimentswereallperformedwithdacronfibers,wenextexplorefurthertheassumptionthatEIisroughlyconstant,andalsowhethertheexperimentalresultsareconsistentwiththedivisionoforbitclassesinoursimulationsinFigure

4.Firstofall,weremarkthatallexperimentaldatapointsareconsistentwithoursimulationsif2.46e−4<EI<3.71e−4(dyne·cm2).Unfortunately,theYoung’smodulusEfordacronisknowntovaryoveranextremelywiderangeof71.5MPa≤E≤22.1GPabetweenvariousmanufacturers[

6].However,themanufacturerofthefibersusedbyForgacsandMasonwasidentifiedasE.I.duPontdeNemoursandCo.,andwewereabletofindapatentfiledbythiscompanyin1969[

5]forseveraldacronblendsthatlistsamuchtighterrangeforYoung’smodulusof2.0GPa<E<3.5GPa.Therefore,thehypotheticalEIofthesesyntheticfiberswouldbebetween3.63e−4<EI<6.36e−4,whichisconsistentwithournumericalresults!Furthermore,mostdatapointsarestillclassifiedcorrectlywhentheEIfallsoutsideourconsistencyrange(2.46e−4<EI<3.71e−4).Toillustrate,wehaveplottedtheexperimentaldatainFigure

4usingopenmarkers,assumingE=3GPa(givinganEI=5.45e−4).Here,weobservethatallexperimentaldataareclassifiedcorrectly,exceptforonetroublesomedatapoint.Therefore,weconcludefromtheseresultsthatoursimulationsareinexcellentagreementwithexperimentaldata.

5.2.IntrinsicallyCurvedFibers.Wenextconsidersingleflexiblefibersthathaveanin-trinsiccurvatureatequilibrium,asituationthatisoftenencounteredfornaturalfiberssuchaswoodpulp.WeusethebaseparametervaluesinTable

2andsimulatetwocasescorrespondingtothemodificationslistedinTable

5.Inbothcases,thefiberisinitializedasacurvedsegmentofacirculararcwithintrinsictwistvector(κ1,κ2,τ)=(1/r0,0,0),whichkeepstheinitialfiberconfigurationatequilibrium(thatis,N1=N2=N3=0att=0).TheresultingorbitsdepictedinFigures

5and

6clearlycorrespondtoS-andsnake-likeor-bits.Theprojectionsofbothfibersinthexy-planebehavelikethecorrespondingplanarorbitsconsideredinSection

5.1,butprotrudeintothexz-plane.ThesesimulationsreproducesimilarorbitaldynamicstothoseobservedinexperimentsofArlovetal.[

1].Thefirstauthor’sthesis[

52]showsadditionalsimulationsforafiberinitiallyorientedalongthez-directionandundergoinganadditionalaxialspin,forwhichthefiberrotatesaroundthez-axisandslightlystraightensoutasitrotatesintotheshearflow.

Table5ParametermodificationsfortheflexiblefibersimulationsinFigure

5and

6.OnlythoseparametersthathavechangedrelativetovaluesinTable

2areshownhere.

OrbitClassConfigurationParameters

Sturn3Hz=2,r0=0.45,αb=0.4,αe=0.6,EI=3.0e−3,ε0=1e−3,∆s≈1.25e−3,L≈0.282

Snaketurn2Hz=2,r0=0.45,αb=0.4,αe=0.6,EI=3.0e−3,Θxz=π/16,∆s≈1.25e−3,L≈0.282

14 J. K. WIENS AND J. M. STOCKIE

Fig

.5.Snapsh

ots

ofan

Stu

rnorbit

for

an

intrin

sically

curved

fiber

with

para

meters

inTables

2and 5.

IB SIMULATIONS OF FLEXIBLE FIBER SUSPENSIONS 15

Fig

.6.Snapsh

ots

ofsn

ake

turn

for

an

intrin

sically

curved

fiber

with

para

meters

inTables

2and 5.

16 J. K. WIENS AND J. M. STOCKIE

5.3. Multiple Flexible Fibers. For our last series of simulations, we consider an idealizedrepresentation of a fiber suspension that permits us to employ the domain tiling techniques de-scribed in [

53].Inthesecomputations,wesimulateaPx×1×PzarrayoffibersimmersedinthefluiddomainΩ=[0,PxHx]×[0,Hy]×[0,PzHz]usingtheboundaryconditionsstatedinSection

3.1.ThecoderunsinparallelonaP=Px×Pzarrayofcomputerprocessors(Py=1)andthefluiddomainΩispartitionedalongthex-andz-axessothatoneprocessorlabelledI,KisresponsibleforeachsubdomainΩI,K=[(I−1)Hx,IHx]×[0,Hy]×[(K−1)Hz,KHz],forI=1,2,...,PxandK=1,2,...Pz.Wehaveconstructedthisproblemsothatitcanbeusedasaweakscalabilitytest,whereinthelocalproblemsizeisheldfixedasboththenumberofprocessorsandglobalproblemsizeareincreased.Itisimportanttorecognizethatourmethodisinnowayrestrictedtosuchidealizedarraysoffibers,butratherwehaveemployedthisarrangementhereinordertoclearlyillustratetheparallelscalabilityofouralgorithm.Initially,eachsubdomainΩI,Kcontainsasingleintrinsically-curvedfiberlocatedatitscentroid,witharandomly-chosenorientationangleandwhoseinitialshapeisdefinedinthesamemannerasdescribedearlierforConfiguration3.ThenumericalandphysicalparametersareasinTable

2withthefollowingmodifications:Hx=0.421875,Hy=12,Hz=0.3125,∆t=5e−5,r0=0.45,αb=0.4,αe=0.6,EI=3.0e−3,∆s≈1.25e−3,L≈0.282,Utop=8.5andUbot=7.5.Anotherdifferencefromourearliersimulationsisthatthetopandbottomboundariesthatinducetheshearflownowmoveatdifferentspeeds(thatis,Utop6=Ubot);consequently,fibersaretransportedacrosssubdomainboundarieswhichprovidesanontrivialtestofouralgorithm’sabilitytohandleinter-processcommunicationaswellaschangestotheIBdatastoredoneachprocessorovertime.Figure

7presentsthreesnapshotsofthedynamicsofa16×16arrayoffibersattheinitialandtwolatertimes.Theimageattimet=0.25emphasizesthefactthatallfibersspendthemajorityoftheirtimealignedhorizontallywiththeshearflow(i.e.,alongthex-axis)andthatonlyasmallproportionofthefibersatanytimeinstantarerotatedoutoftheshearplane.Asthesuspensionevolvesovertime,thefibersarepronetodriftandclustertogether,leadingtodevelopmentofmorecomplexbehaviorsuchasisshownintheimageattimet=1.80.Thislastsnapshotsuggeststhatouralgorithmiscapableofsimulatingatleasttheinitialphasesfiberflocculationinasuspensionwithareasonableconcentrationoffibers.Thenextsetofresultsattemptstoquantifytheimportanceofincludingthefulltwo-wayfluid-structureinteractionbetweenfluidandfibers,relativetoothermorecommonnumericalapproachesthatsimplifyoreliminatethisinteraction.Forthispurpose,wedefineaquantitywecallthelocaldeviationas

Erel(x,t)=|u(x,t)−u(x,0)|maxx(|u(x,0)|),

whichisalocalmeasureoftherelativedifferencebetweenthecomputedfluidvelocityandthecorrespondinglinearshearflowthatwouldariseintheabsenceofanyfibers.Wealsodefinearelatedglobaldeviationfromlinearshearusingeitherthe`∞-norm

‖Erel(x,t)‖∞=maxi,j,k|Erel(xi,j,k,tn)|,

or`1-norm

‖Erel(x,t)‖1=h3

V

∑i,j,k

|Erel(xi,j,k,tn)|,

whereVisthefluidvolume.Fora25-fibersimulationcomputedwith(Px,Py,Pz)=(5,1,5)processors,weprovideplotsinFigure

8ofthelocaldeviationErelattimet=1.80andalongtwodifferenthorizontalslices.ThefigureshavetruncatedthevaluesofErelabovethethreshold0.025sothatsmallerdeviationscanbevisualized.Fromtheseplotsweobservethatthelocaldeviationislargestadjacenttotheindividualfiberswheretheno-slipconditionforcesthefluidtofollowthedeformingandrotatingfibers,butthatthedeviationdecaysrapidlyawayfromthefibers.Nonetheless,therearestillsignificantfluiddisturbancesspreadthroughouttheentirefluiddomainthatinfluencefibermotionandarerelatedtohydrodynamicinteractionsbetweenindividualfibers.Thecorrespondingglobaldeviationvaluesare‖Erel‖1=0.0159and‖Erel‖∞=0.135whichshow

IB SIMULATIONS OF FLEXIBLE FIBER SUSPENSIONS 17

Fig. 7. A suspension of 256 intrinsically-curved fibers (Px = Pz = 16) in Configuration 3. Parameters aredescribed in Section

5.3.

thatrelativedeviationsintheflowareashighas13.5%nearthefibersbutthattheaverageovertheentireflowfieldisonlyabout1.6%.Othersimulationsusingdifferentparametersandinitialconditionsyieldsimilarresults(see[

52])withtheaveragerelativedeviationhoveringaround2%andthemaximumrangingupto40%.Theseresultssuggestthatincorporatingthefullfluid-structureinteractionintomodelsfornon-dilutesuspensionsisimportantintermsofproperlycapturingthedynamicsoftheflexiblefibers.WealsonotethatthesesimulationsareperformedatrelativelowvaluesofReynoldsnumberandfiberconcentration,andthatthedeviationmeasurewillonlygetlargerastheReynoldsnumberandconcentrationincrease.Finally,weclosebyinvestigatingtheparallelperformanceofourIBalgorithmbyconsideringsimulationsofdifferent-sizedsuspensionsoffibersonmultipleprocessors.Basedonourproblemsetup,theexecutiontimewouldideallystayconstantastheglobalproblemsizeandnumberofprocessorsincrease.Indeed,Table

6showsthatasthesizeofthefiberarray(Px,Pz)isincreased,thereisonlyaslightincreaseinexecutiontimeandhenceouralgorithmissaidtobeweaklyscalable.Weremarkthatourcodeisstillnotfullyoptimizedandthatthealgorithmperformancecouldbefurtherimprovedbymakingenhancementssuchasenforcingthetop/bottomwallboundaryconditionsdirectlyinsteadofourapproachoftreatingthewallsusingIBtetherpoints.

6.Conclusions.Inthispaper,wehavepresentedaparallelimmersedboundaryalgorithmforsimulatingsuspensionsofflexiblefibers,whereindividualfibersaremodelledasKirchhoffrods.Thenoveltyofthisworkderivesfromitsapplicationtomulti-fibersuspensionflowswithnon-

18 J. K. WIENS AND J. M. STOCKIE

Fig. 8. Fluid deviation Erel on two horizontal planes for the 25 fiber simulation computed in Table

6.PlottedvaluesaretruncatedatthethresholdErel=0.025.

Table6Weakscalingresultsshowingtheaverageexecutiontimepertimestep(inseconds)forthemultiplefiberproblem.ThelocalproblemsizeisheldfixedasthenumberofprocessorsP(andglobalproblemsize)isincreased.SimulationsarerunontheBugabooclustermanagedbyWestGrid[

49].

P(Px,Py,Pz)WallTime

25(5,1,5)0.5764(8,1,8)0.58144(12,1,12)0.58225(15,1,15)0.62256(16,1,16)0.61

zeroReynoldsnumberandtheinclusionofthethefulltwo-wayinteractionbetweenthefluidandsuspendedfibers.Inournumericalsimulations,wereproducethefullrangeoforbitaldynamicsobservedexperimentallybyMasonandco-workersforisolatedfibersimmersedinalinearshearflow.Whenextendingtheresultstomulti-fibersuspensions,wedemonstratethroughaweakscalabilitytestthattheparallelscalingofouralgorithmisnearoptimalandhenceshowspromiseforsimulatingmorecomplexscenariossuchassemi-dilutesuspensionsandfiberflocculation.Inthefuture,weplantoimproveontheunderlyingmodel,whichwillallowustosimulatemorerealisticfibersuspensions.First,weplanonincorporatingthecontactforcesbetweenfiberssuchasthefrictionalforcesmodelledbySchmidetal.[

40].Second,wewillincorporatetheeffectofaddedfibermassusingthepenaltyIBmethod[

22].Afterincorporatingtheseextensions,amoreextensivecomparisontoexperimentaldatawouldberequired,comparingquantitiessuchasthespecificviscosityofthesuspension[

37].

REFERENCES

[1]A.P.Arlov,O.L.Forgacs,andS.G.Mason.ParticlemotionsinshearedsuspensionsIV.Generalbehaviourofwoodpulpfibres.svenskpapp,61(3):61–67,1958.[2]G.K.Batchelor.Slender-bodytheoryforparticlesofarbitrarycross-sectioninStokesflow.JournalofFluidMechanics,44(3):419–440,1970.[3]F.P.Bretherton.ThemotionofrigidparticlesinashearflowatlowReynoldsnumber.JournalofFluidMechanics,14(2):284–304,1962.[4]T.T.BringleyandC.S.Peskin.ValidationofasimplemethodforrepresentingspheresandslenderbodiesinanimmersedboundarymethodforStokesflowonanunboundeddomain.JournalofComputationalPhysics,227:5397–5425,2008.[5]O.Cope.Polymerblendsofpolyethyleneterephthalateandalpha-olefin,alpha,beta-unsaturatedcarboxylicacidcopolymers,March251969.USPatent3,435,093.[6]Dacronflexuralmodulus.WolframAlpha.RetrievedFebruary10,2014from

http://www.wolframalpha.com/

input/?i=dacron+flexural+modulus.[7]E.H.Dill.Kirchhoff’stheoryofrods.ArchiveforHistoryofExactSciences,44(1):1–23,1992.[8]P.A.T.DooandR.J.Kerekes.Amethodtomeasurewetfiberflexibility.TappiJournal,64(3):113–116,1981.

IB SIMULATIONS OF FLEXIBLE FIBER SUSPENSIONS 19

[9] P. A. T. Doo and R. J. Kerekes. The flexibility of wet pulp fibres. Pulp and Paper Canada, 83(2):46–50, 1982.[10] O. L. Forgacs and S. G. Mason. Particle motions in sheared suspensions X. orbits of flexible threadlike particles.

Journal of Colloid Science, 14:473–491, 1959.[11] O. L. Forgacs, A. A. Robertson, and S. G. Mason. The hydrodynamic behaviour of paper-making fibres. Pulp

Paper Magazine, 59(5):117–128, 1958.[12] B. E. Griffith and S. Lim. Simulating an elastic ring with bend and twist by an adaptive generalized immersed

boundary method. Communications in Computational Physics, 12(2):433, 2012.[13] B. E. Griffith, X. Y. Luo, D. M. McQueen, and C. S. Peskin. Simulating the fluid dynamics of natural and

prosthetic heart valves using the immersed boundary method. International Journal of Applied Mechanics,1(1):137–177, 2009.

[14] B. E. Griffith and C. S. Peskin. On the order of accuracy of the immersed boundary method: Higher orderconvergence rates for sufficiently smooth problems. Journal of Computational Physics, 208(1):75–105,2005.

[15] J. L. Guermond and P. D. Minev. A new class of fractional step techniques for the incompressible Navier-Stokesequations using direction splitting. Comptes Rendus Mathematique, 348:581–585, 2010.

[16] J. L. Guermond and P. D. Minev. A new class of massively parallel direction splitting for the incompressibleNavier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 200(23-24):2083–2093, 2011.

[17] C. Hamlet, A. Santhanakrishnan, and L. A. Miller. A numerical study of the effects of bell pulsation dynamicsand oral arms on the exchange currents generated by the upside-down jellyfish Cassiopea xamachana.Journal of Experimental Biology, 214:1911–1921, 2011.

[18] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluidwith free surface. Physics of Fluids, 8(12):2182–2189, 1965.

[19] G. B. Jeffery. The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Societyof London. Series A, 102(715):161–179, 1922.

[20] C. G. Joung, N. Phan-Thien, and X. J. Fan. Direct simulation of flexible fibers. Journal of Non-NewtonianFluid Mechanics, 99(1):1–36, 2001.

[21] M. Keshtkar, M. C. Heuzey, and P. J. Carreau. Rheological behavior of fiber-filled model suspensions: Effectof fiber flexibility. Journal of Rheology, 53(3):631–650, 2009.

[22] Y. Kim and C. S. Peskin. Penalty immersed boundary method for an elastic boundary with mass. Physics ofFluids, 19(5):053103, 2007.

[23] Y. Kim and C. S. Peskin. 3D parachute simulation by the immersed boundary method. Computers & Fluids,38(6):1080–1090, 2009.

[24] Y. Kim, Y. Seol, M. C. Lai, and C. S. Peskin. The immersed boundary method for two-dimensional foam withtopological changes. Communications in Computational Physics, 12(2):479, 2012.

[25] M. C. Lai and C. S. Peskin. An immersed boundary method with formal second-order accuracy and reducednumerical viscosity. Journal of Computational Physics, 160(2):705–719, 2000.

[26] L. Li, H. Manikantan, D. Saintillan, and S. E. Spagnolie. The sedimentation of flexible filaments. Journal ofFluid Mechanics, 735:705–736, 2013.

[27] S. Lim. Dynamics of an open elastic rod with intrinsic curvature and twist in a viscous fluid. Physics of Fluids,22(2):024104–024104, 2010.

[28] S. Lim, A. Ferent, X. S. Wang, and C. S. Peskin. Dynamics of a closed rod with twist and bend in fluid. SIAMJournal on Scientific Computing, 31(1):273–302, 2008.

[29] S. B. Lindstrom and T. Uesaka. Simulation of the motion of flexible fibers in viscous fluid flow. Physics ofFluids, 19(11):113307, 2007.

[30] S. B. Lindstrom and T. Uesaka. Simulation of semidilute suspensions of non-brownian fibers in shear flow.Journal of Chemical Physics, 128(2):024901, 2008.

[31] S. B. Lindstrom and T. Uesaka. A numerical investigation of the rheology of sheared fiber suspensions. Physicsof Fluids, 21:083301, 2009.

[32] Y. Mori and C. S. Peskin. Implicit second-order immersed boundary methods with boundary mass. ComputerMethods in Applied Mechanics and Engineering, 197(2528):2049–2067, 2008.

[33] H. Nguyen and L. Fauci. Hydrodynamics of diatom chains and semiflexible fibres. Journal of The RoyalSociety Interface, 11(96):20140314, 2014.

[34] S. D. Olson, S. Lim, and R. Cortez. Modeling the dynamics of an elastic rod with intrinsic curvature and twistusing a regularized Stokes formulation. Journal of Computational Physics, 2013.

[35] C. S. Peskin. Flow Patterns Around Heart Valves: A Numerical Method. Journal of Computational Physics,10:252–271, 1972.

[36] C. S. Peskin. The immersed boundary method. Acta Numerica, 11:479–517, 2002.[37] C. J. S. Petrie. The rheology of fibre suspensions. Journal of Non-Newtonian Fluid Mechanics, 87(2):369–402,

1999.[38] K. A. Rejniak and R. H. Dillon. A single cell-based model of the ductal tumour microarchitecture. Computa-

tional and Mathematical Methods in Medicine, 8(1):51–69, 2007.[39] R. F. Ross and D. J. Klingenberg. Dynamic simulation of flexible fibers composed of linked rigid bodies.

Journal of Chemical Physics, 106:2949–2960, 1997.[40] C. F. Schmid, L. H. Switzer, and D. J. Klingenberg. Simulations of fiber flocculation: Effects of fiber properties

and interfiber friction. Journal of Rheology, 44(3):781–809, 2000.[41] P. Skjetne, R. F. Ross, and D. J. Klingenberg. Simulation of single fiber dynamics. Journal of Chemical

Physics, 107:2108–2121, 1997.[42] J. M. Stockie. Analysis and Computation of Immersed Boundaries, with Application to Pulp Fibres. PhD the-

sis, Institute of Applied Mathematics, University of British Columbia, Vancouver, Canada, 1997. Available

20 J. K. WIENS AND J. M. STOCKIE

from

https://circle.ubc.ca/handle/2429/7346.[43]J.M.Stockie.Simulatingthedynamicsofflexiblewoodpulpfibresinsuspension.InProceedingsofthe16thAnnualInternationalSymposiumonHighPerformanceComputingSystemsandApplications,page154.IEEEComputerSociety,2002.[44]J.M.StockieandS.I.Green.Simulatingthemotionofflexiblepulpfibresusingtheimmersedboundarymethod.JournalofComputationalPhysics,147(1):147–165,1998.[45]L.H.SwitzerandD.J.Klingenberg.Flocculationinsimulationsofshearedfibersuspensions.InternationalJournalofMultiphaseFlow,30(1):67–87,2004.[46]L.H.SwitzerIIIandD.J.Klingenberg.Rheologyofshearedflexiblefibersuspensionsviafiber-levelsimula-tions.JournalofRheology,47(3):759–778,2003.[47]A.K.TornbergandM.J.Shelley.SimulatingthedynamicsandinteractionsofflexiblefibersinStokesflows.JournalofComputationalPhysics,196:8–40,2004.[48]G.Wang,W.Yu,andC.Zhou.Optimizationoftherodchainmodeltosimulatethemotionsofalongflexiblefiberinsimpleshearflows.EuropeanJournalofMechanics-B/Fluids,25(3):337–347,2006.[49]WestGrid.QuickStartGuidetoBugaboo.RetrievedApril11,2013from

http://www.westgrid.ca/support/

quickstart/bugaboo.[50]G.Wherrett,I.Gartshore,M.Salcudean,andJ.Olson.Anumericalmodeloffibremotioninshear.InProceedingsofthe1997ASMEFluidsEngineeringDivisionSummerMeeting,Vancouver,Canada,June22–26,1997.[51]F.M.White.Viscousfluidflow,volume46.McGraw-HillHigherEducationBoston,2006.[52]J.K.Wiens.Anefficientparallelimmersedboundaryalgorithm,withapplicationtothesuspensionofflexiblefibers.PhDthesis,DepartmentofMathematics,SimonFraserUniversity,Burnaby,Canada,2014.[53]J.K.WiensandJ.M.Stockie.Anefficientparallelimmersedboundaryalgorithmusingapseudo-compressiblefluidsolver.SubmittedtoJournalofComputationalPhysics.Preprintavailableat

http://arxiv.org/

abs/1305.3976,May2013.[54]J.WuandC.K.Aidun.Amethodfordirectsimulationofflexiblefibersuspensionsusinglatticeboltzmannequationwithexternalboundaryforce.InternationalJournalofMultiphaseFlow,36(3):202–209,2010.[55]J.WuandC.K.Aidun.Simulating3DdeformableparticlesuspensionsusinglatticeBoltzmannmethodwithdiscreteexternalboundaryforce.InternationalJournalforNumericalMethodsinFluids,62(7):765–783,2010.[56]S.YamamotoandT.Matsuoka.Amethodfordynamicsimulationofrigidandflexiblefibersinaflowfield.JournalofChemicalPhysics,98:644,1993.