49
KAERI/TR-751/96 KR9600282 PHEBUS FPTO U^^ O|goh MELCOR 3 E Evaluation of MELCOR Code Using PHEBUS FPTO Test 1996^ 91 Korea Atomic Energy Research Institute

PHEBUS FPTO U^^ O|goh MELCOR 3 E Evaluation of

Embed Size (px)

Citation preview

KAERI/TR-751/96 KR9600282

PHEBUS FPTO U^^ O|goh MELCOR 3 EEvaluation of MELCOR Code Using PHEBUS FPTO Test

1996^ 9 1

Korea Atomic Energy Research Institute

n\

0|

Phebus FPTO U&% O\g^ MELCOR 3 E ?p|-Evaluation of MELCOR Code Using Phebus FPTO Test

1996"d 91

NEXT PAQE(S)left Bi.^ - ^

0| S H A i ^ MELCOR 1.8.3 2 H 1 O|g^|-Oi PHEBUS FPTO

MELCOR 3LE.L-

S#o|uh aso| 7HdS 5i^ ^ o » flg §fe 3!O|DK o|

H2|A| gaSfC

a=oj| sja- oil*

2| debris 113 OJYO|DJ

(control

MELCOR 3.E.

*#& o|f: =

pool £ H l

*H& node o|| ^xH§fe g § Zr

mecfianistic *WI 7||^«te Eutectic S.c£

s t i f f n e rM H o j S|.X| g 5Jjt32> s h r o u d oj.=o) Nner 7|. MELCOR

Activation product ft H2J*feG|| g*HE# «ieS*! lgft i ? l flUi?^ £ ^ E f e RN

MELCOR 2H0||fe *||0igO£ ^ Ag. In, Cd 1>£

2i°Qi E. 1 «ISaA| ^ ^ S »JJ<3SSO|| xH§fe Ag,

in, Cd 2 | # 3 § 2 | f e S K | SUK ^ h i i | m I f i a j ^ f t l ^

o|«flft

^«h CORSOR-Booth

o| CORSOR

MELCOR 2 £ t A|-gXh ° j £ j ^ D^H^^ I S-tO|U|- g S ^ S * I S ^ 51°^ 0|

SUMMARY

This report presents the analysis results of the PHEBUS FPTO experiment using

MELCOR1.8.3. for the core degradation process, the fission product release in

the circuits.

The objectives of this study are to assess the models associated with the core

damage and fission product behavior and to identify the phenomena, which

have not been modeled, or area where the model could be improved.

The calculation results were much improved by performing the sensitivity studies

for the three phenomena, which were considered important to simulate the test

scenario. The first case is to consider whether the debris formation is to be

allowed or not. The second case is to consider whether the oxide layer can hold

up the molten mixture or not and the third case is to consider the number of

nodalization for the U cube in the SG and the vertical pipe at core exit, where the

gas temperature was changed rapidly during the transient. The MELCOR code

well predicted the thermal/hydraulic conditions in the core and in the circuit for

the case of the intact core geometry, but molten pool in the lower parts (20-

35cm) could not be formed in this study because the mass of the relocated

molten fuel was negligible due to highly oxidized cladding and also the relocated

rubble debris was modeled assuming no decay heat considering only '9' days of

irradiation.

The dissolved mass of UO2 was calculated to be negligible because it was

calculated using a simple model based on the existing molten Zr at the instant of

candling start. Therefore, an evaluation of eutectic model is needed to calculate

mechanistically for this case. The total mass of H2 generation was

underpredicted because the stiffner was not modeled and the liner inside the

shroud could not be considered during the oxidation in MELCOR.

The some difficulties in modeling the activation product were resolved by

manipulating the RN input associated with the initial fission product inventory.

In MELCOR, there is no model that can simulate the release of Ag, In, Cd from

the control rod but from the fuel during the fission reaction. Therefore, it is

considered that the release model from the control rod should be implemented

into the MELCOR.

The fission product release from the core was calculated using the CORSOR-

Booth model for the low burnup fuel. But it was not well predicted because the

CORSOR model was developed based on the high burn-up fuel. However, the

calculated release fractions were very similar to the measured values.

The MELCOR code has many options for user controlled parameters, which can

give a flexible modeling capability for the various types of phenomena to the

user. But the selection of the parameters and options should be made based on

the sound understanding of the phenomenal knowledge.

OOtnJJ_ I JT^ . . .

_j Xr —

xll 1 5> AH

X-)| 2 §" ^

1 3

2

.................... 7

. . . . . . . . . . . . . . . . . . . . Q

11

74

1.1 Debns ^ - ^ 7 | ^ (CASE1, CASE2)

1.2 Control Volume ^ t r A<T- (CASE2, CASE3)

1.3

2 1

2.2

2.3

2.4

2.5

(CASE3, CASE4)

Qhrnurl

13

13

13

19

20

on

21

21

22

- O'K——-— ^^

25

25

sump 26

26

X-ll 3 2J

8

9

10

ni! 11

an 12

13

14

15

16

17

18

19

20

21

22

23

24

26

PHEBUS FPTO

Shroud

BteUSJ (CASE1 / CASE2)

60cm CH|Ai U[^ shroud i ^ (CASE1 / CASE2)

(CASE2 / CASE3)

i g (CASE2 / CASE3)

33

33

34

34

35

- 36

60 cm O||Ai

70cm O||A1

60 cm O||Ai

60 cm O||Ai

80 cm O||Ai

20 cm O||Ai

40 cm O||Ai

50 cm O||Ai

60 cm o||Ai

70 cm 0||Ai

so cm o||Ai

nng

ring *il<>1ii &5L'.

E 7 i = (CASE4)

ring

ring

ring

shroud

shroud

shroud

shroud

shroud

L ^ shroud

(22000 i )

g (CASE3 / CASE4)

(CASE4)

i = (CASE4)

\% (CASE4)

i g (CASE4)

(CASE4)

(CASE4)

(CASE4)

(CASE4)

(CASE4)

(CASE4)

36

37

37

38

(CASE4)

Ml ^ ^

(G

(CASE4)

§ (CASE4)

(CASE4)

38

39

39

4D

40

4")

41

42

42

sump y 2 r (CASE4)

43

43

44

44

45

AC.

27 Gap gj-SS 23|e- 3 ^ 231*1 & £ 3 ? & S g £ (Iodine) 46

ILII 28 Cs t ££ 46

29 Te I r t!f§ 47

30 Ru o ^ " s 47

—jBJ o? C5n / i n An \UI-s. ti-S- . . Aft

NEXT P>AGE(S)left

M

§ = 2! MELCOR1.8.3 1 O|g£h PHEBUS-FPTO

PHEBUS ^ l i i H ^ 1 ? MSHigil f MCAP (MELCOR Cooperative Assessment

Program) 5SZ l |§2 | S J # ° £ ^ T O £ c k

Stic PHEBUS 5

S I993t5 H g - ^ Cadarache ^

PHEBUS-FPTO j | | i ^ f t

o|

iodine 2j

O| SHAiOJI^ ^ y « | | £h7ll HSJ §Jlf7h 7|fcE|Oj 5 i° t t | , MELCOR 1

MELCOR

11

0| <g?°J ^^^ PHEBUS-FPTO ^^O\\A\ # ^ £ ! **#2|- £ ^ = l MELCOR 2HI-H

a l l as^o} ^7H, ggsm *IE ^9x |^ T i i ^ n Him, £±JSK>I MELCOR

fe FPTO

PHEBUS-FPT1 ^E i FPT4

MELCOR 3HLH H ^ § t 3 § ^ O||go|L|. MELCOR

9.5. MELCOR 1 O|g*K>l PHEBUS FPTO f

o|SKI

12

[1.2]

PHEBUS FPTO ^ ^ A | ^ 8 S* r£ g7|L|j 207f|2|

^rSS7|, ZIB|H

elbow, ^ B & (C 9),

• View Factor

View factor^ cell M|

1) canister wall

2) x-)|o)g blade o)|Ai o j g ^ j . canister

3) cell 21 ^

4) cell

5) !di

(deposition) E|S^ ^^|E|Oi 5ife g ^ 7 | % U&&<*\ g ^ = ! S i ^ l ^ ^ M o | §2}-

Sump g ° 5 ?£E|Oi o|c(- p u 1].

K o|

MELCOR LHO||Ai Eh^*M| A|-§X^7^ °JE|£ X|g*W S2j§rH 5 i ^ Ell, S

13

57H

FPTO

37H2J ring o||

PWR

. o|

37H2) ring 2 £ 7 ^ ring Mi

N, = 7C (r ,2 - r M » ) / P 2

5E«h 4 ring (1^2 ring LK 22f3 ring )2|

S2S, = SS(4TC r,2)/(rc22- re2) S2S3 = SS (An

ring ^ 2 | view factor

, = (S2S,)/(N2TCD) , F* = (S2S3) / (N2TCD)

F22=1-F2,-F2

3)

A|O||

0.3

fi

p

D

: ring I £ | '

: Pitch

: «ISSS

1 ^ N,: 1 ring

= r c i *

SS

•(re

= 0

i.i - rci)/2:

.4871 D: E

7H^

ring i §& fl*l

ioi&MBSJ

37H ring 2*2| view factor 2 i ^

O| 7||^0l|Aife default &2J 0.25 1 ^ J ^ 3), 4) 0||

4) 2J O|| I I « 5 H f ^ HX| fifatouh 3)2]

14

fe DCH(Decay Heat)

^ TO. 5!y«Hfe 'ORIGEN'

ORIGEN 3 = * O

•ANS'

•ORIGEN1 S °jm>l£ 3^£ f SiJ*W o| Ajeijo| 2*0 S * W ?* K A ^ « « ^ Control

Function S S»W

E£^oi| S-7iiaio| Tlli!- A|5j-^Ei UStfW A|^o|| C ^ g ^ l ^ S Table Function

o|g*K>l •EJ^^fe ^ao|cK FPTO S ^ l 3 ¥ H l ^AhE|x| & £ Fresh

t ^ 239.43 KW£ 9

512S H2j^r5an in^o||Ai y^jElfe g £ driving core O)| °|«HAi

H7|o|| 2]«HA1 l|<H£|fe 3o|7| ECH-CH| COR J^o||Ai A|2i-o|| cc^ driving core 2j

« l=a * ^ « Table Function

• Shroud

31 aH Shroud

ai7|o)|Ai£ M|7

Zr ZLB|H ° W

2Sl£Zr4*

WU§£| gg;

o(.2£o)| Z | g 7l|i

« O |

S7HSJ§S

teW Hi

=. Inconel 1

1 SLl^l cH^c

§-^

^ r 5 5 i

HI gap

. 9-3

^p

¥&

. ?ra

o| St

(•^•^HSJ ^ - § 7 | gap

.1 2j. i^japWS

-K 4-Zr ^ eh^a

r5acK 10-ZrLHOl| S/i

W5acK2HLWg :

3 Tc

• ¥ £ P

E|Oi 1

M 4-Zr,

J7|S *

, HO||Ai

cK naiL|.

10-Zr, 11-

nf 2.^a|

151^ gap

'B gap o|

?l gap 8

HS§s|

15

shroud

Eutectic afi l

MELCOR 2HCH|Aife 37fl Eutectic

K o| ^^o||Aife Eutectic

HS^ HH|E]fe Non-congruent SCJS

MELCOR 2 E ^ Zr

^ 2 | H7|o|| a\E\- 7 ^ * | « ^o i SS^W^K EEfe default

Zr 2f #4:212| ygofl o |^ Bjg^o| Zr

o| 3 ^ ^Ellgjallsi^il 7 ^ M § Fe Sf Cr

K o| <370||Aife n j ^ s j zr 2

| #SJB}SSK)| H3j£|oi zr n j ^ 3 ^ Urbanic

MELCOR O||Aife smSi-H S 8 E. 1 ZrO2 2f ^ ^ Zr

16

Zr gg££O|| E&s r £ o|af| £ W £ zrO2

) 4 S S S ZrSlfSI U 3 £ ^ ( A r g * r * l 3 : MS 0.2)

UO2 ?r £ ^ g§S2f &fl | * h ¥ ^ S S XHUIWSCK MELCOR | | f e j § g

(Sfe xflolg)O| particular debris S

o|5!o| t^J x|x|tto|u|. grid spacer 2\ ££ ?&mo\\ B\t\\xi oaH ?*o

X\X\E\X\ ftzm; * f e 5JO^ fllCHffl^ 1 S ^ 01

jj °\\M » 4 , particular debris

(5E^ «|(HS)O| particular debris S ^

o| ^^oIlAife ^7H°| grid spacer ?jx|oj|^ {1 1} particular debris 7 r grid spacer

debris S

fe {1 0}. particular debris 7(- x|x|?foj| o(5HA x|x|Eju(.

«|0ig)0| Kfe 3 ° u[-s particular debris S u f f l b 5

x|x|#2] ^ ^ S o| 7 ° | ^ fiEH=o]- particular debris 1 x | x | * ^

?l| (2.500K, 3,000 K)

t g - C K O|

17

\s\

0|

g o ,

V < VT o|

v > vT oj g i

VT = (2000 tf I (4 t l i q p )

t l i q = [ ( 0 . 6 3 6 6 2 Ot ) / ( p i

h , - = (8 n C ) / t l i q

h t u r = ( ) . 2 5 f p C ( V , + V2)

VT : i\x : {

P : •C :

ct :f : IV : •

h : (

Iff °IW tH?^^^^ SS-i S S 2 | g ^ E (N S/m2)gS^s ) SJ.E. (Kg/m3)g ° ^ o | ^ g a t (J/Kg*K)§§M2|- ZrO2 0^1-ej S 0 5§§i|£|- ZrO2 0 LJ"2J •|-^7i|g g g xHnH I E(m/s)

Elfe g^|^E(m/s)

,h^ (N/m)

12m/s

I2m/s

w/m2 K A|-O|7|-

2.1E-03

^ ^ w / m 2 K_ 0

MELCOR O||AI^ O|

o| default &?1 1,000 W/m2 K

241

o|

18

MELCOR o||A-ifc ^7 r x | ^ | o l | °\tUi?l particulate debris 71-

*, o|ou[. ZrO2

^ fi^oicK o|

Z r j=^, ( p . Z r )7^ ^ ^ ^ jgsF ^

o| g^fe

^A| particulate debris

o| ^ o | ^AgHI particulate debris fe ^gfSf mU\ 2.CM\ ccFaW x|jb|(x|ScK o|n||

particulate debris 2) ^ ¥ ^ ( ^ 3 8 fiS)0|| c|j«h Zr 2J- ZrO2 S S S S&

S.^2| * H 9 ^ § ^ 9 b | § 0 | A ^ y a o | | 7|-g^ ^ ^ 7||£hA| H ^ I ^ K RN

package « A ^ S f e 3 ^ « I^S W^SJ XHH(J |O|| ° |# «Hg- g H | ^ ° | 0 |§§ ^ 5 j ^ ^

o| ^^o||Aife o | ^8 ^ S ^ l 3 ^ S2|S 01^! A|^o)| a\zw driving

0i| RN 0

0| o

ctrBl-Ai ^xHefe node i SSfoll u|sl|sHAi ^

pool o|

2. ffll^a^l^S &S fiffl

MELCOR SJEfe- fission product 2r activation product W T 1 ^ * ! * ! ^ H £ T !

radioactive product S ?FS*H1 H^J*te(-. tr|-a|-A-| o|

19

g l H (activation product)£}§ ?J^Sfe E|| S

radioactive productiMlAl activation product SfcJ-g

MELCOR 2 E ^ 7H|CHS HSO| £ 0 ^ X||O|gv « i ^ S

| | g 5 ! j ^sS^ I S7| uo2

uo2 l KH^tfe £!

CORSOR-Booth

class i ) S XISS ilSffl- ^ e Sheol gap

gap UH ^XHSfe S*I|^O| =A| « ^ S

K o| ^^ollAi^ n | ^ ^ ° | ^ g t ^« l MgxW x|S& 8 E ^ (1173

K)0|| E&EIE Uf^Sfe 5 ° S £2|*hacK Zl^i-|-^SOj|AH 91J

ctH£o|| o| ^^o||Aife fresh 8-!|^S£ 7\®*W gap S # S 0.0 °

4 5! S2|

1 . j ^ ^ 1

CASE1 3 ^ 37H | ^ a QH?H^^1^8 c r s 4 ^o | ^gEKHSi^. 5i»H Debris

in, 1«H nj^^f 2|^°j ^Sf*o | Zrnm£M ^ ^ E | § § ! § zr

21 2,098 K O| O||Ai 3 0 f | ^ fflor^i D^|°| A||«H«Hfe k ^ J f ? ^

z^zj- 17H2| control volume 2 S H2|§ r^K neiL-l- CASE1 2|

Efg*W ^°tcK tthSl-Ai PHEBUS-FPTO

CASE2 ¥E^ | J

20

fe CASE4 £ j ^ l nre*rS°D* 0|

5 i s o|^£DJ^E ^ ^ s i

1.1 Debris S £ 7|£ (CASE1, CASE2)

declad S «IES pellet o| °Jo

h Debris S ^ g t ^ S 2 | ^ ^ Zr

.1 mm) O|*hO|| E & ElHSaH S^E|(H § r ^ ^ ° S XHbH*|E|H^ MELCOR

o)|Ai £°|SKH 5icK ^jfllS ^5r nm^LH £^r Zr 2) xHfe declad S ^ ^ S pellet o|

^ ^ l * fed | DH^ g f i f i - ^ # § #ch c|-B 4!fi 2 4 [6]0j| 2 | * ^ p-zr uH

0.9 w/0 01*1-, p-Zr -if\ 7\ 0.1mm o|# °l ^ ^ declad S pellet S

CASE1 1^-24 cn^£2j «i|^Sgo| ^ ^ * h i i ^ 4 g §o|| £ £ o | Qh EKH debris S

t ^ j 2 | g£ fe Zr gggESJ ^ 2,098 K

3711 44 : S7hE|5acKnH 3j. HBIL|. ^ ^ |

15 % 1 UO2 § § ^ E Ol^og, §7|-A|^cK CASE1 2 4 ^ declad

pellet o| § 4 £ | T ; | g^n uo2

XrB|0l| M 2 i E * 2 2 | e CASE2

CASE1 4 CASE2 1 U|IL*h 2 4 CASE 2 9^21 Til j- 247h t ^ J 4 shroud 2j

4],

1.2 Control Volume T ^ S F ^HT1 (CASE2, CASE3)

? l i ^ ^ ^ 5 3 ^ ^ ^ l l i f e ^ 5 j & | H^3^ 973 K,

21

423 K S a S 7 | # l ^ ilSSMI ^lEl5acK CASE2 3 ^ 0 | ^£ volume

Ml 7 | - ^£E^ H?fl Hfn}j^7h EIUS^. O|fe MELCOR Of|Ai volume Mj g £ S ^ h ^ l S -

5 S e-7l|2| volume ° £ H2|»|-oj a volume Ml S S g E f $\Z\7\ aH£O|c|- (lumped

Hfll). B^W CASE3 O||A-fe O| l 0jSpH2| volume ° £ ?M*K>i H2|^Sc

CASE3 3 ^ M^ ^ O||*E|ft!^ p H 5,6].

1.3 ^SSOfl °|£h S S g S^IH1 ! (CASE3, CASE4)

o| SJ^S M^jg n l ^ ^ ^ l X||BH*| A |gs fl|oi*K

SsHSfta! HuH I A |§s ^ o||^*p| sf\t\o\ ^ztftcl. &*W MELCOR O| |A^

default S ^ 9 cell L|| n j ^ o l l ^xH^fe S E Zr 2f £i"tft(ZrO2) na |2 %!¥• g^HS

zr ^ | 7 | - A^xh7h x | g # ^ o|^oj| S&Httim a ^ zr

2,963K)

£5!!=oj. g ^

^ SI K flO||Ai ?J3*h 0 | ^ g ^ ^ g MELCOR O||Ai SC1131

O|ELH A|-§S Ah^g ^Ah £ 2 * 8 £ E ^ 2,500 K

^f l is j 50%

(ISP-28 Ot|A

xHbH*|A|g n a p uo2

af 90g o | # o S ^ g ^ c | . (90 g o||Ai

CASE3 3 ^ H|«#O| 2f 2,098K O)| EiHB =

ttH^Oll 7j|A[£} * ^ ^ H ^ g ( 7 1 g

7]. >4^S £#A| XHbHx|E)7|

fe CASE3 3 ° OLAM 0|| Sj^j. ^ g ^ | (15,178

22

8]. HEHM- CASE4

MS Til-th s ^ s Mjach ILEHM- uo2

CASE3 3 °?l" CASE4 MC|- §• OH^£|«C|-. H O|£fe »^H £jE!j£j. £ °

oil sis- uo2 gsH a^o! S

S i ^ (20%) s) uo2?|- g«H£fe 5 ° l ?ra, HSIfflcK nRW CASE3

H Zr ^O| ^o^DK ZLS\L\. CASE4 3 ^ S

fe ^ ? Eutectic

2. £2.| §il(- ^ ^ (CASE4)

2.1 t ^ j ^ ^ - ^ shroud ?i§ [7,8]

| g ^ indium 2J ^ # § lfx|»K>| ssfffcK o|o||

Indium 2| ^ # 8 10,S6020]| AiM ^X|E|H O|^ 11,920SO|| lTx|gfO| 37II g7|-

E|»CK a U 9 o||Ai M ^ uhfif ^ o l ^l^oi l sj*FS ^ feo | 70cm 2|

11,920^0)1

6.930iO|| H | ^ ^ g E 973 K O||A1 i^S\9iC[. ZLS\t-[ MELCOR

OQ| (OH; HH o t 3 A ^ ^ a a g oj,^ 2 5 | g a p

23

°} scK siewiring O]|Ai ° f 6,9092 O||

# 2 ^ # g 2f 12.000 2 ¥ N ¥ffl*H ring, 3j£O| 50. 60 cm

urbanic

(oscillation)^ 2 5

fe ZLU10OII

ring 3 ? 20, 60, 70 cm o)|Ai 14,850£, 50cm oj|A-j 15,320

50cm o||Ai 15,700^0)1 ^ E | » c K ^«j«H ring 2J

ring

ring

60, 70 cm 11, 12]

80cm o||Aib

(12,000 - 12,3002) E|fe 13]. O|fe

ring 8 5f O| 20. 60. 70 cm

* 100%

a c e r a m i c

0.57%,

,123 K)0||

^ 0.33%

20cm ° } ^ shroud

Shroud

«|b||*Pr ^

ring 2J x\\ti\\^\t ^ 15,10020||

^ r j ng 5 0 c m ^O|O||A1 2,950 K

ring 0||Ai S* | | l ! UO2

15,1002

0|

30cm 40cm

shroud £ £ £ r O|

24

50, 60, 70 cm ^O|O)|Ai°| oj.^ s h r o u d g E £ 15,1002

| ^ £ 7l|>4 S4fe 15,1002O|*Ol| 0| £

40cm 0|*hS X|jd||*|EiaMS SJDISCH^H 14, 15, 16, 17, 18, 19].

80 g ° £ 4 4

£*HSfe Zr S ^ ^ S stiffner » a2|«tx|

fe Zr S ¥ ^ ^ l shroud e.^2| linerl MELCOR 0||Ai ^SrSLhS S2|A|

20^ s ie

2.2 ^ S | & * ^S^LH-S^j 7J =

21 fe ^SFLH -£*||££7|- 12,1002 Ol^jOife 44::S7h ^ S l i O| O|^b

lumped S ^ S

Soil cfl# XFS7F sH joil y-gE|x| S& 4 ^ ° S o|o||

£!- S^2J elbow ¥&i Y

22]. O|

25

2.3

Alia- e ¥^£| « | SE7I- ^S^|2f 20| 423 K

K G

423 K £ SJ3SWI ^X|E|5ac|- p H 23]. 3 t

(G 3) Mi - § 7 | § £ f e 3 U% 7|^=o|. ^ oj|*

^ ^ | 3 * 9 f ^ | g ! S | ^ e ! - 423 K 2.

2.4 ^yasu i a^i >ig sump $

| § £ ^ 3711 ?\±%7\ (2f 20 K) EIS!

25]. o |5g lumped

o|

100% M 7ra»hSSc:K ^ B W «4 7l|>40|| 2|£

^ ^sf^g^i g^e- OJI*OI

°Jc.\JL Ahs^^K Zl^J 26^ AILKHI cthE sump L«

2.5 *J{^

MELCOR 3S0||A-lfe H 2 2 ^ 0 | t^jLH g ^ f ^ ^ ^ ^ ^ 1 4 activation product 1

16 7H class

26

« S CORSOR-Booth

gap o o k o |

Gap

HI2& SUf Cs, Ba, I, Te Ru 2| ^

15,000^

15,000^

xe

Xe 2]

Sn. Ag, in

^ KIS

frfesh < 3 S 1A g , In, Sn

, M E L C o R 3 H

g a p

2 7 ] .

28, 29, 30]

A g > l n i S n

27

NEXT PAQE(S)left BLANK

CASE1 3 ^ * l £ £ g £ | £E7 r 2,098 K

pellet O| rubble debris S £^E|*I ^ l -E^ rCN (CASE2

8 Zr § § 8 E (2.098K)

^ , zr

CASE1 ^E^ CASE3

Zr SJ § § § £ (2,098 K)0|| 5L^E|

2,098 K ^ n m ^ 0 | g ^ S | >4^E|7|0||t ^ ^ ^ c ^ H &E[£|5«c:K ^RW CASE4

S-H^OI ^ § f t ^ l £ # 8 E 1 2.500K, ^ ^ g £ | ^TTlfe

50% 1 mm 7\£°3. §^5S^K o | ^^ a ^ ^ | A|-go||

stiffner 1

shroud ° } ^ ^ liner ^| ^ h ^ g l g t MELCOR 7\ H ° | ^ ^ SPI

o £ CASE4 7j|Ah0j|Ai ^ ^ * h ^5[&fgO

H^o S t ^ c h °}<U Stiffner

9 ^f 12g 2] ^ f i ^ ^ | ^ ^

MELCOR 3H0)|Ai g # Zr 0|| °|*^ UO2 gsH^ 7^|^§ Eutectic Sg! A r§

Eutectic HB!1 A r §m^ 3^0) |^ UO2 §

Eutectic

29

fife S^olfe uo2 g

zr a&si iJ3£# ems] uo2

2,500 K O|| £#SO|| O|D| # S ^ t O | #£S| S^EjCH g § £ £ ^ Zr

HSoll uo2 §sHgo| 5J7|| oj|^£|2icK ^ ^ Eutectic

SSE7I- MELCOR 3HO(|A1 5 ( g * m Stlfe lumped

r & ^ *F°l7r 9X%E[. ns|L|. o | ^ ^ ^x- | | l «||g control volume

activation product

MELCOR 2HU

h ^ S I H ^ 8 3HLH0|| S7|0|| ^XH^fe UO2

^ uo2 S ^

o|

ring S 17H°| ring °

^ £ S2JS0I on-|2 2|¥ driving core

O| ^ ^ o | g^£f ^O| «l|oiSS0| &X\ 9<U?}

§ 2 | g g ¥A|*h5SCK EE& AhgS ^ £ g O | ^2] fresh

gap ^ s f i f i o.o 2 ? ^

30

71 oil £

CORSOR

- S S ejsH Class2 (Cs), Calss3 (Ba), Class4 (I), Class5

(Te), Class6 (Ru), Class7 (Mo, Co), Class8 (Ce, Zr), Class12 (In, Ag, Sn) 5_k)|

Cadarache

| H , K R u 9 ^ ^

1 5 , 0 0 0 o | ^ t n f c H S ^ I ! J £ ! K j ^ 9 l | ^ t # f H

MELCOR ^ H ^

31

1. I.Shepherd, LHerranz etc, "Pre-Test calculation for the Thermal-hydraulic Tests

carried out in the PHEBUS-FP Containment Vessel" JRC, 1994.

2. A. Arnaud, L. Cordron etc, "PHEBUS FP Test Specification FPTO + FPT1",

Cadarache, Sept 1991.

3. MELCOR 1.8.3 Reference Manual and User's Guide, Vol 1-4, SNL, July 1994.

4. R. Gonzalez, P. Chatelard, F.Jacq," ICARE2 Version2 ModO Description of Physical

Models", IPSN Note Technique DRS/SEMAR 92/24,1992.

5. L.J. Siefken, "Liquefaction Flow Solidification Model For SCDAP", EGG-CDD-5708,

Dec 1981.

6. H.M Chung, "Material Interactions Accompanying Degraded Core Accident", ANL,

March 1981

7. Measured data Tape from Cadarache

8. "PHEBUS PF FPTO Test Preliminary Report and Compilation of figures", JRC, May

1994.

32

n

CO

•Si

CO

3Q.

rdOS

i"

BI ^

protective layer —

inner layer fj

steamgap u

outer Uyer *•

steam gap

sleeve »

pressure tube M

B" 3 ^

-<

I.s

•SE

cen

orah

w

Outside Shroud Temperotures ot 60cm (1O3K)

o —• —

sir

oo3

c

4*

o

oo -

oM

>CO

m

>GO

m

o>

too

—. — - » NJ

*>. cn CD o

1 11

-

-

f I

1

v\

-

-

• •

1 J

11

\

c1 1

1 1 1

f \

j(b

11•ur:

TC7

* "

1

|

i

- CASE

~*

I

•• CASE

-

-

-

-

-

-

M

r>

n>

Cumulative H2 Production (iO~!Kg)

o oo —

o oen

o o

00

o

10

00

°?n00n

—1•|MIo ~

u ls>

o> •

K>O

o 0 . 4o

0 . 2

0 . 0

KAERI

CASEJ

CASE2

-6.6«2m :TC49-6.402m :TCS0-6.»2m :TC51-5.982m :TC52

8 12 16

TIME (103s)

20

J-^ 5 (CASE2 / CASE3)

O

o

alda

dow

ntu

be

om_c

Tem

pera

tur

Vap

or

2 . 0

1 . 8

1 . 6

1 .4

1 . 2

1 . 0

0 . 8

0 . 6

0 . 4

0 . 2

0 . 0

KAERI

V

I I I I l_

CASE3

CASE2 3.010-4.515m

TEPF722: 2.955 m

_l I I

- 1¥J 6

4 8 12 16 20

TIME (103S)

I " T T M ?sTi- >"-|-k(CASE2/CASE3)

35

The second ring cladding temperature at 60.0cm ( X 1 0+ Cumulative H2 Production (10" 'Kg)

>m33

Inlet temperature (1O3K)

o

o

o

a-©

-u4*

fjO l / l "

n>00

m

o o0 0 CD 00

co

—*CTJ

O

-

-

-

1 I I I 1 1 1 l

i1

i I | i

1 1 i :5" OJ fo g r-

2. <

(0

i-

j

i

-

l i

>nTO

Central CR absorber Temperatures at 70cm (1O3K)

o o O o O N> hJ N> hO

3R Fuel Rod Temperatures ai 60cm (1O3K)

COGO

sirC\

oo

_o,V_vr=J,rin

g '

• * »

CD

riME

i

M

>

mo

2R Fuel Rod Temperatures at 60cm (1O3K)

o —• — — N> ro K>

I-J

Miro

o

00

TO U N )

.a ^

rjo o>

o|fl

>GO

tn

o

Inside Shroud Temperatures at 20cm (103K)

CO

2R Fuel Rod Temperatures at 80cm (103K)

HS-TEMP.I100705

-aO

<0

12 16 20

Hfr shroud £ £ *!•§• (CASE4)

uoin

mpe

;

o-Ct/i

2 . 0

1 . 8

1 . 6

1 . 4

1 . 2

1 . 0

0 . 8

0 . 6

0 . 4

0 . 2

0 . 0

HS-TEMP.1100805

0.S m: Col

Utasur: TC37

Mcasur: TC38

12 16 20

1I 16 50 cm shroud iS- (CASE4)

40

Inside Shroud Temperatures at 70cm (10JK) Inside Shroud Temperatures at 60cm (10 3K)

U

00

o

oa.no

n>tom

o

o

o — -*• • •oo o NJ

o> oo

HIT

ON

oCO

-Wo-*V, CM N>

g W

<n

n>m

too

1

[leosu

r:

—4

o

II

TC.

en

toI

§O

HS-TEMP.1101105

O

o

00

in

a.

i o-* 0o

• o

- o

o,

KAERI8 12

TIME (V)3s)

16

H ^ 19 80 cm 9J shroud •£ (CASE4)

center ringat.at

absorber cladding Guide Tube

t

second ring

Fuel Cladding

third ring

Fuel Cladding

Ag+ln+Cd

Stainless steel

Stainless steel oxide

Zicaloy

ZrO,

£ (22000 2b)

42

52

Vapor Temperature in Hz pipe with Y point (1OJK) > CASE4 Vapor Temperature in Vertical pipe(iQ3K)

o o o o o — - - —

O I ^ J ^ - c n O O O K J * .

—' N5

00 O

u

r. m

m

JJK

- 1 -H - I >n r i m <™O ~0 T3 i/*<• n - n - nCo oo Co H

^ to Co o

o<I

o

paSi

M

n

oo

r|o

O

nI

i i i i i i iU1 (Tl C> (H ^ U< fflID >- en bo bi >. InCo o r; co co co toIO IO i^ to " J en e*

3 ho en en en3 3—i -H o f o> en >

8 8 £ s » - &

Vapor Temperature in Hz pipe with G point (103K) CASE4 Vapor Temperature in SG U tube down(103K)

U

to

om

o o o

O KJ * .

— CD h

_id rn

t* ho

o

o —

co o

—1—fjjir

if*•

DDBT

:

' , r

i

i

11

• i

II

< I—t

-o

2.95

t n

3

1

6

- t

TJ

JM

tn

3

1

-

-

-

Ill5 5 5D O pin in ino o oOd | O ™*

w r- P000

505

.010

i i i•• W r52 2 Stn © tn3 3 3

-

-

_

SUMP Water Level (m)i i i I I

en

u

aSL

M

o

ra

>m33

Containment Pressure (!03Pa)

OJ

enOlOl O l

ooOl

— NJ K) K)(O O — NJOl Ol Ol Ol

CM

O l

RELEASE FRACTION

ucE

oc

O

rep

mTO

RELEASE RATE (10'FRACTION)

o -

ov>

00 -

t o

u

m

rlo

Flttnip

i3

(S3

eneno en

—*oo

—*hoen

-^eno

—en

MOO

Is)M

eneno

NJ

enoo

10- 3

10

- 5

10- 6

CC

10

10

-7

-a

10

10

RELEASE RATE :

- 9

- 1 0

10

KAERI

- i i

10

Te129m

14 18

TIME (10 3 S)

Te

22

- 3

10

10- 5

. - 6

o10

- 7

. - 8

& ' 0<LJJ

£ 10

10 '

10

10

KAERI

- 9

- 1 0

- t 2

- t 3

RELEASE RATE :! 1 1

r

r

-

*

r

r

-

-

Ru

C D / Q

D • yv

/

K JN

j

-,.—-~n

cm -Q

i

OS

1

*!

•]

1

CLASS6-Ru V

a DATA 1;

u i J

10 14

TIME (10 3s)

18 22

30

47

RELEASE RATE (FRACTION) RELEASE RATE (Kg/s)

o o o o o o o

00

u

9$.

r-;c

CDp o a o

>• >• on

(/> > g- F3(£3 1

• D

• attB

u

roco-TIM

E

o

en

SJO

- i ' ' " — i • •

• +•

-1 • . • • • - ! •< • • • - ' • • - - ' - • • •

" • - 1 •

• l i t - "

• -> • •

. . . .

+

O

—(

"-.

7

• Mud

O

>

51-Xo

|

-

-

-

-

m5>—H

xa

CASE 1

CASE 2

CASE 3

CASE 4

Debris

YES

NO - -

NO

NO

3-2] volume ^r1, 1

1 1

3,4

Off

Off

Off

£ 2 MELCOR °1Hs] Class .SJ ?••&

Noble gas |class 11Xe

He, Ne, Ar, Kr, Xe, RN, H,N

Chalcogcns [Class 5J

Te

O, S. Se, Te. Po

Trivalents|Class«)|

Boron ICIass 111B

B. Si, P

'Alkali mclal jClass 2| Alkaline earth [Class 3 | Halogens ICIass 4 |CS

Li, Na, K, Rb, Cs, Fr,Cu

Ba

Be, Mg, Ca, Sr, Ba, Ra,Es, Fm

I

F, Cl, Br, I, At

'Platinoids [Class 6|

Ru

Rua

RhAu.

, Pd, Re, Os, Ir,Ni

Early transition elementICIass 7|

Mo

V, Cr, Fe, Co, Mn, Nb,Mo, Tc, Ta, W

Tetra\alcn(sICIass S|

Ce

Zr, Hf, Ce, Th,Pa, Np, Pu, C

La

AlPmFrBk,

Sc, Y, La. Ac. Pr. NdSm, Eu

Tm. Yb,Cf

Gd, TbLb, Lu,

Dy,Am,

• H i

Ho,Cm

Ajraniuin [Class lOj

U

U

Water [Class I4|

H20

H:0

Ti,

More volatile main Less volatile maingroup IC'lass 111 group ICIass 12|Cd

Cd,Tl,

^ ^

Hg,Bi

Zn, As,

• • •

Sb, Pb,

Sn

Ga, Ge, In. Sn. Ag

Concrete ICIass I5 |Concrete

• Bold + Non-bold : MELCOR

49

R.R : Research Report

T.R: Technical Report

A.R : State-of-the-Art Report

s. «£ q

KAERI/TR-751/96

4 PHEBUS FPTO 4111-I- °1 -§-?!- MELCOR

(TR,AR°J 3 -f

1996. 7

p. 49 26 Cm.

v ),

fe MELCOR1.8.3 2 PHEBUS FPTO

MELCORM1

5i pellet

debris Sj-

SG

MELCOR oflfe Ag, In, Cd

PHEBUS FPTO, MELCOR1.8.3

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org.Report No.

Sponsoring Org.Report No.

Standard Report No. INIS Subject Code

KAERI/TR-751/96

Title/Subtitle

Evaluation of MELCOR Code Using PHEBUS FPTO Test

Project Managerand Department

Jong-Hwa Park(Severe Accident Analysis)

Researcher andDepartment

Song-Won Cho, Hee-Dong Kim(Severe Accident Analysis)

PublicationPlace

Taejeon Publisher KAERI PublicationDate

1996.7

Page p. 49 Fig. & Tab Yes( O ), No( Size 26 Cm.

Note '95 Mid-Long Term Project

Classified Open(O ), Restricted(Class Document

Report Type Technical Report

Sponsoring Org. Contract No.

Abstract( 15-20 Lines) This report presents the analysis results of the PHEBUS FPTO experiments using

MELCOR1.8.3 for the core degradation process, the fission product release in the

circuits. The objectives of this study are to assess the models associated with the

core damage and fission product behavior and to identify the phenomena, which

have not been modeled, or area where the model could be improved. The

calculation results were much improved by performing the sensitivity studies for

the three phenomena, which were considered important to simulate the test senario.

The first case is to consider whether the debris formation is to be allowed or not.

The second case is to consider whether the oxide layer can hold up the molten mixture or not and the third case

is to consider the number of nodalization for the U tube in the SG and the vertical pipe at core exit, where the

gas temperature was changed rapidly during the transient. In MELCOR, there is no model that can simulate

the release of Ag, In, Cd from the control rod but from the fuel during the fission reaction. Therefore, it is

considered that the release model from control rod should be implemented into the MELCOR Code.

Subject Keywords(About 10 words)

PHEBUS FPTO, MELCORI.8.3