37
Organic RFID tags for 13.56 MHz Jan Genoe Kris Myny, Soeren Steudel, Dieter Bode, Sarah Schols, Paul Heremans N.A.J.M. van Aerle (Polymer Vision) Gerwin Gelinck (TNO)

Organic RFID tags for 13.56 MHz

Embed Size (px)

Citation preview

Organic RFID tags for13.56 MHz

Jan GenoeKris Myny, Soeren Steudel, Dieter Bode, Sarah Schols, Paul HeremansN.A.J.M. van Aerle (Polymer Vision)Gerwin Gelinck (TNO)

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 2

Results of the R&D technology programOrganic circuits

an R&D program between IMEC, TNO and industrial partners

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 3

Passive RF communication tag

Code

Loadmodulation RectifierAntenna Logic

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 4

Communication frequency

LowFrequency

HighFrequency

Ultra-HighFrequency

Frequency (MHz)Wavelength

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 5

Antenna for RFID tag

UHF-Antenna (869 MHz) manufactured by thin film technology (<10µm): printing or in-line lift-off process

HF-Antenna (13.56MHz) manufactured by thick film technology (up to 100µm): etching;electro-plating, (printing Ref[1])

Ref[1] www.parelec.com

• passive RFID tag can be powered over longer distance with UHF (up to 10m) as compared to HF (~1m)

• Absorption of EM-field by fluids bigger problem at UHF than for HF

• UHF antenna is cheaper than HF antenna thanks to lower conductivity requirements

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 6

Plastic RFID tag

• Rectifies 13.56 MHz or 869 (915) MHz base carrier frequency

• Generates VDD of the logic

Code

LoadmodulationRectifierAntenna Logic

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 7

Organic Vertical Diode

Al

pentacene

Au

SiO2/Si

Steudel et al, Nature Materials 4, 597 (2005)

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 8

From diode to rectifier

VACVDC

V

t

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 9

First UHF rectification with diode on glass

16

14

12

10

8

6

4

2

0

VD

C [V

]

106 107 108 109 1010

maximum frequency [Hz]

vertical diodeµ~0.15cm2/Vs, VF~3.5V, d=160nm

VAC=15VRL= 50kΩ, CL=100nF

transistor diodeµ~0.8cm2/Vs, VT~2.4VL=3µm, Loverlap=6µm

HF

UHF

Pentacene diodeμ ~ 0.15 cm2/VsVF~3.5 Vd = 160 nm

VACVDC

V

15V

10.5V

t

On glass

Steudel et al., Journal of Applied Physics 99, 114519 (2006)

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 10

14

12

10

8

6

4

2

0

VD

C [V

]

106 107 108 109

maximum frequency [Hz]

µ~10-1cm2/Vs µ~10-2cm2/Vs µ~10-3cm2/Vs

13.56MHz

433MHz

869MHz

single diode on glass integrated rectifier on PEN

VAC = 15V

First UHF integrated rectifiers on flex

PEN-foil

Al

Au

Pentacene

Parylene

capacitance diodeencapsulation contact pads

5 V at 433 MHz

10-2 cm2/Vs

μ=10-1 cm2/Vs

10-3 cm2/Vs

13.56MHz 433MHz869MHz

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 11

Results at higher frequencies

• We improved the response of the rectifiers further for higher frequencies

• For details, see – S. Steudel, K. Myny, P. Vicca, D. Cheyns, J. Genoe and P. Heremans,

“Ultra-High Frequency Rectification Using Organic Diodes”,accepted for IEDM 2008,session 4, 3.40 pm, December 15, 2008, San Francisco Hilton

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 12

Double half-wave rectifier (DHWR)

K. Myny et al, Appl. Phys. Lett. 93, 093305 (2008)

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 13

Voltage generated at 13.56 MHz using DHWR

Silicon diodes

Pentacene diodes

Is this voltage sufficientto empower the code logic?

Is this voltage sufficientto empower the code logic?

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 14

8b transponder chip

• 211 transistors• Only inverters and NAND-gates• Critical time path is data flow through MUX

K. Myny et al, ISSCC 2008

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 15

8b transponder chip

10

8

6

4

2

0

Vou

t [V

]

50403020100Time [ms]

Data rate 589 b/sVDD 10 V

Code generator performance when implemented in the Polymer Vision process

K. Myny et al, ISSCC 2008

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 16

64b transponder chip

• 414 transistors • Only inverters and NAND-gates

K. Myny et al, ISSCC 2008

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 17

64b transponder chip

14

12

10

8

6

4

2

0

Vou

t [V

]

120100806040200Time [ms]

Data rate 752 b/sVDD 14 V

Code generator performance when implemented in the Polymer Vision process

K. Myny et al, ISSCC 2008

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 18

Data rate versus power supply

800

750

700

650

600

Dat

a ra

te [b

/s]

201816141210Vdd [V]

8b

16b64b

32b

1000

800

600

400

200

0

Dat

a ra

te [b

/s]

20151050Vdd [V]

K. Myny et al, ISSCC 2008

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 19

Data rate versus power supply

6b-8b code generators

[1] K. Myny et al., ISSCC 2008

[2] E. Cantatore et al., ISSCC 2006

64b code generators

[3] K. Myny et al., ISSCC 2008

[4] E. Cantatore et al., ISSCC 2006

[5] W. Fix, OEC07

1000

800

600

400

200

0

Dat

a ra

te [b

/s]

3020100Vdd [V]

[2][1]

[3]

[4][5]

K. Myny et al, ISSCC 2008

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 20

64b transponder chip

Load modulator

64b transponder

5 mm

K. Myny et al, ISSCC 2008

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 21

6” flexible wafer

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 22

Signal at the reader

• Modulation depth h = 1.4%• 64b modulation• Complete tag 0.5

0.4

0.3

0.2

0.1

0.0

Rea

der s

igna

l [V

]

200150100500Time [ms]

Data rate 787 b/sRectified VDD 14 V

K. Myny et al, ISSCC 2008

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 23

Reader field to operate, 8b tag

Required tag field to operate 0.97 A/m

Required tag field to operate 0.97 A/m

10

8

6

4

2

0

Req

uire

d fie

ld fr

om th

e re

ader

[A/m

]

120100806040200Tag distance [cm]

Reader antenna R= 7.5 cm

R= 55 cm

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 24

8b DC modulation

0.5

0.4

0.3

0.2

0.1

0.0

Rea

der s

igna

l [V

]

100806040200Time [ms]

Distance 10 cmField 6.8 A/mRectified VDD 14.3 V

Distance 5 cmField 2.15 A/mRectified VDD 10 V

• Signal at the reader• Distance to the reader varies• Complete tag

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 25

Can complexity go beyond 64 bit code generators?

• 96 bit and 128 bit• Anti-collision protocol (ALOHA)• Double data rates• Manchester encoding• For details, see

– K. Myny, M. J. Beenhakkers, N. A. J. M. van Aerle, G. H. Gelinck, J. Genoe, W. Dehaene, and P. Heremans, “A 128 bit organic RFID transponder chip, including Manchester encoding and ALOHA anti-collision protocol, operating with a data rate of 1529b/s”,accepted for ISSCC 2009, San Francisco

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 26

Reduce power and increase reading distance…

• High-k gate dielectrics• Small channel lengths

( )221

TGSd

dDS VV

tLWI −=

εμ

• Complementary logic

Cfr. H. Klauk et al. Nature 445, 745–748 (2007)

En route to low-voltage circuits

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 27

High-k dielectric enables low-voltage RO

2.0

1.5

1.0

0.5

0.0

Vout

[V]

14121086

Time [ms]

VDD: 2VFreq ~ 315 Hz

VDD=2Vf=315 Hz

pentacene

Glass

AlOx (100nm)

20nm Au

Au

• 19 stage ring oscillator

7

6

5

4

3

2

1

0

Vout

[V]

14121086

Time [ms]

Vout_2V Vout_3V Vout_4V Vout_5V Vout_6V Vout_7V

23

76

54

VDD =

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 28

Complementary logic

PMOS CMOS

De Vusser et al.,IEEE T. Electron. Dev., 2006, 53, 601

CMOS will buy you:High gain (2 driver transistors)“rail-to-rail” i.e. low state and high state are 0 and VDDImproved noise margin

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 29

• VDD = 2 V• Gain = 14• NM = 0.65 V• Swing = 1.96 V

Complementary organic technology

2.0

1.5

1.0

0.5

0.0

Vou

t [V

]

2.01.51.00.50.0Vin [V]

14

12

10

8

6

4

2

0

Gain

S. De Vusser et al, ISSCC 2006

P-type OTFT

N-type OTFT

100 μm

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 30

Complementary invertor characteristics

VDD=20V

Vtrip=8.6V≈VDD/2

VDD=10V

Vtrip=4.3V≈VDD/2

VDD=15V

Vtrip=6.5V≈VDD/2VDD=5V

Vtrip=2.3V≈VDD/2

VDD=20V

Vtrip=8.6V≈VDD/2

VDD=10V

Vtrip=4.3V≈VDD/2

VDD=15V

Vtrip=6.5V≈VDD/2VDD=5V

Vtrip=2.3V≈VDD/2

VDD=20V

Vtrip=8.6V≈VDD/2

VDD=10V

Vtrip=4.3V≈VDD/2

VDD=15V

Vtrip=6.5V≈VDD/2VDD=5V

Vtrip=2.3V≈VDD/2

VDD=20V

Vtrip=8.6V≈VDD/2

VDD=10V

Vtrip=4.3V≈VDD/2

VDD=15V

Vtrip=6.5V≈VDD/2VDD=5V

Vtrip=2.3V≈VDD/2

D. Bode et al, ICOE June 2008

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 31

Complementary invertor characteristics

D. Bode et al, ICOE June 2008

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 32

Implementation challenges CMOS

• How to integrate n- and p-type semiconductors on one substrate?

• How to integrate n- and p-type processes on one substrate?– Dielectric surface

– Contacts

• Stability of the n-type organic semiconductor

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 33

Improved n-type materials

EWork function

of metals

Au: 5.1 eV

Ca: 2.9 eVLUMO = 2.9 eV

HOMO = 5.1 eV

LUMO = 3.4 eV

HOMO = 5.4 eV

6

5

4

3

2

LUMO = 4 eV

HOMO = 6.3 eV

Pentacene PTCDI-C13

DFHCO-4T

Yoon et al., JACS 127, 1348, 2005

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 34

Improved n-type material: DFHCO-4T

Au top contacts

μ=2.1 cm2/Vs

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 35

Conclusions

• Integrated UHF rectifiers on foil deliver 5 V at 433 MHz

• Double half-wave rectifiers deliver double the voltage of single-diode rectifiers at 13.56 MHz

• Plastic RFID applications will require low-voltage circuits

• Complementary logic is a route towards low-voltage (5 V)

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 36

PRODI design workshop

Bridging the gap between design and R2R technology

Speakers:• Prof. Eugenio Cantatore• Mike Hambsch• Kris Myny• Dieter Bode• Prof. Bill EcclestonFollowed by a Panel discussion on design issues

IMEC, November 24, 2008

Jan GenoePlastic Electronics Foundation 2008, 28 October 2008 37

Acknowledgements

• European Commission for funding through the FP6 integrated project Polyapply IST No.507143

• IWT for grant of Dieter Bode

• FWO for grant of Sarah Schols