334
INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photo graphed the photographer has followed a definite method in “sectioning” the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy. University Micixxilms International 300 N. ZEEB ROAD. ANN ARBOR. Ml 48106 IB BEDFORD ROW, LONDON WC1 R 4EJ. ENGLAND

Micixxilms International - OhioLINK ETD Center

Embed Size (px)

Citation preview

INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you o f complete continuity.

2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photo­graphed the photographer has followed a definite method in “sectioning” the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.

4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

UniversityMicixxilms

International3 0 0 N. Z E E B R O A D . A N N A R B O R . Ml 4 8 1 0 6 IB B E D F O R D R O W , L O N D O N WC1 R 4 E J . E N G L A N D

8008802

Z i m m e r , L in n L a w r e n c e

TOTALLY SYNTHETIC IRON(II) HEME-PROTEIN MODELS AND THEIR INTERACTIONS WITH SMALL MOLECULES

The Ohio State University PH.D. 1979

University M icrofilms

In ternational 300 N. Zeeb Road, Ann Arbor, MI 48106 18 Bedford Row, London WC1R 4EJ, England

PLEASE NOTE:In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark v* .

1. Glossy photographs _ _ _ _ _ _ _2. Colored illustrations _ _ _ _ _ _ _3. Photographs with dark background _ _ _ _ _ _ _'4. Illustrations are poor c o p y _ _ _ _ _ _ _5. Drint shows through as there is text on both sides of page _______6. Indistinct, broken or small print on several pages _ _ _ _ _ _ _ _ throughout

7. Tightly bound copy with print lost in spine _ _ _ _ _ _ _8. Computer printout pages with indistinct print9. Page(s) ____ lacking when material received, and not availablefrom school or author _ _ _ _ _ _ _

10. Page(s) _ _ _ _ _ _ _ seem to be missing in numbering only as textfallows _ _ _ _ _ _ _11. Poor carbon copy _ _ _ _ _ _ _12. Not original copy, several pages with blurred type _ _ _ _ _ _ _13. Appendix pages are poor copy _ _ _ _ _ _ _14. Original copy with light type _ _ _ _ _ _ _15. Curling and wrinkled pages _ _ _ _ _ _ _16. Other

UniversityMicrdfiims

International2 0 0 \ Z = = = H O. A N N 4 R 3 0 P Ml J 8 1 0 6 ' 3 1 2 1 7 6 1 - 4 7 0 0

TOTALLY SYNTHETIC IRON(II) HEME-PROTEIN MODELS

AND THEIR INTERACTIONS WITH SMALL MOLECULES

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the Graduate

School of The Ohio State University

By

Linn Lawrence Zimmer, B.S.

* * * * *

The Ohio State University

1979

Reading Committee:

Professor G, G. Christoph

Professor D. H. Busch

Professor A. Wojcicki

Approved By

C7 AdviserDepartment of Chemistry

To Christine Rea

ACKNOWLEDGEMENT

My deepest thanks are extended to all of the members of

Dr. Christoph's and Dr. Busch's research groups whose assistance and

encouragement helped make this work possible. Dr. Mark Beno was

especially helpful in the area of X-ray crystallography and Dr. Joseph

Grzybowski shared many valuable Insights with me in the area of

iron(II) chemistry. But, above all, special thanks must be given to

Professors Busch and Christoph for their guidance and encouragement

throughout the course of this work.

iii

CURRICULUM VITAE

March 4, 1953 Born, Detroit, Michigan

June, 1975 B.S., Wayne State University

Sept., 1975 -June, 1977 . Teaching Assistant, Department of Chemistry, The Ohio State University

June, 1977 -Nov., 1979 Research Associate, Department of Chemistry, The Ohio State University

December, 1979 Ph.D., The Ohio State University

FIELDS OF STUDY

Major Field: Chemistry

Specialization: Biological Aspects of Inorganic Coordination Chemistry.Professors G. G. Christoph and D. H, Busch, Advisers

iv

TABLE OF CONTENTS

PageACKNOWLEDGEMENTS................................................. H i

CURRICULUM V I T A E ................................................. iv

LIST OF T A B L E S ................................................... vii

LIST OF F I GURES................................................... x

ABBREVIATIONS........... xvi

INTRODUCTION ..................................................... 1

Requirements of a Model System ............................. 6Model Systems for Oxygen Binding . . . . .................. 7Kinetic and Equilibrium Studies for Carbon Monoxide

Binding to Model S y s t e m s .......................... 13Structural Studies of CO Adducts of Model Systems ......... 15Infrared Studies of CO Adducts of Natural and

Model Systems ................. 18Cobalt(II) Model Systems .................................... 20The Dry Cave M o d e l .......................................... 21

E X P E R I M E N T A L ..................................................... 29

General Procedures .......................................... 29R e a g e n t s ..................................................... 29Physical Measurements ........................................ 30Synthesis of Unbridged Nickel(II) Complexes ............... 32Synthesis of Monomeric Dry Cave Nickel(II) Complexes . . . 35Synthesis of Mixed Monomeric and Dimeric Nickel(II)

Dry Cave C o m p l e x e s ........................................ 38Synthesis of Dimeric Nickel(II) Dry Cave Complexes . . . . 41Synthesis of Ligand Salts ................................... 44Synthesis of Iron(II) Starting Materials ................. 49Synthesis of Unbridged Iron(II) Complexes ................. 50Synthesis of Iron(II) Dry Cave Chloro Complexes .......... 52Synthesis of Iron(III) Dry Cave Complexes ........ . . . . 55Synthesis of Other Iron(II) Dry Cave Complexes .......... 56Synthesis of Carbon Monoxide Adducts of the

Iron(II) Complexes ........................................ 59Synthesis of Dimeric Iron(II) Dry Cave Complexes ........ 63Synthesis of Copper(II) Dry Cave Complexes ............... 66

v

TABLE OF CONTENTS (Continued)Page

Equilibrium Constant Measurement ........................... 66X-Ray Crystallographic Procedures ........................... 68

RESULTS AND DISCUSSION .......................................... 80

Unbridged Nickel(II) Complexes . . . . ............. . . . 80Synthesis of Nickel(II) Dry Cave Complexes ................ 97Separation of Monomeric and Dimeric Complexes ............. 107Characterization of Monomeric Nickel(II)

Dry Cave C o m p l e x e s ........................................ 110Characterization of Dimeric Nickel(II)

Dry Cave C o m p l e x e s ........................................ 121Characterization of the Complex Derived from

9,lO-Bis(chloromethyl)anthracene 137Removal of Ligands from Nickel(II) ........................ 144Iron(II) Complexes .......................................... 154Monomeric Iron(II) Chloro Complexes of Dry

Cave Ligands, [FeLCl+ ] .................................... 155Attempted Synthesis of Four-Coordinate Iron(II)

Complexes, [FeL]2+ 160Iron(II) Complexes of Unbridged Ligands .................... 162Crystal Structures of Two Iron(II) Chloro Complexes . . . . 165Summary of Crystal Structure Results ...................... 174Reactions of Iron(II) Complexes with Axial Ligands . . . . 178CO Adducts of Iron (II) Dry Cave Complexes.................. 187Crystal Structures of a CO Adduct of an Iron(II)

Dry Cave C o m p l e x .......................................... 198Equilibrium Studies of the Reaction between Carbon Monoxide

and Monomeric Iron(II) Dry Cave Complexes................ 207Correlations Between Physical Properties of CO Adducts

and Equilibrium Constants................................. 224Reactions of Iron(II) Dry Cave Complexes with Oxygen . . . 235Iron(II) Complexes Having Rearranged Ligands ............. 242Iron(II) Complexes Derived from Dimeric Dry Cave Ligands . 251Monomeric Copper(II) Dry Cave Complexes .................... 268

APPENDIXES

A. Rotameter Calibration .................................... 270

B. Final X-ray Positional and Thermal Parametersand Structure Factors ................................. 272

C. Derivation of Chloride EquilibriumConstant Expression . . . . . 306

BIBLIOGRAPHY ..................................................... 310vi

LIST OF TABLES

Table Page1. Carbon Monoxide Binding by Hemoproteins and Model

Iron(II) Porphyrins .......................................... 14

2. Analytical Data for the Complexes rFe((R)Me2 [16]tetraeneN4}(B)(CO)](PF6)2 .................... 61

3. Summary of Crystallographic D a t a ........................... 72

4. E - S t a t i s t i c s ................................................ 73

5. Selected Infrared Frequencies and Molar Conductancesfor Unbridged Nickel(II) Complexes ........................ -82

6 . Proton NMR Data for Unbridged Nickel(II) Complexes . . . . 85

7. Carbon-13 NMR Data for Unbridged Nickel(II) Complexes . . . 87

8 . Electrochemical Data for the Unbridged Nickel(II)Complexes..................................................... 95

9. Selected Infrared Frequencies and Molar ConductanceData for Monomeric Dry Cave Nickel (II) C o m p l e x e s ......... 112

10. Orisager Plot Parameters for Monomeric Dry CaveNickel(II) Complexes ........................................ 114

11. Proton NMR Data for Monomeric Dry CaveNickel(II) Complexes ........................................ 116

12. Carbon-13 NMR Data for Monomeric Dry CaveNickel(II) Complexes ........................................ 118

13. Electrochemical Data for Monomeric Dry CaveNickel(II) Complexes ........................................ 122

14. Selected Infrared Frequencies and MolarConductances for Dimeric Dry Cave Nickel(II) Complexes . . 124

15. Proton NMR Data for Dimeric Dry CaveNickel (II) C o m p l e x e s ................................... 126

vii

LIST OF TABLES (Continued)Table Page16. Carbon-13 NMR Data for Dimeric Dry

Cave Nickel(II) Complexes .................................... 128

17. Electrochemical Data for Dimeric DryCave Nickel(II) Complexes ..................................... 132

18. Bond Distances for Dimeric Nickel(II) Complex ............... 134

19. Bond Angles for Dimeric Nickel(II) Complex . . . . . . . . 135

20. 13C N1IR Data for the Nickel (II) ComplexDerived from 9 ,10-BIs(chloromethyl)anthracene ............... 142

21. Selected Infrared Frequencies for Dry Cave Ligand Salts . . 147

22. Proton NMR Data for Dry Cave Ligand S a l t s ................... 1501323. C NMR Data for Monomeric Dry Cave Ligand S a l t s ........... 152

24. Bond Distances (esd) for a) [Fe{(m-Xylyl(NHEthi)2)-Me2 [16]tetraeneN^}Cl]Cl*2CH^OH and b) [Fe{(m-Xylyl- (MeNEthi)2)Me2 [16]tetraeneN4}Cl](PFg) ........................ 168

25. Bond Angles (esd) for a) [Fe{(m-Xylyl(NHEthi)2)Me2 [16]-tetraeneN^Cl]Cl^CHgOH and b) [Fe{(m-Xylyl(MeNEthi)2)2~ [16]tetraeneN4}Cl](PFg) ........................................ 169

26. Summary of Structural Data for Dry Cave Complexes . . . . 175

27. Carbon-13 NMR Data for CO Adducts of MonomericIron(II) Dry Cave Complexes, [Fe{(R)Me? [16]tetraeneN,}- (B)(CO)](PF6)2 ....................... f .. ....... 7 . . . 196

28. Bond Distances (esd) for [Fe{(l,5-Pent(NHEthi)2)Me2 [16]-tetraeneN4 )(PY)(CO)](PF&) •CH^OH ............................. 200

29. Bond Angles (esd) for [Fe{(l,5-Pent(NHEthi)_)Me„[16]-tetraeneN4>(PY)(CO)](PF6)2-CH3OH ..................... 201

30. Summary of Structural Data for CO Adductsof Model S y s t e m s .............................................. 203

viii

LIST OF TABLES (Continued)Table Page31. CO Equilibrium Constants for [Fe{(m-Xylyl(MeNEthi)2)-

Me2[16]tetraeneN/, }(CH^CN) ](PFg)2 in A c e t o n i t r i l e ....... 210

32. Equilibrium Data for the Reaction of the Para-xyleneBridged Iron(II) Complex with CO and Chloride .............. 216

33. CO Equilibrium Constants for Dry CaveComplexes at 0.0°C in C H ^ C N ................................... 222

1334. Summary of Infrared, Electrochemical and C NMR Data for CO Adducts of Monomeric Iron(II) Complexes, [Fe{(R)Me2 [16]tetraeneN4}(B)(C0)](PF6)2 ...................... 225

35. Carbon-13 NMR Data for Iron(II) Complexesof Rearranged Ligands .......................................... 247

ix

LIST OF FIGURESFigure Page

1. Structure of Fe ProtoporphyrinIX ........................... 3

2. Structure of the "Picket Fence" PorphyrinDioxygen Adduct ............................................ 11

3. Structure of the "Capped" Porphyrin ....................... 12

4. Structure of the Cyclophane Porphyrin .................... 16

5. Crystal Structure of [Ni{(MeOEthi)2Me2[15]-tetraeneN,}](C10,)_ . . . . . . . . . . . . . ............ 244 4 2

6 . ORTEP Drawing of ja-Xylyl Bridged Dry Cave Complex . . . . 26

7. Infrared Spectra of a) [Ni{(n-BuNHEthi)2^e2 [16]— tetraeneN^}](PFg)2 and b) [Ni{ (t-BuNHEthi)2Me2-[16] tetraeneN^.}] (PFg)2 ..................................... 83

8 . 1H NMR Spectra of a) [Ni{(n-BuNHEthi)2Me2 [16]-tetraeneN^}] (PFg)2 and b) [Ni{(_t-BuNHEthi)2Me2 [16]- tetraeneN^}](PFg)2 ......................................... 86

9. 13C NMR Spectrum of [Ni{(Me2NEthi)2Me2 [16]-tetraeneN^}](PFg)2 at a) 300K, b) 278 K, c) 238 K . . . . 89

10. 13C NMR Spectrum of [Ni{(n-BuNHEthi)2Me2 [16]-tetraeneN^}] (PFg)2 at a) 300 K, b) 238 K ................. 90

11. 13C NMR Spectrum of [Ni{(t-BuNHEthi)2Me2[16]-tetraeneN^}](PFg>2 ......................................... 91

12. Cyclic and Rotating Platinum Electrode Voltamagramsfor [Ni{(MeNHEthi)2Me2 [16]tetraeneN4}](PF6)2 ............. 96

13. ORTEP Drawing of meta-Xylyl Bridged Dimer ............... 102

14. Summary of Established Monomeric Nickel(II)Dry Cave Complexes............................................ 105

x

LIST OF FIGURES (Continued)Figure Page

15. Summary of Dimeric Nickel(II) Dry Cave Complexes . . . . 106

16. HPLC Chromatogram Showing Monomer-Dimer Separationfor the meta-xylene Bridge Nickel(II) Complexes . . . . 109

17. Infrared Spectra of a) [Ni{(m-Xylyl(NHEthi)2^Me2tetraeneN4)](PF6)2 and b) [Ni{(m-Xylyl(MeNEthi)2)Me2~ [16)tetraeneN^}](PFg)2 ................................... Ill

18. Onsager Plots for Monomeric Dry Cave Nickel(II)C o m p l e x e s ................................................ 113

19. Proton NMR Spectra of a) [Ni{(jj-Xylyl(NHEthi)2)Me2 t 16]-tetraeneN^)](PFg)2 and b) [Ni{(m-Xylyl(MeNEthi)2)Me2~ [16]tetraeneN^}J (PFg)2 ................. 117

20. 13C NMR Spectrum of [Ni{(m-Xylyl(NHEthi)2)Me2 [16]-tetraeneN^)](PFg)2 ....................................... 119

21. ^3C NMR Spectra of [Ni{ (jv-Xylyl (NHEthi) 2)Me2 [ 16]-tetraeneN^}](PFg)2 and b) [Ni{(m-Xylyl(MeNEthi)2)- Me2 [16]tetraeneN^}](PFg)2 ............................... 120

22. Infrared Spectrum of [Ni{(m-Xylyl(NHEthi)„)Me_[16]-tetraeneN^}]2 (PFg)/. ..................................... 123

23. Proton NMR Spectra of a) [Ni{(m-Xylyl(NHEthi)2)Me2 [16]-tetraeneN4)]2(PF6)4 and b) [Ni{(DURYL(MeNEthi)2Me2~ [16]tetraeneN4)]2(PFg)4 ................................. 127

24. 13C NMR Spectrum of [Nl{(m-Xylyl(NHEthi) j M e £16]-tetraeneN4 }]2 (PFg)4 ..................................... 129

25. 13C NMR Spectrum of [Ni{(DURYL(MeNEthi)oMe2 [16]—tetraeneN4)]2 (PFg)4 ..................................... 130

26. ORTEP Drawings of the Dimeric Nickel(II) Complex . . . . 133

27. Numbering Scheme for Dimeric Nickel(II) Complex . . . . 136

xi

LIST OF FIGURES (Continued)Figure Page

28. Infrared Spectrum of the Anthracene Derivative ........... 138

29. Proton NMR Spectrum of the Anthracene Derivative ......... 1391330. C NMR Spectrum of the Anthracene D e r i v a t i v e ..............141

31. Infrared Spectrum of [(m-Xylyl(NHEthi)2)Me,,[16]- tetraeneN^](PFg)^ .......................................... 148

32. Si NMR Spectra of a) [(m-Xylyl(NHEthi)2)Me2 [16]“ tetraeneN^](PFg)^ and b) [ (£-Xylyl(NHEthi)2)Me2~[16]tetraeneN^](PFg)^ ...................................... 149

33. 13C NMR Spectra of a) [(m-Xylyl(NHEthi)2)Me2 [16]- tetraeneN^](PFg)^ and b) [(£-Xylyl(NHEthi)2)Me2~[16]tetraeneN^](PFg)^ ...................................... 151

34. Infrared Spectra of a) [Fe{(m-Xylyl(NHEthi)2)Me2 [16]-tetraeneNA}Cl]Cl*2CH30H, b) [Fe{(m-Xylyl(NHEthi)2)Me2~ [16]tetraeneN^)Cl](PFg), and c) [Fe{(m-Xylyl- (MeNEthi)2)Me2 [16]tetraeneN4}Cl](PF6) 157

35. Cyclic Voltamagram of [Fe{(m-Xylyl(MeNEthi)2)Me2~[16]tetraeneN4)Cl](PF6) .................................... 159

36. Infrared Spectrum of [Fe{(MeNHEthi)2Me2 [16]-tetraeneN,}(CH«CN) ](PFC)„ ................................. 1634 J X O Z

37. Proton NMR Spectrum of [Fe{(MeNHEthi)_Me_[16]-tetraeneN^}(CH3CN)x l(PFg)2 ................................. 164

38. Cyclic Voltamagram of [Fe{(MeNHEthi) Me_[16]-tetraeneN4>(CH3CN)x ](PF6)2 ......... 1 . 7 .................. 165

39. ORTEP Drawings of [Fe{(m-Xylyl(NHEthi)„)Me„[16]-tetraeneN4}Cl]Cl-2CH30 H ............... 166

40. ORTEP Drawings of [Fe{(m-Xylyl(MeNEthi)2)Me„[16]-tetraeneN4)Cl](PFg) ............. ,......................... 167

41. Molecular Numbering Scheme for Chloro-Iron(II) Complexes . 171

xii

LIST OF FIGURES (Continued)Figure Page

42. Cyclic Voltamagram of [Fe{(1,6-Hex(MeNEthi)2)Me2~ [16]tetraeneN^}Cl](PFg) with a) No Excess Chlorideand b) 100 Equivalents of Excess Chloride . . . . . . . . 180

43. 3H NMR Spectrum of [Fe{(l,6-Hex(MeNEthi)„)Me_[16]- tetraeneN4>Cl] (PFg) ...................... 182

44. ^H NMR Spectrum of [Fe{(m-Xylyl(MeNEthi)9)Me„[16]- tetraeneN4}Cl] ( P F g ) ................................ 183

45. 13C NMR Spectrum of [Fe{(m-Xylyl(MeNEthi)„)Me„[16]-tetraeneN4>Cl](PF6) .....................7 . 7 .............. 184

46. Infrared Spectra of [Fe{(]3-Xylyl(NHEthi)2)Me2 [16]— tetraeneN4}(B)(CO)](PF6)2 , a) B *= CH3CN, b) B = PY,c) B = 1 - M e l m ................................................. 191

47. 13C NMR Spectrum of [Fe{(1,6-Hex(MeNEthi)„)Me„[16]-tetraeneN4)(CH3CN)(CO)](PF6)2 . . . . . . 7 193

48. 13C NMR Spectrum of [Fe{(l,6-Hex(MeNEthi)„)Me„[16]-tetraeneN4}(PY)(CO)](PF6)2 .............. 7 . 7 194

49. 33C NMR Spectrum of [Fe{(l,6-Hex(MeNEthi)„)Me„[16]-tetraeneN4}(l-MeIm)(CO)](PF6)2 .......... 7 . 7 195

50. ORTEP Drawings of [Fe{(1,5-Pent(NHEthi)9)Me„[16]- tetraeneN4 >(PY)(CO)](PF6)2 *CH3OH . . . 7 . 7 ............. 199

51. Molecular Numbering Scheme for [Fe{(1,5-Pent(NHEthi)„)- Me2 [16]tetraeneN4}(PY)(CO)](PF6)2*CH3OH ............. 202

52. Packing Diagram for [Fe{(l,5-Pent(NHEthi)9)Me„[163- tetraene^KCO) (PY) ] (PF6)2 -CH3OH . . . . . . 7 .......... 205

53. Spectral Changes for the Reaction of [Fe{(m-Xylyl- (MeNEthi) 2)Me2 [16] tetraene^} (CH3CN) ] (PFg) 2 with COin CH3CN at 0 ° C ............................................... 209

54. Van't Hoff Plot for [Fe{(m-Xylyl(MeNEthi)-) Me 2 [16]- tetraeneN4}](PF6)2 In CH3CN ............................... 211

xili

LIST OF FIGURES (Continued)Figure Page

55. Spectral Changes for the Reaction of [Fe{(£-Xylyl- (NHEthi)2)Me2 [16]tetraeneN4)Cl](PFg) in CH^CN at0°C, [Cl“ ] » 1 x 10~3 m o l a r ..................................215

56. Plot to Determine Krl for the para-xyleneBridged Complex ............................................. 218

57. Spectral Changes for the Reaction of [Fe{(1,6-Hex- (MeNEthi)2)Me2 [16]tetraeneN4}Cl](PFfi) in CHgCN at0.0°C, [Cl"] = 0.1 m o l a r ...................................... 220

58. Cyclic Voltamagrams for [Fe{(1,6-Hex(MeNEthi)2)Me2[16]-tetraeneN.}(B)(CO)](PF.,) _, a) B = PY, solvent = CH_CN,

h b 2. jb) B = l-Melm, solvent = D M F ................................232

59. Electronic Spectra of the Chloro-iron(III) and Vi-oxo-dimer Derivatives of the (NMe)„Mxyl BridgedS p e c i e s ........................................................ 237

60. Spectral Changes for Reaction of [Fe{(1,4-But- (MeNEthi)2)Me2 (16]tetraeneN4}]I2 with 02 in CI^CN,1.5 H 1 — Melm, - 3 0 ° C ...........................................240

61. Infrared Spectrum of the Iron(II) Complex of theSexadentate Ligand .......................................... 243

62. Proton NMR Spectrum of the Iron(II) Complex of theSexadentate Ligand .......................................... 2451363. C NMR Spectra of a) the Iron(II) Complex of the Sexadentate Ligand and b) the CO Adduct of the Pentadentate Complex ........................................ 246

64. IR Spectrum of the Pentadentate CO A d d u c t .................. 249

65. Infrared Spectrum of the Pentadentatemeta-xylyl Complex .......................................... 251

66. Infrared Spectra of [Fe{(m-Xylyl(NHEthi)2)Me2 [16]-tetraeneN4 >(B)]2 (PF6)4 , a) B = PY, b) B - I m ................ 254

xiv

LIST OF FIGURES (Continued)Figure Page

67. Cyclic Voltamagrams of [Fe{(m-Xyly 1 (NHEthi)2^Me2 t^]- tetraeneN4}(PY)]2 (PFg)4 in DMF with excess PY ............ 257

68. Titration of [Fe{(m-Xylyl(NHEthi)_)Me.[16]tetraeneN,} (PY)]2 (PF6)4 with Py with CH3CN 7 . 7 ................. 259

69. Titration of [Fe{(m-Xylyl(NHEthi)_)Me„[16]tetraeneN,} (Im)]2 (PF6)4 with Im in CH3CN . 7 . ................. 261

70. Titration of [Fe{(m-Xylyl(NHEthi)2)Me2 [16] tetraeneN^(2 - MeIm)]2 (PF6)2 with 2-MeIm in CH3C N .................263

71. Spectral Changes of [Fe{(m-Xylyl(NHEthi)2)Me2 [16]- tetraeneN4K l - M e I m ) 3 2 (PF6)4 with 02 in 50%H20/50%1-Melm . 265

72. Spectral Changes of [Fe{(m-Xylyl(NHEthi)2)Me2 [16]- tetraeneN4)(l-MeIm)]2 (PF6)4 with CO in 50%H20/50%1-Melm . 267

xv

ABBREVIATIONS

Me - Methyl

Mb - Myoglobin

Hb - Hemoglobin

1 - Melm - 1 - Methlimidazole

2 - Melm - 2 - Methylimidazole

Im - Imidazole

PY - Pyridine

TPP - Tetraphenylporphyrin

PpIX - ProtoporphyrinIX

PPp - Deuteroporphyrin

PPIXDME - Protoporphyrin IX Dimethyl Ester

TpivPP - Picket Fence Porphyrin

OMBP - Octamethylbenzoporphyrin

Pc - Phthalocyanine

TAAB - Tetramer of o-aminobenzaldehyde

xv i

INTRODUCTION

The role of inorganic chemistry in the functioning of biologi­

cal systems is indeed important and widespread. Nature uses metal

complexes as the active sites in a number of enzymes and other proteins

having a variety of functions. Examples include hemoglobin and myo­

globin, the oxygen transport and storage proteins; cytochromes, involved

in electron transport; the oxidase, oxygenase and peroxidase enzymes.

The study of these systems is made more difficult by the very size and

complexity of the molecules. In order to overcome some of the problems

associated with the study of biological systems, the field of bioinor­

ganic chemistry has developed. Workers in this area synthesize and

study simple metal complexes which are designed to mimic the active

sites of the naturally occurring proteins. These model complexes

ideally allow for selective variation of structural features and, as a

result, the effects of structural changes on the reaction of interest

can be examined and evaluated in detail. The ultimate goal of model

system studies is two-fold: First, to more thoroughly understand the

natural systems; and second, to apply the knowledge to industrial and

laboratory processes in order to accomplish the same tasks as the living

systems, but on an industrial scale and perhaps with even greater effi­

ciency or selectivity than the natural systems.

1

The work described In this thesis involves the design, synthesis

and characterization of a series of totally synthetic iron(II)

heme-protein models and the study of their interactions with the small

molecules dioxygen and carbon monoxide. The complexes have been

designed to mimic the behavior of the oxygen transport and storage pro­

teins, hemoglobin (Hb) and myoglobin (Mb). The active site of these

proteins consists of a heme group (shown in figure 1) bound to the

globin at a single coordination site of the iron(ll) center through the*

imidazole group of the "proximal histidine." There are also some 80

hydrophobic interactions which aid in the binding of the heme to the

globin.^ Mb Is a monomer containing a single heme unit per protein,

whereas Hb is tetrameric, composed of two different globins known as

the a and 0 chains. The heme unit is located deep within the globin

resulting in the formation of a highly protected environment in the

vicinity of the metal, which appears to permit only small, rather

non-polar molecules to approach the metal when in the reduced state.

When the metal is in the oxidized state, having an unneutralized

charge, polar molecules can be drawn into the protected area.

The coordination chemistry of the iron(II) center has been2reviewed recently for simple hemes by Hoard and for hemoproteins by

3Perutz. Six-coordinate iron(II) hemes are Invariably diamagnetic

(S = 0). High-spin (S = 2) iron(II) hemes are always five-coordinate

with the metal ion displaced from the plane of the porphyrin toward the 4fifth ligand. A third, intermediate spin state (S *“■ 1) has no prece­

dent in biological systems but has been observed in four-coordinate

Fe(TPP).^ In the deoxy Hb and Mb proteins, the heme is five-coordinate

3

H 0 2C(CH2)2

H02C(CH2)2

CH=CH,

i\//c h -c h 2

Figure 1. Structure of Fe ProtoporphyrlnIX

and high spin with the iron(II) displaced 0.55 A from the porphyrin 3plane toward the coordinated proximal imidazole. Upon addition of

oxygen or carbon monoxide, the iron(II) becomes six-coordinate and low

spin with the metal ion moving essentially into the porphyrin plane.

Another important feature of Hb and Mb is the presence of the

distal histidine whose imidazole group is positioned near to the vacant

binding site of the heme iron. The role of this group in the binding

of small molecules has been the subject of much debate and will be

referred to often throughout this work.

Until recently, the manner of binding of 0^ to Hb and Mb wasg

unknown. Pauling proposed a bent, end-on form of binding (structure I)

in which the M-0 bonding Is primarily sigma in character.

Griffith favored a triangular, side-on mode of 0^ coordination (struc­

ture II) in which the bonding is primarily tt in character.

0I

•Fe

I- F e ­

lt

The appropriateness of the Pauling model was strongly supported byg

structures of cobalt-02 analogs and was confirmed by the X-ray crystal

structure analysis of the dioxygen adduct of Collman's "Picket Fence"9porphyrin. Two oxyheme proteins have recently been structurally

characterized^*^ and verify the bent, end-on form of bonding by

dioxygen. In oxy-erythrocruorln^ the Fe-0-0 angle was found to be

170° whereas in oxymyoglobin the angle was 121°.

The nature of the binding of carbon monoxide to Hb and Mb is

still the subject of debate. The X-ray structural analysis of HbCO has12been reported by Heidner et al. and a neutron diffraction study of

13MbCO has been reported by Norvell et al. Both of these groups report

that the CO oxygen atom lies off the heme axis by 0.7 A but that the CO

carbon atom cannot be observed. The cause of the bending of the bound

CO is interaction between the CO oxygen atom and the distal imidazole12of the protein. Heidner et al. calculated that the distances between

a linear CO molecule bound along the porphyrin axis and the distal

imidazole would be unacceptably short and they concluded that the

potential stress is relieved by the observed bending. A question which

remains, however^ is: Does the bending occur at the metal as in struc­

ture III, at the CO carbon atom as in structure IV, or is there a com­

bination of the effects given by structures III and IV as shown by

structure V?

/-Fe-

IB

in

cf y

-F.e-

B

nz;

/-Fe-

IB

JL

On the grounds that a bent Fe-C-0 conformation as in structures IV and

V has been observed only when the CO serves to bridge two metal centers

in simple organometallic compounds and that a bending similar to that14of HbCO was found in the structure of cyano-methemoglobin, it was

12concluded that structure III is most probable.

Another question which remains concerning the role of the distal

Imidazole is: What effect does the interaction between the bound CO

and the distal imidazole have on the stability of the resulting CO

adduct? In general, the binding constants for CO adduct formation with

iron(II) hemes are much larger than those observed with the heme pro­

teins.^ It has been suggested*-'* that the weaker binding in the latter

is due to the interaction between CO and the distal imidazole pre­

posed that this weakened binding of CO protects the heooproteins from

CO poisoning without affecting 0^ binding which, because of its intrin­

sic angular geometry is not sterically affected by the distal imida­

zole. The importance of steric interactions in decreasing the

iron-carbon bond strength is even more clear when one recognizes that

the principle source of CO in biological systems is endogenous. The

biological catabolism of Hb and Mb produces one mole of CO per mole of

heme. If no steric hinderance were present, one would expect approxi­

mately 20% of the Hb and Mb to exist as CO bound forms with concommit-

tant impairment of vital bodily functions.

Requirements of a Model System

A synthetic system must meet a number of requirements in order

to serve as a functional model for Hb and Mb. First it must reversibly

form adducts with CO and 0^ (equations 1 and 2).

The second requirement is that the environment in the vicinity of the

CO and O2 binding site resemble that of the proteins. The site should

be well protected by a non-polar structure which inhibits dimerization

reactions and restricts the size and polarity of molecules which can

approach and bind to the metal. Third, the model should have coordina­

tion and spin states which are like those of the proteins. The complex

15venting linear binding of the CO molecule. Suslick et al. have pro-

( , ij;Fet.Lj + o2 ^ ^ Q B jF e iL j i c o ;

(B)Fe(L) + CO (B)Fe(L) (CO) (1)

(2)

should change from hlgh-spin, five-coordinate to low-spin,

six-coordinate upon exposure to an appropriate small molecule ligand.

Fourth, because the natural system is an aqueous one, we require that

the model system likewise be water soluble. Fifth, the incorporation of

a structure which resembles the distal imidazole of the natural systems

is necessary if its importance in the binding of carbon monoxide to the

proteins is to be tested. Finally, the system must be sufficiently

synthetically versatile to allow the effects of systematic structural

changes to be examined and quantified.

Model Systems for Oxygen Binding

A wide variety of model dioxygen compounds have been studied by

various researchers using different techniques. The most basic systems

to be examined, the simple iron porphyrins, were found to bind oxygen

reversibly only at reduced temperatures, e.g., at -79°C.^ ^ Two

major difficulties limited the utility of these complexes as model sys­

tems for Hb and Mb. At temperatures above -79°C, irreversible oxida­

tion occurred, resulting in the formation of y-oxo-dlmers by the 21mechanism of equations 3-7:

FeP(B)2 v FeP(B) + B (3)

FeP(B) + 02 * FeP(B)(02) (4)

FeP(B)(02) + FeP(B) --- * FeP(B)-02~(B)PFe (5)

FeP(B)-02-(B)PFe ~ p-ld-»- 2FeP(B)(0) (6)

FeP(B) (0) + FeP(B) -rap-d->- FeP-O-FeP (7)

A number of oxo-bridged dimers have been studied in detail and are the22subject of a review. There are also a number of other simple oxida-

23tion reactions which irreversibly produce inactive ferric complexes.

The second problem encountered with simple porphyrin models was

the strong preference for iron(II) to be six-coordinate in the pres­

ence of nitrogenous base ligands. Five-coordinate complexes are not24readily maintained in solution due to the fact that for the

consecutive equilibria shown in equation 8 , making FeP(B)2 the princi­

ple species in solution.

K K2FeP + B * FeP (B) + B ^ ^ FeP(B)2 (8)

As a result, the reaction of simple ferrous porphyrins with CO and 0^

25has as rate determining a dissociative process in which a five—

coordinate intermediate is formed which then reacts rapidly with the 0^

or CO molecule (equations 9-11)

klFe(TPP) (B) „ * = = * Fe(TPP) (B) + B (9)1 -1

k 2Fe(TPP) (B) + 02 ■»-" “ Fe(TPP) (B) (02> (10)

k3Fe(TPP) (B) + CO » Fe(TPP) (B) (CO) (11)-3

Despite these difficulties kinetic and equilibrium studies on26the reaction of Fe(TPP)(B)2 with 02 and CO have been reported with

26some interesting results. It was shown that the affinity of the por­

phyrins for CO was greater than for 02 and that the CO affinity was

greater than that observed for the proteins. It was also observed that

there is no large kinetic preference for oxygen compared with nitro­

genous bases, a finding which suggests that if the distal imidazole of

the protein could bind to the iron(II), the protein would not function

as an effective oxygen carrier.

In order to overcome the preference of iron(II) to be

six-coordinate, sterically hindered ligands such as 2-methylamidazole

and 1,2-dimethylimidazole were used. These ligands form only

five-coordinate adducts with iron(II) porphyrins at room temperature,27but at low temperatures, six-coordinate species can be obtained.

28Hoard has reported the X-ray crystal structure of Fe(TPP)(2-MeIm)-EtOHO

and found the iron(II) to be high-spin and displaced 0.55 A from the

plane of the porphyrin in good agreement with the value observed for3deoxymyoglobin. It has further been shown that complexes having such

29hindered ligands are capable of reversibly binding dioxygen.

Another type of modification was used in Traylor's "tail base"30porphyrin which had an imidazoyl propyl side chain bonded to the

porphyrin ring through an amide linkage. This five-coordinate complex31was found to reversibly bind dioxygen in dichloromethane at -45°C.

At room temperature, however, irreversible oxidation occurred. "Tail

base" complexes have the advantage that the effects of changes in axial32base on the binding of O2 and CO can be very accurately quantified.

In order to overcome the problems due to dimer formation and

also to inhibit the formation of bis-base complexes, steric control of

the environment at the oxygen binding site is required. Baldwin and 33Huff synthesized an iron(II) macrocyclic species which included bulky

10

9,10-bridged-9,10-dihydroanthracene groups for which reversible oxygena-

tion was observed at -78°C. An Irreversible decomposition occurred at

temperatures above -50°C.

The same sterlc hlnderance idea was applied by Collman in theQ /

synthesis of the "picket fence" porphyrin which was one of the first

examples of an oxygen carrier which was functional at room temperature.

The complex interacted with two moles of l-Melm but only weakly with a

second due to steric interactions with the pivaloyl "picket" groups.33 34 36Complexes having one and two * l-Melm molecules bound to the

iron(II) have been isolated and studied. The most important feature of

the "picket fence" model has been the isolation, characterization and

X-ray crystal structural analysis of the solid dioxygen adducts

Fe(TpivPP) (1-Melm)(02)9 and Fe(TpivPP) (2-MeIm) (C>2) ,37 Although

four-fold disorder of the dioxygen and two-fold disorder of the axial

ligand limit the accuracy of the structural results, the bent, end-on

nature of the dioxygen binding is clearly evident, figure 2. In addi­

tion, the structure of the five-coordinate, high-spin precursor complex,37Fe(TpivPP)(2-MeIm), is known, and consequently the structural changes

which occur upon binding of 0^ can be assessed directly. It was found

that the iron(II) moved nearly into the plane of the porphyrin and

changed from high- to low-spin upon oxygenation.

Baldwin has also developed model systems referred to as the

"capped" and "homologous capped" p o r p h y r i n s ^ ( f i g u r e 3) in which

a benzene ring is centered above the metal ion effectively forming a

hydrophobic cavity and inhibiting formation of bis-base and dimeric com­

plexes. The compounds were found to reversibly bind at room

ch3h , C s ! / C H 3

H3 C ^ C

ch3CH-

CO ?h3I HgC | .CH3

HN __ CHa ch3H£ U cf>

Figure 2. Structure of the "Picket Fence" Porphyrin Dioxygen Adduct

Figure 3. Structure of the "Capped" Porphyrin

temperature, however, with affinities less than those observed for the

"picket fence" porphyrins. Baldwin attributed this behavior to an

increase in the conformational strain energy of the "capped" porphyrins41upon oxygenation, not to steric interaction between the bound 0^ and

the "cap."

A number of other model systems have been developed which

utilize different means for protecting the oxygen binding site. Wang

immobilized simple ferrous porphyrins in solid polymer films and

observed reversible oxygenation. Traylor extended this technique to2 q 42

ferrous porphyrins having appended axial ligands. Tsuchida and44Bayer have incorporated ferrous hemes into polymeric systems and

subsequently achieved reversible oxygenation. The irreversible

13

dimerization reaction was avoided in such systems because the iron(II)

centers are effectively isolated from each other and prevented from the

close approach, in much the same way as the four heme centers of Hb are

isolated from each other in the protein.

Kinetic and Equilibrium Studies for Carbon Monoxide Binding to Model Systems

A number of studies have been reported describing the kinetics

and equilibria of reactions between simple ferrous hemes and CO.45 45James has investigated the binding of CO to Fe(TPP), Fe(PpIX) and

Fe(OMBP),^ Stynes has reported data for Fe(Pc)^ and Fe(TAAB),^® and49Lcugee and Brault studied the Fe(PPD) system. The latter used a flow

technique in which gas mixtures having a known partial pressure of CO

were bubbled through the solutions. The other investigators introduced

a known partial pressure of CO over the solution and allowed time for

equilibration. Equilibrium constants for the reaction

FeP (B) + CO - K * FeP (B) (CO) + B (12)

possessed the following trend in the magnitude of K

PpIX > TPP > PPD > OMBP > Pc > TAAB

For these systems differences on the order of 10^ were observed as a

function of the in-plane ligand. Unfortunately, the usefulness of such

systems as model complexes is limited because the dissociative mecha- 24nlsm that controls the rates and equilibria of CO binding has no

counterpart in biological systems.

1A

Chang and Traylor**^ used flash photolysis methods utilized by

Gibson^ and rapid mixing techniques to study the rates of reaction of

CO and 0^ with the "tail base" porphyrin models in a number of solvents

(including water) and have examined a ferrous protoheme imidazole com-52plex in aqueous solution. Although the equilibrium constants for CO

binding were not reported, oxygenation rates and equilibria were found

to be very similar to those of the proteins.

The available data on carbon monoxide binding by hemoproteins

and model iron(II) porphyrin systems as summarized by Collman are

reproduced in table 1. It is apparent that only the porphyrins having

very weak or sterically hindered axial ligands have equilibrium con­

stants similar to those of Hb and Mb. In particular, the binding con­

stants for the "picket fence" porphyrin and Fe(PP^)(Im) are very large.

Collman'*' attributes these results to steric structural effects which,

as described above, cause a bending of the bound CO in the hemopro­

teins but which are lacking In the model systems.

TABLE l1

CARBON MONOXIDE BINDING BY HEMOPROTEINS AND MODEL IRON(II) PORPHYRINS

Substance Pl/2C0 , torr

Mb, horse 1.8 x 10“ 2Hb, human 3.5 x 10“2Fe(PPD)(Im) 2 .A x 10“4Fe(PPD )(2-MeIm) A x 10"2Fe(PPD)(THF) A x 10~2Fe(TpivPP)(l-Melm) "very small"

15

The only systems containing structural features similar to the

distal imidazole of the proteins whose reactions with CO have been53investigated are the cyclophane porphyrins reported by Traylor. As

shown in figure 4, these complexes contain an anthracene or bridged

anthracene moity over the CO binding site of the metal, effectively

maintaining five-coordination of the metal in the absence of small

molecules. Preliminary kinetic results indicated the rate of CO

association to be 3 to 4 orders of magnitude less than that observed

in comparable systems not having steric hinderance. Thus it was con- 53eluded that steric hinderance is a controlling factor in the binding

of CO in these model systems.54 55Studies reported by Rougee and Wayland have demonstrated

the existence of both mono- and biscarbonyl complexes for Fe(TPP) and

Fe(PPp) in non-coordinating solvents. The consecutive equilibrium con­

stants for the reaction (equation 13) differ by approximately two

orders of magnitude in both cases with

K KFeP + CO ' H 5-* FeP (CO) + CO y FeP (CO) 2 (13)

Structural Studies of CO Adducts of Model Systems

Despite the interest in the reactions between model systems and

carbon monoxide, a surprisingly small number of crystal structures of56CO adducts have been reported. Ibers reported the crystal structure

of Fe(TPP)(PY)(CO) in which the Fe-C-0 linkage was observed to be

linear and perpendicular to the porphyrin plane, in contrast to the

bend arrangement reported for the hemoproteins. The iron(II) was found

16

R= (Ch^O^nBu

Figure 4. Structure of the Cyclophane Porphyrin

17O

to be low-spin and displaced 0.02 A from the porphyrin plane towardO O

the CO. Fe-C and C-0 distances were 1.77 A and 1.12 A, respectively.57Although no structural details are available, Collman has

reported that in the structure of Fe(TpivPP)(l-Melm)(CO), the Fe-C-0

linkage is also strictly linear.58Goedkin has reported the structures of five- and

six-coordinate CO adducts of the ferrous complexes of the totally syn­

thetic [14] annulene ligand VI. He has also determined the structure59of the ferrous CO adduct of the ligand VII.

YL

HN v K ^ l j K H

N N

JXYK

The range of C-0 bond distances for the complexes reported by GoedkinO O O O

is 1.12 A to 1.17 A and for the Fe-C bond distances, 1.69 A to 1.77 A.O

The distance of the iron from the plane ranges from -0.05 A to

18O

+0.30 A, where a negative value indicates displacement toward the other

axial ligand. In each case the Fe-C-0 angle is essentially linear and

along the macrocycle axis.

No model complex has yet been reported that satisfactorily

reproduces the bent Fe-C-0 linkage of HbCO and Mb CO. The reason is that

none of the structurally characterized models has an appropriately dis­

posed functional group that can mimic the steric influence of the distal

imidazole.

Infrared Studies of CO Adducts of Natural and Model Systems

The CO stretching frequency (V^q ) and in some cases the band

width at half-height ^or a num^er heme-proteins and model

systems have been measured.^ Alben and Caughey^ reported on the

inductive and resonance effects of substituents on both the porphyrin

(cis effects) and the pyridine coordinated to the iron(II) (trans

effects) for some simple heme derivatives. They also examined solvent

effects and compared the results with those for HbCO. It was shown

that changes in the pK of the porphyrin caused by substitution at the

2 and A positions is negatively correlated with the CO stretching fre­

quency. In a similar way, an increase in the pK of the coordinated

A-substituted pyridine was correlated with a decrease in V ^ . These

data can be explained in terms of the simple resonance contributors

VIII and IX. As the electron donating ability of a pyridine substitu­

ent Increases, structure IX becomes more important because of increased

TT backbonding from the iron(II) center to the CO anti-bonding orbitals.

19

As a result, the strength of the Fe-C bond increases and that of the

C-0 bond decreases, resulting in a lower CO stretching frequency.

R— — Fa— c= ° R—(0 /N— Fe==c= 0

YEL IX

63Isotopic labelling experiments allowed the CO stretching fre­

quency of human hemoglobin in aqueous solution to be accurately

assigned at 1951 cm It was observed that the half-band width in

HbCO was much narrower (8 cm than in simple heme carbonyls (27 cm ^).

A recent study on the interaction of CO with ferrous cytochrome P-450

concluded that an increase in ^v^/2 corresPonc s to "exposure of the

bound CO to a less homogeneous environment which may include some60external solvent." This same study concluded that the bending of the

bound CO is the cause of the decrease in vpn from that for the linearLUFe-C-0 of ferrous hemes.

For simple heme systems, is quite solvent dependent, as was

shown for Fe(PPIXDME)(B)(CO), B B PY or l-Melm.^ With pyridine as the

base, decreases from 1986 cm ^ in CCl^ (dipole moment = 0) to

20

1964 cm ^ in pyridine (dipole moment = 2.3). A similar trend was62observed when l-Melm was the base. It is therefore concluded that a

polar environment increases the strength of the Fe-C bond and causes a

decrease in63Caughey and Alben also examined some abnormal hemoglobins in

which the distal histidine residue was replaced with a tyrosine or

arginine residue. The effects on v_n for these proteins were large,

showing an increase in the value of and confirmed the importance61of the histidine residue in the binding of CO. It was also concluded

that there was no correlation between and the overall affinity of

the iron(II) in the protein for CO. V is determined to a greatuUextent by the strength of the Fe-C and C-0 bonds and does not reflect

ligand structural changes which occur upon formation of the adduct.

Thus caution must be exercised in relating CO stretching frequencies to

overall equilibrium constants for the binding of CO.

Cobalt(II) Model Systems

A large number of model systems have been developed in which

cobalt(II) was used as the metal ion Instead of iron(II). Reversible

oxygenation has been observed for non-macrocyclic complexes (e.g.,

salen derivatives^), for simple and modified porphyrin ligands^ and

for some totally synthetic macrocyclic c o m p l e x e s . A s an extensive

review^ has recently been published, only a few general comments about

the cobalt(II) systems will be mentioned here. In general, the

cobalt(II) systems for specific ligands are much more reversible in

their reactions with 0^ than are their iron(II) counterparts.

21

Cobalt(II) complexes offer the advantage that bis-base adducts do not

readily form. Irreversible oxidation processes similar to those of the

iron(II) complexes including peroxo-bridged dimer formation do occur

however. In general, the binding constants for Co(II) models are

several orders of magnitude smaller than those of comparable iron(II)

complexes. Cobalt(II) complexes do not form carbon monoxide adducts68except at high CO pressures and thus this aspect of the natural sys­

tem chemistry cannot be examined with Co(II) models.

It Is apparent from this summary of model systems that a

totally satisfactory ligand structure has not yet been produced which

satisfactorily mimics the behavior of Hb and Hb in all critical

respects. In each of the examples described, one or more of the

requirements for a functional model system have not been met. Accord­

ingly, a completely new synthetic ligand model system, the dry cave

complexes, was conceived and constructed.

The Dry Cave Model

In 1973, Busch et a l . ^ reported the synthesis, reactivity and

crystal structure of a novel methoxyethylidene complex of a fifteen69membered macrocycle (X). HIpp demonstrated the reactivity of this

complex with nucleophiles to introduce substituent groups on the peri­

phery of the molecule. S c h a m m e l ^ * ^ extended the range of nucleophiles

used. The unusual methyl vinyl ether starting material (X) was shown to

react with primary and certain secondary amines according to equation

14. The significance and Importance of XI lies in the terminal nitro­

gen functionalities which suggest and In fact permit a wide variety of

22

OCH

OCH

+ 2RNH2 CH3Cli (14)

substituents which can confer specific electronic and steric properties

on the complex. For example, good electron donating or withdrawing

substituents can be used to inductively control the oxidation potential

of the metal. Contributing resonance forms for these complexes are

shown by structures XII, XIII, and XIV, which together suggest signi­

ficant electron delocalization through the tt system.

Certain steric properties can be imparted on the complex

through careful selection of the R group. Large B. groups such as

benzyl or naphthyl can create a non-polar environment in the vicinity of

one or both of the axial coordination sites, thus effectively blocking

the approach of ligands to the axial sites.

23

This class of compounds is of particular interest because they

serve as precursors to the bicyclic, dry cave type molecules as will be

shown in this work. The functional group R can be incorporated into

the structure at this stage of complex synthesis and its steric and

electronic effects will necessarily be present in the resultant dry

cave molecules.

Having demonstrated the general reactivity of the novel methyl

vinyl ether complex (X) with various mononucleophiles, Schammel extended

the reaction to a series of dinucleophiles.^ The crystal structure

analysis of [Ni{ (MeOEthi)2 162^ ^ ^ tetraene^4^ ^ 4^2 ^ ^ 6 ure showed the molecule to be in a distinct saddle shape and suggested that a

diamine of appropriate length could bridge the gap between the two

Figure 5. Crystal Structure of [Ni{(MeOEthi)_Me.[15]tetraeneN,}](ClO,)„L l if if 2

2569functional groups of the macrocycle. This reaction (equation 15)

resulted in the synthesis of the first dry cave compounds.

R

?* (15)

X V

72Christoph et al. reported the crystal structure of the

nickel(II) complex which had been bridged using para-xvlvlenediamine.

As shown in figure 6 , the structural analysis confirmed the bridged

nature of the complexes and gave important information about the size

and shape of the desired hydrophobic cavity.

The xylyl group is above the coordination site of the metal,

generating a rather hydrophobic environment and mimicking the steric

presence of the distal imidazole of the natural systems.

Schammel demonstrated the generality of this reaction using a

variety of dinucleophiles. He found that the ligands could be removed

intact from nickel(II) and chelated to cobalt(II) or the biologically

Figure 6 . ORTEP Drawing of jj—Xylyl Bridged Dry Cave Complex

27

more interesting iron(II) ion. Although it has recently been shown that

he was working with a dimeric molecule, as was discovered in this work,

Schammel demonstrated the reversibility of carbon monoxide binding to

one of the iron(II) complexes and also had promising results from

studies involving C^.

Stevens^ has synthesized and characterized a number of

cobalt(II) complexes derived from the dry cave ligands. The reactions

of these complexes with oxygen were studied in detail and a systematic

dependence of the oxygen binding constants as a function of bridging

group was found. As the bridging group was made smaller, the oxygen

affinity of the complex decreased, indicating repulsive interactions

between the bound and the bridge. The complexes proved to be excel­

lent models for Hb and Mb, reversibly binding oxygen at ambient tem­

peratures in aqueous solution with binding constants as large as or66 73greater than those of the natural proteins. *

It is apparent from the molecular design that the dry cave

model should be able to fulfill all of the above stated requirements of

a model oxygen carrier. The oxygen binding site is protected from the

solvent and from other complexes by the bulk of the bridging group so

that irreversible diraerization on that side of the molecule is pre­

vented. The resultant cavity is small enough that five-coordination is

maintained in the absence of small ligand molecules. The coordination

numbers and spin states of the iron(II) center are identical to those

of the proteins. Since the complexes are salts, water solubility can

be readily achieved. Appropriate anion selection gives good solu­

bility in polar solvents. The bridging group is designed in such a way

28

that it performs the suggested steric function of the distal imidazole

of the proteins. This model system is very versatile allowing major

and minor structural changes and thus facilitates systematic study of

the physical and chemical properties as a function of these variations.

There is one additional advantage of the dry cave model over

most other systems. The basic macrocycle is not a porphyrin but rather

is totally synthetic. As a result, reversible behavior with CO and 0^

does not simply derive from some characteristic of a porphyrin ligand,

but results from conditions we have newly created.

With the established need for improved Hb and Mb model systems

and the encouraging results of Schammel, the preliminary studies of

iron(II) dry cave complexes which he initiated were extended and pur­

sued in much greater depth and constitute the bulk of this thesis.

One of the particular goals of this work was the examination of the

extent of steric contributions by the distal imidazole to the CO

binding. Through detailed spectroscopic and equilibrium studies of CO

adducts of dry cave complexes, and an X-ray structural study of a key

CO adduct, the exact nature of bonding and location of bending of the

bound CO molecule has been elucidated.

EXPERIMENTAL

General Procedures

All reactions and syntheses of nickel(II) complexes were carried

out in the open atmosphere (except if the exclusion of water vapor was

required, when a nitrogen blanket was used). All synthetic procedures

and manipulations of iron(II) complexes were performed in a Vacuum

Atmospheres glove box under an atmosphere of dry nitrogen gas con­

taining less than 5 ppm of oxygen to prevent oxidation of air sensitive

materials.

Reagents

Solvents used in the reactions and characterization of

nickel(II) complexes were reagent grade and were used without further

purification. The solvents used in the synthesis and characterization74of iron(II) complexes were purified by the conventional means, dis­

tilled under nitrogen and degassed under vacuum before use. Pyridine

was distilled from potassium hydroxide and N-methydimidazole was dis­

tilled from barium oxide. Imidazole was recrystallized from hot ben­

zene. All other reagents and chemicals employed were used as received

without further purification.

29

30

Physical Measurements

Elemental analyses were performed by Galbraith Laboratories,

Inc., Knoxville, Tennessee. Conductance measurements were obtained

using an Industrial Instruments, Inc., Model RC 16B Conductivity Bridge

and a cell having cell constant of 0.110 cm ^ at 1000 cycles per second.

Routine electronic spectra were measured on a Cary 17D Recording

Spectrophotometer using matched one cm quartz cells. Infrared spectra

were measured In the solid state asnujolmulls pressed between potas­

sium bromide plates and in solution using matched demountable cells

having Irtran II windows and 0.5 mm pathlength using either a Perkin

Elmer Model 457 or 283B Infrared Spectrophotometer in the region from

4000 to 400 cm

Proton NMR spectra were obtained with a Varian Associates 360-L13spectrometer operating at 60 MHz. C NMR spectra were recorded on

either Bruker WP-80 or HX-90 spectrometers operating in the Fourier13transform mode at 20 or 22 MHZ, respectively. C NMR spectra spectra

were generally obtained using broadband proton decoupling as well as

off-resonance (CW) decoupling. Deuterated solvents were used through­

out and chemical shifts were always assigned relative to an internal

TMS standard.

Magnetic susceptibilities were determined at room temperature by

the Faraday method using N i C e n ^ ^ O ^ and Hg[C0(SCN)^] as standards.

Pascal's constants^ were used to correct the molar susceptibilities for

ligand diamagnetism. Electrochemical measurements were provided by

Drs. Katherine Holter and Joseph Grzybowski of these laboratories and by

the author. The apparatus used was a Princeton Applied Research Corp.,

Potentiostat/Galvanostat Model 173 equipped with a Model 175 Linear

Programmer and a Model 179 Digital Coulometer. Current versus potential

curves were measured on a Houston Instruments Model 2000 X-Y Recorder.

All measurements were performed in a Vacuum Atmospheres Glove Box under

an atmosphere of dry, oxygen-free nitrogen. The working electrode for

voltametric curves was a platinum disk electrode, with potentials

measured versus a silver wire immersed in an acetonitrlle solution of

0.1 molar silver nitrate as reference. The working electrode was spun

at 600 rpm by a synchronous motor for the rotating platinum electrode

(RPE) voltamagrams. Peak potentials (Ep) were measured from cyclic

voltamagrams measured at 50 mV/sec scan rate. Half-wave potentials

(E1/2) were taken as the potential at one-half the height of the volta-

magram obtained using the RPE. The value of JE3 was usec* as a

measure of the reversibility of the couple and is also obtained using

the RPE. For reversible one electron couples,

Controlled potential electrolysis was performed using a plati­

num gauze working electrode and a silver wire coated with silver

chloride as the reference. For all measurements, the solution con­

tained 0.1 molar tetra-n-butylammonium tetrafluoroborate as supporting

electrolyte.

High performance liquid chromatography was performed using a

Du Pont Instruments Model 841 unit with a 50 cm C-18 reverse phase

column operating at 1000 psl. Ten microliters of an acetonitrlle solu­

tion of the complex was eluted with a solution of 80% water/20% ace­

tonitrlle. Chromatograms were recorded on a Varian Instruments Model

A-25 Strip Chart Recorder.

Synthesis of Unbridged Nickel(II) Complexes

(3,ll-Diacetyl-4,10-dimethy1-1»5,9,13-tetraazacyclohexadeca-

l >3,9,ll-tetraenatoN^)nickel(II), [Mi(Ac„He„[16]tetraenatoN^)]. This

complex was synthesized according to the published procedure.^

(2,12-Dimethyl-3,11-bis[1 - methoxyethylidene]-l,5,9,13-

tetraazacyclohexadeca-1,4,9,12-tetraenelQnickel(II) Hexafluorophos-

phate, [Hi{(MeOEthi)^Me^[16]tetraeneN^}] (PF^.)„.

(2,12-Dimethyl-3,11-bis [1-(amino) ethylidenel-1.5.9,13-tetraaza­

cy clohexadeca-1 ,4,9,12-tetraenetQnickel(II) Hexafluorophosphate,

[Ni{(NHpEthi)2Me2 [16]tetraeneN,}](PFC)„.

(2,12-Dimethyl-3»11-bis F1-(dimethylamino)ethylidene]-l,5,9,13-

tetraazacyclohexadeca-l,4,9,12-tetraeneN^)nickel(II) Hexafluorophos­

phate. [Nl{ (Me^NEthi) nMe2 ] tetraeneN^} ] ) 2 • The above three com-70plexes were prepared according to the procedures of Schammel.

(2,12-Dimethy1-3,11-bis[1-(methylamino)ethylidene3-1.5,9,13-

tetraazacy clohexadeca-1 ,4,9, 12-tetraeneN,)nickel(II) Hexafluorophos­

phate, [Ni{ (MeNHEthi)nMe„[16]tetraeneN^}] (PF^.)„ . Methylamine gas was

bubbled through an acetonitrlle solution containing 14.0 g (19.7 mmoles)

of [Ni{(ME0Ethi)2Me2[16]tetraeneN^}](PFg)2 in 300 ml. The color of the

solution changed Immediately from yellow-green to deep red-orange.

After about 15 min, the gas bubbling was stopped and the solvent volume

reduced on a rotary evaporator to 50 ml. Methanol was added and the

volume was reduced further until crystals began to form. The solution

33

was refrigerated overnight to yield a yellow, highly crystalline pro­

duct which was isolated and dried in vacuo. Yield: 13.2 g, (95%).

Anal. Calc, for N±c2oH34N6P2F121 C* 33,97» H * 4.85; N » 11.88. Found:C, 33.36; H, 5.10; N, 11.73.

(2,12-Ditnethy 1-3,11-bis [1- (tert-butylamino) ethylidene]-

1,5,9,13-tetraazacyclohexadeca-l.4,9,12-tetraeneN^)nickel(II) Hexa-

f luorophosphate, [Ni{ (t-BuNHEthi) ,Me„ [ 16 ] tetraeneEL } ] (PF^.) „. To a

solution of 3.0 g (4.2 nnnole) of [Ni{(MeOEthi)2Me2 [16]tetraeneN^}]-

(PFg)2 dissolved in 50 ml of acetonitrile was added 0.65 g (8.9 mmole)

of tert-butylamine. The color of the solution changed from yellow-green

to deep red. After stirring for one hour, the volume was reduced to

15 ml and methanol was added. Further volume reduction yielded the

yellow-orange powdery product which was isolated and dried under

vacuum. Yield: 1.7 g (51%). Anal. Calc, for N i C „ , H , , N , P „ F , C , 26 46 6 2 1239.46; H, 5.86; N, 10.62. Found: C, 38.79; H, 5.77; N, 10.28.

(2,12-Dlmethyl-3,11-bis[1-(n-butylamino)ethylidene]-1,5.9,13-

tetraazacy clohexadeca-1 ,4 ,9 , 12-tetraeneN^)nickel(II) Hexafluorophos­

phate, [Ni{(n-BuNHEthi)2Me2 [16]tetraeneN^}](PF^)^. To a solution of

10.0 g (14.1 mmole) of [Nl{(Me0Ethi)2Me2 [16]tetraeneN^}](PFg)2 dis­

solved in 250 ml of acetonitrile was added 2.3 g (31.4 mmole) of

n-butylamine. The color changed immediately from yellow-green to

orange. After stirring for 30 min, the volume was reduced to 50 ml and

methanol was added. Further volume reduction yielded the yellow micro­

crystalline product which was isolated and dried in vacuo.

Yield: 8.8 g (79%). Anal. Calc, for Nic26H46N6P2F12: C, 39.46; H,5.86; N, 10.62. Found: C, 39.61; H, 5.88; N, 10.68.

(2,12-Dimethyl-3»11-bis[1-(benzylamino)ethylidene]-1,5,9.13-

tetraazacyclohexadeca-1,4,9,12-tetraeneN^.) nickel (II) Hexafluorophos-

phate, fNi{ (BZNHEthi^Me^f^ltetraeneN^}] (PF^.)„. To a solution of

3.0 g (4.2 mmole) of [Ni{(MeOEthi)2Me2[16]-tetraeneN^}](PFg)^ dis­

solved in 250 ml of acetonitrile was added 1.0 g (9.3 mmole) of benzy-

lamine. The color of the solution changed from yellow-green to orange.

After stirring for one hour, the volume was reduced to 50 ml and 100 ml

of ethanol was added. The volume was again reduced until the powdery

yellow product had formed. This was isolated and dried in vacuo.

Yield: 2.8 g (77%). Anal. Calc, for N i C ^ H ^ N ^ F ^ : C, 44.73; H,

4.93; N, 9.78. Found: C, 45.07; H, 5.09; N, 9.96.

(2,12-Dimethyl-3.11-bis[1-n-butylaminoethylidene]-1,5,9,13-

tetraazacy clohexadeca-1 ,4,9,12-tetraeneN^)nickel(II) Iodide,

[Ni{(n-BuNHEthi)^He^[163tetraeneN^} ] . To a solution of 9.0 g

(11.4 mmole) of [Ni{ (n-BuNHEthi) 2 ^ e 2 [16] tetraeneN^}] (pFg) dissolved

in 250 ml of acetone was added dropwise a solution of 15.0 g

(40.7 mmole) of tetra-n-butylammonium iodide in 50 ml of acetone. The

yellow powder which formed immediately was isolated and dried in vacuo.

Yield: 8.45 g (98%). No analytical data were obtained for this

unbridged intermediate.

(2,12-Dimethyl-3,11-bis[1-(benzylamino)ethylidene-1,5.9,13-

tetraazacyclohexadeca-l,4,9,12-tetraeneN^)]nickel(II) Iodide,

[Ni{(BZNHEthi)„Me„[16]tetraenaN„}jl„. To a solution of 2.0 g -------- ;------ i-- z-------------- —Z

35

(2.3 mmole) of [Ni{(BZNHEthi)2^62[16]tetraeneN^}](PF^^ dissolved in

30 ml of acetone was added dropwise a solution of 3.5 g (9.5 mmole) of

tetra-rv-butylammonium iodide dissolved in 10 ml of hot acetone. The

powdery yellow precipitate was collected and dried in vacuo. Yield:

1.8 g (94%). Analytical data were not obtained for this unbridged

intermediate.

(2,12-Dimethyl-3,11-bis[1-(amino)ethylidene]-1.5.9.13-

tetraazacy clohexadeca-1 »4»9,12-tetraeneN^)nickel(II) Iodide,

[ N i { ( N H ^ E t h i ) [16]tetraeneN^}]1^. To a solution of 7.1 g (10.5

mmole) of [Ni^NJ^Ethi^f^tlS]tetraeneN^}](PFg)^ dissolved in 150 ml

of acetone was added dropwise a solution of 13.0 g (35.2 mmole) of

tetra-n-butylammonium iodide in 50 ml of acetone. The powdery yellow

product was collected and dried in vacuo. Yield: 6.6 g (98%). No

analytical data were obtained for this unbridged intermediate.

Synthesis of Monomeric Dry Cave Nickel(II) Complexes

(2,3,11,12,14.20-Hexamethyl-3.11,15,19,22,26-hexaazatricyclo-

[11.7.7.1^*^]octacosa-1,5,7,9(28),12,14,19,21,26-nonaeneN^)nickel(IX)

Hexafluorophosphate. [Ni{ (m-Xvlvl (MeNEthi^Hfen 1 tetraeneN^} ] (PF .) 2 •

To a solution of 5.0 g (7.1 mmole) of [Ni{(MeNHEthi)2Me2[16]tetraene-

N4 }](PF6)2 dissolved in 500 m3, of acetonitrile was added a solution

prepared by the reaction of 0.34 g (14.9 mmole) of sodium metal with

10 ml of methanol. The solution was heated to reflux and a solution

containing 1.87 g (7.1 mmole) of a fa''-dibromo-m-xylene dissolved in

250 ml of acetonitrile was added dropwise over a period of 4 h.

36

After the solution was cooled and filtered, the volume was reduced to

20 ml and the product was chromatographed on a column of neutral Woelm

alumina (25 cm x 2.5 cm) eluting with acetonitrile. The yellow hand was

collected, the volume reduced and ethanol added to yield the yellow

crystalline product which was collected and dried in vacuo. Yield:

4.3 g (75%). Anal. Calc, for N i C ^ H ^ N ^ F ^ : C, 41.55; H, 4.98;

N, 10.38. Found: C, 41.48; H, 5.02; N, 10.40.

(3,ll-Di-n-butyl-2.12,14,20-tetramethy1-3,11,15,19,22,26-

hexaazatricyclo[11.7.7. r* *9 ]octacosa-1,5,7,9.(28),12.14.19.21,26-

nonaenelQnickel(II) Hexafluorophosphate, [Ni{(m-Xylyl(n-BuNEthi)„)Me„-

[16]tetraeneN^}] (PF^.)„ . Three grams (4.0 mmole) of [Ni{ (nBuNHEthi)2^e2~

[16]tetraeneN^}]l2 was dissolved in 500 ml of methanol and heated to

reflux. To this solution was added a solution prepared by the reaction

of 0.19 g (8.3 mmole) of sodium metal with 10 ml of methanol. A solu­

tion of 1.26 g (4.8 mmole) of a,a‘'-dibromo-m-xylene dissolved in 250 ml

of methanol was added very slowly to the first solution over a period of

5 h during which time the color changed from deep red to yellow-orange.

When the addition was complete, the volume was reduced to 100 ml and

3.5 g (21.5 mmole) of ammonium hexafluorophosphate in 25 ml of methanol

was added. An orange product formed and was collected. This product

was dissolved in 25 ml of acetonitrile and passed through a column of

neutral Woelm alumina (2.5 cm x 25 cm) eluting with acetonitrile. The

major yellow band was collected, the volume reduced and ethanol added.

Further volume reduction yielded the yellow-orange product which was

37

isolated and dried in vacuo. Anal. Calc, for N i C ^ H ^ N g P 2*12:

45.71; H, 5.87; N, 9.41. Found: C, 45.05; H, 5.97; N, 9.22.

(3,ll-Dibenzyl-2.12.14,20-tetramethyl-3.11,15,19,22.26-

hexaazatricyclo [11.7.7.1~**^ ]octacosa-1 ,5,7,9 (28) , 12,14,19,21,26-

nonaeneN,)nickel(II) Hexafluorophosphate, [Ni{(m-Xylyl(BZNEthi)„)-/s 2Me„[16]tetraeneN^}] (PF^.)„ . To a solution of 1.8 g (2.2 mmole) of

[Ni-CCBZNHEthiJ^MetlBJtetraeneN^}]]^ in 400 ml of methanol was added a

solution prepared by the reaction of 0.11 g (4.8 mmole) of sodium metal

with 10 ml of methanol. The solution became deep red in color and was

heated to reflux. A solution of 1.1 g (4.2 mmole) of a,a‘*-dibromo-m-

xylene dissolved in 250 ml of methanol was added dropwise to the above

solution. During the addition, the color of the solution became

yellow-orange. When the addition was complete, the solution was

cooled and the volume was reduced to 100 ml. Three and one-half grams

(21.5 mmole) of ammonium hexafluorophosphate in methanol was added to

yield a yellow-precipitate. The product was dissolved in 10 ml of

acetonitrile and passed through a column of neutral Woelm alumina

(2.5 cm x 10 cm) eluting with acetonitrile. The yellow band was col­

lected, the solution volume was reduced and ethanol was added to yield

a yellow crystalline product which was isolated and dried in vacuo.

Yield: 1.0 g (47%). Anal. Calc, for NiC40H48N6P2F12: C, 49.97;H, 5.03; N. 8.74. Found: C, 49.63; H, 5.29; N. 8.71.

(2,3,10,11,13,19-Hexamethyl-3,10,14,18,21,25-hexaazablcyclo-

[10.7.7]hexacosa-l.11,13,18,20,25-hexaeneN^)nickel(XI) Hexafluonophos-

phate, [Ni((l,6-Hex(MeNEthi)„)Men[16]tetraeneN^}](PF^)„. This complex

38

was prepared in high yield by the method of Olszanski and Busch^

through the reaction of N,N'’-diraethyl-l,6-hexanediamine and the methyl66vinyl ether starting material as reported by Stevens.

2,3,11,12,14,20-Hexamethyl-3,11,15.19.22,26-hexaa2abicyclo-

[11.7.7]heptacosa-l,12.14.19,21,26-hexaeneN,]nickel(II) Hexafluorophos­

phate , [Ni{ (1,7-Hept (MeNEthi) ,,)Me,, [16 ] tetraeneN^} ] (PF -) n » To a solution

of 8.0 g (11.3 mmoles) of [Ni{(MeNHEthi)_Me„[l6]tetraeneN.}](PF,)_ dis-Z / H D Zsolved in 500 ml of acetonitrile was added a solution prepared by the

reaction of 0.55 g (23.9 mmole) of sodium metal with 10 ml of methanol.

The solution was brought to reflux and 5.0 g (11.3 mmole) of 1,7-bis-

(para-toluenesulfonato)heptane dissolved in 250 ml of acetonitrile was

added dropwise over a period of six hours. When the addition was com­

plete, the solution was evaporated to dryness and the residue was dis­

solved in 25 ml of acetonitrile. After filtering through celite, the

solution was applied to a column (2.5 cm x 25 cm) of neutral Woelm

alumina and eluted with acetonitrile. The single yellow band was col­

lected and the volume of the solution was reduced. Addition of ethanol

followed by further volume reduction resulted in formation of the yellow

orange product which was collected, washed with ethanol and dried in

vacuo. Yield: 5.4 g (59%). Anal. Calc, for NiC^yH^^NgP^F^ ^ •

C, 40.37; H, 5.77; N, 10.46. Found: C, 40.70; H, 6.10; N, 10.52.

Synthesis of Mixed Monomeric and Dimeric Nickel(II) Dry Cave Complexes

(2,12,14,20-Tetramethyl-3,11,15,19,22,26-hexaazatricyclo-

[11.7.7.1~* * ] octacosa-1,5.7,9 (28) , 12,14,19,21,26-nonaeneN^) nickel (II) -

39

Hexaf luorophosphate, [Nl{ (m-Xylyl (frHEthi) „)He^ [ 16 ] tetraeneN^, } ] (PF^ )

and (2,12,14.20.22,32,34,40-0ctamethyl-3.il,15.19.23,31.35,39.42,46.-50,54-dodecaazapentacyclo [31.7.7. 7 ^ 1~* ^Ihexapentaconta-

1,5,7,9(56),12,14,19,21,25,27,29(48).32,34,39.41,46,49,54-octadecaene)

dlnlckel(II) Hexaf luorophosphate, [Ni{ (m-Xyly (NHEthl) ,,)He^[16j tetraene-

Nj,}]„(PFc.)j, . Ten grams (14.1 mmole) of [Ni{(MeOEthi)2Me2 [16]tetraene-

N^}](PFg)2 was dissolved in 750 ml of acetonitrile. To this solution

was added a solution of 1.92 g (14.1 mmole) of m-xylylenediamine dis­

solved in 750 ml of acetonitrile over a period of six hours. The yel­

low solution was rotary evaporated to 25 ml while maintaining a

temperature of no greater than 30°C in the heating bath. The solution

was applied to a column (2.5 cm x 18 cm) of neutral Woelm alumina and

was eluted with acetonitrile giving a single yellow band. The solution

volume was again reduced at 30°C and ethanol was added to yield the

yellow product which was isolated and dried in vacuo. Yield: 6.8 g

(62%).

Separation of Monomeric and Dimeric Products. The above pro­

duct was shown by HPLC to be a mixture of two products (later shown to

be monomer and dimer) which were separated as follows: Six grams (7.7

mmole) of the mixture was dissolved in 100 ml of acetonitrile. To this

solution was added 500 ml of ethanol causing a slight cloudiness. The

solution was refrigerated for 30 h to yield a yellow precipitate which

was collected and dried in vacuo. Yield: 3.21 g (54%). This function

was shown by HPLC to be primarily the dimeric species. Anal. Calc, for

40

[NiC26H36N6P2F12]2 i C, 39.97; H, 4.64; N, 10.76. Found: C, 39.85;

H, 5.00; N, 10.83.

The volume of the filtrate from above was reduced by approxi­

mately one-third to yield a yellow precipitate which was collected

after cooling in a refrigerator overnight. The product was washed with

ethanol and dried in vacuo. Yield: 2.5 g (42%). This was shown by

HPLC to be a very pure sample of the monomeric species. Anal. Calc, for

NiC26H36N 6P2F12: C, 39.97; H, 4.64; N, 10.76. Found: C, 40.29;

H, 4.84; N, 10.84.

If the above reaction is carried out in refluxing acetonitrile

rather than at room temperature, the product is essentially pure monomer

based on HPLC analysis.

(2,11,13,19-Tetramethyl-3,10,14.18,21,25-hexaazatricyclo

[10.7 ♦ 7.2~* * octacosa-1,5,7,11,13,18,20,25,27-nonaeneN^) nickel (II)

Hexaf luorophosphate, [Nj{ (p-Xylyl (NHEthl) »)^e2 £3-61 tetraeneN^} ] (pF^) ~

and (2,11,13.19,21,30,32,38-Octamethyl-3.10,14,18,22,29,33.37.40,44.

47,51-dodecaazapentacyclo [29.7.7.7^ * 2~* * . 2 ^ * ] hexapentaconta-

1,5,7,11,13,18.20,24.26.30.32,37,39.44,46,51.53,55-octadecaene)

dinickel(II) Hexafluorophosphate, [Nl{(p-Xylyl(NHEthl)2)Me„[16]

tetraeneN^}] 2C ^ ^ ) ^ » These complexes were prepared by the method of78Callahan and Busch. To a suspension of 2.36 g (11.3 mmole) of

ja-xylylenediaminedihydrochloride in 100 ml of ethanol was added 0.55 g

(23.9 mmole) of sodium metal. After stirring for two hours, the sodium

chloride was filtered off and the filtrate was diluted to 500 ml with

acetonitrile. A second solution was prepared containing 8.0 g

(11.3 mmole) of [Ni{(Me0Ethi)2Me2 [16]tetraeneN^}l(PFg)2 dissolved in

41

500 ml of acetonitrile. These two solutions were added simultaneously

to 500 ml of refluxing acetonitrile over a period of 7 h. The resulting

yellow solution was evaporated to dryness and the residue was dissolved

in 30 ml of acetonitrile. The solution was applied to a column of

neutral Woelm alumina (2.5 cm x 25 cm) and was eluted very slowly with

acetonitrile. The product was collected as two fractions from the

column, the first as a yellow-green band and the second as a broad

yellow band. The volumes of both fractions were reduced and ethanol

added to yield the solid yellow products. Proton NMR showed fraction 1

to be primarily the dimeric species and fraction 2 the monomer. Yield

of dimer: 0.7 g (8%). Yield of monomer: 3.1 g (35%). Anal: Calc.

for n 1C26H36N6P2F12: C* 39*97; H> 4 *64; N » 10*76* Found: C, 40.15;H, 4.50; N, 10.96. When this synthesis was carried out at room tem­

perature rather than at reflux, the yields of monomer and dimer were

more nearly equal but the overall yield was about the same.

Synthesis of Dimeric Nickel(II) Dry Cave Complexes

(2.3,10.11.13.19.21,22,29.30,32,38-Dodecamethyl-3,10,14,18,22,-

29,22,37,40,44.47.51-dodecaazapentacyclo[29.7.7.712,20.25,8.224>271-

hexapentaconta-1,5,7.11,13.18.20.24.26.30.32,37,39.44.46.51.53.55-octa-

decaene)dinickel(II) Hexafluorophosphate, [Ni{(p-Xylvl(MeNEthi)„)Me„[161

tetraeneN^}]„ (FF^)•• a solution of 6.70 g (9.5 mmole) of

[Ni{(MeNHEthi)„Me_[16]tetraeneN.}](PF,)_ dissolved in 500 ml of ace- Z Z H b Ztonitrile was added a solution prepared by the reaction of 0.46 g

(20.0 mmole) of sodium metal with 10 ml of methanol. A second solution

of 2.50 g (9.5 mmole) of a.a^-dibromo-ja-xylene dissolved in 500 ml of

42

acetonitrile was prepared. The two solutions were added simultaneously

to 500 of refluxing acetonitrile over a period of 7 h. The resulting

solution was treated in the same manner as in the preparation of

[Ni{(m“Xylyl(MeNEthi)2)Me2[16]tetraeneN^}3(PFg)2 to yield the yellow

product which was recrystallized from acetone. Yield: 5.2 g (68% .

Anal: Calc, for fN±c28H40N6P2F12]2: C * A1'56* H » 4 *98* N * 10.38.Found: C, 41.90; H, 5.37; N, 10.18.

(2,6.7.11.13,19,21.25,26,30.32,38,53,54,55,56-Hexadecamethy1-

3,10.14,18,22,29.33,37.40144,47.51-dodecaazapentacyclo 12 20 S ft 2 A 27[29.7.7.7 > .2 lhexapentaconta-1.5,7.11.13.18.20,24,26.30.-

32,37.39,44,46,51,53.55-octadecaene)dinickel(II) Hexafluorophosphate,

[ N i { ( D u r y l ( N H E t h i ) ^ t e t r a e n e N ^ }] 0 ^ ) ^ • To a solution of 2.0 g

(3.1 mmole) of [Ni{(NH2Ethi)2Me2[16]tetraeneN^}]l2 dissolved in 250 ml

of methanol was added a solution prepared by the reaction of 0.16 g

(7.0 mmole) of sodium metal with 10 ml of methanol. The solution was

heated to reflux and a solution of 0.80 g (3.5 mmole) of 3,6-bis-

(chloromethyl)durene (Pfaltz and Bauer) dissolved in 100 ml of

dichloromethane and 50 ml of methanol was added dropwise over a period

of 4 h. When the addition was complete the volume of the solution was

reduced to 100 ml and 5.0 g (30.7 mmole) of ammonium hexafluorophos­

phate in methanol was added dropwise to yield the yellow product.

Addition of ethanol resulted in the formation of additional product

which was collected and dried in vacuo. Yield: 0.9 g (35%). Anal.

Calc, for [NiC30H44N6P2Flo]: C, 43.03; H, 5.30; N, 10.04. Found:

C, 42.70; H, 5.55; N, 10.14.

A3

(2.3.6.7.10.11.13.19.21.22.25.26.29.30.32,38.53.54.55.56-

Eicosamethy1-3,10,14,18»22.29,33,37.40.44.47,51-dodecaazapentacyclo 12 2Q 5 8 24 27[29,7.7.7 * .2 * .2 » ]hexapentaconta-l,5,7,11.13,18,20,24,26.30,

32,37,39.44.46,51,53,55-octadecaene)dinickel(II) Hexafluorophosphate,

[Ni{ (Duryl(MeNEthi)^)Me„ [16]tetraeneN^}] (PF^.)^. To a solution of

3.7 g (5.2 mmole) of [Ni{(MeNHEthi)2Me2 [16]tetraeneN4)] dissolved

in 250 ml of acetonitrile was added a solution prepared by the reac­

tion of 0.24 g (10.4 mmole) of sodium metal with 10 ml of methanol. The

solution was heated to reflux and a solution of 1.20 g (5.2 mmole) of

3,6-bis(chloromethyl)durene dissolved in 250 ml of acetonitrile was

added dropwise over a period of 12 h. The solution was cooled and the

white sodium chloride was filtered off. The volume of the solution was

reduced to 100 ml and 4.0 g (24.5 mmole) of ammonium hexafluorophos­

phate in 100 ml of ethanol was added. Further volume reduction resulted

in formation of the yellow product. Recrystallization from an aceto­

nitrile ethanol mixture yielded the yellow crystals which were collected

and dried in vacuo. Yield: 4.2 g (93%). Anal. Calc, for

[NiC32H48N 6P2F12]2 : C, 44.41; H, 5.59; N, 9.71. Found: C, 44.57;

H, 5.72; N, 9.53.

Product of the Reaction Between [Ni{(MeNHEthi)2Me2 [16]tetraene

N4 )](PF .)2 and 9,10-Bis(chloromethyl)anthracene. To a solution of

2.0 g (2.83 mmole) of [Ni{(MeNHEthi)2Me2 [16]tetraeneN3}](PF6>2 dis­

solved in 1 £ of acetonitrile was added 0.14 g (6.09 mmole) of sodium

which had been reacted with 10 ml of methanol. The solution was heated

to reflux and 0.85 g (3.1 mmole) of 9,10-bis(chloromethyl)anthracene

44

(Pfaltz and Bauer) was put into a soxhlet extractor above the solution.

The extraction was continued for 12 h. The resultant solution was

rotary evaporated to dryness and the residue was taken up in 25 ml of

acetonitrile and filtered. This solution was applied to a column of

neutral Woelm alumina (7.0 cm x 8.0 cm) and eluted with acetonitrile.

Volume reduction and addition of ethanol resulted in product formation.

Large red crystals were obtained by recrystallization from an acetoni­

trile ethanol mixture. Anal: Calc, for NIC, „H,-„NrtP„F„ „: C. 48.45;— — tfU o / ±zH, 5.08; N, 11.30. Found: C, 48.88; H, 5.22; N, 11.06.

The two acetonitrile molecules of crystallization were

removed by grinding .ne crystals to a powder and drying in vacuo.

Anal: Calc, for N i C ^ H ^ N ^ F ^ : C, 47.55; H, 4.88; N, 9.24. Found:

C, 47.49; H, 5.08; N, 9.31.

Synthesis of Ligand Salts

(2,3,11,12.14,20-Hexamethyl-3,11,15,19,22,26-hexaazatricyclo- 5 9[11.7.7.1 * loctacosa-1.5.7,9(28),12.14,19,21,26-nonaene) Tetrachloro-

zincate, [(m-Xylyl(MeNEthi)„)Me„ [16]tetraene](ZnCl,,)„. Hydrogen

chloride gas was bubbled through a solution of 1.5 g (1.9 mmole) of

[Ni{(m-Xylyl(MeNEthi)2)Me2 [16]tetraeneN^}](PFg)2 dissolved in 50 ml of

acetonitrile until the solution turned blue. Slow addition of a solu­

tion of tetrachlorozlncate anion (prepared by reaction of 0.75 g (11.5

mmole) of granular zinc metal with hydrogen chloride gas in 50 ml of

acetonitrile) resulted in formation of a white precipitate. This ligand

salt was filtered, washed with acetonitrile and ether and dried

45

in vacuo. Yield: 1.40 g (78%). Anal: Calc, for C ^ H ^ N g Z n ^ C l g :

C, 38.26; H, 5.04; N, 9.56. Found: C, 39.34; H, 5.63; N, 10.33.

(2,12,14,20-Tetramethyl-3,11,15,19,22,26-hexaazatricyclo-

[11.7.7.1~** octacosa-1,5,7,9(28).12,14,19,21,26-nonaene) Tetrachloro-

zincate, [ (m-Xylyl(NHEthi)QMen [I6]tetraenel (ZnCl^)„. The same pro­

cedure was used as described in previous syntheses using 3.0 g (3.8

mmole) of [Ni{ (m-Xylyl(NHEthi)2Me2 [16] tetraeneN^ ] (PF6)2 and 1.5 g

(23.1 mmole) of zinc metal. No precipitate formed upon addition of the

tetrachlorozincate solution. The solution volume was reduced and fresh

acetonitrile added several times resulting in the formation of the

white, granular ligand salt which was collected, washed with acetoni­

trile and dried in vacuo. Yield: 2.25 g (69%). Anal: Calc, for

C26H40N6Zn2C18 : C ’ 36*7°5 H » 4 *74 N * 9 ’88* Foundl C, 36.55;H, 5.07; N, 9.91.

(2,12,14,20-Tetramethyl-3,11,15,19,22,26-hexaazatricyclo- 5 9[11.7.7.1 * ]octacosa-l,5,7,9(28),12,14,19,21,26-nonaene) Hexafluoro-

phosphate, [(m-Xylyl(NHEthi)2)Me2 [16]tetraene](PF^)^. One gram (1.2

mmole) of [(m-Xylyl(NHEthl)2)Me2 [16]tetraene](ZnCl^)2 was dissolved in

50 ml of water and filtered. A solution of 3.0 g (18.4 mmole) of

ammonium hexafluorophosphate dissolved in 20 ml of water was added

dropwise to yield the white granular solid which was collected and

dried in vacuo. Yield: 0.74 g (72%). Anal: Calc, for C ^ H ^ N g P g F ^ :

C, 35.87; H, 4.52; N, 9.65. Found: C, 35.72; H, 4.75; N, 9.89.

46

(2,11,13,19-tetramethyl-3,10,14.18,21,25-hexaazatricyclo 5 8[10.7.7.2 * ]octacosa-l,5.7,ll,13,18,20,25,27-nonaene) Hexafluorophos-

phate, [ (p-Xylyl(NHEthl) n)Me„ri6]tetraene] (PF^.)^. This ligand salt was78prepared by the method of Callahan and Busch. Hydrogen chloride gas

was bubbled through a solution of 4.0 g (5.1 mmole) of [Ni{ (£-Xylyl-

(NHEthi^)!^ [16]tetraeneN^}] (PF^)2 dissolved in 300 ml of acetonitrile.

The flask was stoppered and set aside for 2 days during which time the

solution turned green in color. A solution of tetrachlorozincate anion

(prepared by the reaction of 4.0 g (61.5 mmole) of zinc metal with

hydrogen chloride gas in 200 ml of acetonitrile) was added to yield the

white tetrachlorozincate ligand salt which was collected, washed with

acetonitrile and dried in vacuo. Yield: 4.1 g (91%). The above pro­

duct was dissolved in 100 ml of water and filtered. Dropwise addition

of 10,0 g (61.3 mmole) of ammonium hexafluorophosphate dissolved in

50 ml of water resulted in formation of an off-white precipitate which

was collected and dried in vacuo. Yield: 3.8 g (91%). Anal: Calc.

for C26H39N6P3F18: C ’ 35,87i H > 4*52» N > 9 *65* F°und: C, 33.94;H, 4.17; N, 9.21.

(2,3,10,11,13,19-Hexamethyl-3,10,14,18.21,25-hexaazabicyclo-

[10.7.7]hexacosa-l,11,13,18,20,25-hexaene) Hexafluorophosphate,

[ (1,6-Hex(MeNEthi))Me„ [16 ]tetraene] (PF^)^* This ligand salt was pre-77 66pared by the method of Olszanski and Busch as reported by Stevens.

47

(2,3,8,9,11,17-Hexamethyl-3 ,8,12,16,19, 23-hexaazabicyclo[8.7.71

tetracosa-l,9,ll,16,18,23-hexaene) Hexafluorophosphate, [(1,4-But(MeNEthi)„)Me„[161tetraenel(PF,)„' t- £----------- — 6—3

(2,3,9,10,12,18-Hexamethyl-3,9,13,17,20,24-hexaazabicyclo

[9.7.7]-pentacosa-l,10,12,17,19,24-hexaene) Hexafluorophosphate,

[(l,5-Pent(MeKEthi) O M e ^ [16]tetraene] (PF .) .

The above two ligand salts were prepared in the method

described by Stevens.^

(2.12,14,20,22,32,34,40-Octamethyl-3,11,15,19,23,31.35,39,42,

46,50,54-dodecaazapentacyclo[31.7.7. 7 ^ * 1~**^. 1 ^ * hexapentaconta-

1,5,7,9(56),12,14,19,21,25,27,29(48),32,34,39,41,46,49,54-octadecaene)

Tetrachlorozincate, [ (m-Xylyl(NHEthi) n)Me,, F^^ tetraene] ,, (ZnCl^) • This

ligand salt was prepared in the same way as previous examples using 4.0 g

(2.6 mmole) of dimeric nickel(II) complex derived from m-xylylenedi-

amine and 2.0 g (3.1 mmole) of zinc metal. The HC1 gas was passed

through the solution at 0°C and addition of the tetrachlorozincate

anion resulted in immediate precipitate formation. The product was

collected, then resuspended in 100 ml of fresh acetonitrile and stirred

for 1 h. The product was again collected, washed with acetonitrile and

ether and dried in vacuo. Yield: 3.7 g (85%).

48

(2.3.11.13,19.21.22.29.30.32.38-Dodecamethyl-3 ,10,14,18,22.29.

33,37,40,44,47,51-dodecaazapentacyclo [29.7.7.712 » 20.25 >8 .224’27 ]

hexapentaconta-1,5,7,11.13,18.20.24,26,30,32,37,39,44.46,51,53,55-

octadecaene) Tetrachlorozincate, [(p-Xylyl(MeNEthl),,)Me,, [16] tetraene],,

(ZnCl^)^. This ligand salt was prepared by the method described above

using 3.5 g (4.3 mmole) of [Nl-CC^-XylylCMeNEthi^Jt^tlbJtetraeneN^}^-

(PFg)^ and 1.5 g (23 mmole) of zinc metal. The off-white precipitate

was collected and dried in vacuo. Yield 3.0 (79%). No analytical data

were obtained for this ligand salt.

(2,6,7,11,13,19,21,25,26,30,32,38,53,54,55,56-Hexadecamethyl-

3,10,14,18,22,29,33,37,40,44,47,51-dodecaazapentacyclo

[29.7.7.712,2Q.25 »8 .224>27]hexapentaconta-l,5,7,ll,13,18,20,24,26,30,

32.37.39.44.46.51.53.55-octadecaene) Tetrachlorozincate, [(Duryl-

(NHEthi) ,)Me^[16]tetraenel^(ZnCl^)^. This ligand salt was prepared by

the same method as those reported above using 1.5 g (1.8 mmole) of the

nickel complex derived from the duryl bridging group and 0.75 g (11.5

mmole) of zinc metal. The precipitate was collected, washed with

acetonitrile and ether and dried in vacuo. Yield: 1.0 g (61%). No

analytical data were obtained for this impure ligand salt.

(2.3,6.7.10,11,13.19.21,22,25,26,29,30,32,38,53,54,55,56-

Eicosamethyl-3,10,14,18,22,29,33,37,40,44,47,51-dodecaazapentacyclo

[29.7.7.712 *20.25 *8.224 *27]hexapentaconta-l,5,7,11,13.18.20,24,26,30,

32.37.39.44.46.51.53.55-octadecaene) Tetrachlorozincate, [(Duryl-

(MeNEthi)„)Me^[16]tetraene],, (ZnCl^) . This ligand salt was prepared by

the method reported above using 2.0 g (2.3 mmole) of the nickel methyl

49

substituted durenyl complex and 1.0 g (15 mmole) of zinc metal. Yield:

1.73 g (80%). No analytical data were obtained for this impure ligand

salt.

(2»12-Dimethy1-3,11-bis[1-(dimethylamino)ethylidene]-!,5,9,13-

tetraazacyclohexadeca-l,4,9,12-tetraene) Hexafluorophosphate,

[ (Me^NEthi) ,Me„ [ 16] tetraene] CPF^-)^. This ligand salt was synthesized79and characterized by Dr. R. A. Wilkins.

(2,12-Dimethyl-3,11-bis[1-(amino)ethylidene]-1,5,9,13-

tetraazacy clohexadeca-1 ,4,9,12-tetraene) Tetrachlorozincate„

[ (NH^Ethi)^Me^. [16] tetraene] (ZnCl^K •

(2,12-Dimethy1-3,11-bis[1-(methylamino)ethylidene J-1,5,9,13-

tetraazacyclohexadeca-1,4,9,12-tetraene) Tetrachlorozincate,

[ (MeNHEthi)^Me^[18]tetraene] (ZnCl^.)„.

The above two ligand salts were prepared in good yield in the

same way as [(m-Xylyl(MeNEthi)2)Me2 [16]tetraene)ZnCl^ ) ^

Synthesis of Iron(II) Starting Materials

Bis-Acetonitrileiron(II) Chloride. To 100 ml of acetonitrile

was added commercial grade anhydrous iron(II) chloride until the solu­

tion was well saturated. Iron filings were added and the solution was

stirred under reflux for 4 h. The solution was filtered through celite

while hot. Upon cooling, the off-white precipitate formed. This was

recrystallized from hot acetonitrile to yield the white crystalline

product which was collected and dried in vacuo. Analytical data

50

Indicated the stoichiometry of the compound to be Fe(CH-CN).. ,(H„0)n<3 1 1 / Z (J> JAnal. Calc.: C, 20.23; H, 2.82; N, 11.79. Found: C, 20.28; H» 2.86;

N, 11.96.

80Hexakis-Acetonitrileiron(II) Hexafluorophosphate. To a sus­

pension of 2.0 g (11.4 mmole) of nitrosyl hexafluorophosphate in 30 ml

of acetonitrile was added 0.64 g (11.4 mmole) of iron filings. Immedi­

ate foaming of the solution occurred and a vacuum was applied to the

flask until the reaction was complete. The volume of the solution was

brought to 75 ml and the solution was heated to boiling. After fil­

tering the hot solution through celite, its volume was reduced to 25 ml,

at which point a considerable amount of precipitate formed. This was

collected and recrystallized from hot acetonitrile and dried in vacuo.

Anal. Calc, for FeCi2Hl8N6P2F12: C * 24.34; H, 3.06; N, 14,19; Fe, 9.43.Found: C, 24.18; H, 3.05; N, 14.03; Fe, 9.33.

Synthesis of Unbridged Iron(II) Complexes

Acetonitrile(2.12-Dimethy 1-3,11-bis [l-(methylamino) ethylidene-]-

1,5,9,13-tetraazacyclohexadeca-l,4,9.12-tetraenelQ iron(II) Hexafluoro­

phosphate, [Fe{ (MeNHEthi)nMe„[16]tetraenetQ(CH^CN) ] (PF^)„. To a sus­

pension of 2.0 g (2.6 mmole) of [(MeNHEthi)2M©2 [16]tetraene](ZnCl^)^ in

50 ml of acetonitrile was added 0.54 g (2.6 mmole) of bis-acetonitrile-

iron(II) chloride and 1.04 g (10.3 mmole) of triethylamine. The solu­

tion was refluxed for 10 min then stirred overnight. The solvent was

removed and the residue dissolved in methanol and filtered through

celite. Addition of excess ammonium hexafluorophosphate dissolved in

51

ethanol followed by volume reduction yielded the orange product which

was collected and dried in vacuo. Yield: 1.6 g (82%). Analytical

data and spectroscopic measurements are consistent with a mixture of

the product labelled above and [Fe{Me_(MeIMEt)„[16]tetraeneN.}](PF,)„Z Z h 6 2in a ratio of 3:1. Calc, for PeC21 5H36 25N & 75P2F12: C * 35,13»H, 4.97; N, 12.87; Fe, 7.60. Found: C, 35.06; H, 5.18; N, 12.95;

Fe, 7.71.

A Sexadentate Isomer of the Unbridged Iron(II) Complex:

[(3,11-bis(l-methylaminoethyl)-2,12-dimethy1-1,5,9,13-tetraazacyclohexa-

deca-l,3,9,ll-tetraenelQiron(II) ] Hexafluorophosphate, [Fe{Me2~

(MelMEt) „ [ 16] tetraeneN^} ] (PF .) „. To a slurry of 1.2 g (1.5 mmole) of

[ (MeNHEthi)2Me2 [ 16] tetraeneN^. (ZnCl^)3 in 20 ml of methanol was added

0.33 g (1.6 mmole) of bis-acetonitrileiron(II) chloride and 0.94 g

(9.3 mmole) of triethylamine. The solution was refluxed for 45 minutes

during which time a red-orange precipitate formed. Methanol was added

to bring the volume to 50 ml and the solution was quickly filtered

through celite. To the warm solution was added dropwise 2.0 g (12.3

mmole) of ammonium hexafluorophosphate dissolved in a minimum volume of

methanol. The red-orange crystalline product formed upon standing over­

night. The crystals were collected and washed with methanol and ether

and dried in vacuo. Yield: 0.75 g (69%). Anal. Calc, for

FeC20H34N6P2F12: C ’ 34,1°i H » 4.87; N, 11.93. Found: C, 33.78;H, 4.91; N, 11.72.

Synthesis of Iron(II) Dry Cave Chloro Complexes

52

Chloro(2,12.14.20-tetramethyl-3,11,15,19,22,26-hexaazatricyclo- 5 9[11.7.7.1 * loctacosa-1,5.7.9,(28),12,14<19t21,26-nonaeneH^)iron(II)

Chloride dimethanol, [Fe{ (m-Xylyl(NHEthi)2)Me2 [16] tetraeneN,. }ci]~Cl* 2CHjOH. To a solution of 1.0 g (1.2 tnmole) of [ (m-Xylyl(NHEthl)

Me2 [16]tetraene](PFg)^ dissolved in 50 ml of acetonitrile was added

0.24 g (1.2 mmole) of bis-acetonitrileiron(II) chloride and 0.35 g

(3.5 mmole) of triethylamine to yield a deep red solution which was

filtered through celite. The solution was stirred overnight during which

time an orange precipitate formed which was collected and dried in vacuo.

Yield: 0.5 g (78%). Anal. Calc, for FeC26H36N6Cl2 : C, 55.83;

H, 6.49; N, 15.07. Found: C, 55.73; H, 6.53; N, 15.16. This product

was recrystallized from methanol to yield large crystals of the

dimethanol solvate. Anal. Calc, for FeC„ftH,,N„0„C1„: C, 53.94; 28 44 6 2 2H, 7.11; N, 13.48; Cl, 11,37; Fe, 8.96. Found: C, 53.99; H, 6.94;

N, 13.77; Cl, 11.32; Fe, 8.75.

Chloro(2,12,14,20-tetramethyl-3,11,15,19,22,26-hexaazatricyclo-

[11.7.7.1***^]octacosa-l,5,7,9(28), 12,14,19,21,26-nonaenelQiron(II)

Hexafluorophosphate, [Fe{(m-Xylyl(NHEthi)2)Me2 [16]tetraeneN^}cl] (PF^) •

To a solution of 0.5 g (0.89 mmole) of [Fe{(m-Xylyl(NHEthi)2)Me2[16]-

tetraeneN^}Cl]Cl*2CH^0H dissolved in 75 ml of methanol was added an

excess of ammonium hexafluorophosphate dissolved in methanol to yield a

red-orange microcrystalline precipitate which was collected and dried

53

in vacuo. Yield: 0.5 (85%). Anal. Calc, for Fe C ^ H ^ N g C l P F ^ :

C, 46.69; H, 5.43; N, 12.56; Cl, 5.30. Found: C, 46.53; H, 5.48;

N, 12.57; Cl, 5.26.

Chloro(2.3,11,12,14,2Q-hexamethyl-3,11,15,19,22,26-hexaazatri-

cyclo [11.7.7.1~* * ] octacosa-1,5,7,9(28) 12.14,19,21,26-nonaeneN^) iron (II)

Hexafluorophosphate, [Fe{ (m-Xylyl(MeNEthi)n)He^[16ItetraeneN^}Cl] (PF .) .

To a suspension of 2.0 g (2.3 mmole) of [(m-Xylyl(MeNEthi)2)Me2 [16]-

tetraene](ZnCl^)g in 50 ml of methanol was added 0.48 g (2.3 mmole) of

bis-acetonitrileiron(II) chloride and 0.92 g (9.1 mmole) of triethyl-

amlne. The solution was refluxed for 10 minutes then filtered through

celite. After addition of 3.0 g (18.4 mmole) of ammonium hexafluoro­

phosphate dissolved in a minimum volume of methanol the solution was

allowed to stand overnight. The large red crystals which formed were

collected and dried in vacuo. Yield: 1.15 g (72%). Anal. Calc, for

FeC28HA()N 6ClPF6 : C, 48.26; H, 5.78; N, 12.06; Cl, 5.09. Found:

C, 48.22; H, 5.93; N, 12.00; Cl, 5.01.

Chloro(2,11,13,19-tetramethy1-3,10,14,18,21,25-hexaazatricyclo-

[10.7.7.2~* *^]octacosa-l,5,7,11,13,18,20,25,27-nonaeneN^) iron(II) Hexa­

fluorophosphate, [Fe{ (p-Xylyl (NHEthi)2)Me2 [16] tetraeneN^Cl] (PF .) . This78complex was prepared by the method of Callahan and Busch. To a solu­

tion of 1.0 g (1.1 mmole) of [(j5-Xylyl(NHEthi)2)Me2 [16]tetraene] (PFg)^

dissolved in 20 ml of acetonitrile was added 0.48 g (2.3 mmole) of

bis-acetonitrileiron(II) chloride. To this mixture was added dropwise

a solution of 0.35 g (3.5 mmole) of triethylamine in 5 ml of acetoni­

trile. The solution immediately turned deep red and an orange

54

precipitate began to form. After stirring overnight, the precipitate

was collected and dried in vacuo. The product was dissolved in 75 ml

of methanol and 2.0 g (12.3 mmole) of ammonium hexafluorophosphate dis­

solved in ethanol was added to yield the yellow-brown microcrystalline

product which was dried in vacuo. Recrystallization from an

acetonitrile-ethanol mixture yielded large orange crystals. Yield:

0.55 g (75%). Anal. Calc, for Fe C ^ H ^ N g C l P F g : C, 46.69; H, 5.43,

N, 12.56; Cl, 5.30. Found: C, 46.59; H, 5.77; N, 11.93; Cl, 4.67.

Chloro(2,3,10,11,13,19-hexamethyl-3,10,14,18,21,25-hexaaza-

bicyclo[10.7.7]hexacosa-l,11,13,18,20,25-hexaenelQ iron(11) Hexafluoro­

phosphate, [Fe{ (!,6-Hex(MeNEthi)„)Me„[16]tetraeneN^}Cl] (PF^) • This com-77plex was prepared according to the method of Olszanski and Busch. To

a solution of 2.0 g (2.3 mmole) of [(1,6-Hex(MeHEthi)2)Me2 [16]tetraene]-

(PFg)^ dissolved in 50 ml of acetonitrile was added 0.46 g (2.3 mmole)

of bis-acetonitrileiron(II) chloride and 0.70 (6.9 mmole) of triethyl-

amine to yield a deep red solution. After refluxing for ten minutes,

the solution was filtered through celite and allowed to stir for 2 h.

The solvent was removed and the residue dissolved in 40 ml of methanol.

Dropwise addition of a solution of 2.0 g (12.2 mmole) of ammonium hexa­

fluorophosphate dissolved in 20 ml of ethanol yielded the deep red pro­

duct which was recrystallized from an acetonitrile, ethanol mixture to

yield large red crystals. Anal. Calc, for FeCggH^NgClPFg: C, 46.13;

H, 6.55; N, 12.41; Cl, 5.24. Found: C, 45.93; H, 6.77; N, 12.24;

Cl, 5.14.

Synthesis of Iron(III) Dry Cave Complexes

55

Chloro (2.3,11,12,14.20-hexamethyl-3,11.15,19,22,26-hexaazatri- 5 9cyclo[ll.7.7«1 * ]octacosa-l,5.7.9(28),12,14.19,21.26-nonaeneN,,)-

iron(III) Hexafluorophosphate, [Fe{Cm-XylvI(MeNEthi)»;Me„[16]tetraene-

N^}C1](PF^.)„. To a solution of 0.2 g (0.29 mmole) of [Fe{(m-Xylyl-

(MeNEthi)2)Me2 [l6]tetraeneN^}ci](PF^) dissolved in 25 ml of methanol

and 5 ml of acetonitrile was added 0.16 g (0.29 mmole) of ammonium

hexanitratocerate(IV) causing a color change from red to deep blue.

Dropwise addition of a solution of 0.28 g (1.7 mmole) of ammonium

hexafluorophosphate dissolved in 10 ml of methanol yielded a deep blue

mlcrocrystalllne precipitate which was recrystallized from an acetoni­

trile, ethanol mixture. Yield: 0.18 g (74%). Anal. Calc, for

FeC28H40N6ClP2F12: C, 39.95; H, 4.79; N, 9.98; Cl, 4.21. Found:

C, 38.12; H, 4.99; N, 9.44; Cl, 4.03.

U-Oxo-bis r(2,3.11,12,14.20-hexamethyl-3.11.15.19,22,26-hexa- 5 9agatricyclo[11.7.7.1 * ]octacosa-l,5,7,9(28),12,14,19,21,26-nonaeneN^)-

iron(III)] Hexafluorophosphate trihydrate, {[Fe[(m-Xylyl(MeNEthi)2)-

Me„[l6 ]tetraeneN^]]20}(PF^)^* 3H20. A solution of 0.5 g (0.7 mmole) of

[Fe{(m-Xylyl(MeNEthi)2)Me2[16]tetraeneN^}Cl](PFg) dissolved in 20 ml of

acetonitrile was exposed to the air for 3 days. The solution changed in

color from deep red to brown. Upon addition of water, a brown preci­

pitate formed which was collected and washed with water and ether.

Anal. Calc, for Fe2C5&H9oNl2°4F4F24: C * 3^.87; 5.38; N, 9.96.Found: C, 40.19; H, 4.79; N, 9.54.

Synthesis of. Other Iron(II) Dry Cave Complexes

56

A Pentadentate Isomer of a Bridged Iron(II) Complex: [2.12,14.

20-tetramethyl-3,11,15,19,22,26 hexaazatrlcyclo til * 7.7.1~* * loctacosa-

2,5,7,9,(28)12,14,19.21,26-nonaenelQIron(II) Hexafluorophosphate,

[Fe{ (m-Xylyl(NHEthl) (lE)Me„ [16]tetraeneN^}] (PF .) .. To a solution of

1.0 g (1.1 mmole) of [(m-Xylyl(NHEthi)2)Me2 [16]tetraene](PFg)^ dissolved

in 20 ml of acetonitrile was added 0.67 g (1.1 mmole) of

hexakis-acetonitrileiron(II) hexafluorophosphate and 0.35 g (3.4 mmole)

of triethylamine. The solution was refluxed for 10 minutes then fil­

tered through celite. The solution volume was reduced to 10 ml and

20 ml of methanol was added. An orange crystalline product formed over­

night and was collected. Yield: 0.4 g (47%). Anal. Calc, for

FeC26H36N6P2F12: C, 40.12; H, 4.66; N, 10.80. Found: C, 46.39;

H, 5.90; N, 12.48.

(2,3.11,12,14,20-hexamethy1-3,11,15,19.22,26-hexaazatricyclo

[ 11.7.7.1~* * 1 octacosa—1,5,7,9(28) , 12.14119,21, 26-nonaeneN^, ) iron(II)

Hexafluorophosphate, [Fe{ (m-Xylyl(MeKEthi)2)Me2 [16]tetraeneN^}] *

To a solution of 0.3 g (0.4 mmole) of [Fe{(m-Xylyl(MeNEthi)2)Me2 [16]-

tetraeneN,}C1](PF,) dissolved in 5 ml of acetonitrile and 50 ml ofH D

ethanol was added 0.3 g (4.2 mmole) of pyridine. Introduction of CO to

the solution produced a color change to yellow-orange. A vacuum was

then applied to the flask resulting in a deepening of the color . An

excess of ammonium hexafluorophosphate dissolved in ethanol was added

dropwise to yield a red mlcrocrystalline product which was collected.

Upon drying in vacuo overnight, the color of the solid changed from red

57

to brown. Analytical data indicate the product is a mixture of the

starting material and the desired product in a ratio of 6:1. Calc. C,

42.52; H, 5.10; N, 10.57. Found: C, 42.60; H, 5.04; N, 10.57.

An alternate synthesis of this complex follows:

To a suspension of 0.5 g (0.56 mmole) of [(m-Xylyl(MeNEthi)2)-

Me2 [16]tetraene](PF^)^ was added 0.32 g (0.56 mmole) of

hexakis-acetonitrileiron(II) hexafluorophosphate and 0.1 g (0.99 mmole)

of triethylamine. The solution was refluxed for 10 min and filtered

through celite. After addition of excess ammonium hexafluorophosphate

in ethanol, the solution volume was reduced until the precipitate

formed. The dark brown powder was collected and dried in vacuo.

Analytical data were not obtained but spectroscopic data match those of

the analyzed sample.

(2,3,11,12,14,20-Hexamethyl-3,11.15,19,22,26-hexaazatricyclo-

m . 7 . 7 . 1 5,9 ] octacosa-1,5,7,9 (28) 12,14,19,21,26-nonaeneN^) iron(II)

Iodide«Q.5 acetone, [Fe{(m-Xylyl(MeNEthi)^)Me„[16]t e t r a e n e N ^ *0.5-

CHjCOCHq To a solution of 0.5 g [Fe{(m-Xylyl(MeNEthi) Me [16]tetraene-

N^}](PFg)2 dissolved in 30 ml of acetone was added an excess of

tetra n-butylammoniura iodide dissolved in acetone. A brown precipitate

formed overnight which was collected and dried in vacuo. Anal. Calc.

for FeC2g g H ^ N ^ 5I2 : C, 44.33; H, 5.42; N, 10.51; I, 31.75. Found:

C, 44.53; H, 5.43; N, 10.55; I, 31.40.

An alternate synthesis of this complex is described below:

To a solution of 1.0 g (1.1 mmole) of [(m-Xylyl(MeNEthi)2)Me2~

[16]tetraene)](PF£)_ dissolved in 50 ml of acetone was added 0.65 g o 3(1.1 mmole) of hexakls-acetonitrileiron(II) hexafluorophosphate and

58

0.45 g (4.4 mmole) of trlethylamine. The solution was filtered through

celite and a solution of 2.0 g (5.5 mmole) of tetra-ii-butylainmonium

iodide dissolved in 10 ml of acetone was added. Reduction in volume

yielded a brown precipitate which was collected. Analytical data were

not obtained but spectroscopic measurements match those of the analyzed

sample.

Attempt to prepare (2,3,8,9,11,17-Hexamethy1-3,8,12,16,19,23-

hexaazabicyclo[8.7.7]tetracosa-1,9,11,16,18.23-hexaeneN^)iron(XI)

Hexafluorophosphate, [Fe{ (1,4-But (MeNEthi) j M e „ [ 16 ] tetraeneN^} ] (PF .) „ .

In the same way as described for the alternate synthesis of

[Fe{ (m-Xylyl(MeNEthi)2)Me2 [16] tetraeneN^, } ] (PFg)^, 1.03 g (1.8 mmole) of

hexakis-acetonitrilelron(II) hexafluorophosphate and 0.70 g (6.9 mmole)

of trlethylamine were mixed. An orange, partially crystalline product

was Isolated and dried in vacuo. Satisfactory elemental analyses were

not obtained. Calc, for F e C ^ H ^ N ^ F ^ : C, 38.01; H, 5.32; N, 11.08.

Found: C, 41.42; H, 6.39; N, 12.01.

Attempt to prepare (2,3,9,10,12,18-Hexamethyl-3,9,13,17,20,24-

hexaazabicyclo(9.7.7]pentacosa-l,10,12,17,19,24-hexaeneN^)iron(II)

Hexafluorophosphate, [Fe{ (1,5-Pent (MeNEthi) )Me^ [ 16 ] tetraeneN^ } ] (PF .) 2 ’

In the same way as described for the preceding complex, 1.5 g (1.7

mmole) of [ (1,5-Pent (MeNEthi) 2 ^ &2 tetraene] (PFg)^, 1.03 g (1.8

mmole) of hexakis-acetonitrileiron(II) hexafluorophosphate and 0.70 g

(6.9 mmole) of trlethylamine were mixed. A red-orange crystalline pro­

duct was collected. Satisfactory elemental analyses were not obtained.

59

Calc, for FeC25H 42N 6P2F12: C ’ 38*87» H » 5 *48» N, 10.88. Found: C,41.65; H, 6.51; N, 12.06.

Attempt to prepare (2,3,10,11,13,19-Hexamethyl-3,10,14,18,21,

25-hexaazablcyclo[10.7.7] hexacosa-1,11,13,18.20,25-hexaeneN^)Iron(II)

Hexafluorophosphate, [Fe{ (1,6-Hex (MeNEthi) )Me„ [ 161 tetraeneN^ } 3 (PF -) 2 •

In the same way as described for the two preceding complexes, 1.5 g

Cl.7 mmole) of [(l,6-Hex(MeNEthi)2)Me2 [16]tetraene](PFg)^, 1.03 g (1.7

mmole) of hexakis-acetonitrilelron(II) hexafluorophosphate and 0.7 g

(6.9 mmole) of trlethylamine were reacted. The brown product was iso­

lated and dried in vacuo. Satisfactory elemental analyses were not

obtained. Calc, for FeC26H44N6P2F12: C * 39*71» H, 5.64; N, 10.69.Found: C, 42.55; H, 6.47; N, 11.82.

Synthesis of Carbon Monoxide Addurts of the Iron(II) Complexes

All of the six coordinate irc.ull) carbon monoxide complexes

were synthesized in the same way; exceptions are noted below. Approxi­

mately 0.250 g of the appropriate iron(II) chloro complex and an equal

mass of the appropriate base were dissolved in 5 ml of acetonitrile and

30 ml of ethanol. The solution was filtered into a Schlenk flask and

removed from the dry box. The flask was connected to a cylinder of

Matheson Research Grade carbon monoxide and the flask and all hoses were

evacuated under high vacuum. Carbon monoxide was introduced at a pres­

sure slightly above atmospheric, causing the solution color to change

from deep red-orange to a much less intense orange color. The flask

was sealed and returned to the dry box whereupon 0.5 g of ammonium

hexafluorophosphate dissolved in a minimum volume of ethanol was added

60

dropwise to yield a red-orange, generally crystalline precipitate which

was collected and washed with ethanol and ether. Yields were generally

greater than 65%. Analytical data for the CO adducts are summarized

in table 2. The following complexes were synthesized by this method;

[Carbonyl(B)(2,12,14,20-tetramethyl-3,11,15,19,22,26-hexaazatricyclo

[11.7.7.15 *9]octacosa-1,5,7,9(28),12,14,19,21,26-nonaeneN4> iron(II)]

Hexafluorophosphate, [Fe{(m-Xylyl(NHEthi)2)Me2 [16]tetraeneN^}(B)(CO)]

(PFg)^, B = pyridine, N - methylimldazole, imidazole, 4-arainopyridine.

[Carbonyl(B)(2,3,11,12,14,20-hexamethyl-3,11,15,19,22,26-hexaazatri­

cy clo [11.7.7.1^ *9]octacosa-1,5,7,9(28)12,14,19,21,26-nonaeneN^)iron(II)]

Hexafluorophosphate, [Fe{ (m-Xylyl(MeNEthi)2)Me2 [1®] tetraeneN^}(B) (CO)]

(PFg)^, B = acetonitrile, N - me ■ 'limidazole, imidazole,

4-aminopyridine.

[Carbonyl(B)(2,11,13,19-tetramethy1 - , _ 3,14,18,21,25-hexaazatricyclo

[10.7.7.2^*®]octacosa-1,5,7,11,13,18,20,25,27-nonaeneN^)iron(II)]

[Fe{ (£-Xylyl(NHEthi)2)Me2 [16] tetraeneN^}(B) (CO) ] (PFg)2> B = acetoni­

trile, pyridine, N - methylimldazole.

[Carbonyl(B)(2,3,10,11,13,19-hexamethyl-3,10,14,18,21,25-hexaazabicyclo

[10.7.7]hexacosa-l,11,13,18,20,25-hexaeneN^)iron(II)] Hexafluorophos­

phate, [Fe{(l,6-Hex(MeNEthl)2)Me2 [16]tetraeneN4}(B)(CO)](PF6)2 , B =

acetonitrile, pyridine, N - methylimldazole.

61

TABLE 2ANALYTICAL DATA FOR THE COMPLEXES

[Fe{(R)Me2[16]tetraeneN^>(B)(CO))(PFg)2

R BC H N Fe

Calc. Fd. Calc. Fd. Calc. Fd. Calc. Fd.

m-Xylyl(NHEthl) 2 PY 43.41 42.83 4.67 4.93 11.07 10.72 6.31 5.80BrXylyl(NHEthi)2 1-MeIM 41.91 40.99 4.76 4.85 12.61 12.64 6.29 5.61.m-Xylyl(NHEthi)2 Im 41.21 41.33 4.61 4.84 12.81 12.36m-Xylyl(NHEthi)2 A-NH2-Py 42.68 42.57 4.70 4.70 12.44 12.57 6.20 6.14a-Xylyl(MeNEthi)2 1-MelM 43.24 43.76 5.06 5.01 12.23 12.92m-Xylyl(MeNEthi)2 CHjCN 42.53 43.20 4.95 5.33 11.20 12.24m-Xylyl(MeNEthi)2 Im 42.59 41.37 4.91 5.08 12.42 12.37 6.19 5.90m-Xylyl(MeNEthi)2 «-NH2-Py 43.98 43.51 4.99 5.27 12.07 12.70 6.01 5.89j^-Xylyl(NHEthi)2 CH3CN 41.10 40.05 4.64 4.97 11.57 11.01£-Xylyl(NHEthi)2 Py 43.41 43.07 4.67 4.76 11.07 11.09£-Xylyl(NHEthi)2 1-MeIM 41.91 41.50 4.76 5.12 12.61 12.571,6-Hex(MeNEthi) 2 ch3cn 41.20 40.97 5.59 5.66 12.08 12.251,6-Hex(MeNEthi)2 Py 43.01 41.91 5.53 5.73 10.97 11.29 6.25 5.901,6-Hex(MeNEthi) 2 1-MeIM 41.53 41.80 5.62 5.68 12.50 12.98 6.23 5.78(Me2NEthi)2 ch3cn 37.47 36.10 5.16 5.45 12.23 12.02(MeNHEthi)(NE) ---- 34.44 33.78 4.68 4.48 11.48 11.35

62

The CO Adduct of a Pentadentate Unbrldged Iron(II) Complex:

[Carbonyl(3-[1-(methylamino)ethylldenel-11-(l-methyl-iminoethyl)-2,12-

dlmethy1-1,5,9,13-tetraazaeyclohexadeca-1,3,9,11-tetraeneN^)Iron(II)]

Hexafluorophosphate, [{Fe(MeNHEthl)(MeImEt)Me„ri6]tetraeneN^}(C0)]

(FF^.)„. To a solution of 0.3 g (0.4 mmole of [Fe{(MeNHEthi)2Me£ [16]—

tetraeneN^}(CH^CN) H P F g ^ dissolved in 3 ml of acetonitrile was added

an equal mass of pyridine, N-methylimidazole or acetonitrile and 50 ml

of ethanol. After exposure to CO, there was a very slow color change

from red to light orange. The solution was allowed to stand overnight.

After addition of excess ammonium hexafluorophosphate followed by

volume reduction, a red orange precipitate formed which was isolated

and dried in vacuo. The same product was obtained regardless of the

base used as shown by analytical, infrared and NMR data.

[(Acetonitrile)(carbonyl)(2,12-Dimethyl-3,ll-bis-[l-(dimethyl-

amino)ethylidene]-1,5,9,13-tetraazacyclohexadeca-1,4,9,12-tetraeneN^)

iron(II)] Hexafluorophosphate, [Fe{(Me„HEthi)^Me^,[16]tetraeneH^}

(CHjCN) (CO) ] ( P F ^ K . To a solution of 1.0 g (1.03 mmole) of

[(Me2NEthi)2Me2[16]tetraene](PF^)^ dissolved in 15 ml of acetonitrile

was added 0.25 g (1.2 mmole) of bis-acetonitrileiron(II) chloride and

0.5 g (4.9 mmole) of trlethylamine. After stirring for 10 minutes the

solution was filtered through celite and 20 ml of ethanol was added.

Upon addition of CO, the solution changed in color from deep red to

yellow-orange and an orange crystalline precipitate began to form. The

solution was returned to the dry box and the product was isolated and

dried in vacuo. Yield: 0.75 g (90% based on ligand salt).

[Carbonyl(B)(2,3,10,11,13,19-hexamethyl-3,10,14,18.21,25-

hexaazabicyclo[10.7.7]hexacosa-l, 11,13,18,20,25-hexaeneN^)iron(II)]

Iodide 1.5 acetone, [Fe[(l,6-Hex(MeNEthi)„)Me„[16]tetraeneN^](B)(CO)]

I^,»1.5 acetone, B = pyridine, N - methylimldazole. To a solution of

0.3 g (0.44 mmole) of [Fe{(l,6-Hex(MeNEthi)_)Me0[16]tetraeneN. Cl}(PF,)Z Z H O

dissolved in 40 of acetone was added an equal mass of the appropriate

base. CO was introduced causing the color to change from deep red to

light orange. The solution was returned to the dry box and excess

tetra-n-butylaramonium iodide in acetone was added dropwise. The solu­

tion was allowed to stand overnight during which time red-orange

crystalline clusters of the product formed. The crystals were col­

lected and washed with acetone and ether. Anal. Calc for

FeCsg 5^58^7®2 5^2* 46.45; H, 6.20; N, 10.35. Found: C, 46.80;

H, 5.97; N, 10.78; and Calc, for C^^ s^gNgOj 5*2: 45.00; H, 6.28;

N, 11.83. Found: C, 45.21; H, 6.37; N, 11.95.

Synthesis of Dimeric Iron(II) Dry Cave Complexes

Starting Material for Dimeric Iron(II) Complexes. To a suspen­

sion of 1.0 g (0.6 mmole) of [(m-Xylyl(NHEthi)2)Me2 [16]tetraene]2“

(ZnCl^)^ in 25 ml of acetonitrile was added 0.78 g (1.8 mmole) of70tetrakis-(pyridine)iron(II) chloride and 0.71 g (7.0 mmole) of

trlethylamine to yield a deep red solution. This solution was filtered

rapidly through celite and allowed to stir overnight during which time

a red precipitate formed. The product was collected and washed with

acetonitrile and ether and dried in vacuo. Yield: 0.65 g.

64

(Pyridine) {2_r l 2 ,14,20,22.32.34.40-0c tame thy 1-3.11.15.19.23.31.35.39.42.46.50.54-dodecaazapentacyclo [31.7.7. 7 ^ ^25 291 * ]hexapentaconta-1,5.7.9(56).12.14.19.21.25.27.29(48).32.34.39.

41.49.43-octadecaene)diiron(II) Hexafluorophosphate. [Fe{(m-Xylyl-

(NHEthi)„)Me„[l6]tetraeneN^}(Py)]„(PF^)^. One gram of the crude

starting material was dissolved slowly in 100 mL of methanol and the

solution was filtered through cellte. To this solution was added 3.0 g

(38.0 mmole) of pyridine and the solution volume was reduced to 50 mL.

A solution of 2.0 g (12.3 mmole) of ammonium hexafluorophosphate dis­

solved in methanol was added dropwise to yield a red precipitate. The

precipitate was washed with methanol and ether and dried in vacuo.

Yield: 0.90 g (58% based on ligand). Anal. Calc, for

FeC31H41N7P2F12: C, 43.42; H, 4.82; N, 11.43; Fe, 6.51,; Zn, 0.0.

Found: C, 43.51; H, 4.96; N, 11.33; Fe, 6.23; Zn, 0.24.

(Imidazole) (2,12,14,20,22,32,34,40-Qctamethvl-3.11.15.19.23.31.35.39.42.46.50.54-dodecaazapentacyclo T31.7.7. 7^ . 1~* * . -25 291 * ]hexapentaconta-l,5.7.9(56).12.14.19.21.25.27.29 f48),32.34.39.

41.49.43-octadecaene)diiron(II) Hexafluorophosphate. [Fe{(m-Xylyl-

(NHEthi)2)Me„ [161 tetraeneN^} (Im) ]„(PF^)^. To a solution of 0.275 g of

the crude starting material dissolved in 40 mL of methanol was added

0.3 g (5.5 mmole) of imidazole causing the solution to turn deep red.

Slow addition of excess ammonium hexafluorophosphate dissolved in

methanol, without stirring, yielded a red crystalline product upon

standing overnight. The product was filtered, washed with methanol and

dried in vacuo. Yield: 0.22 g (52% based on ligand). Anal. Calc, for

^29^4^8^2*12: 41.15; H, 4.76; N, 13.24; Fe, 6.60; Zn, 0.0. Found:C, 41.01; H, 5.11; N, 13.50; Fe, 6.51; Zn, 0.11.

(2-Methy1imidazole)(2,12,14,20,22,32,34,4Q-0ctamethYl-3«11.15.

19.23.31.35.39.42.46.50.54-dodecaazapentacyclo T31.7.7.7^* . 1~**^.- 25 291 * ]hexapentaconta-l,5.7.9(56).12.14.19.21.25.27.29(48).32.34.39.

41.49.43-octadecaene)dliron(II) Hexafluorophosphate. [Fe{(m-Xylyl-

(NHEthi) „)Me„ [16] tetraeneN^}(2-MeIm) 3^(PF^.)^. This complex was pre­

pared in the same way as the imidazole derivative using 0.4 g of the

crude starting material and 0.5 g (6.1 mmole) of 2-methylimidazole.

Yield: 0.31 g (50% based on ligand). Anal. Calc, for [FeC^QH^Ng-

P2Fi2)2 : C, 41.87; H, 4.92; N, 13.02; Fe, 6.49. Found: C, 41.12;

H, 5.37; N, 12.79; Fe, 6.24.

(1-Methylimidazole) (2.12,14,20.22,32.34.40-0ctamethyl-3.11.15.

19.23.31.35.39.42.46.50.54-dodecaazapentacyclo f31.7.7.7^*^.!***^.- 25 291 * ]hexapentaconta-1,5,7.9(56).12.14.19.21.25.27.29 f 48).32.34.39.

41.49.43-octadecaene)diiron(IX) Hexafluorophosphate. [Fe{(m-Xylyl-

(NHEthi) )Me^ f 16 ] tetraeneN^} (l-Melm) ] (PF^) » This complex was prepared in the same way as the imidazole derivative using 0.5 g of the crude

starting material and 0.3 g (3.6 mmole) of N-raethylimidazole. Yield:

0.35 g (45% based on ligand). Anal. Calc, for [FeC3QH42^8*2*12^2:C, 41.87; H, 4.92; N, 13.02; Fe, 6.49; Zn, 0.0. Found: C, 41.31;

H, 5.15; N, 13.48; Fe, 6.48; Zn, 0.24.

Synthesis of Copper(II) Dry Cave Complexes

66

(2,3,10,11,13,19-Hexamethyl-3,10,14,18,21,25-hexaazabicyclo

[10.7.7]hexacosa-l,11,13,18,20,25-hexaeneN^)copper(IX) Hexafluorophos-

phase, [Cu{(l,6-Hex(MeNEthi)n)Me^[16J t e t r a e n e N ^ } ] * ®ne 8ram

(1.1 mmole) of [(1 ,6-Hex(MeNEthi)2 ^ e 2 [16]tetraene](PFg)^ was slurried

in 20 ml of refluxing methanol. To this solution was added a solution

of 0.25 g (1.3 mmole) of copper(II) acetate hydrate and 0.46 g (3.4

mmole) of sodium acetate trihydrate dissolved in 15 ml of hot methanol.

The solution turned brown immediately with formation of a red crystal­

line product. The product was recrystallized from an acetonitrile,

ethanol solution to yield large red crystals. Yield: 0.74 g (85%).

Anal. Calc, for CuC26H44N6P2F12: C ’ 39*32; H » 5 *58; N > 10.58; Cu, 8.00.Found: C, 39.42; H, 5.49; N, 10.49; Cu, 7.95.

(2,3,11,12,14,20-Hexamethyl-3,11,15,19,22,26-hexaazatricyclo 5 9[11.7.7.1 * 1octacosa-1,5,7,9(28),12,14,19,21,26-nonaeneN^)copper(II)

Hexafluorophosphate acetonitrile, [Cu[(m-Xylyl(MeNEthi)^)Me„ [16]-

tetraeneN^] 1 (PF^.)^*CH^CN. This complex was synthesized in the same way

as [Cu[(l,6-Hex(MeNEthi)2)Me2[16]tetraeneN^]](PFg)2 « Yield: 0.4 g

(45%). Anal. Calc, for Cu C30H43N7P2F12: C, 42.13; H, 5.07; N, 11.47;

Cu, 7.43. Found: C, 42.10; H, 5.10; N, 11.22; Cu, 7.37.

Equilibrium Constant Measurement

Axial base equilibrium constants were determined in the manner

described in detail by Stevens.^ A solution of the iron(II) complex

was titrated with the appropriate axial base while monitoring spectral

changes. Carbon monoxide binding constants were obtained using the

67

method of Stevens.^ A brief outline of the method and changes in the

system are described below. Equilibrium constants are determined by

monitoring electronic spectral changes as a function of carbon monoxide

partial pressure. The partial pressure of CO is regulated through the

use of four precision rotameters which control the flow of analyzed

mixtures of CO and nitrogen. Tank 1 contains prepurified nitrogen.

Tanks 2 and 3 contain Matheson primary standard grade CO/N2 mixtures

analyzed to contain 0.251% CO and 5.002% CO, respectively. Tank A con­

tains pure CO. To remove residual traces of 0^, an L. C. Company, Inc.

high capacity oxygen trap was installed in each gas line. Rotameters

1, 2, and 3 were calibrated for Ng. (The calibration curve is included

in appendix A.) The partial pressure of CO is determined using equa-3 -1tion 16, where f__ and f„ are the flow rates in cm «mln of the CO CO n2

(or CO/N2 mixtures) and pure N2 streams, %C0 is the analyzed percentage

of CO in the CO/N2 mixture, Patm is ti.e atmospheric pressure and P^ is

the vapor pressure.

P = ------- — ^£2 (P - P ) (16)C0 fC0 + fN2 100 3tm V

Accessible CO partial pressures are from 0.05 to "*760 torr. The

absorbance data are collected at several wavelength for different par­

tial pressures of CO at a controlled temperature.

The equilibrium constant, K c q , for the formation of a 1:1

iron-CO adduct, as expressed by:

FeLB + CO FeLBCO (17)

68

was determined using a non-linear least squares technique developed by

Dr. E. V. Dose of these laboratories. The equation to be fit was

. . (GFeLBCO“ EFeLB5KCO[FeLB'lO (PCOJ .A = Ao + ~ a + - Co (pCo » (18)

The non-linear least squares program minimized the function:

<19)

where the weight w is inversely proportional to the variance of

The program calculates estimated standard deviations (esds) for the

refined parameters Kc0 and eFeLBC0*

X-Ray Crystallographic Procedures

The following is a general description of the procedure used in

the single-crystal X-ray structural analyses. Specific details for

each structure will be described individually. A crystal was selected,

mounted on a quartz fiber and coated with several thin layers of epoxy.

After mounting the fiber in a goniometer head, the crystal was optically

centered on a Syntex PI four-circle computer controlled diffractometer.

The radiation used was graphite monochromatized MoKa. From a rotation

photograph 15 reflections were located and the setting angles automati­

cally optimized. These reflections were then indexed using the auto­

indexing program. After the approximate cell constants were obtained

by a least squares calculation, approximately 1000 reflections in the

range 10° < 20 < 30° were rapidly collected and about 30 moderately

69

Intense reflections were selected and used to obtain more precise cell

constants after optimizing their setting angles.

Intensity data were collected using the to-29 scan technique.

The scan rate was varied linearly according to the intensity of the

reflection; weak reflections were collected slowly, intense reflections

were measured rapidly. Backgrounds were counted for a total of one-half

the time spent in each scan. Ten check reflections were monitored

periodically to follow the condition of the crystal in the X-ray beam.2The estimated standard deviations in the reduced intensities (F ) were

calculated using

«J(F2) = (r/Lp)[S + G2 (B1 + B2) + (pl)2 ]1/2 (20)

where r is the scan rate, 1/Lp is the Lorentz-polarization correction,

^1* ^1* ^2 are t*ie scan anc* background counts, G is the ratio of scantime to total background counting time, I is the net intensity, p is a

factor chosen as 0 .0 2, included in a term presumed to represent that

component of the total error expected to be proportional to the dif-8Xfracted intensity. Systematic absences were deleted from the data

set and multiply measured reflections were averaged. The R factors

for multiply measured reflections were defined as

R1 = E | |Fj I - | Fav | | /£ | Fav | (21)

and

R2 - {lj[(Fj2 -Fav 2)2/a2 (Fj2 -Fav2)]/Z[FavA/a2 (Fj2 -Fav 2)]}1/2 (22)

70

The E-statistics were examined to verify the space group as centric or

acentric.

The phase problem was solved in each case using the heavy atom

Patterson method. Host calculations were carried out using the CRYM82crystallographic computing system. Some calculations for

[Fe{(m7Xylyl(NHEthi)2)Me2 ll6]tetraeneN^}Cl]Cl*2CH^0H were performed83using the program ORFLSE. Refinement was carried out using standard

Fourier and least square techniques. Convergence was considered

achieved when no shifts in the final least-squares cycle exceeded

0.25 esd. The discrepancy indices were defined as

R = 2 | | Fo | - | Fc | | /I | Fo | (23)

R = {Zw(F, 2 - F 2)2/XwF 4}1/2 (24)W O C O

2 2where w = 1/a (F ) o

GOF = {Zw(F 2 - F 2)2/(n - n )}1/2 (25)o c o p

The atomic form factors for all atoms except hydrogen were taken from84the International Tables while that of hydrogen was taken from

85Stewart et al. The function minimized in the least squares refine-

2 2 2 2 ments was Ew(F - F ) except for ORFLSE in which Etf(F - F ) was o c o cminimized (for intensities above 3a(I) only).

[Ni{(m-Xylyl(NHEthi)„)Me„[16]tetraeneN,}]„(PF,),-4CH„C0CH„. ---------■*— *--------- 2 Z---------------4— 2--- 6—4---- 3---- 3Crystals of the complex were grown by slow evaporation of an acetone

solution. It was apparent upon examination of the crystals that two

distinct forms were present; one form was in the shape of a square

71

pyramid, the other form was needles. A square pyramidal crystal of

dimensions 0.25 x 0.25 x 0.35 mm was mounted, centered, and indexed

giving an orthorhombic cell having the parameters listed in table 3.

The space group was uniquely identified as Pbca by examination of sys­

tematic absences (hkO, h = odd; h0£, 2, = odd, Okf,, k ** odd). The cal-3culated density of 1.49 g/cm (based on four acetone molecules of

crystallization per molecule of complex) for Z = 4 is considerably3greater than the observed density of 1.44 g/cm measured by the flota­

tion method in a benzene-bromoform mixture. These values are in dis­

agreement because the observed density is an average of the densities

of the two different crystalline forms.

The intensity data were measured in two shells; the first,

inner, shell contained 8776 reflections having 4° < 20 < 60°, while the

second shell remeasured all reflections in the positive hklt octant

between 30** and 50° in 20". The check reflection 313 diminished greatly

in intensity but all others remained essentially constant throughout the

data collection. The total number of reflections measured was 13057

(excluding check reflections) of which 7104 were unique. A total of22123 reflections had intensities greater than 3a(F ) above background.

The R-factor for multiply measured reflections was 0.113, unusually

high due to the high percentage of weak data. After application of the

Wilson plot, the average temperature factor, 2B, was 5.36 and the scale

factor, K, was 3.9518. The E-statistics were consistent with the cen­

tric space group as shown in table 4 .

In early stages of refinement, only the data having I > 2a(I)

were used. The position of the nickel(II) was found from a sharpened

72

TABLE 3SUMMARY OF CRYSTALLOGRAPHIC DATA

FeC28H44N6°2Cl2 FeC28H40N6C1PF6 FeC39H47N702P2F12 NiC32H48N6°2P2!Space Group P21 pT Plj/m Pbca

a 10.607(2) 8.575(1) 10.115(3) 16.353(5)b 14.656(3) 13.788(2) 16.468(3) 20.173(5)c 10.132(2) 14.383(2) 11.926(3) 24.157(6)a 89.99(1) 84.15(1) 90.02(2) 89.97(2)B 79.79(2) 76.32(1) 112.78(2) 89.95(2)

y 90.00(1) 104.80(1) 90.02(2) 90.02(2) 'V 1550.21(50) 1573.64(38) 1831.71(75) 7969.25(373)

pcalc 1.34 1.47 1.60 1.49

pobs 1.34 1.46 1.59 1.44

p(Mo-0.71069 A) 6.95 6.76 5.96 6.54T °C 20(1) -73(3) -40(2) 20(1)Scan technique e)-20 w-20 e>-20 tij-28Region measured 4* < 26 < 50* 4'<20 <60* 4° < 20 < 55° 4° < 20 < 60°Reflections measured 6418 12956 6826 13057Independent reflections 2874 9230 4964 7104Reflectionsi 1 > 3oI 1509 3042 2332 2123Parameters 353 428 499 496D:P (30) 8.1(4.3) 21.6(7.1) 99(4.7) 14.32(4.28)R (30) .103(.057) .154{.066) .105(.054) .218(,135)Rw (3c) .Q92(.079) .112(.0B5) .120(.104) .243(.214>GOF (30) 1.33(1.58) 1.21(1.60) 1.17(1.40) 2.09(3.21)

TABLE 4

E-STATISTICS

Centric <NiC32H48N6°2P2FI2>2 FeC28H44N6°2C12 FeC28H40N6C1PF6 FeC30H47N7°2P2F12 Acentric

<|e |> 0.798 0.778 0.871 0.802 0.811 0.886

<E2> 1.000 1.016 1.003 1.021 1.017 1.000

< f E2-11> 0.968 0.964 0.731 0.920 0.910 0.736

|e | > i , % 32.0 33.8 38.9 36.1 34.4 36.8

|e| > 2, % 5.0 4.1 1.0 3.3 3.9 1.8

|e | > 3, % 0.3 0.3 0.0 0.2 0.1 0.01

u>

74

Patterson map. A structure factor calculation based solely on the

nickel(II) coordinates yielded an R-factor of 0.626. (For a random

distribution of atoms in the centric cell, this value was calculated to 86be 0.83.) Five successive Fourier syntheses and structure factor cal­

culations resulted in the location of all other atoms in the molecule.

After several cycles of least squares refinement, the two acetone mole­

cules of crystallization were located from a different Fourier map.

The populations of the acetone molecules were allowed to vary and con­

verged at populations near 1.0. Therefore each acetone was included as

having full occupancy. Further least squares refinement of coordinates

and isotropic temperature factors converged at R B 0.192. Least squares

refinement was continued using anisotropic temperature factors for all

non-hydrogen atoms until convergence was attained at R a 0.161,

R = 0.223, and G0F = 2.89 for the data having I > 2a(I). Three cycles wof least squares were calculated using all of the data converged at

R = 0.218, R^ = 0.243, and G0F = 2,09. A final difference map contained* °3a number of peaks of approximately 1.5 electrons/A , particularly in the

regions of the hexafluorophosphate anions. Attempts to assign atoms to

these peaks and variation of the fluorine populations did not signifi­

cantly improve the quality of the structure. Appendix B contains a sum­

mary of the final positional and thermal parameters as well as a listing

of the calculated and observed structure factors.

It is apparent from the discrepancy indices that refinement did

not converge to within normally acceptable limits. The most obvious

reasons for such poor refinement Is the large number of weak data col­

lected. Disorder in the hexafluorophosphate anions and high thermal

75

motion in the molecule also contributed to the refinement difficulties.

Despite these difficulties, significant important information was

obtained from the structural analysis as regards the constitution of the

molecule which had been previously incorrectly assumed. A discussion of

the structural details begins on page 131.

fFe{(m-Xylyl(NHEthi)jMe,, [16]tetraeneN^}C1]Cl* 2CH3OH. Crystals

of the complex were obtained by slow evaporation of a methanolic solu­

tion. The red crystals appeared to be stable in air for several hours

before cracking and turning dark brown. A crystal of dimensions

0.25 mm x 0.25 mm x 0.15 mm was selected and mounted using epoxy cement.

Precession photographs indicated a monoclinic crystal system and the

systematic absences (OkO, k = odd) were consistent with the space groups

P2^ and P2^/m. After centering and indexing, the cell constants were

obtained (table 3). The calculated and experimental densities agree

at 1.34 g/cm assuming Z = 2. Three dimensional intensity data were

collected for reflections having 4° < 20 < 50° for all positive h and

k and all positive and negative £jof the 6047 reflections measured

(excluding check reflections), 2874 were unique and 1509 had I > 3a(I)

above background. The R-factor for multiply measured reflections was

0.086. After scaling of the data the value of 2B was 5.62 and K was

1.1188. The E-statistics listed in table 4 were consistent with an

acentric space group and thus P2^ was selected.

The coordinates of the iron(II) ion and one of the chlorine

atoms were determined from a sharpened Patterson map and the y coordi­

nate of the iron atom was fixed at 0.25 due to the polar nature of the

76

space group. At this point, the R-factor was 0.416. From successive

structure factor calculations and Fourier maps, the remainder of the

non-hydrogen atoms of the molecule, except for the methanol solvate

molecules, were found, reducing R to 0.235. Several cycles of least

squares refinement were executed and a difference Fourier map was

generated. Electron density corresponding to the methanol molecules

was found, but the refinement resulted in high thermal parameters which

indicated disorder. The populations of the methanol molecules were

allowed to vary and approached values of 1.0. Refinement was continued

using anisotropic temperature factors for all non-hydrogen atoms of

the cation, anion, and solvent molecule. Hydrogen positions were cal­

culated after each least squares cycle and were included in structure

factors calculations but were not refined. At convergence, the dis­

crepancy indices were R = 0.103, Rw = 0.092, and GOF = 1.33 based on

all 2874 reflections. The corresponding indices based on the 1509

reflections having I > 3a(I) were R ** 0.057, R^ = 0.079, and GOF = 1.58.

The data to parameter ratios were 8.1 and 4.3 respectively for the two

data sets. A final difference Fourier map indicated some residual elec­

tron density in the vicinity of the methanol molecules. Appendix B con­

tains a listing of the final positional and thermal parameters as well

as the calculated and observed structure factors.

The y-coordinates of all atoms were inverted about y = 0.25 to

determine if there was a handedness to the cell contents. After

several least squares calculations, the model showed no Improvement

over the original one. The unresolved disorder in the methanol mole­

cules is undoubtedly responsible for the relatively high estimated

77

standard deviations in the bond lengths and angles. The model can be

considered as a good one for the complex, however, and bond distances

and angles can be interpreted with confidence. A detailed discussion of

the structural features begins on page 165.

[Fe{(m-Xylyl(MeNEthi)„)Me„[161tetraeneN^lCl](PF^)• Crystals of

the complex were grown slowly from a solution of acetonitrile and

ethanol. A crystal of dimensions 0.11 mm x 0.21 nun x 0.29 mm was

mounted and centered. Precession photographs indicated a triclinic

crystal system. The crystal was cooled to -73 + 3°C and maintained at

that temperature throughout measurement of the cell constants and data

collection. After centering and indexing the cell constants were

determined (table 3).

Three-dimensional intensity data were collected for reflections

having 4.0° < 20 < 60.0° for all positive h and all positive and nega­

tive k and A. The intensities of ten check reflections were monitored

every 190 reflections and they remained essentially constant throughout

the data collection. Of 12956 reflections measured, 9230 were unique2and 3042 had intensities greater than 3a(F ) above background. Psi

scans were measured and these indicated an absorption correction was

necessary. This correction was made using the program of Beno and 87Christoph using psi scans for eight sets of indices. The R-factor for

multiply measured reflections was 0.075. After Wilson scaling of the

data the values of 2B and K were 3.67 and 1.2893 respectively. The

E-statistics listed in table 4 were not conclusively centric or acen­

tric but agreed more closely with the centric values and thus the space

group PI was selected. (Refinement was also attempted in space group PI

78

with unsatisfactory results.) The position of the iron(II) was found

in a sharpened Patterson map and the rest of the molecule, Including

the ordered hexafluorophosphate anion, was found from two Fourier maps.

The structure was refined in the usual manner and finally converged

with all non-hydrogen atoms anisotropic and refined hydrogen positional

parameters. The final discrepancy indices were R = 0.154, Rw = 0.112,

and GOF ** 1.21 based on all 9230 reflections. Using the 3042 reflec­

tions with I < 3(7(I) , R = 0.066, Rw “ 0.085, and GOF = 1.60. The data

to parameter ratios were 21.6 and 7.1 for the two data sets. A final

difference map showed no peaks having electron density greater than 0.6 °3electrons/A . Appendix B contains a listing of all positional and

thermal parameters as well as the calculated and observed structure fac­

tors. A detailed discussion of the structural features begins on page

165.

[Fe{(1.5-Pent(NHEthi)2)Me„ T16]tetraenelQ (PY)(CO)1(PFC) C H ^ OH.

Crystals of the complex were grown by Dr. J. J. Grzybowski from a

methanolic solution. The red crystals grew together as clusters and a

small single crystal fragment approximately 0.10 mm x 0.15 mm x 0.25 mm

was selected for the X-ray structure analysis. The crystal was mounted

and cooled to -40 + 2°C. After centering, the crystal was indexed in

the monoclinic system with the cell parameters listed in table 3.

Three dimensional intensity data were measured for all positive h, all

k between -3 and +32 and all positive and negative I having

4f)° < 20 < 55.0°. Of the 6291 reflections measured (excluding check

reflections) 4964 were unique and 2329 had I > 3a(I). The R-factor for

79

multiply measured reflections was 0.067. Based on the systematic

absences (OkO, k *= odd) and centric E-statistics (table 4) the space

group P2^/m was chosen. Based on the known crystalline density and

cell volume, it was necessary for Z to equal 2. After Wilson scaling,

the values of 2B and K. were 4.12 and 1.2769. The molecule was there­

fore restricted to lie on a crystallographic mirror plane at y = 0.25.

The coordinates of the iron(II) were determined from a sharpened

Patterson map. A structure factor calculation based solely on the

iron(II) coordinates yielded a value of R = 0.611. Standard refinement

procedures yielded all other atomic coordinates including the methanol

of crystallization and the ordered hexafluorophosphate anion. Aniso­

tropic refinement of all non hydrogen atoms and refinement of hydrogen

positional parameters (including methyl groups) converged with discrep­

ancy indices R = 0.105, R^ = 0.120, and GOF = 1.17 based on all 4964

reflections. The corresponding values based on the 2329 reflections

having I > 3a(I) were R = 0.054, R^ = 0.104, and GOF = 1.48. The data

to parameter ratios were 9.9 and 4.7 respectively for the two data

sets. A final difference Fourier map contained no peaks having elec-°3tron density greater than 0.6 electrons/A . Because the molecule was

on a crystallographic mirror plane, the populations of all atoms on the

plane were set at 0.5 occupancy. Thus only one-half of the other atoms

needed to be located with symmetry related atoms being generated auto­

matically. Appendix B contains a listing of the final positional and

thermal parameters as well as the calculated and observed structure fac­

tors. A detailed discussion of the structural features begins on page

198.

RESULTS AND DISCUSSION

The work described in this thesis involves the design, syn­

thesis and characterization of a series of totally synthetic iron(II)

heme-protein models derived from dry cave ligands. A number of

unbridged nickel(II) precursor complexes were studied in some detail

and were used to form dry cave ligands through the development of a new

method of bridging. Monomeric and dimeric complexes were separated and

characterized by a number of methods including the single-crystal X-ray

structural analysis of one dimeric species. The ligands were removed

intact from nickel(II) and several were studied in detail. The ligands

were then chelated to iron(II) and the properties and reactivity of the

resultant complexes were examined. Two five-coordinate iron(II) com­

plexes were subjected to X-ray structural analyses. Carbon monoxide

adducts were prepared and characterized, again through the use of X-ray

crystallography. Some preliminary equilibrium studies with carbon

monoxide were performed and reactions with dioxygen were examined.

Finally, two copper(II) complexes derived from dry cave ligands were

synthesized and characterized.

Unbridged Nickel(II) Complexes

In order to study some of the unbridged nickel(II) complexes in70further detail, three compounds first synthesized by Schammel were

prepared; [Ni{(MeNHEthi)2Me2 I ]tetraeneN^}](PFg)^,

80

81

[Nl{(Me2NEthi)2Me2 [16]tetraeneN4}3 (PF6)2 and [Ni{ (NHEthi) 2Me2 [16]-

tetraeneN^}](PFg)2 . In addition, three new complexes of this class were

prepared: [Nl{(n-BuNHEthi)2Me2 [16]tetraeneN4}] [Nl{(t^BuNHEthi)^-

Me2 [16]tetraeneN4}] 0PFg)2 and [Ni{(BZNHEthi)2Me2 [16]tetraeneN4 }]<PF^> £ *

The synthesis of the methylamine complex was modified by using an

excess of methylamine gas instead of methylamine hydrochloride. The

new compounds were prepared by adding a slight excess of two equiva­

lents of n-butylamine, tert-butylamine or benzylamine to a solution of

[Ni{(MeOEthi)2Me2 [l6]tetraeneN4}](PFg)2 in acetonitrile to yield the

respective monoamine complexes.

The new complexes were characterized by elemental analysis and

all of the complexes were characterized by conductivity, IR, and 13C NMR spectroscopy and electrochemistry. The infrared spectra are

consistent with the proposed formulations and are very similar to those

observed by Scharamel. Some selected frequencies are summarized in

table 5. The IR spectra of n-butylamine and _t-buty lamine derivatives

are shown in figures 7a and b. The significant features are the N-H

stretching frequencies in the vicinity of 3400 cm ^ and the C = N and

C ■* C stretching frequencies in the 1500-1600 cm ^ region. The

benzylamine and ammonia derivatives show N-H regions more complex than

expected in the solid state spectra. In acetonitrile solution however,

the benzylamine complex shows the expected single stretch and the

ammonia complex shows two absorptions due to the symmetric and

anti-symmetric N-H stretching modes of the primary amine.

Molar conductance data for the complexes are listed in Table 5

and are consistent with their formulations as 2:1 electrolytes

TABLE 5

SELECTED INFRARED FREQUENCIES3 AND MOLAR CONDUCTANCES15 FOR UNBRIDGED NICKEL(II) COMPLEXES

Compound V (cm N-H } VC=C,C=N(cin 5 A ’. -1 n -I 2 onm mole cm

[Ni{ (NH2Ethi) 2Me2 [16] tetraeneN^ ] (PFfi) 2 3280,3 3395? 34753 1535, 1611, 1658 2713250,° 3360C

[Ni{(MeNHEthi)2Me2[16]tetraeneN4}](PF6)2 3397 1542, 1582 303

[Ni{ (Me2NEthi) 2Me2 [16] tetraeneN^}] (FFg) - ~ - 1528, 1563, 1602 292

[Ni((n-BuNHEthi)2Me2[16]tetraeneN^}](PF&)2 3373 1573 234

[Ni{(b-BuNHEthi)2Me2[16]tetraeneN^}](PF^) 2 3379 1562, 1613 258

[Ni{(BZNHEthi)2Me2 [16]tetraeneN4)](PF6)2 3360,3 3392,3 3298C 1565, 1608 275

0Spectra obtained fromnujolmulls on KBr plates.b “3Acetonitrile solutions of -1 x 10 molar at ambient temperature.cAcetonitrile solution.

00ho

83

4000 3000 2000 1500cm 1000II I tII

500

Figure 7. Infrared Spectra of a) [NiRn-BuiraEthiKMeJIfiltetraeneN.}] (PF,)„ and b) [Ni{(trBuNHEthi)2He2 [16]tetraenSN45j(PF6)2 * 6 2

84

in acetonitrile. (The acceptable range for 2:1 electrolytes in acetoni­

trile is 220-300 ohm ^mol ^cra^.) NMR spectra were recorded for all

of the complexes in deuteroacetonitrile and are summarized in table 6 .

They demonstrate no unusual features and are in support of the struc­

tural assignments made by Schammel. As examples, the spectra of the

n-butylamine and fr-butylamine are presented in figures 8a and b,

respectively.

Carbon-13 NMR spectra were measured for each of the complexes

and the data are summarized in table 7. The resonances have been

assigned through the use of broadband and off-resonance proton

decoupling techniques according to structure XVI. All of the complexes

show mirror symmetry which includes

the metal and the two central car­

bon atoms of the saturated tri-

methylene linkages of the

macrocycle. There are several

features of the basic macrocycle

which are common to all of the

species. Two methyl resonances

are observed between 15 and 21 ppm

from TMS due to carbon atoms f and

h. Methylene resonances observed

between 29 and 31 ppm are assigned

to carbon atoms b and b^, those

between 51 and 57 ppm are due to

a and a"*, the methylene carbon

— N i - V

TABLE 6

PROTON NMR DATA3, FOR UNBRIDGED NICKEL(II) COMPLEXES

Compound Methyl Methylene Aromatic N-H

[Ni{(NHjEthi)2Me2 [16]tetraeneN4>](PFg)% 2.18, 2.32 3.05, 3.40C 7.50 6.75b

[Ni{(MeNHEthi)2Me2 [16]tetraeneN^}](PFfi) 2.10, 2.27, 3.03 3.12, 3.35c 7.47 6.95b

[Ni{(Me2NEthi)2Me2[16]tetraeneN4}](PFfi)2 1.85, 2.33, 3.20 3.02, 3.35° 7.40 -----

[Ni((n-BuNHEthi)2Me2[16]tetraeneN4}](PF^)2 0.93, 2.12, 2.30 1.03, 1.55,b 7.48 6.73b3.04, 3.38

[Nit(t-BuNHEthi)2Me2[16]tetraeneN4}](PF6> 1.67, 2.13, 2.47 3.07, 3.38c 7.53 6.63b

[Nit (BZNHEthi) 2Me2[16] tetraene^} ] (PF&) % 2.08, 2.32 1.97, 3.03, 7.35, 7.52 7.02b3.38,C 4.58

aChemical shifts given in ppm from TMS, concentrated solution in CD^CN.

bBroad.

CMultiplet.

8 6 4 2 t OP P m

Figure 8 . NMR Spectra of a) [Ni{(n-BuNREthi),Me ri6]tetraeneN.}](PF,)_ ajtd b) [Ni{(trBuNHEthi)2He2[16]tetraeneN^}](PF6)2 A 6 2

87

TABLE 7CARBON-13 NMR DATA FOR UNBRIDGED NICKEL(II) COMPLEXES

3 bCompound Chemical Shifts

[Ni{(NH2Ethi)2Me2 [16]tetraeneNA>]2+ 169.4 , 167.5, 161.3, 111 •5,56.2, 51.3, 30.4, 29. 9, 20.5,19.8

[Ni{ (MeNEthi) 2Me2 [16] tetraeneN^,} ]2+ 170.0,,c 168.3, 159.9, 112.4,°56.2, 51.5, 31.8,c 30 .6 , 30.2,20.9, 15.5C

[Ni{ (MegNEthl) 2Me2 [16]tetraeneN^}]2"** 173.7,, 168.0, 159.5, 111 .4,56.2, 51.1, 44.4, 30. 6, 30.5,20.8 , 19.4

[Ni{(n-BuNHEthi)2Me2 [16]tetraeneN^}]2+ 168.7.,° 168.1, 159.9, 112.3,°56.2, 51.3, 45.8 ,c 31 .7, 30.5,30.1, 20.6, 15.3,C 13 .8

[Ni{(BZNHEthi)2Me2 [16]tetraeneN^}]2+ 168.6,, 168.2, 160.3, 137 .2 ,129.9,, 129.1, 112.4,C 56 .2 ,51.3, 49.6 ,C 30.4, 30 .0 , 21.0,16.3C

[Ni{(t-BuNHEthi) 2Me2 tetraeneN^ } ] 2+ 167.9,, 167.4, 159.6, 112 .7,56.5, 55.9, 50.9, 30. 1 , 29.7,20.3, 16.2

aAs PFg— Salts.

^CD^CN solution, ppm relative to TMS.

cBroad.

88

atoms bonded to nitrogen. A single resonance near 110 ppm is due to

the carbon atom d. The resonance near 160 ppm splits into a doublet in

the off-resonance spectrum and is therefore assigned to carbon atom c.

Two resonances between 167 and 174 ppm are due to carbon atoms e and g.

The resonances due to the amine substituents are found in the

expected regions. The N-methyl resonances are observed at 31.8 and

44.4 in the monomethyl- and dimethylamine complexes respectively. The

benzylic carbon atom of the benzylamine complex is found at 49.6 ppm

and three aromatic resonances occur between 129 and 138 ppm. Appar­

ently there is accidental overlap of two aromatic peaks since only

three of the expected four resonances are observed. The n-butylamine

complex shows the methylene carbon atom bonded to nitrogen at 45.8 ppm.

The other two methylene carbon atoms are in the same region as the cen­

tral carbon atoms of the macrocycle side chains and are not clearly *

resolved. The alkyl methyl group resonance occurs at 13.8 ppm. The

tert-butylamine complex exhibits a quarternary carbon resonance near

56 ppm and a single methyl resonance at 29.7 ppm.

As shown in figure 9, the spectrum of the dimethylamine deriva­

tive at 300 K exhibits only a single resonance due to the amine methyl

groups at 44.4 ppm. At 238 K however, two distinct resonances appear

at 46.4 and 42.4 ppm. In contrast to the above example, the spectrum

of the n-butylamine complex shows the presence of two, or perhaps

three, components in solution at 238 K. Multiple resonances appear in

the regions corresponding to carbon atoms d, g, i and f or h, as shown

in figure 10. The spectra of the benzylamine and methylamine complexes

resemble that of the n-butylamine derivative. In the case having the

89

Figure 9

Mu, hhihsK'110 0

. NMR Spectrum of [Ni{(Me2NEthi)2Me2 [16]tetraeneN,}](PFfi)2at a) 300K, b) 278 K, c) 238 K.13,

t

aJ \* Myl1 Al***,

b P L .I80 40ppm

1 1Figure 10. C NMR Spectrum of [Ni{(n-BuNHEthi)9Me9 [lbJtetraeneN.}](PF,)0

at a) 300 K, b) 238 K. L 1 * 6 2 u>o

0120 8 0 4 01 8 0 ppm

13Figure 11. C NMR Spectrum of [Ni{(t-BuNHEthi)„Me9 [16]tetraeneN.}](PF )i- L 4 6 2

92

bulky tert-butyl substituent, all of the resonances are sharp with no

indication of broadening (figure 11).

The above observations indicate that there is rotation about

the C-N bond and that the barrier to rotation is dependent upon the

nature of the nitrogen substituents. This suggests that there is a

favored orientation of a single nitrogen substituent relative to the

macrocycle. As shown in structures XVII and XVIII, the R group can be

oriented in a direction perpendicular to the macrocycle plane, XVII or

parallel to the planej XVIII. When the nitrogen substituents are

H

X5zn XVTTT

identical, these orientations are indistinguishable and the only

resonances which should be affected by C-N bond rotation are those due

to the amine methyl carbon atoms. When only one substituent is present,

however, structure XVII would be preferred since interaction between

the macrocycle and the smaller hydrogen atom would be less than that

interaction between the macrocycle and the nonhydrogen R group. When R

is very bulky as in the tert-butyl case, structure XVII is highly

93

favored and only that single conformer is present in significant

amounts at ambient temperatures.

The presence of structure XVII is accompanied by methyl13resonances which are separated by about 5 ppm in the C NMR spectrum.

When structure XVIII becomes important the methyl resonances are13separated by about 1 ppm. This feature of the C NMR spectra will be

of importance in discussions of the bridged "dry cave" complexes.

As mentioned above, the low temperature spectrum of the

nybutylamine complex indicates the presence of two or perhaps three

species in solution. These can be accounted for on the basis of struc­

tures XVII and XVIII. It is possible for both amines of the macrocycle

to have structure XVII or for both to have structure XVIII. In these

cases the molecule has a mirror plane of symmetry. It is also possible

for one amine to have structure XVII and the other to have structure

XVIII. In such a case, mirror symmetry would be lost and each carbon

atom of the molecule would be unique.

It is important to note that structures XVII and XVIII are dis­

tinguishable when there is a single nitrogen substituent. This clearly

accounts for the fact that several resonances are affected by the C-N

bond rotation in the complexes described above.13Variable temperature C NMR spectra also show that at reduced

temperatures the rate of boat-chair interconversion of the six-membered

rings containing the saturated trimethylene linkages of the macrocycle

decreases, causing the resonances of the methylene carbons to broaden.

Electrochemical studies performed on these unbridged nickel(II)

complexes demonstrate some very interesting features. All of the

complexes exhibit a reversible oxidation between +0.77 and +0.90 V ver­

sus Ag/Ag"** reference. This oxidation has been assigned to the 2+ 3+ 9 0Ni /Ni couple and is the oxidation of interest in this work.

A second oxidation which is reversible in only three of the complexes90occurs between +1.1 and +1.4 V and is assigned to a ligand oxidation.

A third oxidation occurring in the vicinity of +1.6 V is irreversible.

In each case an ill-defined, irreversible reduction wave occurs at

<-1.8 V. Electrochemical parameters were obtained from rotating elec­

trode voltametry and cyclic voltametry using a platinum disk electrode

and are summarized in table 8 . The behavior of [Ni{ (MeNHEthi^l^-

[16]tetraeneN^}](PFg)^ is typical and the cyclic voltamagram and

rotating electrode voltamagram are shown in figure 1 2.

From the E ^ ^ values for the first oxidation of these com­

plexes it is apparent that the electron donating ability of the nitrogen

substituent directly influences the oxidation potential at the metal

center. The ammonia derivative has the most positive E ^ ^ since hydro­

gen is the least donating substituent in the series. Substitution by

one methyl group lowers by 70 mV as the metal center responds to

the substituents’ inductive effect. Substitution by a second methyl

group results in further lowering of E ^ ^ by 55 mV. Although the dif­

ferences are small, E a p p e a r s to change in the following sequence:

CH3 < n-Bu < BZ < _t-Bu < H .

From these results it is apparent that careful selection of

substituents on the amine nitrogen atoms can be used to control the

polarity and steric environment in the vicinity of one of the metal

TABLE 8

ELECTROCHEMICAL DATA FOR THE UNBRIDGED NICKEL(II) COMPLEXES

Compound El/2 ’ V lE3/4“ El/4l' mV Ep, V

[Ni{(Me2NEthl)2Me2[16]tetraeneN^}](PF&) +0.745 70 +0.775+1.080 70 +1.085

[Ni{(MeNHEthi)2Me2 [16]tetraeneN4}](PFfi)2 +0.800 80 +0.835+1.260

[Ni{(^BuNHEthi)2Me2[16Jtetraenr" }](PFg) 2+0.810 75 +0.835+1.240

[Ni{ (BZNHEthi) 2Me2 [ 16 ] tetraene^) ] (PFg) 2 +0.830 85 +0.835+1.305

[Ni{(t-BuNHEthl)2Me2[16]tetraeneN^}](PF6)2+0.845 75 +0.870+1.190+1.400

[Nl{(NH2Ethi)2Me2 [16]tetraeneN^}](PF6)2 +0.870 80 +0.900+1.420

VOUi

02 000.8 0.41.0

0.50.7 030.9

Figure 12. Cyclic and Rotating Platinum Electrode Voltamagrani3 for [Ni{(MeNHEthi)^Me^[16]tetraeneN^}](PF^)^ VOov

97

axial coordination sites as well as provide a tool for "fine tuning" of

the oxidation potential at the metal center.

Synthesis of Nickel(II) Dry Cave Complexes

The nickel(II) dry cave complexes were prepared by one of two

synthetic routes. The first was that developed by Schammel in which an

appropriate diamine was reacted with the methyl vinyl ether complex as70shown in scheme I. The specific diamines used in this study were

m-xylylenediaraine, £-xylylenediamine and N,N'-dimethy1-1,6-hexanedi-

amine.

Scheme 1

+ V < "H

R

An alternate synthetic method was developed to expand the num­

ber of available dry cave compounds. This route is shown in scheme II.

RScheme H

-+• 2 RNHe _,CH?CN

o o

+ 2 CH3OH + 2 No X

CH

\oCO

99

An unbrldged Ni(II) complex having the desired nitrogen substituent is

first synthesized as described in the previous section. The amine

derivative is then deprotonated and combined with an appropriate

dielectrophile under conditions of high dilution in refluxing acetoni­

trile. This reaction was first demonstrated for several instances in

which a xylyl dihalide was used as the dielectrophile. Stevens extended66the reaction to include aklyl ditosylates as the bridging reagents.

The alternate route described above offers several advantages

over the original method. First it allows for the incorporation of a

wide variety of bridgehead nitrogen substituents having widely varying

electronic and steric properties. Second, the availability of desired

dielectrophiles is much greater than that of diamines which must often

be prepared using the tedious Gabriel synthesis. Third, the effective

length of the bridging group is two atoms shorter since the bridge

nitrogens have already been incorporated into the macrocyclic struc­

ture. Through the combined use of these two synthetic routes many

structural variations are accessible.

The structure of the dry cave complexes was first confirmed by

the solution of the crystal structure of [Ni{(p-Xylyl(NHEthi)2^Me2 [16]-72tetraeneN^}](PFg)^ by Christoph and Mertes as described in the intro-

13duction. However, it soon became apparent from C NMR and HPLC results

that isomers existed for several of the complexes. One possible type of

isomerism is similar to that described for the unbridged complexes. As2shown in structure IXX the bridge can be bonded to the planar sp

hybridized bridge nitrogen in such a way that the bridge projects in a

direction parallel to the macrocycle plane. This results in the

E X XX

bridge being forced away from a position centered over the metal; this

is called the "lid-off' isomer. Alternatively, the bridge can bond to

the nitrogen in such a way that its linkage projects perpendicular to

the plane (structure XX). This centers the bridge almost directly

over the metal, producing a taller, narrower cavity; such isomers are

denoted as "lid-on." To date there are no complexes known which exist

in both "lid-on" and "lid-off" conformations and there is no evidence

to indicate that interconversion between these two isomeric forms is

an important process.

Although "lid-on", "lid-off" isomerism has not been observed,

several of the complexes do exhibit both monomeric and dimeric forms.

Because spectroscopic, analytical, and physical data did not distin­

guish between monomers and dimers, considerable confusion as to the

identity of the species of identical chemical composition hindered the

progress of research on these compounds. Considerable chemical evi­

dence supporting the existence of dimers had been accumulating for some

time, but it was not until the solution of the herein described crystal

101

structure of a dimeric nickel(II) complex that concrete evidence for

dimers was finally obtained. The dimer consists of two macrocyclic

groups joined by two meta-xylene bridges as shown in figure 13. The

detailed structural information will be discussed in later sections of

this work.88Dr. J. Grzybowski has verified the generality of the dimeric

species by the selective synthesis of a dimer linked by pentamethylene

bridging groups. This was accomplished by first reacting the methyl­

ated starting material with an excess of 1 ,5-diaminopentane to yield

the unbrldged complex as shown in scheme III. Reaction of this complex

with a second equivalent of the methyl vinyl ether complex gives the

desired dimeric complex which is identical in all properties to the

dimer prepared under normal bridging conditions.

* Bri dge Nitrogen

Pla ne

Figure 13. ORTEP Drawing of meta-Xylyl Bridged Dimer.

Scheme IHo c h 3

+ 2H 2N(CH2)6NH2 ►

c h 3

(CH2)5N H |

(CH^gNHg

Aru

c h 3c n

2N qOCH3

103

104

The following notation will be used for describing the bridged

complexes. As shown in structures XXI and XXII the plane refers to

the chelating nitrogen atoms of the macrocycle. The bridge nitrogens

are those which are external to the parent macrocycle. (NH)2 and

(NMe)2 refer to the bridge nitrogen substituent as hydrogen or methyl,

respectively. The rest of the acronym refers to the linkage between

the bridge nitrogen atoms. (Refer to Table of Abbreviations).

The combined efforts of several workers have resulted in the

preparation of complexes, consisting of monomers or dimers, with a wide91variety of bridging groups. Both monomeric and dimeric species can be

generated with the following bridging groups: (NH)2Pxyl, (NH)2Mxyl,

(NH)2 (CH2)^, (NH)2 (CH2)3 and (NH^Fl, whereas only monomeric complexes

have been achieved with ( N H ^ C C i y ^ (NMe)2 (CH2)6, (NMe)2 (CH2)5 »

(NHe)2 (CH2)7 , <NMe)2 (CH2)8 and (NR)„Mxyl (R = -CH3 , -(CH^CIhj,

-CHgCgH^) as the bridging agents. L.. .usively dimeric complexes result

when (NMe)2Pxyl, (NH)2Duryl, (NMe)2buryl, or (NMe)2 (CH2)3 are used as

bridging groups. The above information is summarized in figures 14 and

15. The complex generated from 9,lO-bis(chloromethyl)anthracene is

unusual in many respects and is not readily classified as a monomer or

dimer on the basis of present evidence, and warrants separate discus­

sion.

It is not yet entirely clear which factors control whether mono­

mers or dimers will be formed, but some trends are apparent. The only

complexes which show both monomeric and dimeric products as a result of

the bridging reaction are those formed using primary diamines. As

expected, elevated temperatures and high dilution reaction conditions

105

R

R= -H , -CH3, -(CH2)3 CH3, *CHz C6H5 ,

CH2".

_ (C H 2JrT’ n= 4 - 8 ,

Figure 14. Summary of Established Monomeric Nickel(II) Dry Cave Complexes

favor the formation of monomeric complexes, particularly with the m- and

£-xylyl bridges. Since the probability that two singly condensed macro­

cycle plus diamine fragments will persist and encounter each other is

reduced under these conditions, closure of the bridge to the remaining

vinyl ether site on the macrocycle predominates.

Steric factors are important for cases in which the substituent

on the nitrogen is larger than hydrogen. The fact that only one or the

other of monomer or dimer is formed exclusively suggests a favored

orientation of both the R substituent and the bridge. Interactions

between the bridging group and macrocycle appear to be important for

cases which have a particularly bulky bridging group; i.e., durene.

R = -Hf —CH3 .

’ — H ^ — C H 2—I I

“i 3 - c h 2~

—(CH2)n- . n-3,4,5.

ch2— *

Figure 15. Summary of Dimeric Nickel(II) Dry Cave Complexes

106

107

Although these trends are consistent with the observed results, it is

still difficult to predict which forms will result for a given bridging

group. The fact that the (NH^CCI^)^ bridge forms only a monomer

whereas the (NH^CCH^)^ a**cl (NH^CCI^)^ bridges form both monomers and

dimers clearly illustrates this difficulty.

Of the six crystal structures which have been solved for mono­

meric dry cave complexes, only one example of a "lid-on" structure has

been observed. That structure is of the chloro-meta-xylene bridged

iron(II) chloride complex which will be discussed in detail in later

sections. Based on information obtained from the other crystal struc­

tures and information obtained from physical measurements and reac­

tivities, it is reasonable to conclude that the configuration for all

monomeric bridged complexes are of the "lid-off" type except for

(NH^Mxyl and (NHJ^FI, which are "lid-on".

The "lid-on", "lid-off" r.:lature can also be applied to the

orientation of the linking groups about the bridge nitrogen atoms of

the dimeric complexes. The structure of the dimeric meta-xylene bridged

nickel(II) complex shows a "lid-on" type of arrangement, i.e., the

xylene groups rise in a direction essentially perpendicular to the

macrocycle N. plane. Steric considerations, as well as some features 13of the C NMR spectra of other dimeric complexes, suggest that all of

the dimers can be expected to have a similar "lid-on" configuration.

Separation of Monomeric and Dimeric Complexes

In order to properly characterize the monomeric and dimeric

complexes when they were formed concurrently, it was necessary to

108

develop special separation techniques. In the cases of the (NH)2 (0112)41

(NH)2(0112)5 * (NH^Mxyl, and (NH)gFluorene bridged materials the most

efficient separation was achieved by fractional crystallization from

mixed solvents (ethanol/acetonitrile). The dimer precipitates from the

solution first, the monomer is then isolated from the filtrate by fur­

ther addition of ethanol followed by volume reduction.

Fractional crystallization was unsuccessful in the case of the

(NH^Pxyl derivative. However, the two species were reasonably well

separated on a column of neutral Woelm aluminia upon elution with ace-

tonitrile. The dimer elutes first as a dark yellow-brown band followed

by the monomer. This technique was also applied with good success to

the meta-xylene system.

The purity of the separated materials was monitored by means of

high performance liquid chromatography on a C-18 reverse phase column

operating at 1000 psi using a solvent mixture of 20% acetonitrile in

water. The conditions for separation of the species were optimized by 92Jackels for the (NH^CCn^)^ system and were as well satisfactory for

the (NH^Mxyl and (NH^Pxyl cases. The monomer eluted first as a very

sharp band followed by the dimer as a very broad band. A representative

chromatogram for an equal mixture of the (NH^Mxyl monomer and dimer is

shown in figure 16. This separation technique would be ideal if a pre­

parative scale instrument were available.1 13The separation can also be monitored by use of *H and C NMR

spectroscopy. This will be described in the following sections.

109

30 20

Figure 16. HPLC Chromatogram Showing Monoraer-Dimer Separation for the meta-xylene Bridge Nickel(II) Complexes.

110

Characterization of Monomeric Nickel(II)Dry Cave Complexes

Characterization data for the complexes having polymethylene66bridges are summarized in Stevens' dissertation and will not be dis­

cussed further here except for the case of the (NMe^CCI^Jg bridged

derivative.

Satisfactory elemental analyses were obtained for all of the

complexes as shown in the experimental section. Infrared spectra are

rather uninformative but do have a few characteristic features. Repre­

sentative spectra of the (NH^Mxyl and (NMe^Mxyl bridged complexes are

shown in figures 17a and b. A sharp N-H stretching absorption is

observed in the vicinity of 3400 cm ^ for the (NH^Mxyl and (NH^Pxyl

bridged complexes. As expected, this band is absent . , complexes having

a nonhydrogen substituent on the bridge nitrogen. Luuds due to C = C

and C = N stretches are found in the vicinity of 1500-1600 cm \ Some

of these results are shown in table 9. In all of the spectra of the

xylyl bridged complexes there are bands due to the aromatic system in

the region from 600-800 cm \

Molar conductances were measured in acetonitrile and are con­

sistent with the assignment as 2:1 electrolytes. These data are sum­

marized in table 9. For the complexes having (NH^Mxyl, (NH^Pxyl* and

(NMe^Mxyl bridges, the conductance was measured as a function of con-93centration. Onsager plots were generated from these data as shown in

figure 18. The relevant data are collected in table 10 and show a slope

ranging from about 450-500 ohm ^ mole c m ^ and a value of Aq of

Figure

111

I i4000 3000 2000 cm 1500-i 1000 500

17. Infrared Spectra of a) [Ni{(m-Xylyl(NHEthi)2)Me2 [16]tetraene- V ] ( P F 6)2 and b) [Nit<HrXylyl(MeNEthi)2)Me2 [16]tetraeneN4}]<PF6>2

TABLE 9

SELECTED INFRARED FREQUENCIES AND MOLAR CONDUCTANCE DATA* FOR MONOMERIC DRY CAVE NICKEL(II) COMPLEXES

Compound V H (cm_1) VC=C,C=N(cm 5 A, ohm ‘'mole

[Ni{(m-Xylyl(NHEthi) [16] tetraeneN^}] (PFg) 2 3422 1575 271

[Ni{ (mrXylyl (MeNEthi) 2 ^ e 2 tetraeneN^ } 1 ) 2 ----- 1615, 1555 300

[Ni{(m-Xylyl(n-BuNEthi)2)Me2 [l6]tetraenc j (PFg)2 ----- 1610, 1550 259

[Ni{(ra-Xylyl(BZNEthi)2)Me2[16]tetraeneN4 j](PFg)2 ----- 1615, 1588, 1535 277

[Ni{ (£-Xylyl(NHEthi)2)Me2 [16]tetraeneN^}](PF6> 2 3405 1628, 1549 286

[Ni{(1,7-Hept(MeNEthi)2)Me2[16]tetraeneN^}](PFg)2 ----- 1608, 1550 292

3> -3Acetonltrile solutions of "*1 x 10 molar at ambient temperature.

113

70

01oE

teJCom0<1<*

60

50

40

30

20

o <NH)2Mxyl + (NMe)2Mxyl o (NH)2Pxyl

eo

e e

+

to

.02 .04 .06 .06 .10 .12 .14

Figure 18. Onsager Plots for Monomeric Dry Cave Nickel(II) Complexes.

TABLE 10

ONSAGER PLOT PARAMETERS FOR MONOMERIC DRY CAVE NICKEL(II) COMPLEXES

Compound Aq , ohm ^mole . -1 . -1.5 3.5 Slope, ohm mole cm

[Ni{ (m-Xylyl(NHEthi) 2)Me2[16] tetraeneN^] (PF6) 2 153 449 + 53[Nl{(mrXylyl(MeNEthi)2)Me2[16]tetraeneN^}](PFg)2 171 497 + 45

[Ni{ (£-Xylyl (NHEthl) 2)Me2 [16 ] tetraeneN^,} ] (PFg) 2 171 466 + 35

115-1 -1 2150-170 ohm mole cm which are in the expected range for 2:1 elec-

93trolytes.

*H NMR spectra for all of the complexes were measured and the

data are summarized in table 11. All of the complexes have the

expected mirror symmetry as has already been described for the unbridged

complexes. The spectra of the complexes having the (NHj^Pxyl and

(NMe^Mxyl bridges are shown in figures 19a and b respectively. The

general assignments have been described in detail by Stevens.^ The

complexes shown here differ primarily in terms of the aromatic reso­

nances observed due to the xylyl bridging group and also in terms of

the benzyl or n-butyl substituent on the bridge nitrogen.13C NMR spectra were also measured for the complexes and

assigned through the use of the off-resonance technique. Again the

detailed assignments have been described by Stevens^ with the major

differences being due to the prest. of aromatic resonances due to the13xylyl bridge. The C resonances are listed in table 12 and the spectra

of the (NH^Mxyl, (NH^Pxyl, and (NMe^Mxyl bridged complexes are shown

in figures 20 and 21a and b, respectively.

It is interesting to note that in all cases except the

(NlO^Mxyl derivative the resonances due to the methyl groups directly

bonded to the macrocycle are less than one ppm apart, whereas in the

spectrum of the (NH^Mxyl derivative, the only definitely established

"lid-on" isomer, they are about 6 ppm apart. It seems appropriate to

conclude that methyl resonances which are close together (<1 ppm separa­

tion) indicate a "lid-off" structure and methyl resonances which are

widely separated (-5-6 ppm) indicate a lid-on structure. (See sections

TABLE 11PROTON NMR DATA3 FOR HONOMERIC DRY CAVE NICKEL(II) COMPLEXES

Compound Methyl Methylene Aromatic N-H

[Hl{(a-Xylyl(NHEthl)2)He2[16]tetraeneNAJ](PFfi)2 2.20, 2.38 3.3,b 4.74c 7.32, 7.43, 7,69 6.5b[Nl{(mrXylyl(MeNEthi)2)He2[16]tetraeneN^}](PFfi)2 2.08, 2.45, 3.63 3.15,C 4.68 7.00, 7.08, 7.22 ----[Ni{(w-Xylyl(n-BuNEthi)2)He2[16]tetraeneNAJ](PFfi) 0.97, 2.05, 2.47 3.12,b 3.83,C 4.68 7.10,C 7.17 ----

[Nit(m-Xylyl(BZNEthl)2)Me2[16]tetraeneNAJ](PFfi)2 1.95, 2.67 3.07,b 4.58,d 5.07d 6.90, 7.00, 7.30, 7.47

----

[Nit(B-Xylyl(NHEthl)2)Me2[16]tetracne^}](PFg)2 2.02, 2.43 3.23,c 4.51 7.03, 7.18, 7.43 notseen

[Nit(1,7-Hept(HeNEthl)2)He2[16]tetraeneN4J](PFfi)2 1.88, 2.37, 3.27 1.32,b 3.03, 3.5C 7.38 ----

aAs salts, run on concentrated solution in CD^CN, chemical shifts given in ppm from TMS.bBroad.^ultiplet.dQuartet. eCD^N02 solution.

rAw8 " T

6x* iop p m

Figure 19. Proton NMR Spectra of a) [Nl{(£-Xylyl(NHEthi)2)Me2[16]tetraeneN4}](PF6>2 and b) [Nl{(mrXylyl(MeNEthi)2)Me2[16]tetraeneN4}](PF6)2

117

118

TABLE 12CARBON-13 NMR DATA FOR MONOMERIC DRY CAVE NICKEL(II) COMPLEXES

0Compound Chemical Shifts*5

[Ni{(m-Xylyl(NHEthi)2)Me2[16]tetraeneNA>] 2+ c 170.7, 164.3, 161.8, 140.5, 130.0, 127.3, 124.0, 114.5, 55.2, 50.7,47.7, 30.5, 30.1, 20.7, 14.4

[Nl{(mrXylyl(MeNEthi)2)Me2[16]tetraeneN^}]2+ 174.5, 166.9, 159.2, 137.7,130.6, 126.9, 125.3, 113.6, 62.2, 56.4, 52.0, 45.8, 30.5, 29.8, 20.9, 20.6

[Ni{(o~Xylyl(n-BuNEthi)2)Me2[16]tetraeneN^}]2+ 174.0, 166.3, 158.9, 137.4,130.4, 126.8, 125.2, 113.9, 59.8, 57.2, 56.6, 52.0,30.4, 29.9, 20.9, 20.6, 13.9

[Ni{(m-Xylyl(BZNEthi)2)Me,[16]tetr*H }]2+ 173.5, 167.1, 159.7, 137.1,135.2, 130.4, 130.3, 130.2, 129.9, 126.7, 125.2, 114.4,60.2, 58.9, 56.7, 52.1,30.3, 29.7, 21.1, 20.8

[Nl{<£-Xylyl(NUEthI)2)Me2tl6]tetTaeneNA}]2+ 168.2, 165.6, 161.4, 135.7, 128.9, 127.4, 111.9, 56.4, 51.7, 50.6, 30.1, 29.8, 23.6, 22.2

[Nl{(1,7-Hept(MeNEthi)2)He2[16]tetraeneN^}]2+ 175.7, 166.9, 159.7, 110.8, 57.1, 56.6, 51.8, 39.6, 30.9, 29.9, 27.1, 26.4, 25.4, 20.5, 20.4

aAs PFg- aalts.1>CD3CN solution, ppm relative to TMS. cCD2N02 solution.

1

L+160 ~\20

----T"80ppm

i40

T “0

13Figure 20. C NMR Spectrum of [Ni{(m-Xylyl(NHEthl)2)Me2 [16]tetraeneN/.}] (PF6)2

119

u J L . vvJ^rA^* i*J L _

160 120 I80ppm

” 14 0

13Figure 21. C NMR Spectra of a) [Ni{(jJ-Xylyl(NHEthi)2)Me2 [16]tetraeneN^}] (PFg)^ and b) tNi{(rarXylyl(MeNEthi)2)Me2 [16] tetraeneNA)](PF6)2

120

121

on unbridged nickel(II) complexes, page 93 and dimeric nickel(II) com­

plexes, page 131.

The electrochemical studies were also performed on these com­

plexes and reveal some very interesting features. As can be seen from

the list of half-wave potentials for the first oxidation in table 13,

the same trend is observed for the bridged complexes as for the

unbridged. For a given bridging group, i.e., (NlO^Mxyl, the oxidation

potential decreases as the bridge nitrogen substituent is changed from

hydrogen to benzyl to n-butyl to methyl, which is exactly the same

order as that observed for the unbridged complexes. That the same

trend is observed in both bridged and unbridged species confirms the

theory that it is the substituent electronic effects and not

simply the bridge that control oxidation potential of the metal center.

As observed by Schammel,^ the potential for the first oxida­

tion of (NH^Pxyl derivative is e: onally positive. The reasons

for this peculiarity are as yet unknown.

Oxidations observed at more positive potentials are pre­

sumably associated with the ligand and are irreversible. The only

reductions observed are at very negative potentials (<-1.8 V) and are

irreversible.

Characterization of Dimeric Nickel(II)Dry Cave Complexes

78 92The dimeric species derived from 1,5-diaminopentane, *92 74 781,4-diaminobutane and 9,9-bis(3-aminopropyl)fluorene * have been

characterized by others and will not be discussed in detail here.

TABLE 13

ELECTROCHEMICAL DATA FOR MONOMERIC DRY CAVE NICKEL(II) COMPLEXES

Compound El/2’ V lE3/4 “ El/41’ mV Ep, V

[Nl{(m-Xylyl(NHEthl)2)Me2 [16]tetraeneN4 }3(PF6)2 +0.925 67 +0.970+1.140 130 +1.300

[Ni{(mrXylyl(MeNEthi)2)Me2 [16]tetraeneN^}](PF^)2 +0.780 70 +0.830+1.025

[Ni{ (m-Xylyl (n-BuNEthi) 2^Me2 [16] tetra^ne^ } ] (PF^) „ +0.790 2 60 +0.820+0.980

[Ni{(m-Xylyl(BZNEthi)2)Me2[16]tetraeneN^}](PFg)2 +0.820 70 +0.850+1.020

[Nit (£-Xylyl(NHEthi)2)Me2 [16]tetraeneN^}](PFg)2 +1.05 100 +1.055[Nit(1,7-Hept(MeNEthi)2)Me2[16]tetraeneN^}](PF6)£ +0.740 70 +0.775

+1.110 70 +1.135

122

123

Satisfactory elemental analyses were obtained for all of the

complexes (see experimental section). Infrared spectra of the dimeric

complexes have the same general features as those of the related mono­

mers with the only major differences appearing in the fingerprint

region. In general, the dimeric complexes show fewer sharp absorptions

than the monomers. The IR spectrum of the dimer derived from

m-xylylenediaraine Is shown in figure 22 and selected data are listed in

table 14.

500100015003000 20004000 cm"

Figure 22. Infrared Snectrum of[Nl{(m-Xylyl(NHEthi)2)Me2 [16]tetraeneN^}]2 (PFfi)

Molar conductances were measured in acetonitrile and appear to

be in the range of 2:1 electrolytes (table 14), as expected since con­

ductance measurements at a single concentration do not distinguish

between monomeric and dimeric species. An Onsager plot for the

TABLE 14SELECTED INFRARED FREQUENCIES AND MOLAR CONDUCTANCES3

FOR DIMERIC DRY CAVE NICKEL(II) COMPLEXES

Compound ^ C=C,C=N (cm b) A, ohm ^mole ^cn?

[Ni{ (m-Xylyl (NHEthi) 2)Me21 tetraeneN^ ) ] 2 4 3415 1618, 1580 247

[Ni{(p-Xylyl(NHEthi)2)Me2 [16]tetraeneN^}]2(PF6)4 3400 1610, 1570 233b

[Ni{ (p-Xy lyl (MeNEthi) 2)Me2 [16] tetraeneN^ ] 2 (PFg) 4 ----- 1608, 1542 241

I Nl{ (DURYL) (NHEthi) 2)Me2 [16 ] tetraeneN^ } ] 2 (PFg) 4 3390 1660, 1620, 1570 223

[Ni{(DURYL(MeNEthi)2Me2[16]tetraeneN^ ]2(PFfi)4 ----- 1615, 1540 230

a -3Acetonitrile solution of ~1 x 10 molar at ambient temperature.

Reference 78.

125

(NH^Mxy1 bridged dimer has a slope of 602 + 27 ohm-^ mole*"^'^ cm^**’

which is about 100 units greater than that of the corresponding monomer,

but not nearly as large as expected for a 4:1 electrolyte. These con­

ductance results are very similar to the observations of Jackels and

Grzybowski on the related pentamethylene and fluorene systems. It is

thus apparent that Onsager plots are not a useful tool for distin­

guishing between monomeric and dimeric species.

Proton NMR data for the complexes are listed in table 15 and

are similar to those of the corresponding monomeric species. The

NMR spectra of the (NH^Mxyl and (NMe^Duryl bridged dimeric complexes

are representative and appear in figures 23a and b.13C NMR spectra were also measured for the dimers and, in all

cases except the dimeric (NH^Mxyl derivatives, the same number of

resonances were observed as would be expected for the corresponding

monomer, indicating the presence of two symmetry elements within the

molecule. As will be described in the discussion of the structural

analysis of the dimeric (NH^Mxyl bridged species, these elements are

probably an Inversion center relating the two metal coordinating macro­

cycles and a mirror plane through the macrocycles containing the metal

centers as appears in the monomeric complexes. The resonances are

listed in table 16 and the spectra of the dimeric (NH^Mxyl and

(NMe^Duryl bridged complexes appear in figures 24 and 25. As men­

tioned above, the spectrum of the dimeric (NH^Mxyl complex is not as

simple as the others. This is likely due to the presence of several

Isomeric species in solution which are not interconverting on the NMR

time scale.

TABLE 15

PROTON NMR DATA3 FOR DIMERIC DRY CAVE NICKEL(II) COMPLEXES

Compound Methyl Methylene Aromatic N-H

[Ni{(m-Xylyl(NHEthi)2)Me2 I161tetraeneN^}]2(PFg)^ 2.08,2.41

2.252.52 3.0C,4.6C 7.42,7.55 notseen

[Ni{(p-Xylyl(NHEthi)2)Me2I^JtetraeneN^ }]2 (PFfi) 2.03, 2.37 2.80, 3.5,b 7.43, 7.55 not4.60 seen

[Ni{(p-Xylyl(MeNEthi)2)Me2 [16]tetraeneN^}]2(PFg) 2.07, 2.50, 3.05,° 4.72 6.98, 7.15, -----3.52 7.57

[Ni{ (DURYL) (NHEthi) 2)Me2 [16] tetraeneN^ } ] 2 (PFg) 4 1.73, 2.23, 3.05,° 4.88 7.58 not2.37, 2.50 seen

[Ni{ (DURYL(MeNEthi) 2Me2[16] tetraeneN^, >] 2(PF&) 1.80, 2.10, 3.0,C 4.95 7.53 -----

2.47, 2.57

£Run on concentrated solution in CD^CN, chemical shifts given in ppm from TMS.

bBroad.

CMultiplet.

° ° ppm * *Figure 23. Proton NMR Spectra of a) [Ni{(m-Xylyl(NHEthi)_)Me0[16]tetraeneN.}]„(PF-)

and b) [Ni{(DURYL(MeNEthi)2Me2[16]tetraeneN4}]2(PF6)4

127

128

TABLE 16CARBON-13 NHR DATA FOR DIMERIC DRY CAVE NICKEL(II) COMPLEXES

A bCompound Chemical Shifts

[Hl{(m-Xylyl(HHEthl)2)He2tl6]tetraeneNi,}I24+ C 170.1, 169.3, 169.2, 168.9, 168.7,168.2, 160.7, 139.5, 138.5, 137.9,131.A, 131.1, 130.8, 130.3, 129.2,128.2, 128.0, 127.7, 113.2, 56.9,51.9, 50.0, 49.0, 31.0, 30.4, 20.8, 15.4

lNi{(p-Xylyl(NH£thl)2)Me2[16]tetraeneNA}]^+c,d168.6, 168.2, 160.7, 136.9, 131.5,130.3, 112.9, 56.8, 51.7, 50.3,30.9, 30.4, 20.7, 15.4

[Nl{(p-Xylyl(MeNEthi)2)He2[16]tetraeneN4}]24+ 167.9, 167.4, 161.0, 135.0, 127.8,127.5, 113.8, 62.0, 56.0, 51.7,45.5, 30.2, 29.3, 23.0, 19.3

[Nl{(DURYD(NHEthC2)Me2[16]tetraeneN^.}]24+ 168.1, 167.9, 160.6, 136.4, 135.0,133.0, 112.3, 66.3, 56.5, 51.5,30.3, 29.9, 19.9, 17.1, 16.8, 15.7

[Nl{(DURYL(MeNEthl)2Me2[16]tetraeneN }]24+ ;: .4, 168.5, 159.8, 136.6, 136.0,132.3, 112.6, 66.3, 56.3, 52.7,50.6, 43.2, 31.0, 30.3, 20.8,19.3, 18.0, 17.2, 15.6

aAs FFg- salts.^CD^CN solution, ppm relative to TM5.CCD^N02 solution.^■Reference 78.

viw V f W f f~T~0160 120 -----1

8 0 ppm

4 0

13Figure 2 k . C NMR Spectrum of [Ni{(m-Xylyl(NHEthi)2)Me2 [16]tetraeneNA}]2(PFg)^

129

40 0(60 120 80ppm

13Figure 25. C NMR Spectrum of [Nl{(DURYL(MeNEthi),Me„[16]tetraeneN.}]_(PF£).c L 4 Z 6 4

130

13113One outstanding feature of the C NMR spectra of these dimeric

complexes is the fact that the macrocycle methyl resonances are sepa­

rated by approximately 5 ppm. Based on previous arguments, this obser­

vation is interpreted to mean that the dimers are all of the "lid-on*1

type with respect to the orientation of groups around the bridge nitro­

gens.

Electrochemical studies have shown that the redox behavior of

the dimeric complexes is very similar to that of the monomers with lit­

tle dependence on the nature of the linking group (table 17), Changing

the nitrogen substituent from hydrogen to methyl in the case of the

duryl bridging group causes a shift of 110 mV more negative, as was

observed in the monomeric examples. It is interesting to note that the

dimeric (NH^Pxyl species has a half-wave potential of +0.880 V, in the

normal range for this type of macrocyclic nickel(II) complex. This is

in marked contrast to the exceptional behavior of the corresponding

monomer which has the anamolously high potential of >1.04 V.

As mentioned previously, the complex [Ni[(m-Xylyl(NHEthi)Me2~

[16]tetraeneN^] ( P F g ^ ^ C H ^ C O C H ^ was subjected to a complete single

crystal X-ray diffraction structural analysis. Specific details of the

solution and refinement procedures are found in the experimental sec­

tion of this work. ORTEP drawings of the molecule appear in figure 26.

The numbering scheme for the molecule is shown in figure 27 and the

relevant bond distances and angles are listed in tables 18 and 19.

Despite numerous difficulties encountered in the structural

analysis and the resultant high discrepancy indices, a number of

TABLE 17

ELECTROCHEMICAL DATA FOR DIMERIC DRY CAVE NICKEL(II) COMPLEXES

Compound El/2- V lE3 / 4 " El/J’ mV Ep, V

[Ni{(m-Xyly1(NHEthi)2)Me2 I^tetraeneN^} ] 2(PFg)^ +0.880 85 +0.925+1.230

[Ni{(p-Xylyl(NHEthi)2)Me2[16]tetraeneN^}]2(PFg) +0.880 88 +0.930+1.230

[Ni{(p-Xyly1(MeNEthi)2)Me2[16]tetraeneN^}]2(PF6)4 - - - - — +0.875+1.175

[Ni{ (DURYL) (NHEthJ) 2)Me2 [16] tetraene^} ] 2 (PFg) +0.890 70 +0.960+1.190 100 +1.350

[Ni{(DURYL(MeNEthi)2Me2[16]tetraeneN^}]2(PFg)^ +0.780 85 +0.830+1.06 55 +1.130

Figure 26. ORTEP Drawings of the Dimeric Nickel(II) Complex

133

134

TABLE 18BOND DISTANCES FOR DIMERIC NICKEL(II) COMPLEX

N i-N l 1.877N1-N2 1.902N1-N3 1.868N1-N4 1.851N l - C l 1.33N1-C12 1.46N2-C3 1 .26N2-C4 1 .4 7N3-C6 1.49N3-C7 1.30N4-C9 1.29N 4 -C 10 1.53C1-C2 1 .47C1-C13 1.51C2-C3 1 ,44C2-C15 1.38C4-C5 1.52

C5-C6 1 .5 7C7-C8 1 .43C8-C9 1 .47C8-C16 1.42C9-C14 1 .55C10-C11 1.48C11-C12 1.51C15-C17 1.52C15-N5 1.34C16-C18 1.52C16-N6 1.35C19-N5 1.44C19-C20 1.54C20-C21 1 .45C20-C25 1.37C21-C22 1.42C22-C23 1.34

C23-C24 1.44C24-C25 1.38C24-G26 1.52C26-N6 1.52P l - F l 1.578P 1 -F 2 1.598P 1 -F 3 1.564P 1 -F 4 1.594P 1 -F 5 1.590P 1 -F 6 1.558P 2 -F 7 1.574P 2-F 8 1.544P 2-F 9 1.541P 2-F 10 1.567P2-F 11 1.491P2-F 12 1.524

135

TABLE 19BOND ANGLES FOR DIMERIC NICKEL(II) COMPLEX

N2-N1-N1 8 9 .2N4-N1-N1 8 9 .9N3-N1-N2 9 1 .3N4-N1-N3 8 9 .3C l - N i - N i 120.3C12-N1-N1 119.4C12-N1-C1 120.3C3-N2-N1 117.1C4-N2-N1 122.2C4-N2-C3 120.3C6-N3-N1 122.1C7-N3-N1 119.6C7-N3-C6 117.2C9-N4-N1 120.2C 10-N4-NI 120.6C10-N4-C9 119.1C 2-C1-N1 121 .7C13-C1-N1 119.9C13-C1-C2 117. 1C3-C2-C1 112.9C15-C2-C1 122.7C15-C2-C3 124.4C2-C3-N2 127.9C5-C4-N2 111.9C6-C5-C4 111.3C5-C6-N3 111.0C 8-C 7-N 3 120.8C 9-C 8-C 7 117. 1

C 16-C 8-C 7 118.6C16-C8-C9 124.0C 8-C 9-N 4 120.6C14-C9-N4 118.8C 14-C9-C8 120.0C11-C10-N4 108.7C12-C11-C10 111.4C11-C12-N1 111.5C17-C15-N5 118.7C17-C15-C2 120.7N5-C15-C2 120.4C18-C16-N6 119.7C18-C16-C8 121.9N6-C16-C8 118.4C19-N5-C15 126.2C26-N6-C16 125.8C 20-C19-N5 114.8C21-C20-C19 118.2C21-C20-C25 121.3C25-C20-C19 120.4C22-C21-C20 117.0C23-C22-C21 119.9C24-C23-C22 123.2C25-C24-C23 117.5C26-C24-C23 120.2C26-C24-C25 121.9C24-C25-C20 121.1C24-C26-N6 109.3

136

C 23' C22

Figure 27. Numbering Scheme for Dimeric Nickel(II) Complex

significant observations can be made regarding the complex. The most

striking feature is the dimeric nature of the molecule. Two macro-

cyclic species are linked by meta-xylene bridges with the two halves of

the molecule related by an inversion center through the middle of the

resultant cavity. The xylyl groups are constrained by symmetry to be

parallel as are the macrocyclic planes. The nickel(II) ions are 0

0.07 A out of the N^ planes (away from the molecular center) with anO

average nickel-nitrogen distance of 1.86 A. These values compare

favorably with those of the monomeric (NH^Pxyl bridged nickel complex,o o ^

0.04 A and 1.87 A, respectively. The six-raembered rings containing

the macrocyclic side chains below the xylene groups are in boat confor­

mations whereas the other six-membered rings are in the chair form.

137

This is consistent with expected steric interactions between the

bridging group and the macrocycle. The dihedral angle between the

macrocycle plane and the plane of the xylyl ring is 54°.O

The nickel(II) ions are 13.6 A apart from center to center, ofO O

which 12.8 A is vertical and 4.6 A is horizontal (parallel to the N,

plane) displacement. The point of nearest approach across the cavity isO

between C19 and C19‘", the benzylic carbons, at a distance of 3.87 A.

The distances between non-bridgehead carbons (C15-C16) and bridge nitro-O O

gens (N5-N6) are 6.18 A and 5.74 A, respectively. These distances will

be compared with those of other structures in the Structure Summaries

section of this work.

One final feature of this structure which should be mentioned is

the "lid-on" orientation of the meta-xylene groups at the bridge nitro­

gen atoms. This is the predicted orientation for dimers based on

steric and NMR considerations as described earlier.

The concrete evidence for dimeric complexes supplied by theIsolution of this crystal structure resulted in the reexamination and •

interpretation of a great deal of chemical information. As will be

described later, many of the previously unexplained properties of some

iron(II) complexes were readily interpreted once the dimeric nature of

the ligand structure was confirmed.

Characterization of the Complex Derived from 9.10-Bis(chloromethyl)anthracene

The reaction between [Ni{ (MeNHEthi)2*162 [16] tetraeneN^KPFg^ and

9,10-bis(chloromethyl)anthracene proceeded smoothly and in good yield to

produce a complex having stoichiometry of one macrocycle per

138

anthracene group. The complex crystallized as large red crystals from

a solvent mixture of acetonitrile and ethanol and analyzed well as a

diacetonitrile solvate or without solvent (after mulling and vacuum

drying). The infrared spectrum appears in figure 28 and shows no

unusual features. The absorption near 2250 cm ^ is due to the acetonl-

trile of crystallization and the absorptions between 1500 and 1700 cm

are assigned to C - C and C = N stretches and aromatic overtones.

50010001500200030004000 cm

Figure 28. Infrared Spectrum of the Anthracene Derivative

The NMR spectrum is shown in figure 29 and is quite unusual

in many respects. There are a number of aromatic resonances due to the

anthracene group. It is apparent that there is a separate resonance for

every methyl group indicating a lack of mirror symmetry in solution.

The resonances between 5.0 and 6.5 ppm are unlike any observed in other

if'

ppm

Figure 29. Proton NMR Spectrum of the Anthracene Derivative

139

140

monomeric or dimeric dry cave complexes. It is possible that they are

due to the benzylic hydrogens of the anthracene, but this assignment

has not been confirmed.13The broadband proton decoupled C NMR spectrum appears in

figure 30. There is a resonance corresponding to every carbon atom in

the molecule (assuming a small amount of overlapping in the aromatic

region and that two resonances coincide at 173.3 ppm). The resonances

are listed in table 20 along with the multiplicity of the resonance as

obtained from the off-resonance spectrum. These results again clearly

demonstrate the lack of mirror symmetry in solution. The resonances at

113.6 and 69.1 ppm are both singlets in the off-resonance spectrum and

must therefore be assigned to the y carbon of the macrocycle. It is not

at all clear what factors are responsible for causing these resonances

to be separated by 45 ppm.

Molar conductances were measured for this complex in acetoni--3trile as a function of concentration. The conductance of a 1 x 10

-1 -1 2molar solution was 273 ohm mole cm , consistent with the formula­

tion as a 2:1 electrolyte. The slope obtained from the Onsager plot

was 440 + 36 ohm ^ mole cm^'^ which is closer to the value observed

for monomers than for dimers.

The half-wave potential for the first oxidation of this species

occurs at +0.460 V versus Ag/Ag+ and is irreversible. This is likely

due to a ligand oxidation and serves as further evidence for the

unusual nature of this complex.

In order to clarify the structure of this species, an attempt

was made to perform a single crystal X-ray structural analysis.

1---------1---------1--------- 1---------1--------- 1--------- r200 T

8 0T0160 40

ppm

13Figure 30. C NMR Spectrum of the Anthracene Derivative in

TABLE 2013C NMR DATA FOR THE NICKEL(II) COMPLEX DERIVED

FROM 9,10-BIS(CHLOROMETHYL)ANTHRACENE

Shift3 (mult^) Shift (mult) Shift (mult)

179.2(s) 127.9 56.4(0

173.4(s) 127.7 55.1(t)

173.4(d) 126.9 50.4(t)

166.9(s) 126.8 45.3(q)

165.5(b ) 125.8 39.7(q)

158.1(d) 125.4 30.7(t)

132.6 125.2 29.3(0

132.2 123.7 25.6(0

131.4 113.6(s) 24.0 (q)

131.0 69.8(s) 22.5(q)

130.8 58.9(t) 20.8 (q)

128.6 57.8(t) 18.9(q)

^ D ^ C N solution, ppm relative to TMS.

^Multiplicity; s q = quartet.

« singlet, d = doublet, t = triplet,

143

Four different crystals were mounted and examined, but each showed dif­

fraction patterns characteristic of twinned crystals. Attempts to

obtain suitable crystals from other solvent systems and using different

anions met with little success. As a result the actual structure of the

species is as yet unknown.

One can speculate as to the origin of the peculiar properties

observed for this species. An obvious possibility is the cocrystalliza­

tion of two different species, each of which has the symmetry of normal

dry cave complexes. For example, these might be a monomer and dimer.13This could account for the NMR spectra. The C NMR data indicate the

presence of a very unusual complex which gives rise to the singlet at

69.1 ppm. The frequency indicates the carbon is quarternary, having no

double bonds associated with it. Structures consistent with such an

atom are structures XXIII and XXIV in which the bridge nitrogen is now

an imine and either the bridge or methyl group is bonded to the y car­

bon. There is no precedent for such structures, however, and thus they

must be viewed as purely speculative.

CH

B r i d g e

N \

ridge

CH

X X I I I

144

Removal of Ligands from Nlckel(II)

The central metal ion in all of the complexes discussed up to

this point has been nickel(II). The complexes were synthesized with

nickel(II) as the central metal ion for a number of reasons: 1) The

synthesis of the parent macrocycle requires the use of nickel(II) as a

template for macrocyclic ring closure. 2) The nickel(II) complexes are,

for the most part, air stable and relatively easy to handle. 3) The

nickel(II) complexes are readily characterized, particularly through

the use of NMR techniques. 4) The ligands can be removed intact from

nickel(II) and coordinated to the biologically important metal ion,

iron(II). The ligand salts of all of the complexes were synthesized

according to the basic method of Schammel^ (equation 26). The tetra-

chlorozincate salts of the ligands which result from this treatment

were in many cases impure and very difficult to characterize.

I IZ n Zt HCI

CH^CN R'(ZnCL)

(26)

145

Other workers in this research group**** have not reported the charac­

terization of ligand salts in any detail; however, the characterization

of several salts is included in this work. Good analytical data were

obtained for the monomeric (NH)^Mxyl and (NMe^Mxyl bridged ligands as

tetrachlorozincate salts. There are several disadvantages inherent in

the use of tetrachlorozincate as a counterion. The compounds in

general are water sensitive, difficult to recrystallize and pose synthe­

tic difficulties in further reactions as the zinc ion can compete with

iron(II) for coordination by the macrocycle. Because of these prob­

lems, several of the ligand salts were metathesized using ammonium

hexafluorophosphate. The resulting compounds were generally white to

off-white granular materials yielding good analytical and spectroscopic

data. In particular, the ligands derived from the monomeric (NH^Mxyl,

(NH^Pxyl and (NMe^CCHj)^ bridges were studied in detail.

The ligands generally protonated readily in acetonitrile with

hydrogen chloride gas, the solution showing the deep blue color of the

concommittantly formed tetrachloronickelate anion within 30 minutes.

The (NH^Pxyl monomer had to be left in a solution saturated with hydro­

gen chloride for two days before ligand removal could be successfully

accomplished.^ Another Interesting exception involves the monomeric

and dimeric (NH^Mxyl species. The monomeric ligand salt remained in

solution upon addition of the tetrachlorozincate solution whereas the

dimeric product precipitated immediately. (This is the ligand salt 70used by Schammel and his report therefore must refer to dimeric

iron(II) complexes.) The monomeric ligand salt was isolated by rotary

evaporation of the solvent and HC1 gas. All other complexes studied by

146this author precipitated immediately upon addition of the tetrachloro­

zincate solution.

Attempts were made to prepare ligand salts from the (NnBu^Mxyl

bridged complex and the complex prepared from the anthracene group. In

each case there was no color change to Indicate ligand removal and the

only products isolated were tetrachlorozincate salts of the nickel(II)

complexes.

As mentioned above, several ligands were studied in some detail.

Acceptable elemental analyses were obtained for the ligands derived

from the monomeric (NH^Mxyl and (NMe^Mxyl bridged complexes as tetra­

chlorozincate salts and for the ligands derived from the monomeric

(NH^Mxyl and (NH^Pxyl bridged complexes as hexafluorophosphate salts.

Infrared spectra show the presence of broad N-H stretches which are

undoubtedly due to hydrogen bonding either to solvent molecules or to

other ligands. The rest of the IR spectrum shows few features except

in the vicinity of 1600 cm ^ and the typical bands due to hexafluoro-

phosphate. The infrared spectrum of the (NH^Mxyl derivative is shown

in figure 31 and some selected frequencies are listed in table 21.

Proton NMR spectra were measured for the hexafluorophosphate

ligand salts of the monomeric (NH^Mxyl, (NH^Pxyl and (NMe^CC^)^

bridged species. The NMR spectra for the (NHjgMxyl and (NH^Pxyl

derivatives are shown in figures 32a and b, and the data are summarized

in table 22. The most Interesting feature of these spectra is the N-H

resonance in the vicinity of 10-11 ppm. Such resonances have also been74 75observed in other ligand salts of this class of macrocycle. * The

remainder of the spectra are shifted relative to the respective

TABLE 21SELECTED INFRARED FREQUENCIES3 FOR DRY CAVE LIGAND SALTS

Compound VN-H(co’1) VC=C,C=N (cm-1)

[ (m-Xylyl (NHEthi) 2 ) ^ 2 [16 ] tetraeneN^ ] (ZnCl^,) 2 3190,b 3450b 1645, 1585

[ (m-Xylyl (NHEthi) 2 ) ^ 2 [16]tetraeneN^] (PFg) g 3358 1645, 1580

[(m-Xylyl(MeNEthi)2)Me2[16]tetraeneN^](ZnCl^)2 3160,b 3500b 1645, 1600

[(p-Xylyl(NHEthi)2)Me2[16]tetraeneNA ](PFg) 3370b 1638, 1585, 1543

[ (1,6-Hex (MeNEthi) 2 ) ^ 2 [16]tetraeneN^ ] (?Fg) g 3330b 1645, 1600

clSpectra obtained fromnujolmulls on KBr plates.

bBroad.

148

4000 3000 2000 1500 1000 500cm

Figure 31. Infrared Spectrum of[(m-Xylyl(NHEthi)2)Me2 [16]tetraeneN4 ](PFfi)

nickel(II) complexes but their assignments are in support of the

structures.

Carbon-13 NMR spectra were also recorded for several of the

ligands. The spectra of the (NH)2Mxyl and (NH)2Pxyl species are shown

in figures 33a and b, and the data are summarized in table 23. The

general patterns of the spectra are very similar to those of the

corresponding nickel(II) complexes with each exhibiting mirror sym­

metry. The range of resonances observed for a given carbon atom with

different bridges is much larger than that observed for the nickel(II)

complexes, indicating that in the absence of structural constraints

imposed by the metal ion the ligand distortions become more pronounced

with changes in the bridging group.

p p m

Figure 32. 1H NMR Spectra of a) [(m-Xylyl(NHEthi)9)Me [16]tetraeneN.](PFfi)and b) [(p-Xylyl(NHEthi)2)Me2[16]tetraeneN4 ](PF6)3

149

TABLE 22

PROTON NMR DATA* FOR DRY CAVE LIGAND SALTS

Compound Methyl Methylene Aromatic N-H

[(m-Xylyl(NHEthi)2)Me2[16]tetraeneN^](PFg)3 2.05, 2.37 3.75,C 4.15,C 6.37, 7.30C 7.82b4.75

t (p-Xylyl(NHEthi) 2)Me2[16] tetraeneN^, ] ( ^ > 3 2.28, 2.60 3.6,b 4.40, 6.95, 7.20, 9.05,b 10.554.70c 7.78

I(1,6-Hex(MeNEthi)2>Me2[16]tetraeneN^](PF^)3 2.20, 2.58, 1.30,b 3.75b 9.70, 9.95 8.3,b 11.lb3.62

aChemical shifts given in ppm from TMS, run on concentrated solutions in CD^CN.

bBroad.

CMultiplet. 150

w> J * w\m

4 0160 120 80ppm13,Figure 33. ^ C NMR Spectra of a) [(m-Xylyl(NHEthi)2)Me2 [16)tetraeneN^](PF&)3and b) E(p-Xylyl(NHEthi)2)Me2 [16]tetraeneN^](PF^)3 151

TABLE 2313C NMR DATA FOR MONOMERIC DRY CAVE LIGAND SALTS

Compound Chemical Shifts3

t(m-Xylyl(NHEthi)2)Me2 [16]tetraeneN4 ](PFg) 176.2, 172.4, 156.9, 138.3, 130.6, 127.2, 120.5, 106.2,54.1, 52.4, 48.2, 27.9,24.2, 20.7, 15.1

[(p-Xyly1(NHEthi)2)Me2[16]tetraeneN4](PF6) 3 174.9, 160.2, 134.6, 127.8, 126.2, 104.0, 52.3, 50.9, 49.5, 27.6, 24.3, 23.4,22.3

((1,6-Hex(MeNEthi)2)Me21 1tetraeneN4](PFg)3 183.0, 174.2, 156.3, 100.0,60.0, 52.1, 47.8, 43.4, 28.4, 26.5, 26.1, 24.8, 23.8, 20.3

aCD3CN solution, ppm relative to TMS.

153

Several interesting conclusions can be drawn from these results.

The fact that these ligand salts precipitate as +4 cations from ace-

tonitrile solution with tetrachlorozincate anion and as +3 cations from

aqueous solution with hexafluorophosphate anion indicates that the

charge on the resultant cationic species is strongly dependent on

solubility. The mirror symmetry exhibited by the ligand salts shows

that the protons are in rapid exchange with the ligand resulting in a

sharp averaged spectrum.

Another interesting conclusion arises from the fact that the

monomeric (NH^Mxyl ligand spectrum shows simple mirror symmetry and

yet the spectrum of the nickel(II) compound regenerated from it is

rather complex (figure 20). The cause of this must be Isomerization in

the nickel(II) complex having a rate of interchange which is slow on

the NMR time scale. Such an isomerization could be between the

"lid-on1* and "lid-off" conformers, but this has not been verified. It

Is also possible that the xylyl ring can maintain two distinct orienta­

tions, one centered over the metal, the other centered over the side

chains of the macrocycle.

It is reassuring to note that in the case of the (NH^Mxyl

bridge, the monomeric and dimeric species retain their integrity and do

not interconvert during ligand removal. This has been confirmed by

experiments in which the ligand was removed from and put back onto

nickel(II) with no change in properties or spectra.

Iron(II) Complexes

The major goals of this work involve the synthesis and study

of the iron(II) complexes of dry cave ligands in order to model the heme

proteins of natural systems. It was intended that through equilibrium

and structural studies, the nature of the binding of CO to the iron(II)

center would be elucidated and the importance of bending of the Fe-C-015linkage would be assessed. It has been suggested that the bending of

the Fe-C-0 linkage in natural systems plays an important role In con­

trolling the stability of CO adducts of Hb and Mb. Therefore a series

of dry cave complexes were prepared and their physical and chemical

properties were examined in detail. Through the use of single crystal

X-ray structural analysis, the changes in the size and shape of the

cavity which accompany changes in the bridging group were clearly

shown, demonstrating the wide variety of structural types which are

available. Equilibrium constants for the reaction between the iron(II)

complexes and CO were determined; these decrease as the size of the

cavity decreases. The crystal structure of a key CO adduct was deter­

mined demonstrating the first bent Fe-C-0 linkage observed for a model

system. These structural and equilibrium data were correlated with the

CO stretching frequencies and the resonances of the CO carbon atoms in 13the C NMR spectra. From these experiments, the importance of the

interaction between the bridging group and bound CO is made clear. It

is postulated that similar interactions are critical in the functioning

of natural systems.

The next sections of this work describe the synthesis and

characterization of three classes of monomeric iron(II) complexes:

five-coordinate chloro complexes, four-coordinate species and an

unbridged complex. The structures of two chloro derivatives will be

discussed, followed by a summary of crystallographic data for dry cave

structures. In addition, the Interactions of the iron(II) compounds

with axial ligands will be described.

Monomeric Iron(II) Chloro Complexes of Dry Cave Ligands, [FeLCl'H

Having synthesized and characterized a number of ligand salts

of monomeric dry cave compounds, the synthesis and study of their

iron(II) complexes could now be undertaken. [(m-Xylyl(NHEthi)^Me^-

[16]tetraene](PF£)„ was combined with one equivalent ofO J

bis-(acetonitrile)iron(II) chloride and three equivalents of tri-

ethylamine (to deprotonate the ligand) in acetonitrile under an atmos­

phere of dry nitrogen according to equation 27.

R'<PF6>3 + Fa (C H jC N jg C ^

+ 3 E*S N*

cr^

156

Upon addition of the base, the color of the solution immediately changed

to deep red and after a few minutes an orange precipitate formed. This

compound was identified as [Fe{(m-Xylyl(NHEthi^jMe^[16]tetraeneN^}-

C1]C1. Recrystallization from methanol yielded large red-orange

crystals of the complex containing two methanol molecules of crystalli­

zation. Addition of ammonium hexafluorophosphate to a methanolic solu­

tion of the complex resulted in the formation of red crystals of the

hexafluorophosphate salt of the complex.

In a similar way, [ (m-Xylyl(MeNEthi)2)Me2 [16] tetraene] (ZnCl^,^

was combined with one equivalent of bis-(acetonitrile)iron(II)

chloride and four equivalents of triethylamine in acetonitrile. No

precipitate formed, however, so the acetonitrile was removed and

replaced with methanol. Upon addition of ammonium hexafluorophosphate

the red product [Fe{(m-Xylyl(MeNEthi)2^Me2 [16]tetraeneN^JCl] (PFg)

formed. Large red crystals were obtained by recrystallization from an

acetonitrile/ethanol solvent mixture. The synthesis was carried out in

high yield by using methanol as the solvent throughout. Hydrogen

bonding between the N-H of the macrocycle bridging group and the

anionic chloride appears to significantly reduce the solubility of

(NH^Mxyl derivative. This opportunity is not available for the methyl

substituted complex.

Satisfactory elemental analyses were obtained for all of the

complexes described above, verifying the stoichiometry. The infrared

spectra of [Fe{(m-Xylyl(NHEthi)2>Me2 [16JtetraeneN^}Cl]Cl*2CH30H,

[Fe{ (m-Xylyl(NHEthi) 116] tetraeneN^}ci] (PFg) > and [Fe{ (m-Xylyl-

(MeNEthi)2)He2 [16]tetraeneN^}Cl](PFg) are shown in figures 34a, b, and

157

■500

l1000I

1500I

2000I3000

l4000 cm

Figure 34. Infrared Spectra of a) [FeKm-XylylCNHEthiJ^iMe^tlS]-tetraeneN4 }Cl]Cl-2CH30H, b) [Fe{(m-Xylyl(NHEthi)2)Me2 [16]- tetraeneN^Jci] (PFg), and c) [Fe{ (m-Xyly1(MeNEthl) 2)Me2 H ® 3 ” tetraeneN^JCl](PF^).

158

c, respectively. Of particular Interest in these spectra Is the N-H

region which has a broad absorption at 3205 cm ^ for the chloro-(NH^-

Mxyl chloride complex due to the extensive hydrogen bonding among the

ligand, solvent, and chloride ions. In the spectrum of the PF,- saltbof the same complex there is a sharp N-H stretch at 3420 cm \ showing

no indication of hydrogen bonding. The spectrum of the (NMe^Mxyl com­

plex contains no absorptions at all above 3100 cm The region

between 1550 cm ^ and 1650 cm ^ is typical of bridged complexes with

the (NH^Mxyl chloro chloride complex having bands at 1620 cm ^ and

1575 cm The bands appear at 1615 cm ^ and 1565 cm ^ for the

chloro-(NH) Mxyl PF^ species and at 1620 cm ^ and 1550 cm"" * in the

(NMe^Mxyl species. In each case, the higher energy band is sharper

and less intense than the lower energy band.

Solid state room temperature magnetic moments were determined by

the Faraday method and all are consistent with the presence of high-spin

iron(II). The magnetic moment values for the chloro-(NH)2*kcyl

chloride, chloro (NH) 2Mxyl PFg, and chloro (NMe^Mxyl PFg bridged com­

plexes are 5.183, 5.303, and 5.383, respectively. The spin only value

for high-spin iron(II) is 4.903. Molar conductances were measured In_3

acetonitrile for 1 x 10 molar solutions of the chloro- (NH^Mxyl and

chloro-(NMe^Mxyl PFg bridged complexes yielding values of 127.3 and -1 -1 2142.7 ohm mole cm which are in the range found for 1:1 electro­

lytes. (The acceptable range for a 1:1 electrolyte in acetonitrile is -1 -1 2120-160 ohm mole cm .) These data indicate that the chloride ion

remains essentially coordinated to the iron(II) center in solution.

159

Electrochemical studies were performed on the complexes in

acetonitrile. The chloro-(NH)2Mxyl PFg derivative has two oxidations

with an^ '^3/4 ~ ^1/41 ~0.345 V, 62 mV and +0.935 V, 65 mV ver­

sus 0.1 M Ag/Ag+ . As in the case of the nickel(II) complexes, the

reductions occur at very negative potentials and are irreversible.

Controlled potential electrolysis was performed on the complex by oxi­

dizing at a potential of -0.1 V. A value of 1.04 electrons was

obtained for two separate experiments. The E^ 2 ant* 1 3/4 " ^ 1/4 1 ^or

the reduction of the oxidized product are -0.330 V and 63 mV, indi­

cating that simple oxidation of the metal occurred during electrolysis,

Similar electrochemical studies were performed for the (NMe)^-

Mxyl bridged complex. As shown in figure 35, there are two oxidations

having anc* ^3/4 ” *1/4 values “0.390 V, 60 mV, and +0.900 V,

-0.8 - 1.0-0 .2 -0 .4 - 0.60.0i.2 0.4 0.20.8 0 61.0V. vs A

Figure 35. Cyclic Voltamagram of[Fe{(m-Xylyl(MeNEthi)2)Me2 [16]tetraeneN^ >C1](PF6)

160

70 mV. Again an irreversible reduction wave is observed at -2.12 V.

Controlled potential electrolysis was performed on three separate

samples by first oxidizing at -0.1 V, then reducing the same solution

at -0.8 V. In each case, both processes appeared to be completely

reversible yielding an average n value of 1.03 electrons. Voltama-

grams of the oxidized species verified that the only process occurring

during electrolysis was simple oxidation of the metal. It is very

significant that changing the bridge substituent from hydrogen to

methyl causes a shift in the oxidation potential of about 45 mV (more

negative), consistent with the observations for the related nickel(II)

complexes.

Through the efforts of several workers, eight different iron(II)

chloro complexes have been synthesized and characterized to varying

degrees. The complexes studied having hydrogens on the bridge nitrogens78 92 88 92are those with meta-xylene, para-xylene, (CH^)^, (CHg)^, *

77 78 88and fluorene * bridging groups. The complexes with methyl

substituents on the bridge nitrogens are those with meta-xylene and 77 bridging groups. The chemistry of the complexes not described

in this work was developed concurrently with that of the meta-xylene

bridged complexes. All of the complexes have properties very similar

to those described above, and several of the complexes were studied in

further detail by this author, as will be described below.

Attempted Synthesis of Four-Coordinate Iron(II) Complexes, [FeL]^+

Because of the lack of an active chloro iron(II) analog in

natural systems, attempts were made to synthesize four- or

161

five-coordinate iron(II) complexes which did not contain chloride.

Direct syntheses were attempted using the hexafluorophosphate salts of

the ligand and iron(II) according to equation 28 for the (NMe)

(NMe)2 (CH2)5 ,

CH CNH3L(PFfi)3 + Fe(CH3CN)6 (PF6)2 + 3Et3N --- ►

[FeL(CH3CN)x ](PF6)2 , x = 0,1 (28)

and (NMe)2 (CH2)g bridged species. Analytical data were unsatisfactory

for either of the above formulations in each case. Infrared spectra

were sharp and typical of monomeric dry cave complexes. NMR spec­

tra were similar to those of the paramagnetic chloro complexes as will

be described below. The electrochemical behavior was essentially iden­

tical to that of the chloro complexes with values of E^ 2 and

l E ^ - E ^ J of -0.435 V, 70 mV and -0.440 V, 65 mV for the

(NMe)2 (CH2)^ and (NMe)2 (CH2)3 species, respectively. The (NMe)2(CH2)3

species had very ill defined voltamagrams. These complexes are prob­

ably a mixture of four- and five-coordinate species, perhaps containing

a significant amount of chloro complex. Although the presence of

chloride has not been confirmed, Dr. N. Herron has suggested that the

ligand salt may have the composition H^LfPF^^Cl and therefore act as94a source of chloride.

An analytically pure sample of the four-coordinate iron(II)

complex derived from the (NMe)2Mxyl bridged ligand was synthesized by

the above method. The only unusual properties for this species are its

dark brown color and rather positive oxidation potential of -0.120 V,

consistent with the absence of chloride in the coordination sphere.

162

Iodide salts of this complex were prepared either by metathesis

of the hexafluorophosphate salt in acetone or by direct synthesis of

the iron(II) complex in acetone. These complexes analyze well and are

water soluble. Infrared spectra are typical of dry cave complexes.

The spin state of the iron(II) Is unknown because the solid complexes

are too air sensitive to permit magnetic moment determination by the

Faraday method.

Iron(II) Complexes of Unbridged Ligands

In order to more thoroughly evaluate the effects of the

bridging group on the reactions of interest, the syntheses of some

unbridged iron(II) complexes were attempted. In the case of the

unbridged ligand derived from methylamine, the ligand salt was mixed

with one equivalent of bis-(acetonitrlle)iron(II) chloride and four

equivalents of triethylamine to deprotonate the ligand as described

above for the chloro complexes. The product formed upon addition of

ammonium hexafluorophosphate. The expected product was

[Fe{(MeNHEthi)2Me2 [l6]tetraeneN^}(CH2CN)x ](FFg)2 » x = 1,2 and the

infrared spectrum, shown in figure 36, is in support of this formula­

tion, having a sharp N-H stretch at 3430 cm ^ and bands at 1580 cm ^

and 1625 cm ^ which resemble those of the corresponding nickel(II)

complex. Absorptions due to coordinated acetonitrile were not

observed, but this is not unusual for acetonitrile bound to

Iron(II) The Ijj NMR spectrum, shown in figure 37, is in support

of the proposed structure, but contains doublets centered at 5.58 and

8.67 ppm which did not appear in the spectrum of the

163

tooo15004000 3000 2000

Figure 36. Infrared Spectrum of[Fe{(MeNHEthi)2Me2 [16]tetraeneN^)(CH3CN)x ] (FF^)^

nickel(II) complex. It will be shown later that this pattern is due to

a novel rearrangement of the ligand structure.

Electrochemical studies of the complex were performed in ace­

tonitrile, showing two reversible one-electron oxidations having E^/2

and !e3/4 - Ei/zJ values -0.045 V, 70 mV, and +1.185 V, 70 mV versus+ 2+ 3+Ag/Ag , figure 38. The first oxidation is attributed to the Fe /Fe

couple and the second is a ligand oxidation as was found in the

nickel(II) complex. An additional small wave at +0.4 V is due to the

presence of the rearranged product. Analytical data were consistent

with a mixture of the desired product having one molecule of acetoni­

trile and the rearranged species in a ratio of 3:1.

ppm

Figure 37. Proton NMR Spectrum of [Fe{(MeNHEthi)9Me7[16]tetraeneN.}(CH CN) ](PFC)

164

165

- 1.0-0.8- 0.6-0.4- 0.2 V. vs Ag/Ag

0.4 0.00.6 0.2

Figure 38. Cyclic Voltamagram of[Fe{(MeNHEthi)2Me2 [l6]tetraeneN4 >(CH3CN)x ](PF6)2

Attempts were made to synthesize [Fe{ (Me2NEthi) 2*Ie2 [16] —

tetraeneN^}(CH^CN)^](PFg)2 , x = 1,2, using a variety of solvents,

iron(II) sources and counterions. In all cases, the product was much

too soluble to isolate in a pure form and was therefore never crystal­

lized or characterized.

Crystal Structures of Two Iron(II)Chloro Complexes

It was of great importance to demonstrate the size and shape of

the cavities of the dry cave ligands in the iron(II) complexes. There­

fore two of the complexes were subjected to single crystal X-ray

structural analysis to demonstrate that the ligands had been removed

intact from nickel(II) and chelated to iron(II). In addition, the

Figure 39. ORTEP Drawings of [Fe{(m-Xylyl(NHEthi)2)Me2 [16]tetraeneN^Cl]Cl*20^011

Figure 40. ORTEP Drawings of [Fe{(m-Xylyl(MeNEthi)2)Me2[16]tetraeneN4}ci](PFg)

167

168

TABLE 24BOND DISTANCES (esd) FOR a) [Fe{(m-Xylyl-

(NHEthi)2)Me2tl6]tetraeneNA}Cl]Cl*2CH3OH ANDb) [Fe{(m-Xylyl(MeNEthi)2)Me2[l6]tetraeneN4}Cl](PFfi)

a b a b

Fe-Cl 2.307(3) 2.326(1) C10-C11 1.54(2) 1.503(7)Fe-Nl 2.131(8) 2.123(3) C11-C12 1.54(1) 1.522(8)Fe-N2 2.079(7) 2.107(4) C15-C17 1.54(1) 1.49B(8)Fe-N3 2.074(7) 2.069(4) C15-N5 1.33(1) 1.352(6)Fe-N4 2.163(7) 2.170(4) C16-C18 1.50(1) 1.504(8)Nl-Cl 1.25(1) 1.289(5) C16-N6 1.32(1) 1.345(5)N1-C12 1.49(1) 1.472(8) C19-N5 1.49(1) 1.474(6)N2-C3 1.28(1) 1.291(4) C19-C20 1.50(1) 1.518(6)N2-C4 1.45(1) 1.468(7) C20-C21 1.39(1) 1.382(9)N3-C6 1.50(1) 1.486(7) C20-C25 1.39(1) 1.394(6)N3-C7 1.31(1) 1.296(5) C21-C22 1.34(2) 1.384(7)N4-C9 1.28(1) 1.301(5) C22-C23 1.39(2) 1.376(7)N4-C10 1.43(1) 1.464(8) C23-C24 1.37(1) 1.398(8)C1-C2 1.52(1) 1.472(8) C24-C25 1.42(1) 1.383(6)C1-C13 1.56(1) 1.519(7) C24-C26 1.51(1) 1.508(7)C2-C3 1.44(1) 1.429(7) C26-N6 1.46(1) 1.481(5)C2-C15 1.43(1) 1.405(5) N5-C27 ---- 1.461(5)C4-C5 1.50(1) 1.515(7) N6-C28 ---- 1.472(5)C5-C6 1.52(1) 1.493(8) P-Fl ---- 1.575(4)C7-CB 1.45(1) 1.437(7) P-F2 ---- 1.543(5)C8-C9 1.49(1) 1.461(8) P-F3 ---- 1.578(4)C8-C16 1.41(1) 1.401(5) P-F4 ---- 1.500(4)C9-C14 1.50(1) 1.518(8) P-F5 ---- 1.540(5)

P-F6 _ _ _ 1.567(4)

169

TABLE 25BOND ANGLES (esd) FOR a) [Fe{(m-Xylyl(NHEthi)2)

Me2[16]tetraeneNA>Cl]Cl*2CH3OH AND b) [Fc{Cm-Xylyl(MeNEthi)2)Me2 [16]tetraeneN^}Cl](PF^)

(a) (b) (a) (b)

N2-Fe-Nl 85.1(3) 84.9(2) C15-C2-C1 121.7(8) 120.3(4)

NA-Fe-Nl 83.5(3) 87.4(1) C15-C2-C3 117.9(8) 118.2(5)

N3—Fe-N2 86.8(3) 89.3(2) C2-C3-N2 127.1(8) 126.8(5)

N4-Fe-N3 83.6(3) 84.1(2) C5-C4-N2 113.6(8) 113.2(4)

Cl-Nl-Fe 128.7(8) 129.4(4) C6-C5-C4 117.7(9) 116.6(5)

C12-Nl-Fe 111.3(8) 110.1 (2) C5-C6-N3 112.0(9) 112.7(3)

C12-N1-C1 119.9(9) 120.2(4) C8-C7-N3 124.9(8) 127.7(5)

C3-N2-Fe 120.2 (6) 124.4(4) C9-C8-C7 121.3(7) 120.8(4)

C4-N2-Fe 118.3(6) 118.5(2) C16-C8-C7 116.0(8) 116.1(5)

C4-N2-C3 117.3(7) 116.2(4) C16-C8-C9 122.4(9) 122.3(4)

C6-N3-Fe 116.5(6) 116.9(3) C8-C9-N4 118.3(8) 121.5(5)

C7-N3-Fe 123.9(7) 126.7(3) C14-C9-N4 124.1(8) 120.8(5)

C7-N3-C6 116.8(8) 115.2(4) C14-C9-C8 117.1(8) 117.2(4)

C9-N4-Fe 129.1(7) 129.5(4) C11-C10-N4 113.3(8) 113.8(4)

C10-N4-Fe 111.0(5) 109.4(3) C12-C11-C10 116.5(9) 115.4(5)

C10-N4-C9 119.8(8) 119.6(4) C11-C12-N1 108.5(8) 110.1(4)

C2-C1-N1 118.3(9) 120.6(4) C17-C15-N5 116.5(8) 116.5(3)

C13-C1-N1 125.2(8) 122.2(5) C17-C15-C2 122.9(8) 124.1(4)

C13-C1-C2 116.2(8) 116.7(4) N5-C15-C2 120.5(8) 119.3(5)

C3-C2-C1 120.2(7) 121.4(3) C18-C16-N6 117.0(7) 115.1

170

TABLE 25 (continued)

(a) (b) (a) (b)

C18-C16-C8 123.1(8) 122.9(A) C21-C20-C25 118.2(9) 118.6(A)

N6-C16-C8 119.9(8) 122.0(A) C25-C20-C19 121.5(8) 117.7(5)

C19-N5-C15 12A.A(7) 121.0(3) C22-C21-C20 119.9(9) 120.3(5)

C27-N5-CX5 _ _ _ 122.5(A) C28-C22-C21 122.A (10) 121.1 (6)

C27-N5-C19 - - - 115.5(A) C2A-C23-C22 120.2(9) 119.A(A)

C26-N6-C16 125.3(8) 122.7(3) C25-C2A-C23 117.2(9) 119.2(A)

C28-N6-C16 - - - 121.7(3) C26-C2A-C23 121.9(9) 122.1(A)

C28-N6-C26 - - _ 115.2(3) C26-C2A-C25 120.7(8) 118.A(5)

C20-C19-N5 111.0 (8) 113.7(5) C2A-C25-C20 122.0(9) 119.2(A)

C21-C20-C19 120.3(9) 123.6(A) C2A-C27-N6 112.5(7) 11A.7(5)

171

five-coordinate, high-spin nature of the iron(II) was clearly shown.

The details of the determinations and refinements of the structures of

[Fe{ (m-Xylyl(NHEthl) 2^ e2 [16] tetraeneN^}Cl] Cl* 20^011 and

[Fe{ (m-Xylyl(MeNEthi)2)Me2[16]tetraeneN^}Cl] (PFg) were discussed in the

experimental section of this work.

ORTEP drawing for the two complexes are shown in figures 39 and

40 and the molecular numbering scheme appears in figure 41. Relevant

bond distances with estimated standard deviations (esds) are listed in

table 24 and bond angles are listed in table 25.

It is apparent from the ORTEP drawings and the bond distances

and angles that these two complexes have many features in common.

Considering first the coordination sphere of the iron(II), it can be

seen that the metal ion is five-coordinate in a square pyramidal typee7

C17,

CI3C3

20N2

22

C6 C23CIO

,C26C9,Cll CI4

CI6

cm28

Figure 41. Molecular Numbering Scheme for Chloro-Iron(II) Complexes

172

of structure with the iron(II) drawn out of the macrocycle planeO

toward the axially bound chloride. The displacement is 0.65 A in theO

N-H derivative and 0.54 A in the N-Me derivative and is very similar toO

the displacement of 0.55 A from the porphyrin plane estimated for

deoxymyoglobin.^ The iron-chlorine bond responds to this difference byO O

increasing in length from 2.307 A in the former complex to 2.326 A inO

the latter. The average iron-nitrogen distances are 2.112 A andO

2.117 A for the (NH^Mxyl and (NMe^Mxyl derivatives, respectively,O

slightly longer than the distances of 2.07-2.09 A observed for com-4parable porphyrins, but definitely consistent with the high-spin state

of the iron(II). The six-membered rings of the macrocycle in both

molecules are in the chair form since steric interactions with the

axially bound chloride would result if they were in the boat form.

Examination of the bond distances starting at the metal center

and continuing the planar bridge nitrogen atoms indicates an extensive

delocalization of electron density throughout these segments of the

molecules and is wholly consistent with the previously discussed

(page 160) large electronic effects at the metal center caused by sub­

stitution at the bridge nitrogen atom.

In both molecules, the xylene ring is analogously disposed as

that of the distal imidazole in Hb and Mb. It is apparent from

figures 39 and 40 that the xylene ring is more directly centered over

the metal in the hydrogen derivative than in the methyl derivative.

This is a consequence of the geometrical isomerism about the bridge

nitrogen atoms according to which the former is "lid-on" and the

latter is "lid-off." The profound effects of this isomerism on the

173

size and shape of the cavities is clearly illustrated in figures 39 and

AO. In the "lid-on" structure, the bridge rises in a direction perpen­

dicular to the macrocycle plane, resulting in a tall, narrow cavity.

In the "lid-off" structure, the bridge lies approximately parallel to

the plane, yielding a shorter, wider cavity. The cavity in the0 O

(NH^Mxyl bridged complex is 7.57 A tall In the front (C22) and 5.A6 A

at the rear (C25), while in the methyl substituted species, the cor-O 0

responding dimensions are 5.02 A and 3.9A A, respectively (measured as

the perpendicular distance from the carbon atom center to the macro­

cycle N, plane). The cavity widths as measured between bridge nitrogenO O

atoms are 5.05 A for the N-H species and 7.3A A for the N-Me complex.

When these distances are corrected for the van der Waals radii of theO

atoms involved, the maximum cavity height is A.22 A and the width isO

2.05 A in the "lid-on" species. The corresponding values for theO O

"lid-off" complex are 1.67 A and A.3A A, respectively. The dihedral

angle between the xylene and macrocycle planes is 53° in the

(NH^Mxyl derivative and 30° in the methyl substituted complex. In

solution, it is expected that this angle would be quite variable within

certain sterically controlled limits. For example, the xylene ring in

the "lid-on" species could conceivably rotate to put C25 in the front of

the molecule and C22 in the rear. Such a rotation is prevented in the

"lid-off" structure due to interactions between the hydrogen on C22 and

the macrocycle.

One further feature of the hydrogen derivative which should be

noted is the extensive hydrogen bonding within the lattice. Although

the hydrogen atoms were not located in the structure determination, the

174

distances between nonhydrogen atoms clearly show the extent of inter-O

action. The anionic chloride is 3.26 A from one bridge nitrogen atom,o o

3.01 A from one methanol oxygen atom and 3.32 A from the second methanolO

oxygen atom. The bound chloride is 3.60 A from the second methanolO

oxygen atom and the oxygen atoms are 3.35 A from each other. All of

these distances are well within normal hydrogen-bonding limits for the

involved atoms.

The five-coordinate, high spin nature of the iron(II) center and

the hydrophobic ligand structure clearly demonstrate that these com­

plexes are good structural models for deoxymyoglobin. The number of

structural variations which are accessible makes these systems attrac­

tive for systematic study of the interaction of the iron(II) center

with small molecules.

Summary of Crystal Structure Results

The crystal structures of six monomeric dry cave complexes

have now been determined (including the structure of [Fe{(1,5-Pent-

(NHEthi)2)Me2[16]tetraeneN^}(C0)(PY)](PFg)2*CH^0H, to be described

later in this work). These structures give a good indication of the

wide range of cavity sizes and shapes which are available. Some rele­

vant data are summarized in table 26 for the structures reported in72this work, the nickel(II) para-xylene bridged complex and two cobalt

65complexes having bridges derived from N,N"-l,6-hexanediamine. The

only example of a ’'lid-on’1 structure is that containing the

N-H-meta-xylene bridge; all others are "lid-off." The cavity widthO O

varies from 5.05 A to 7.34 A between bridge nitrogen atoms (2.05 to

TABLE 26

SUMMARY OF STRUCTURAL DATA FOR DRY CAVE COMPLEXES

Width•

L , AHeight, A

(to metal atom)Height, A ( plane)

Slope of Iaomer Bridge Type

Displacement of Metal from

Plane, AComplex a b Front Rear Front Rear

[Ni{(2 -Xylyl(NHEthi)2)Me2~ [16]tetraeneN^}](PF6)2

6.78(3.78)e

7.20(4.20)C

4.55 4.27 4.03 3.08 23" Lid-off --

[Fe{(m-Xylyl(HHEthi)2)He2-[16]tetraeneH^}Cl]Cl*2CH^OH

5.20(2.20)C

5.05(2.05)e

8.22(7.57)C

6.11(5.46)C

7.57 5.35 53* Lid-on 0.65

[Fe{(m-Xylyl(HeNEthi)2)He2~ [16]tetraeneN^}Cl](PF^)

7.37(4.37)*

7.34 (4.34)e

5.54 (5.02)c

4.44(3.94)C

4.96 3.57 30" Lid-off 0.54

[Fe{(1,5-Pent(NHEthi)2)Me2-[16]tetraeneN^}(PY)(CO)](PFfi)2'CH3OH

6.70(3.70)e

6.28(3.28)e

4.72 5.88 3.83 5.31 — — Lid-off 0.046

tCot(1,6-Hex(MeNEthl)2)Me2- [16]tetraeneN^}(PFg)^

6.65(3.65)e

6.76(3.76)e

5.60 4.83 — — — — *“ — Lid-off

[Cot(l,6-Hex(MeNEthi)2)Me2- [16]tetraeneN4}(NCS)2]Cld

7.09(4.09)e

6.92(3.92)e

6.17 4.80 Lid-off

Measured between ethylldene carbon atoms. ^Measured between bridge nitrogen atoms.°Measured to dummy atom at center of plane. ^Reference 65.eCorrected for van der Waals radii.

176O

4.34 A when corrected for van der Walls radii). The cavity height (as

measured from the center of the plane to the bridge) ranges fromo o o o

4.55 A to 7.57 A in the front and 4.27 A to 5.88 A in the rear, where

front refers to the atoms extending furthest over the metal and rear

refers to-the atoms extending over the trimethylene groups of theD O

macrocycle. The maximum cavity height ranges from 2.53 A to 3.99 A

when the distances are corrected for van der Waal radii. As structure

XXVII shows, it is estimated that the cavity must be large enough toO O

accommodate a cylinder of radius 1.40 A and height of 4.35 A if CO is

to bind in a linear manner along the macrocycle axis. It is clear from

the ORTEP drawings that such dimensions are not accessible for the

xylene bridged complexes. It is conceivable however that longer

aliphatic bridges in the "lid-off11 conformation could be flexible

N-

0 -IC-

1.40

1.15

F.e'1.80 — N

B

m m

177

enough to have minimal sterlc interactions with a bound CO molecule by

extending upward toward the rear of the molecule. It has in fact been

shown that a hexamethylene bridged complex has a sufficiently large65cavity to accommodate a thiocyanate ligand, although the Co-N-C bond

is bent 148° due to strong interactions between the bridge and the car­

bon and sulfur atoms of the thiocyanate. It will be shown in this work

that for the more restrictive pentamethylene bridged complex there are

strong interactions between the oxygen atom of a bound CO and the

bridge. The fact that the longer bridge interacts most strongly with

the third atom of the bound ligand, NCS, and the shorter bridge inter­

acts with the second atom of the bound CO suggests that bridge size

effects should have a very significant role in determining the

stability of adducts which form by the coordination of a small mole­

cule to the metal center at the protected axial site. In particular,

variation of the bridging group should be manifest in the equilibrium

constants for the binding of CO to the iron(II) center.

It Is significant that in the nickel(II) para-xylene derivative

and the four coordinate cobalt(II) species the cavity Is wider between

the bridge nitrogen atoms than between the ethylidene carbon atoms. The

opposite is true for all other cases. Furthermore, this inversion is

observed even when the bridging group remains the same, as in the caseO

of the two cobalt complexes. An increase of 0.44 A between theO

ethylidene carbon atoms is accompanied by a decrease of 0.16 A between

the bridge nitrogen atoms. This demonstrates that rotation about the

bond between the bridgehead and ethylidene carbon atoms is one way that

Internal stress is relieved in the bridging part of the molecule.

178

Reactions of Iron(ll) Complexes with Axial Ligands

Before equilibrium studies with carbon monoxide could be under­

taken, it was necessary to study the behavior of the iron(II) complexes

with axial ligands. Specifically, the reactions of the iron(II) chloro

and four-coordinate complexes with chloride, pyridine, and

1-methylimldazole were examined. These results comprise the following

discussion.

It was found that upon addition of l-Melm to acetonitrile solu­

tions of the complexes there were no observable changes in the elec­

tronic spectra, the oxidation potentials remained essentially the same,

and the molar conductances remained consistent with a 1:1 electrolyte

designation. From these observations It was concluded that the chloride

ion remains tightly bonded to the iron(II) center in solution and that

the iron(II) remains five-coordinate. This indicated that the bridge

was effectively functioning to block the approach to the protected site

of potential sixth ligands and five-coordination was maintained as is

required of a good model system.

In order to learn more about the binding of chloride to the

metal center, some electrochemical studies were undertaken. It was

found that for [Fe{(m-Xylyl(NHEthi)2)Me2 [16]tetraeneN^}ci]+

in DMF, the oxidation peak potential shifted from -0.360 V versus + —Ag/Ag when PFg was the anion to -0.435 V when chloride was the anion.

Such a shift in potential is consistent with partial chloride ion dis­

sociation in solution or with interaction of a second chloride Ion with

the metal center. Carefully controlled experiments were performed for

for the methyl substituted meta-xylyl and hexamethylene bridged

179

complexes in which the oxidation potential was measured as a function of

chloride ion concentration in acetonitrile. For the (NMe^Mxyl complex,

excess chloride shifted the potential only 30 mV more negative, and no

further changes were evident beyond 100-fold excess chloride. The

results were not as simple for the (NMe)„(CH„), Bpecies however. AsZ Z D

shown in figure 42, in the absence of excess chloride there was a single

oxidation wave with a peak potential of -0.410 V. Upon addition of 100

equivalents of chloride, two waves appeared at -0.365 V and -0.475 V.

The shift to -0.475 is consistent with that observed in the (NMe)Mxyl

example but the position shift remains unexplained. Even in the pres­

ence of the 100-fold excess of chloride ion, the ratio of the currents

of the two waves was still changing. Although it is expected that a

second chloride ion would interact more readily with longer and more

flexibly bridged hexamethylene species than with the meta-xylene

bridged one, the data do not conclusively support such a process.

Electronic spectra were measured as a function of chloride ion

concentration for the (NMe^Mxyl and (NH^Pxyl complexes in acetonitrile

and demonstrated only very slight changes indicating no major modifica­

tion in the ligand field of the metal ion. This can be explained in two

possible ways. First, a second chloride ion is not interacting with the

metal ion at all or second, either chloride or solvent is always bound

to the sixth coordination site with each yielding identical spectra.

If a sixth ligand were to interact with the iron(II) center, the2 ispin state should change from high- to low-spin. Therefore, XH NMR

spectra were measured in CD^CN for the methyl substituted hexamethylene

and meta-xylene bridged iron(II) chloro species as shown in

180

0.0 - 0.2 -0.4 - 0.8 - 1.0- 0.6

Figure 42. Cyclic Voltamagram of [Fe{(1,6-Hex(MeNEthi^JMe^ 16]- tetraeneN^)Cl](PFg) with a) No Excess Chloride and b) 100 Equivalents of Excess Chloride

181

figures 43 and 44, respectively. It is clear that there are numerous

resonances which are broadened and outside of the normal shift ranges of

diamagnetic species. The implication is that the major component in

solution is a five-coordinate high-spin iron(II) complex. There are

also resonances which can be attributed to a diamagnetic species in the130-10 ppm range for both complexes. The C NMR spectrum of the

(NMe^Mxyl species is shown in figure 45 and confirms the presence of a

diamagnetic species in solution. There are also several broad reso­

nances due to the presence of a paramagnetic component. The large num-13ber of scans required to obtain a good C NMR spectrum on a highly

concentrated solution indicates that the diamagnetic species is only a

minor component in the solution.

The above data combine to clarify the solution behavior of the

iron(II) chloro complexes. Scheme IV includes the various equilibria

which can exist simultaneously in solution. Conductivity measurements

are consistent with [FeLCl] as the principle species in solution.

Steric arguments suggest that [FeLC^]0 and [FeLCl(S)]+ are only very

minor components due to interaction between the chloride and ligand

structure. The diamagnetic component in the NMR spectra indicates that

the rate of exchange of the various axial ligands is slow on the NMR

time scale. This is not surprising for iron(II) when spin state

changes associated with changes in coordination numbers and subsequent

ligand modifications must occur in all of the equilibria. Electro-2+chemical observations demonstrate that significant amounts of [FeL] ,

[FeL(S)]^+ , or [ F e M S ^ ] exist in solution in addition to [FeLCl]+.

Addition of excess chloride drives the equilibria toward [FeLCl]

40 20 -20 -40ppm

Figure 43. NMR Spectrum of [Fe{ (1,6-Hex(MeNEthi) 0)Me_ [16] tetraeneN. }cl] (PF,)L L 4 6

182

40 20 -20 -400ppm

Figure 44. XH NMR Spectrum of [Fe{(m-Xylyl(MeNEthi)0)Me„[16]tetraeneN.}cl](PF,)1 L h 6

183

160 120 80ppm 40

Figure 45- 13C NMR Spectrum of lFe{(m-Xylyl(MeNEthi)2)Me2[16]tetraeneN4}Cl](PF6)

184

SCHEME T3ZF e L SL O WSPIN

2 +* ► F e L S 2 + < — — » F e L S C I(HIGH LOWSPIN SPIN

L IF e L Z + 4 = t F e L C ! + 5 = * F e L C I 2 °

INTERMEDIATE HIGH LOWSPIN SPIN SPIN

185

186

which has a more negative potential. The conclusion drawn from these

observations is that the two principle species in solution are the+ 2 paramagnetic [FeLCl] and diamagnetic [FeLCS)^] with the former

species as the major component.

Because the equilibria involving chloride ion were not simple,

several attempts were made to remove the coordinated chloride from the

iron(XI) center. Addition of silver ion to methanolic solutions of

the (NH^Mxyl and (NMeJ^Mxyl iron(II) chloro complexes resulted In the

formation of deep blue iron(III) complexes which were very difficult to

purify. Similar products were obtained when silver ion was added to

chloro complexes of iron(HI). In each instance, analytically pure

samples were not obtained and the electrochemical behavior was very

complex and Ill-defined. Direct synthesis of chloride-free species

met with some success as was described In an earlier section of this

work.

The equilibria for axial base adduct formation with

[Fe{(m-Xylyl(MeNEthi)2)Me2[16]tetraeneN^,}]l2 (equation 29) in aqueous

solution were examined at ambient temperatures.

[FeL]I2 + B <5^ [FeL(B)]I2 ’ (29)

66Stevens has described in detail the method for measuring such

equilibrium constants and for evaluating errors. Total spectral

changes were on the order of 0.25-0.3 absorbance units over the range

of the titration which was adequate to allow good refinement of the

equilibrium constants. K was determined to be 8.48 + 0.58 & mole”'1'

B « Py and 81 + 7 JZ. mole ^ for B ** l-Melm. The value for the pyridine

187

case was essentially independent of wavelength, but for B «= l-Melm the

value was somewhat wavelength dependent resulting in a higher but still

reasonable standard deviation. The stronger Lewis basicity of 1 - Melm

compared with Py is clearly reflected in these data, consistent with49observations for related porphyrin systems.

CO Adducts of Iron(II) Dry Cave Complexes

It was of paramount importance to structurally characterize a

CO adduct of an iron(II) dry cave complex to elucidate the nature of

binding and bending of the CO molecule at the metal center. It was

also necessary to prepare solid CO adducts in order to verify the com­

position of the products and to measure the spectroscopic properties of

the complexes. Therefore, a series of six-coordinate iron(II) carbon

monoxide complexes of dry cave ligands were synthesized and charac­

terized. In the following discussions, the synthesis and properties of

the complexes are described. The crystal structure of a CO adduct is

then reported followed by equilibrium studies between CO and the

iron(II) complexes.

Synthesis and Characterization. The iron(II) chloro complexes

were found to undergo a very novel reaction with CO as shm- v.

tion 30. The high-spin, five-coordinate iron(II) complex reacts with

a molecule of CO and a molecule of base to produce a six-coordinate,

low-spin iron(II) CO adduct and a chloride ion. The complexes having

(NH^Mxyl, (NMe^Mxyl, (NH^Pxyl, and (NMe^CCHj)^ bridging groups were

synthesized and studied by this author. Complexes derived from the

(NH)2 (012)5 , ( ^ ^ ( O ^ ) ^ , and (NH)2Fluorene bridged ligands were

R

+ xs B + CO

B =

.CO

2 +

(30)

188

18988prepared simultaneously by Dr. J. J. Grzybowski of these laboratories

and will be included in discussions in this work due to their obvious

relevance. In general, the reactions were carried out in methanol or

acetonitrile/ethanol mixtures in the presence of an excess of the

desired axial ligand. Addition of CO caused the solution to change in

color from deep red to orange. Subsequent addition of ammonium hexa-

fluorophosphate yielded the red-orange CO addition products which were

usually highly crystalline. The resulting solids are generally air

stable for days but, In solution, reaction with air occurs within

minutes or hours depending on the particular bridging group and axial

ligand.

Iodide salts of CO adducts were prepared by the reaction of the

iron(II) chloro complex with an appropriate base and CO in acetone.

Addition of excess (nBu)^NI produced the crystalline iodide salts in

high yield. Attempts to produce chloride salts in the same way

resulted in the loss of CO yielding only chloro-chloride species.

CO adducts were also prepared from some of the four-coordinate

iron(II) complexes. The properties of such species matched those of

the adducts prepared from the corresponding chloro complexes, verifying

that the ligand remains intact in the conversion to and from the

four-coordinate species. Again, for purposes of comparison an

unbridged CO adduct was synthesized. Because it was not possible to

Isolate a simple iron(II) complex of the ligand derived from dimethyla-

mine, the carbon monoxide adduct was synthesized directly from the

ligand and iron(II) starting materials in acetonitrile. The product,

identified as [Fe { (Me2NEthi) 2 ^ 2 [16 ] tetraeneN^ } (CH^CN) (CO) ] (PFg ) 2 > was

190

Isolated and characterized. This complex was designed to be similar to

the CO adducts of most other model systems because unhindered linear

binding of the CO to the iron(II) center is expected, thus allowing the

bridged complexes to be compared with an unbridged structure having the

same basic macrocycle.

Analytical data for the CO adducts demonstrated that, in some

cases, mixtures of the desired product and either a chloro complex or

four-coordinate species were obtained. In other cases, some excess sol­

vent was present due to the fact that the complexes were not rigorously

dried for fear of removing some of the bound CO. Despite these diffi­

culties, the analyses are in support of the proposed formulations.

(See Experimental section.)

The infrared spectra of the CO adducts contain a great deal of

useful information. The N-H and C = C , C = N regions are typical of the

mr.crocyclic species. Of particular interest however are the absorp­

tions due to the bound CO between 1900 cm ^ and 2000 cm \ which are

discussed separately later, and those due to the nitrogenous base which

occupies the axial site trans to the CO. In order to eliminate solid

state effects present in nujol mulls, spectra were also measured in

acetonitrile solution and, for some complexes, in other solvents.

The spectra of [Fe{(£-Xylyl(NHEthi)2)Me2[16]tetraeneN^}(B)(CO)]-

w^ere ® c CH^CN, Py, and 1 - Melm are shown in figures 46a, b, and

c, respectively. The N-H stretch at 3420 cm ^ and the bands between

1550 and 1650 cm ^ are typical of the bridged macrocycles. The CO

stretching mode gives bands at 1985, 1980, and 1970 cm ^ when the base

is CH^CN, Py, and l-Melm, respectively. Two weak absorptions near

u

r \

r

%y r-191

I1000

I500

I1500

I20004000 3000 cm

Figure 46. Infrared Spectra of [Fe{(j>-Xylyl(NHEthi)2)Me2[16]tetraeneN^}- (B)(C0)](PF6)2, a) B = CH3CN, b) B = PY, c) B = 1 - Melm

192

2290 and 2370 cm are due to the bound acetonitrile molecule In the

CH^CN derivative. (Free acetonitrile is observed as a single sharp

absorption at 2250 cm Bound 1 - Melm is identified by the absorp­

tion at 3140 cm ^ which is caused by the C-H stretch at the carbon

between the two imidazole nitrogen atoms. Absorptions due to bound

pyridine are obscured by ligand bands in the 1500-1650 cm ^ region, but

extra bands in the aromatic region between 600 and 800 cm ^ are

generally present in pyridine derivatives. The spectra described above

are typical of the solid state spectra observed for monomeric dry cave

complexes.

Carbon-13 NMR spectra were measured for a number of the CO

adducts in CT^CN solution at ambient probe temperatures (~40°C) using

a five second pulse delay. Representative spectra for the (NMe)^”

(CH^)^ bridged CO adducts having CH^CN, Py, and 1 - Melm as the trans13axial ligand are shown in figures 47, 48, and 49, respectively. C

NMR data for a number of monomeric CO adducts are listed in table 27.

Simple mirror symmetry is present for the unbridged complex

derived from dimethylamine and for all bridged complexes containing

CH^CN as the trans axial ligand, as shown in figure 47 for the (NMe^-

^■^2^6 examP^e * Similar spectra are anticipated for pyridine deriva­

tives but are not observed. Instead, there is a doubling of most

resonances except for those due to pyridine. Careful examination of

the spectra shows that the line doubling is due to the presence of both

pyridine and acetonitrile derivatives in solution as a result of ligand

exchange at the trans axial site. The two species are present in nearly

equal concentrations.

rV Al* Ja ... ,n t..j

240 200 160 120ppm 80 40

13Figure 47. C NMR Spectrum of tFe{(l,6-Hex(MeNEthi)2)Me2[16]tetraeneN4}(CH3CN)(CO)](PFg)2 193

240 200 160 120ppm

60 40

13Figure 48. C NMR Spectrum of [Fe{(l,6-Hex(MeNEthi)„)Me„[16]tetraeneN.}(PY)(C0)](PF,)„Z Z q 6 2

194

240 200 160 120ppm

00 40

13Figure 49. C NMR Spectrum of [Fe{(1,6-Hex(MeNEthi)2>Me2[16]tetraeneN^}(l-Melm)(CO)](FF6>2

195

196

TABLE 27CARBON-13 NMR DATA* FOR CO ADDUCTS OF MONOMERIC IRON(II)

DRY CAVE COMPLEXES, [Fe{(R)Me2 [16]tetraene^}(B) (CO) ] (PFg)2

B Chemical Shifts

l,5-Pent(NHEthi)2 PY

1,6-Hex (MeNEthi) 2 C ^ C N

1,6-Hex(MeNEthi)2 PY

1,6-Hex (MeNEthi) 2 1 - Melm

m-Xyly1(NHEthi)2 Im

m-Xylyl(MeNEthi)2 Im

220.1, 219.1, 172.A, 170.6, 165.1, 163.6,161.9, 152.8, 137.7, 124.6, 109.8, 57.3,49.A, 49.0, 45.9, 30.1, 29.0, 26.9, 19.7,19.2, 16.2

222.7, 172.1, 167.2, 165.5, 111.1, 60.3,56.7, 52.0, 38.3, 31.8, 30.6, 25.6, 24.3,21.9, 16.8

224.0, 174.0, 172.6, 168.8, 167.6, 167.3,166.0, 155.4, 140.5, 127.5, 111.8, 111.6,60.8, 57.6, 57.2, 52.5, 52.2, 39.0, 38.8,31.8, 30.4, 26.1, 24.9, 22.7, 22.3, 17.8,17.3

223.8, 173.2, 172.7, 168.4, 167.9, 166.5,151.0, 131.1, 119.2, 112.0, 111.8, 61.3,57,9, 57.4, 52.7, 52.6, 38.9, 38.8, 32.2,30.7, 26.1, 24.9, 22.7, 18.6, 17.6, 17.5,12.5

218.4, 174.0, 173.8, 168.5, 168.1, 161.8,141.4, 140.1, 130.6, 130.3, 127.5, 119.9,112.7, 112.5, 60.1, 52.1, 51.9, 49.6, 30.9,30.3, 22.6

216.5, 174.3, 174.1, 169.1, 168.8, 164.8,164.6, 141.2, 140.3, 130.9, 130.5, 129.1,126.4, 119.8, 114.3, 60.5, 52.3, 52.1,44.5, 30.5, 30.3, 22.7, 16.8

197

TABLE 27 (continued)

R B Chemical Shifts*1

£-Xylyl(NHEthl)2 CH3CN 213.2, 169..0, 165.0, 156.3, 135.3, 127.1,126.8, 109.,2, 56.9, 48.6, 45.7, 28..6,21.7, 17.4,, 12.0

(Me2NEthi)2 CH3CN 223.1, 171.,0, 170.4, 164.2, 109.3, 65.8,60.1, 52.2,, 43.2, 30 .4, 28.4, 21.6,, 18.2,15.2

Measured on concentrated solutions in CD^CN.

kppm relative to TMS.

198

When an unsymmetrical Imidazole base is used, a doubling of

peaks is again observed but the intensities for related carbon atoms are

essentially the same in all cases. The positions of the resonances

establish the absence of an acetonitrile adduct, thereby eliminating

axial base exchange as the cause of the doubling. The conclusion is that

the observed spectrum is due to the asymmetry of the imidazole ligand,

which rotates and exchanges only slowly on the NMR time scale. The

higher base equilibrium constants for the binding of imidazoles rela­

tive to pyridine, as shown earlier, are in support of this explanation.

Crystal Structures of a CO Adduct of an Iron(II) Dry Cave Complex

The importance of the bending of the Fe-C-0 linkage in natural

systems has already been emphasized (page 6). There is no precedent

for such bending in model systems^ ^ and thus it was highly desir­

able to structurally characterize a CO adduct of an iron(II) dry cave

complex to determine unambiguously the nature of the bending in the

Fe-C-0 linkage.

Dr. J. J. Grzybowski of these laboratories generously supplied

crystals of the complex [Fe{(1,5-Pent(NHEthi)2)Me2[16]tetraeneN^}-

(CO) (PY)] ( P F g ^ ’CH^OH. The details of the structural refinement were

discussed in the Experimental section of this work. ORTEP drawings of

the molecule are shown in figure 50 and the molecular numbering scheme

appears in figure 51. The bond distances and angles with esds are

listed in tables 28 and 29, respectively. The quality of the structure

is excellent as is indicated by the small esds and the particularly low

Figure 50. ORTEF Drawings of [Fe{(l,5-Pent(NHEthi) )Me [16]tetraeneN.}(PY)(C0)](PFj_*CH OH£■ £■ h 6 2 3

199

200

TABLE 28BOND DISTANCES (esd) FOR [Fe{(l,5-Pent(NHEthi)2)

Me2 [16]tetraeneN4)(PY)(CO)](PFfi)2«CH3OH

Fe-Nl 1.997(3) C16-C17 1.387(5) C10-H103 0.93(4)

Fe-N2 1.986(3) C18-02 1.56(2) Cll-Hlll 0.99(4)

Fe-N4 2.052(3) P-Fl 1.590(3) C11-H112 1.00(3)

Fe-C14 1.792(4) P-F2 1.595(2) C12-H121 0.97(4)

Nl-Cl 1.295(4) P-F3 1.576(4) C12-H122 0.97(4)

N1-C7 1.478(4) P-F4 1.551(3) C13-H131 0.96(4)

N2-C3 1.295(4) P-F5 1.537(4) C13-H132 0.98(5)

N2-C4 1.478(4) P-F6 1.555(4) C15-H151 0.90(4)

N3-C9 1.341(5) C3-H31 0.99(4) C16-H161 0.93(4)

N3-C11 1.467(6) C4-H41 0.97(4) C17-H171 0.83(4)

N4-C15 1.345(4) C4-H42 1.05(3) N3-NH31 0.79(3)

C1-C2 1.465(5) C5-H51 0.95(6)

C1-C8 1.516(6) C5-H52 0.90(4)

C2-C3 1.446(5) C6-H61 1.00(4)

C2-C9 1.402(4) C6-H62 0.95(5)

C4-C5 1.518(5) C7-H71 1.01(3)

C6-C7 1.501(5) C7-H72 1.03(4)

C9-C10 1.487(6) C8-H81 0.95(3)

C11-C12 1.513(5) C8-H82 1.05(4)

C12-C13 1.538(6) C8-H83 0.88(4)

C14-01 1.150(5) C10-H101 1.03(3)

C15-C16 1.370(4) C10-H102 0.93(4)

201

TABLE 29BOND ANGLES (esd) FOR [Fe{(l,5-Pent(NHEthi)2)

Me2 [16]tetraeneN4>(PY)(CO)](PF6)2 ‘CH3OH

Nl'-Fe-Nl 90.2(2) C8-C1-C2 116.4(3)

N2-Fe-Nl 87.8(1) C3-C2-C1 119.2(3)

ClA-Fe-Nl 93.7(1) C9-C2-C1 124.0(3)

N4-Fe-Nl 93.1(1) C9-C2-C3 116.7(3)

N2"-Fe-N2 94.0(2) C2-C3-N2 123.0(4)

Cl4-Fe-N2 83.7(1) C5-C4-N2 110.9(4)

N4-Fe-N2 89.7(1) C4"-C5-C4 115.0(4)

Cl4-Fe-N4 170.3(2) C7 "-C6-C7 114.5(5)

Cl-Nl-Fe 121.2(3) C6-C7-N1 111.4(3)

C7-Nl-Fe 119.1(2) C2-N9-N3 122.8(3)

C7-N1-C1 119.5(4) C10-C9-N3 114.7(3)

C3-N2-Fe 120.3(3) C10-C9-C2 122.5(3)

C4-N2-Fe 121.5(2) C12-C11-N3 111.2(3)

C4-N2-C3 117.1(3) C13-C12-C11 115.5(3)

C11-N3-C9 127.7(3) C12 "-C13-C12 115.3(6)

Cl5-N4-Fe 121.3(2) 01-C14-Fe 170.6(5)

C15"-N4-C15 116.7(4) C16-C15-N4 123.6(4)

C2-C1-N1 120.3(4) C17-C16-C15 118.7(4)

C8-C1-N1 122.8(4) C16'-C17-C16 118.6(5)

C3 qi-

Qt

•ce

/C5

N 2 c

N3.

CI2

202

II

C4

Fe

*•s.-\

C(

/

CI6

C13

CI2

-c17/CI6'

Figure 51. Molecular Numbering Scheme for [Fe{(l,5-Pent(NHEthi)„)Me9- [16]tetraeneN4)(FY)C0)](PF6)2*CH3OH 2 2

GOF value of 1.17. Therefore, bond distances and angles are very well

defined and can be interpreted with confidence.

The ORTEP drawings clearly show the coordination sphere of the

iron(II) with the macrocycle bound equatorially, pyridine bound axially

and carbon monoxide bound axially within the dry cave. The iron(II) isO

low-spin and is displaced but 0.05 A out of the macrocycle plane

toward the pyridine. The average iron-macrocycle nitrogen bond dis-® 56tance of 1.992 A is typical of low-spin iron(II) porphyrin complexes.

OThe iron-pyridine bond distance of 2.052 A is the shortest of the three

reported iron(II) pyridine carbon monoxide adducts. Table 30 contains

a summary of relevant data for Fe(TPP)(CO)(PY)"^ and three CO adducts58reported by Goedkln.

TABLE 30

SUMMARY OP STRUCTURAL DATA FOR CO ADDUCTS OF MODEL SYSTEMS

Complex- ■ s~ -

Fe-H(Mac), A1 * Fe-N(B), A Fe-C, A C-0, A <Fe-C-0,° <C-Fe-N(B) vco’ co'1

[Pet <1,5-Pent(NHEthi),)Me,[16]- 1960dtetraeneNA)(CO)(Py)(PF6)2*CH3OH 1.995(3) 2.059(3) 1.792(4) 1.150(5) 170.6(5)C 170.3(2) 1952e[Fe(TPP)(CO)(PY)]a 2.02(1) 2.10(1) 1.77(2) 1.12(2) 179(2) 177.5(8) 1980f[Fe(C22H22H4)(CO)]b 1.927(4) ---- 1.694(4) 1.157(2) 177.2(3) ---- 1915*tFe(C22H22N4)(FY)(C0)]b 1.941(2) 2.088(3) 1.730(3) 1.146(3) 178.2(3) 177.2(1) 1940f[Fe(C22H22H4)(H2H4)(CO)]b 1.943(4) 2.122(5) 1.751(5) 1.137(6) 177.6(5) 179.2(2) 1930*

Reference 56.^Reference 58.CThls alone does not adequately describe the displacement of the CO from a linear orientation. ^Acetonitrile solution.*Nujol mull.^Although conditions are not given, these are presumed to be solid state values.

203

204O

The iron-carbon and carbon-oxygen distances are 1.79 A and

1.150 A respectively. This is the longest Fe-C bond of those reported

and is the second longest carbon-oxygen bond. By far the most signifi­

cant feature of the structure is the bent Fe-C-0 linkage which has an

angle of 170/>°. All other structures reported for model systems

exhibit an almost linearly bound CO. Furthermore the carbon is dis-O

placed from the macrocyclic axis by 0.76 A thus showing that the carbon

monoxide bends both at the iron center and at the carbon atom. The

cause of this bending is steric interactions between the bound CO and

the pentamethylene bridging group. The cavity is quite restrictiveo D

having a width of 6.28 A between nitrogen atoms (3.28 A when corrected

for van der Waals radii). The bridge is also quite low, with a heighta o

of 3.83 A from Cll and 5.31 A from C13 to the plane. Most impor­

tantly, the hydrogens of the bridge point into the cavity at the bound

CO. Thus it appears that there is little room within the cavity toQ

accommodate a ligand. As a result, the CO oxygen atom is 2.62 A fromO

the hydrogen atom on Cll and 2.92 A from the hydrogen atom on C12.

These distances are very close to the van der Walls contact distance ofO

2.72 A indicating strong non-bonded interaction and explain the observed

CO bending. The bridge is in turn distorted, having C13 pushed as farO

as possible from the bound CO. Furthermore, the oxygen atom is 2.77 A

from the hydrogen atom of C17 of the pyridine belonging to the next

molecule in the lattice. As the packing diagram in figure 52 shows,

this interaction is in a direction which should force the CO toward a

more linear orientation. Thus it is expected that the degree of bending

of the Fe-C-0 linkage is possibly even greater in solution where such

205

Figure 52. Packing Diagram for [Fe{(l,5-Pent(NHEthi)2)^6 2[16]tetraene- }(CO)(PY)](PFfi)2 * CH3OH

206

intermolecular interactions are unimportant and intramolecular interac­

tions are dominant. From these observations two major conclusions are

drawn: First, the Fe-C-0 linkage is bent both at the iron and at the

carbon atoms. Such an arrangement can reasonably be expected in the

natural systems. Secondly, the dry cave complexes are verified to be

excellent models for demonstrating the interaction of Hb and Mb with

carbon monoxide. The bridging group appears to play a similar steric

role as the distal imidazole functions in the natural systems. This is

the first example of a model system which has been shown through struc­

tural analysis to contain a bent Fe-C-0 linkage. It is obvious from

the drawings of this molecule that the degree of bending of the Fe-C-0

linkage can be precisely controlled by careful selection of the

bridging group and thus the effects of this bending on the physical

properties of the complexes can be systematically studied as will be

described in the next section of this work.

The packing diagram in figure 52 also shows that the pyridine

molecule is bent relative to the macrocycle axis. Such a bending is

indeed unusual but is readily explained in terms of packing forces.

(This is accidental in our CO complex, but serendipitously mimics devi­

ations from axial alignment of the proximal imidazole in the natural 97systems. ) It has already been mentioned that the pyridine of one

molecule contacts with the CO oxygen atom of a second. The effect of

this interaction on the pyridine is to cause it to bend in the observed

direction. A further interaction is seen between the hydrogen of C16

and one of the hydrogens of CIO of the next molecule which has aO

distance of 2.53 A. This repulsive interaction is in the same direction

207

as the first and together they result in the observed deviation from

axial alignment. In solution this interraolecular interaction does not

exist and can therefore be disregarded in solution studies.

Equilibrium Studies of the Reaction between Carbon Monoxide and Monomeric Iron(II) Dry Cave Complexes

A central goal of this work is the assessment of the effect of

the bridging group of dry cave ligands on the binding of CO to the

iron(II) center. By means of a systematic study of the CO binding con­

stants as a function of cavity size, the effects of bending of the

Fe-C-0 linkage can be quantified. Such a study was undertaken in this

work and demonstrates that as the cavity size becomes more restrictive,

the CO binding constant decreases. Equilibrium constants spanning a

range of at least four orders of magnitude were observed due solely to

changes in the nature of the bridging group. In addition, the inhibi­

tory effect of chloride ion on the binding of CO was clearly demon­

strated for several of the complexes. The method used for equilibrium

measurements utilized the flow system designed and described by

Stevens.^ The basic technique and the modifications which were made to

study reactions with CO instead of 0^ are described in the Experimental

section of this work.

The simplest complex examined in detail was [Fe{(m-Xylyl-

(MeNEthi^H^tlbJtetraeneN^}] (PF^Jg, the well characterized

four-coordinate iron(II) dry cave complex. This complex was selected in

order to avoid the equilibria involving chloride in the chloro deriva­

tives. Preliminary results had indicated that the equilibrium constants

were such that they could be determined over a broad range of

208

temperatures using the accessible pressures of CO. To minimize the

number of equilibria in solution, the studies were carried out in ace-

tonitrile with no added axial base. It was assumed that in acetoni-

trlle solution the principle species was five-coordinate with

acetonitrile as the axial ligand. The expected reaction with CO is

that shown in equation 31. The spectral changes

[{FeL}(CH3CN)]2+ + CO =5= ^ [{FeL> (CHgCN) (CO) 2+ (31)

observed upon addition of increasing partial pressures of CO are shown

in figure 53. The absorbance increases above 413 nm, maxima at 360 and

287 nm decrease in intensity and new maxima grow in near 332 and 257 nm

upon introduction of CO. Reasonably sharp isoshestic points are

observed at 413, 342, 302, and 274 nm. The spectral changes are essen­

tially reversible upon flushing the solution with pure nitrogen.

The CO equilibrium constants for this complex at several dif­

ferent temperatures are listed in table 31. The values listed are the

average values determined at three or more different wavelengths.

Although there was some variation in the calculated values at different

wavelengths, no systematic errors were observed. The standard devia­

tions calculated by the refinement program are all less than 10% and

are believed to be accurate estimates of the experimental error.

Since was known over a range of temperatures, a van’t Hoff

plot was generated to calculate the thermodynamic parameters AH and AS

(figure 54). A linear least squares fit to the data yield values of3(-9.8 + .6) x 10 kcal/mole for AH and -38 + 2 eu for AS as obtained

209

0 .9

0,8

0.7

0,6

0.5-

0 .4

0 .3 -

0.2-

3 5 0 4 0 0 4 5 0

Figure 53. Spectral Changes for the Reaction of [Fe{(m-Xylyl-(MeNEthi)2)Me2 [l6]tetraeneN4}(CH3CN)](PF6)2 with CO inCH3CN at 0°C

210

TABLE 31

CO EQUILIBRIUM CONSTANTS FOR [Fe{(m-Xylyl(MeNEthi)2)Me2 [16]tetraeneN4}(CH3CN)](PF6> 2

IN ACETONITRILE

T,° C K, . -1 torr

-29.4 2.3 ± *2-19.1 1.6 •—1 •+1

-10.0 0.84 1 + • o -F-

0.0 0.43 + .03

+ 9.8 0.16 + .01

+20.0 0.086 + .008

211

2.0

0.0

- 1.0

- 2.0R InK

-3.0

-4.0

-ao

- 6 0

-7.0

3 4 3.5 3.6 3.9 4.03.8

Figure 54. Van't Hoff Plot for [Fe{(m-Xylyl(MeNEthi)2)Me2 [16]tetraene- N4 }](PF6)2 in CH3CN

212

from the slope and Intercept, respectively. The correlation coeffi­

cient for the line was 0.9893. This value for AH compares favorably98with the value of -11.5 + .5 kcal/mole reported for hemoglobin.

Careful examination of the plot reveals an apparently systematic devia­

tion from linearity, however, indicative of a systematic problem which

is temperature dependent. It is possible that an irreversible reaction

is occurring with residual traces of oxygen in the flow system as a

result of leaks of insufficient scrubbing of the CO. Such reactions

are known to be irreversible and temperature dependent and thus the

effect of such a reaction could well be systematic. It is also pos­

sible that the equilibrium between acetonitrile and the complex is not

saturated under the experimental conditions. The result of this would

not be a temperature dependent change In the concentration of the reac­

tive acetonitrile adduct in solution. would therefore respond to

such an equilibrium in the observed manner. As a result of this, the

values of the thermodynamic parameters must be interpreted with

caution.

In order to evaluate the effects of axial base on the CO

equilibrium, the above complex was studied in acetonitrile solution

containing 10% 1 - Melm at 10°C. Although isosbestic spectral changes

were not observed, an approximate value for of 0.489 + .054 torr ^

was determined which is about 5 times greater than the value observed

at the same temperature in the absence of l-Melm. This observation

confirms the importance of IT backbonding in stabilizing the iron-carbon

bond, since it is enhanced by the good Lewis base l-Melm.

213

The behavior of the complex believed to be the four-coordinate

iron(II) derivative of the (NMe) 2(0112)4 bridged ligand was examined at

-8 .6°C in acetonitrile. was found to be 0.104 + 0.020 torr \

approximately 10 times smaller than the value for the (NMe^Mxyl com­

plex under comparable conditions. Although the relative error is

rather large for this case, the observed Kcq is wavelength independent.

The very small value of K is presumed to be a result of strongLUsteric interaction between the bound CO and bridge, causing a weakening

of the iron-carbon bond.

The four-coordinate iron(II) complex having the (NMe^^l^)^

bridge was studied in acetonitrile at 20°C. The spectral changes were

essentially complete after introduction of the lowest accessible par­

tial pressure of CO (0.2 torr), indicating a value of too large to

measure under the available experimental conditions. These results

are all in good agreement with expectation that the observed equilibrium

constants should be dependent upon the nature of the bridge and size of

the resulting cavity.

Due to the synthetic difficulties encountered In the synthesis

of four-coordinate complexes and the need to measure as a function

of bridge size, the well characterized chloro-iron(II) complexes were

examined. The studies revealed a behavior that Is quite complex but

yielded some very useful information. Preliminary studies indicated

that as the concentration of chloride in solution increased, the

observed decreased. It is possible that chloride ion is competing

with CO for the vacant coordination site of the metal. It is also pos­

sible that chloride ion is involved in another equilibrium with the

214

iron(II) complex which affects the CO binding constant. In order to

determine the role of chloride ion, a detailed study was undertaken

using [Fe{(£^XylylCNHEthi)2)Me2 [16]tetraeneN^,}Cl] (PFg) . This system

was selected because the spectral changes upon addition of CO were iso-

sbestic (figure 55) and the equilibrium constant was of a magnitude

which allowed for accurate measurement of K^q over a wide range of

chloride ion concentrations. was determined as a function of

chloride ion concentration in acetonitrile solution at 0.0°C. The

total ionic strength was maintained at 0.1 molar with (nBu)^NBF^. As

the data in table 32 clearly demonstrate, the value of spans more

than four orders of magnitude as the chloride ion concentration ranges

from 0.0 to 0.1 molar. A model has been developed which is consistent

with the observed data and allows the equilibrium constant for the

binding of chloride to the metal to be determined. The model is based

on the three equilibria defined by equations 32-34.

[FeL(CH3CN)]2+ + CO *5= ^ [FeL(CH3CN) (CO) ]2+ (32)

[FeL(Cl)]+ + CO =5=^* [FeL(Cl)(C0)]+ (33)

[FeL(CH3CN)] 2+ + Cl [FeL(Cl)]+ (34)

The observed equilibrium constant for CO binding is defined as

= [FeL(CO)] OBS [FeL]pC0 (35)

where

[FeL] = [FeL(CH3CN)] + [FeL(Cl)]

[FeL(CO) ] *= [FeL(CH3CN) (CO)] + [FeL(Cl) (CO) ] (37)

(36)

215

09-

0.5-

0.4-

0.2-

0 .1-

— I— --------- 1______________ L400 450 500

Figure 55. Spectral Changes for the Reaction of [Fe{ (£-Xylyl-(NHEthi)2)Me2 [16]tetraeneN4>Cl](FF6) in CHgCN at 0.0°C,[Cl"] = 1 x 10“3 molar

TABLE 32EQUILIBRIUM DATA FOR THE REACTION OF THE

PARA-XYLENE BRIDGED IRON(II) COMPLEX WITH CO AND CHLORIDE

[Cl . M Kco* torr"1K-Kk 2-k

0 7.91 + .88 0

1.0 X 10"3 0.0253 + .0011 353 + 43

3.0 X 10"3 0.0144 + .0008 691 + 79

4.0 X 10" 3 0.00903 + .00047 1308 + 184

7.0 X 10"3 0.00732 + .00043 1827 + 2.6

1.0 X 10-2 0.00547 + .00026 3196 + 549

5.0 X 10"2 0.00280 + .00026 CO

1.0 X 10"1 0.00300 + .00021 oo

217

From these equations, the relationship between K__„ and [Cl ] can beOddderived (Appendix C), to yield

K„(K„-K..)[C1 ]‘3 2 1l + k3 [ci-] (38)

In the absence of chloride ion, Krt__ = K. and at infinite chloride ionOd d 1concentration = Kg. For this system K ^ g was found to be 7.9

determined at chloride concentrations greater than 0.05 molar. When

these two values are known, equation 38 simplfies to a linear form in

which Kg, the chloride ion binding constant is the slope

data to a functional form y = ax + b. It is gratifying that the inter­

cept (b term) is well within standard error of being zero, as would be

expected for the functional form, y = ax, appropriate to the model

equation, equation 39. This large value for the binding constant of

chloride ion to the iron(II) center is entirely consistent with the con­

ductance, electrochemical, and NMR measurements described earlier for

the iron(II) chloro complexes in acetonitrile.

measured. For the (NH)gPxyl bridged complex, the isosbestlc spectral

torr ^ in the absence of chloride ion and 0.003 torr ^ was a limit

(39)

A plot of the data in table 32 using the values of and Kg given above

yields a straight line (R e 0.9877 ) (figure 56)with a slope of 5 -1(3.1 + 0.2) x 10 mole which is Kg for a least squares fit of the

The model described above is rigorous and should be applicable

to other systems. The model is applicable provided that can be

218

K-KK£K

36001

3200

2 8 0 0

2 4 0 0

2000

1600

1200

8 0 0

4 0 0

.062 .003 .0 0 4 .005 0 0 6[Cl“], M

.001 .0 0 7 .0 0 8 .009 .0(0

Figure 56. Plot to Determine KC1 for the para-xylyl Bridged Complex

219

changes (figure 55) facilitated determination of K___. This isosbesticUJddbehavior was purely fortuitous, however, since up to four absorbing

species may be present in solution at any given time. The data indi­

cate that, for this system, the two possible CO adducts and two pos­

sible non-adducts have very similar spectral properties, resulting in

apparent isosbestic spectral changes. Alternatively, one or more of

the components may be present in such low concentrations that its con­

tribution to the observed spectrum is negligible. For the case at hand,

the spectra of the non-adducts in the presence and absence of chloride

are essentially identical and the spectral changes associated with CO

adduct formation are very similar in the presence and absence of

chloride ion. Thus it appears that the para-xylene bridged species was

ideal for this type of study. Spectral changes for the (NH)2Mxyl and

(NMe)2(CH2)g bridged compounds were complex (figure 57) and demonstrate

the potential difficulties. Knowing the nature of the equilibria

involved, it should be possible to design experiments and interpret

data in a way which allows for the determination of all three equili­

brium constants in other related systems.

The large difference between K^ and K2 is explainable in terms

of the Lewis basicity of acetonitrile versus chloride. The better base,

acetonitrile, donates more electron density to the metal, thus

enhancing 7T backbonding from the metal to the bound CO, thereby

strengthening the M-C bond. Sterically, the chloride may prevent the

iron(II) from readily moving into the plane whereas acetonitrile

would not be expected to sterically interact with the macrocycle.

220

o.r

0.6-

oi>-

0.4-

0.3-

0.2-

0.1-

Figure 57.

T o o 450 500

Spectral Changes for the Reaction of [Fe{(1,6-Hex- (MeNEthi)2)Me2 [16]tetraeneN4}Cl](PFg) in CH3CN at 0.0°C,(Cl ] =0.1 molar

221

Having explained the role of chloride in the binding of CO to

iron(II) dry cave complexes, the effect of changes in bridge type on

KC0 cou^ now determined. Several iron(II) chloro complexes were

studied in acetonitrile solution at 0.0°C in the presence of varying

concentrations of chloride at a total Ionic strength of 0.1 molar. The

data are listed in table 33. In all cases examined, the observed

equilibrium constant decreases as the chloride ion concentration

increases. The observed has a range of more than four orders of

magnitude for the (NH)2Pxyl species over a range of chloride ion con­

centrations of 0-0.1 molar. The same trend is observed for the other

species but several constants were either too large or too small to

measure within the available temperature and chloride ion concentra­

tion ranges. Although difficulties were encountered for many of the

measurements, due to complex spectral changes and interference by

traces of 02 » some important conclusions can be drawn from the data.

When the values at one temperature (0.0°C) and one chloride ion con--3centration (1 x 10 molar) are compared the effects of changing the

bridging group are clearly shown. The relatively unhindered (NMe)^-

(CH-), bridged complex has by far the largest K„_ while the penta- 2 b CUmethylene and tetramethylene complexes have the smallest The

xylyl bridged complexes lie between these extremes, with the ordering in

decreasing magnitude of KCq shown below. This ordering is in full

agreement

(NMe)2 (CH2)6 » (NH)2Pxyl- (NH)2Mxyl > (NMe^Mxyl > <NH)2 (CH2)5

£ (NMe)2 (CH2)4

TABLE 33

CO EQUILIBRIUM CONSTANTS3 FOR DRY CAVE COMPLEXES AT 0.0°C IN CILjCN

""^Bridget c r i T v ^ ^(NH2)Pxyl (NMe) 2Mxyl (NH)2Mxyl (NMe)2(CH2)6 (nh)2 (ch2)5 (NMe)2(CH2)A

0 7.91 4.27 x 10_1 — — — TLTM — — — — — —

8.0 x 10"5 A.75 x 10_1 2.5 x 10"2 0.5 TLTMC - — — — _ _, -3 -2 -3 -2 r b bo•pH x 10 2.53 x 10 1.2 x 10 J 1.0 x 10 TLTM TSTM TSTM

1.0 x 10”2 5.47 x 10“3 TSTMb - - - TLTMC ----- -----

1.0 x 10_1 3.0 x 10"3 TSTMb ----- 1.0 ----- -----

3 -1Torr , ionic strength 0.1 molar.b -3 —Too small to measure (K < 1.0 x 10 torr ).

cToo large to measure (K » 10 torr .

223

with the available structural information. The cavity of the hexa-

methylene bridged complex is by far the largest and most open and

therefore is expected to interact the least with bound CO. The

"lid-off" configuration of the (NH^Fxyl complex displaces the xylene

ring from being directly over the metal, whereas the "lid-off" (NMe^-

Mxyl bridge is more nearly centered over the metal and should therefore

interact more strongly with the bound CO. The "lid-on" (NH^Mxyl

bridge is taller allowing a more nearly linear binding of the CO and a

higher KCQ. The known structure of the CO adduct of the (NH)2 (0112)5

bridged species clearly shows the degree of interaction between the

bound CO and the bridging group. This interaction is expected to be

even greater in the more restrictive tetramethylene bridged complex.66 73The results reported by Stevens ' for cobalt(II) complexes reacting

with oxygen are in full agreement with this expectation.

The importance of these results must be emphasized. Under

identical conditions of study, the observed equilibrium constant varies

in a systematic manner over a range of at least four orders of magni­

tude due solely to changes in the nature of the bridging group. The

crystal structure of the CO adduct clearly shows the nature of the

bending and bonding of CO in these model systems and the equilibrium

data demonstrate the effects of bending of the Fe-C-0 linkage on the

affinity of the Iron(II) site for CO.

From the data presented in this section, I conclude that

two major factors control the overall binding of CO to the iron(II)

center of monomeric dry cave complexes: 1. The nature of the bridging

group controls the steric interactions between the ligand

224

superstructure and the bound CO. 2) Chloride ion acts to inhibit the

binding of CO to the metal center. A combination of these two effects

permits systematic variation of the observed CO binding constant over a

range of many orders of magnitude. It is apparent that with such a

wide range of CO equilibrium constants, the values observed for Hb and

Mb can be duplicated in this totally synthetic model system.

Correlations Between Physical Properties of CO Adducts and Equilibrium Constants

The equilibrium studies reported in the previous section

clearly demonstrate the effects of the bridging group of the dry cave

ligand on the stability of the CO adducts which form. It was expected

that some of the physical properties of the CO adducts should also show

trends which correlate with the equilibrium studies. Therefore,

detailed infrared, carbon-13 NMR, and electrochemical studies were

undertaken. The results of these studies comprise the following dis­

cussion.

Infrared Studies. Solid state and solution infrared spectra

were measured for all of the CO adducts and the stretching frequencies

are listed in table 34. It is apparent that in general, in ace­

tonitrile solution is greater than in the solid state. Due to the role

of packing forces and dielectric constant of the environment in deter­

mining the energy of the absorptions in the solid state, comparisons

will be made only among the solution spectra.

The first trend to note is that for any given bridge, occurs

at highest energy when the axial base is acetonitrile and at lowest

energy when the base is l-Melm. Pyridine adducts have CO stretching

TABLE 34 225SUMMARY OF INFRARED, ELECTROCHEMICAL AND C NHR DATA

FOR CO ADDUCTS OF MONOMERIC IRON(II) COMPLEXES, [Fe{(R)Me2[16]tetraeneN4>(B)(CO)](PFfi)2

R B vC0(so1id>a vco(8oln)b EPC

(He2NEthi)2 ch3cn 1961 1975 +0.035 223.1l,5-Pent(NHEthl)2a FT 1952 1961 40.310 220.1l,5-Pent(NHEthl)2e l-Kelm 1934 1950 ---- ----

1,6-Hex(NHEthi)2* FT 1955 1967 +0.3B5 ----

l,6-Hex(NHEthi)2e 1-Helm 1951 1955 ---- ----

1,6-Hex(HeNEthi)2 ch3cn 1964 1965 +0.245 222.71,6-Hex(HeNEthi)2 FT 1959 1967 +0.240 224.0l,6-Hex(MeNEthi)2 l-Melm 1955 1958 +0.140 223.81,6-Hex(HeNEthi)2 l-Kelm 1951f ---- ----

Ff. (NHEthi) 2 FT 1977 1971 40.245 ----

Ff. (NHEthi) 2 l-Melm 1970 1960 +0.145 ----

m-Xylyl(NHEthi)2 FT 1972 1988 +0.375 ----

m-Xylyl{NHEthi)2 l-Melm 1968 197B +0.300 ----

m-Xylyl(NHEthi)2 4-NH2-FT 1980 1978 +0.290 ----

n-Xyly1(NHE thi)2 Im 1967 1979 +0.290 218,4m-Xylyl(NHEthi)2 Im 1973f ---- ----

m-Xylyl(MeNEthi)2 CHjCN 1980 1993 +0.315 ----m-Xylyl(HeNEthi)2 PT -- 1989 +0.300 ----

m-Xylyl(HeNEthi)2 l-Melm 1971 1981 +0.245 ----

m-Xylyl(KeNEthl)2 Im 1975 1981 216.5m-Xylyl(MeNEthi)2 4-NH2-PT 1978 1981 ---- ----

p-Xylyl(NHEthi)2 ch3cn 1985 1996 +0.325 213.2p-Xylyl(NHEthi)2 FT 1980 1996 +0.355 ----

p-Xylyl(NHEthi)2 l-Melm 1970 1987 +0.240 ----

l,4But-(MeNEthi)2 l-Melm -- 1943 ----

aAs nujol mills, an-1.^Acetonitrile solution, cm”*.°V vs. Ag/Ag+ , Acetonitrile solution.^Chemical shift of CO carbon atom resonance, CD.CN solution, ppm

relative to IKS.eReference 88. ^1-Helm solution.

226

frequencies comparable to those of acetonitrile adducts; imidazole and

4-NH2”Py adducts are very similar to 1 - Melm adducts. In all cases,

VCQ for the pyridine derivatives is 9 or 10 cm-1 higher in energy than

for 1 - Melm adducts. This trans ligand effect compares very favorably

with the effect reported by Alben and Caughey^ for porphyrin systems.

The more basic imidazole type ligands enhance ¥ backbonding from the

metal to the CO. This results in a lower energy v for imidazole thanLUfor the less basic pyridine or acetonitrile adducts.

V^0 for the unbridged compound derived from the dimethylamine

ligand is 1975 cm ^ and is of approximately the same energy as reported

for porphyrin model systems.^

The bridged complexes are divided into two groups based on CO

stretching frequencies: those having aliphatic bridges and those

having aromatic bridges. Among the aliphatic bridged complexes, for a

given axial base the order for is

Fluorene > (NMe)2 (CH2)6 ~ (NH)2 (CH2>6 > (NH)2 (CH2)5 > (NMe)2 (CH2)4

This follows the same order as the effective bridge length from 7 car­

bons to 4 carbons. As the bridge length is shortened and the cavity

size is reduced, decreases in energy by 17 cm ^ within this series.63A similar trend has been reported for protein systems in which a

decrease in V^0 is correlated with increased bending of the Fe-C-0

linkage due to increased steric interactions with the protein structure.

In a similar way, interactions between bound CO and the 7 carbon bridge

of the fluorene species are minimal, resulting in a value for \>c0 which

is essentially the same as for the unhindered, unbridged complex.

227

As shown by the several crystal structures, decreasing bridge length is

accompanied by decreasing cavity size. This is expected to lead to

increasing steric interactions between the bound CO and the bridge,

resulting in increasing distortion of the Fe-C-0 linkage and thus a

decreasing CO stretching frequency. It has clearly been shown above

that decreasing cavity size causes a decrease in the observed equili­

brium constant. In this series of totally synthetic iron(II) model

complexes, then, a completely systematic change is observed in v r n whichuucorrelates directly with equilibrium constants and can be attributed to

the designed interactions between the bound CO and the ligand struc­

ture.

It is interesting to note that v^0 for the (NH^CCI^)^ and

(NMe^CNl^)^ are essentially the same, demonstrating that the effect of

a bridge methyl group on this property of the complexes is minor rela­

tive to the steric and trans ligand effects.

The data for the aromatic bridged complexes are not as readily

interpreted. Although steric factors are expected to be similar to, or

more restricting than for the aliphatic bridged complexes, all of the

CO stretching frequencies are between 1978 and 1996 cm \ The trans

ligand effect is the same as in the aliphatic complexes. An additional

factor must be present in the aromatic systems which causes such high

energy stretching frequencies. The close proximity of the tt systems of

the CO and xylene (structure XXVIII) offers a possible explanation. Some

type of interaction between these two pi systems apparently strengthens

the CO bond resulting in a higher energy CO stretch. Such an effect

combined with the bending of the Fe-C-0 linkage would greatly complicate

228

N F e N

XXV nr

the interpretation of infrared data. This difficulty is exemplified by

comparing the (NH^Mxyl and (NMe^Mxyl complexes. The "lid-off" nature

of the (NMe)Mxyl bridge is expected to cause strong interaction with the

bound CO resulting in considerable bending of the Fe-C-0 linkage and a

decrease in V ^ . The (NH^Mxyl complex is "lid-on" which should result

in less interaction with the bound CO as verified by equilibrium

studies and a higher CO stretching frequency. The putative tt system

interaction, however, causes v to be essentially the same for the twoLUspecies. The fact that the observed equilibrium constants for the

(NH^Pxyl and (NH^Mxyl are virtually identical yet their values

differ by 9 cm ^ is further evidence in support of this point.

Although there is no precedent for such IT system interactions causing

such effects on VCQ, this theory is consistent with the observed data.

Significant solvent effects on are observed for the

(NH^Mxyl and (NMeJ^CCl^)^ systems. Upon changing from acetonitrile to

l-Melm as solvent, decreases approximately 7 cm”^. This is

22962consistent with the observations of Maxwell and Caughey that more

polar solvents cause a decrease in V--.LUIt is apparent from the above data that a number of factors are

of importance in determining the CO stretching frequency. The degree of

bending of the Fe-C-0 linkage, the nature of the trans axial ligand, tt

systems in the vicinity of the bound CO, and the polarity of the solvent

system all contribute to the observed frequency to varying degrees.

Since the individual contributions of each factor to the observed

stretch has not been fully quantified, infrared data must be inter­

preted with caution, particularly when comparisons between model sys­

tems and proteins are being made. In particular, the tt systems of the

proteins and the polarity of the environment within the globin

structure are very difficult to simulate in the model system. It is

encouraging to note, however, that several of the dry cave model com­

plexes have CO stretching frequencies comparable to 1953 cm ^ observed 63In the proteins,

Carbon-13 NMR Studies. The resonances of the CO carbon in the13C NMR spectra are included in table 34. The CO carbon atom resonance

in the unbridged complex having a linear Fe-C-0 linkage occurs at

223 .1 ppm. The resonance In the (NMe)„(CH„), species having the same2 2 oaxial ligand (CH^CN) occurs at 222*7 ppm. Further restriction of the

cavity size causes an upfield shift for the resonance to 220.1 ppm in

the (NH^CC^)^ species. The shift Is explained in terms of compres­

sion effects at the CO carbon atom due to interaction with the bridging

group. A slight rehybridization of the CO carbon atom from pure sp

2302(structure XXIX) In a linearly bound molecule towards sp (structure

XXX) in a slightly bent Fe-C-0 linkage is expected

Sc

N Fe----- N n

B

13As with the infrared data, the C NMR spectra of the xylene

bridged CO adducts must be handled separately from the aliphatic com­

plexes. The effects of bending on the shift of the CO carbon atom

resonance have been described above for the aliphatic species. Ring

current effects are observed in the atomatic complexes which result in

an increased shielding of the CO carbon nucleus, shifting the resonance

upfield relative to the non-aromatic systems. It is therefore apparent

that ring current and compression effects both cause shifts in the same

direction. The magnitude of the ring current effect depends entirely

on the spacial orientation of the CO and xylene ring and therefore the

compression and ring current contributions to the observed shift are

difficult to separate. From the information available, however, an

estimate can be made for the (NMe^Mxyl system. Equilibrium studies

have shown that this complex hinds CO only slightly more strongly than

•CI

■ F e -

/

•N

B

231

the (NH)2 (6112)5 species, thus implying similar compression effects in

the two structures. One can therefore estimate that of the 6.6 ppm dif­

ference between the xylyl species and unbridged species, 3.0 ppm is due

to compression effects (as in the pentamethylene species) and 3.6 ppm is

due to ring current effects.

It is surprising and significant that the frequency of the CO

resonance is quite insensitive to the nature of the axial ligand. This

demonstrates that the compression and ring current effects are of pri­

mary importance In determining the frequency of the resonance relative

to other electronic effects.

The observed resonances do not compare favorably with those of99HbCO and MbCO at 206-209 ppm, however the factors discussed above for

the IR data such as solvent and globin effects have not been studied and

may account for the observed differences.

Electrochemical Studies. The unusual electrochemical behavior

of the CO adducts is very informative. The cyclic voltamagram of

[Fe{(l,6-Hex(MeNEthi)2)Me2 [16]tetraeneN^}(CO)(PY)](FFg^ acetonitrile

is shown in figure 58. A voltamagram beginning at 0.0 V and scanning

negatively shows no reductions out to -1.0 V. Reversal of the scan

direction reveals an oxidation peak at +0.270 V. Reversal of the scan

direction results In new reduction waves at -0.175 V, -0.535 V, and

-0.875 V which are coupled to the oxidation. The multiple reduction

waves are due to species which exchanged axial base with solvent while

in the oxidized state. A new oxidation wave sometimes appears near

-0.2 V for some complexes. The apparent complexity of the voltamagrams

-12- 0.6 -0.B - 1.01 -0 .4V. vs Ag/Ag

0.4 0.2 0.0 0.20.6

Figure 58. Cyclic Vo ltama grains for [Fe{ (1,6-Hex(MeNEthi) )Me [16]tetraeneN.}(B)(CO)](FF,)_ 2 2A o 2.a) B ** PY, solvent = CH^CN, b) B = 1 - Melm, solvent = DMF

233

is explained in.the following way. The wave at +0.270 V corresponds to

the oxidation of the iron(II) CO adduct to the Iron(III) state with loss

of CO. The reduction waves are due to the CO-free iron(III) species

being reduced to an iron(II) state The reduced iron(II) complex can

then recombine with the dissolved CO or remain as a non-CO adduct giving

rise to the oxidation wave at -0.2 V. The described reactions are

shown in equation 40.

[Feli:(B)(C0) '*~e w [Fem (B)] + CO [FeI:CL(B)] (40)

Independent experiments have been conducted to prove the expla­

nation just described for the (NMe) Mxyl complex. First the Iron(II)

chloro complex was placed in the electrochemical cell and CO was added.

The oxidation wave near -0.4 V disappeared and a new one due to the CO

adduct appeared at +0.315 V. After degassing the solution with nitro­

gen, the original voltamagram returned. Identical behavior was

observed when the four-coordinate species was used as the starting

material. Finally, the CO adduct with CH^CN as the axial base was

electrolyzed and the resulting solution degassed. After reduction of

the complex, voltamagrams Identical to those of the iron(II)

four-coordinate species were obtained.

The same general behavior was observed for all of the com­

plexes studied and the oxidation peak potentials are listed In table 34.

The only trend which is conclusively shown by these data is that imida­

zole adducts oxidize most readily, followed by pyridine and acetonitrile.

This is consistent with all of the other data which have demonstrated

that imidazoles are the best Lewis bases, donating electron density to

234

the metal center. The inductive effect of bridge methyl groups is

again seen in the cases of Mxyl and (CHj)^ bridged complexes, wherein

the (NMe)^ derivatives oxidize at more negative potentials than the

(NH)2 derivatives. Unfortunately, no correlation between oxidation13potentials and XR or C NMR data is apparent.

The electrochemical behavior of the complex [Fe{(l,6-Hex-

(MeNEthi)2)Me2[16]tetraeneN^}(C0)(MIM) ](PF^Jg was also studied in DMF

as shown in figure 58. The cyclic voltamagram strongly resembles that

observed in acetonitrile except that the reduction behavior is much

simpler. The single reduction wave indicates that DMF does not compete

strongly for the metal coordination sites and the principle iron(lll)

species in solution has l-Melm as the fifth ligand.

Summary of Correlations for CO Adducts. Some correlations do

exist between the equilibrium and spectroscopic data. A change in the

trans axial ligand from acetonitrile to 1 - Melm causes an increase in

with a decrease in and Ep, all of which are consistent with the

good Lewis base characteristics of l-Melm. Secondly, for the aliphatic

bridged species, a decrease in corresponds to a decrease in the fre-CO

13quency of the CO carbon resonance in the C NMR spectrum and a

decrease in Vq q * The equilibrium data confirm the suggestion that the

spectroscopic properties of the aliphatic and aromatic bridged species

must be treated separately and that there is no overall correlation

between any of the spectroscopic properties and the observed K _.

235

Reactions of Iron(II) Dry Cave Complexes with Oxygen

The Importance of the reversible reactions between 02 and Hb and

Mb in living systems is obvious. It has already been described in the

Introduction that Iron(II) dry cave complexes have many of the features

required for reversible reactions with oxygen. Therefore, a number of

studies were conducted to examine the potential of these complexes as -

reversible oxygen carriers. Because of their importance as irreversible

oxidation products in porphyrin systems, a chloro-iron(III) complex and

a y-oxo-dimer were synthesized so that they could be recognized if they

formed during spectroscopic studies. The discussion of these complexes

will be followed by a description of the reactions of Iron(II) dry cave

complexes with oxygen.

Iron(III) Complexes. The iron(III) complex [Fe{(m-Xylyl-

(MeNEthi)2Me2 [16]tetraeneN^}Cl](PFg)2 was prepared by the addition of a

slight excess of Ce(IV) to a solution of the iron(II) complex. The pro­

duct was deep blue having the composition [FeLCl](PFg)2 and was very

difficult to purify. Alternatively, nitrosyl hexafluorophosphate was

used as the oxidizing agent yielding an Identical iron(III) product.

The Infrared spectrum is similar to that of the comparable iron(II) com--3plex. The molar conductance of a 1 x 10 molar acetonitrile solution

-1 -1 2of the complex was 287.8 ohm mole cm , within the acceptable range for89a 2:1 electrolyte. The solid state magnetic moment, determined by the

Faraday method, was 6.05 8 , consistent with hlgh-spin iron(III). (The

spin only value is 5.92 8 .) The electrochemical behavior was virtually

identical to that of the sample prepared by controlled potential

236

electrolysis as described earlier. Similar coulometric studies on this

complex yielded an n value of 0.96 electrons with the behavior of the

reduced species being identical to that of the starting iron(II) chloro

complex. All of the above data clearly demonstrate that upon oxidation,

the chloride ion remains coordinated to the iron(III) center. The oxi­

dation and reduction of the iron center are completely reversible pro­

cesses.

The li-oxo-dimer of the (NMe^Mxyl bridged species was prepared

in a number of ways. The most direct synthetic method involved the

exposure of a solution of the iron(II) chloro complex to air in the

presence of an alcohol or water. Analytical data for the brown product

confirmed the absence of chloride ion in the complex. Materials having

identical properties were prepared by the addition of water to an ace­

tonitrile solution of the Iron(III) chloro species and also by oxida­

tion of the iron(II) chloro species with Ce(IV) in the presence of

water. Chromatography of the iron(III) chloro complex on neutral Woelm

alumina resulted in a color change from blue to brown on the column with

eventual Isolation of the brown y-oxo-dimer.

One of the characteristic reactions of oxo-bridged porphyrin

dimers is cleavage by HC1 as shown in equation 41. Addition of base

reverses this reaction.

PFe-0-FeP + 2 HC1 * 2 FePCl + H20 . (41)

As shown In figure 59, the iron(III) chloro complex has absorption max­

ima near 820 nm and 615 nm, whereas the oxo-dimer has peaks at 760 nm

and 502 nm in the visible spectrum. The spectrum of the oxo-dimer was

0.8-

0,7-

0.6-

0.5-

0A-

0.3-

0 . 1-

"1 1----------------------------- 1------------------------------- 1---- T -5 0 0 6 0 0 7 0 0 8 0 0 9 0 0

Figure 59. Electronic Spectra of the Chloro-iron (III) and p-oxo-ditner Derivatives of the (NMe^Mxyl Bridged Species

237

238

generated either by dissolution of a genuine sample, by addition of

water and triethylaraine to a solution of the iron(III) chloro complex,

or by addition of water and triethylamine to a solution of the Iron(II)

chloro species followed by exposure to 0^.

The iron(III) chloro complex was generated In solution from the

y-oxo-dimer by addition of HC1 as confirmed by the electronic spectra.

Although the reaction was complicated by ligand removal at high acid

concentrations, the point is clear that the iron(III) chloro and

y-oxo-dimer complexes interconvert in a manner analogous to the simple

hemes. The ready formation of the undesirable irreversible products

was a discouraging result since it demonstrated a limitation Inherent in

the dry cave model. Despite the presence of the bridge, oxo-dimer

formation occurs through the one unprotected axial site (structure XXXI).

/

A modified dry cave model which Incorporates steric bulk or a "tail

base" in the vicinity of the unprotected site would thus be highly

desirable.

239

Oxygen Uptake Experiments. In spite of the results described

above, a number of experiments were performed in an attempt to deter­

mine the conditions required for reversible oxygenation. Stoichio-77metric oxygen uptake experiments performed by Dr. D. J. Olszanski in

pyridine on the iron(II) (NlD^Mxyl chloro complex at room temperature

showed that uptake asymptotically approached 4.0 moles of 0£ per mole

of iron(II) after two days of reaction. This indicates a reaction much

more complex than simple oxidation or oxo-brdlged dimer formation since

these processes require only 0.25 moles of oxygen per mole of iron(II).

At -36°C, however, 1.10 moles of 0^ were taken up per mole of lron(II),

consistent with monomeric adduct formation. The reaction which con­

sumes most of the oxygen is apparently inhibited at reduced tempera­

tures. Attempts to remove the oxygen after reaction at -36°C using

freeze-pump-thaw techniques resulted in no color changes indicative of

reversal; however, this may not be an adequate criterion on which to

base a conclusion concerning the reversibility of the reaction.

Spectral Studies. The reaction of the complex derived from the

(NMe^CC^)^ bridged ligand with oxygen was examined at -30°C in ace­

tonitrile solution containing 1.5 molar l-Melm. Addition of various

partial pressures of oxygen caused spectral changes which were not

isosbestlc (figure 60) but were somewhat dependent upon the oxygen par­

tial pressure. Nitrogen was passed through the solution in an attempt

to remove the oxygen but there was no spectral change. The lack of

isosbestlc behavior and Irreversibility of the reaction indicate that a

process other than simple oxygen adduct formation occurred.

240

0.7-

0.6-

0 .5 -

0 .4 -

0 .3 -

0.2-

0.1.-

3 5 0 4 0 0 4 5 0 5 0 0

Figure 60. Spectral Changes for Reaction of [Fe{(l,4-But(MeNEthi) ^ ) ~

Me2[16]tetraeneN^}]^ with O2 in CH^CN, 1.5 M l-Melm, -30°C

241

The reaction of [Fe{(m-Xylyl(MeNEthi)2)^62[16]tetraeneN^}]^

with oxygen in aqueous solution containing 1.5 molar l-Melm (enough to

saturate the axial base equilibrium) was examined at 10°C. At very low

partial pressures of oxygen, the spectral changes were nearly isosbes-

tic. Upon deoxygenation of the solution with nitrogen, however, the

spectrum continued to change in the same direction rather than

returning to that of the original unoxygenated material. This indi­

cates that the complex reacted with even trace amounts of oxygen in an

irreversible manner. The isosbestic spectral behavior suggests a simple

process occurred under these conditions with irreversible oxygen adduct

formation as one possibility.

The reaction of 0^ with the (NH^Mxyl and (NMe^Mxyl chloro

complexes was studied spectrally at room temperature. In acetonitrile

solution, the iron(III) chloro complex was formed in the absence of base

and the y-oxo-dimer resulted when base and water or alcohol were

present. In methanolic solution, the principle product was the

y-oxo-dimer. These products were identified by comparison of their

electronic spectra of those of genuine samples.

In pyridine, the reaction of the (NH^Mxyl chloro complex with

oxygen was quite slow, demonstrating non-isosbestic spectral behavior.

This complexity was expected based on the results of the uptake experi­

ment under comparable conditions as described above.

None of the reactions showed any reversible character as was

expected based on the nature of the known products. It Is also pos­

sible that oxygen adduct formation does occur and that the bound oxy­

gen reacts further. Hydrogen atom abstraction by the bound dioxygen

242

followed by a series of radical reactions can ultimately result in for­

mation of oxygenated species. Meta-xylene bridges are expected to be

particularly susceptible to such reactions because of the relative ease

of hydrogen atom abstraction and stability of the radical formed. Such

decomposition reactions have been postulated for related cobalt(II)

dry cave complexes.^

Iron(II) Complexes Having Rearranged Ligands

It was mentioned earlier (page 163) that during the synthesis of

the iron(II) complex of the unbridged methylamlne derivative, a rear­

ranged product formed. The principle evidence for such a process was

the set of doublets observed in the proton NMR spectrum at 5.6 and

8.7 ppm. Similar patterns have been observed by Riley^^ for

related compounds which contained a rearranged macrocycle and have been

assigned to coupling between hydrogen atoms on the 6 and y carbon atoms

of the macrocycle. A similar rearrangement has occurred In this com­

plex, in which a hydrogen atom shifted from the external nitrogen atom

to the y carbon atom with subsequent rehybridization and geometrical

rearrangement to yield the sexadentate ligand in structure XXXII.

The sexadentate species was synthesized directly and in good

yield by the procedure described above except the solution was refluxed

for 45 minutes in the presence of excess triethylamine. The analytical

data confirmed the stoichiometry of the complex. The infrared spectrum

(figure 61) contains no absorptions due to N-H stretching and NMR

spectrum contains the same coupled resonances as observed above at

243

'X X XTT

i500

I1000

I1500

I20004000 3000

Figure 61. Infrared Spectrum of the Iron(II) Complex of the Sexadentate Ligand

244

5.6 and 8.7 ppm (figure 62). The splittings are apparently more complex

than simple doublets due to the lack of any elements of symmetry in the

molecule. This is reinforced by the complex resonance pattern observed

in the methyl region of the spectrum.13The C NMR spectrum of the sexadentate complex is shown in

figure 63a and the resonances are listed in table 35. The spectrum is

in support of the proposed structure with the lack of symmetry apparent

from the uniqueness of each carbon atom. The most striking feature of

the spectrum is the absence of resonances between 105 and 115 ppm and

the appearance of resonances near 65 ppm which split into doublets in

the off-resonance spectrum. These resonances are assigned to the y

carbon atoms of the macrocycle. It is not possible to determine

whether the complex is a cis or trans isomer based on spectral data

because neither isomer contains symmetry elements or any distinguishing

features. The striking similarity between the spectra of this complex

and those of the related clathrochelates which are constrained to be88cis complexes as described by Grzybowski strongly suggests that this

complex is a cis isomer.

Electrochemical studies performed on the sexadentate complex

showed only a single process over the entire accessible potential range

which was a reversible one-electron oxidation having ^ / 2 an<*

JE3/4 — Ei/4 I values of +0.390 V and 65 mV versus Ag/Ag+ . These values88compare favorably with the values obtained for the clathrochelates and

is approximately 90 mV more positive than the values for related hexaene. 103compounds.

A yv/P1 l r t — 1— rrto

Figure 62. Proton. NMR Spectrum of the Iron(II) Complex of the Sexadentate Ligand 245

w

240

Figure 63.

200 160ppm

13C NMR Spectra of a) the Iron(II) Complex of the Sexadentate Ligand and b) the CO Adduct of the Pentadentate Complex

246

247

TABLE 35

CARBON-13 NMR DATA FOR IRON(II) COMPLEXES OF REARRANGED LIGANDS

Compound Chemical Shifts

[FeiCMelmEtJ^Me^ElSltetraeneN^.}] (PFg)2 171.8, 170.6, 170.1, 65.6, 65.2,56.3, 55.4, 49.9, 49.3, 44.9,44.6, 43.2, 27.3, 27.1, 25.0,24.5, 24.3, 23.2

[Fe{(MeNHEthi)(MeImEt)Me2 [16]- 219.2, 172.9, 175.9, 173.5,tetraeneN.}(CO)](PF.)„ 170.7, 169.5, 166.6, 163.3,

H O Z108.5, 65.4, 57.7, 56.8, 54.3,52.7, 49.9, 49.4, 47.1, 46.7, 43.2, 38.8, 31.9, 27.6, 25.6,24.5, 23.4, 21.7, 20.8, 16.1

248

The unbridged complex derived from the methylamine ligand under­

goes a very novel reaction with CO in acetonitrile solution in the

presence of Py, l-Melm or no base to yield the same product which is

represented by structure XXXIII.

CH

xxxmThe infrared spectrum of the CO adduct of the rearranged isomer

of the unbridged complex is shown in figure 64. The sharp N-H stretch

at 3410 cm ^ is due to the free external amine and the several absorp­

tions between 1600 and 1700 cm ^ are typical of the rearranged imine

structure. The sharp, intense absorption at 1989 cm ^ is due to the-1 13bound CO with the band at 1946 cm attributed to CO.

13The C NMR spectrum (figure 63b, table 35) of the rearranged

pentaene CO adduct has essentially one resonance for every carbon atom,

4000I i I I

3000 2000 1500 1000cm-'i

500

Figure 64. IR Spectrum of the Pentadehtate CO Adduct

250

consistent with the lack of molecular symmetry. The resonances due to

each half of the molecule are readily assigned by comparison with the

spectra of the unrearranged nickel(II) complex and the sexadentate

iron(II) complex.88Grzybowski has shown that in the presence of base at ele­

vated temperatures, some of the iron(II) dry cave complexes having

hydrogen as the bridge nitrogen substituent rearrange to yield sexaden­

tate clathrochelate ligands. When the bridging group is meta-xylene,

the rigidity of the xylene ring prevents formation of a sexadentate

ligand but permits a pentadentate ligand to form (structure XXXIV).

Such a complex has been synthesized and characterized. The elemental

analysis was consistent with a mixture of this product and the chloro

type starting material. The infrared spectrum (figure 65) differs

251

iI4000 3000 2000 1500 1000 500cm-1

Figure 65. Infrared Spectrum of the Pentadentate meta-xylyl Complex

from that of the chloro complex, particularly in its very sharp N-H

stretches at 3400 and 3415 cm ^ and the additional bands at 1620 and“X 881630 cm which have been attributed to a rearranged ligand structure.

The oxidation potential at -0.250 V is considerably more positive than

that of the chloro complex. It is very likely that equilibrium reac­

tions involving the (NH^Mxyl bridged complexes may be quite slow due to

the structural rearrangements which are possible for this ligand.

Iron(II) Complexes Derived from Dimeric Dry Cave Ligands

Synthesis and Characterization. The iron(II) complexes derived

from dimeric dry cave ligands were in general much more difficult to

synthesize and purify than those from monomeric ligands. All of the

252

work described in this section was performed prior to the solution of

the crystal structure of the dimeric nickel(II) complex. Many of the

results were initially difficult to interpret because of the earlier

assumption that these materials were actually monomers.

The dimeric iron(II) complex which was studied in greatest

depth by this author contained the (NH^Mxyl linkages as shown in the

crystal structure described earlier. Other workers have studied dimers88 Q9 Q9prepared from the (NH)2 (CH2)3 , (NH)2 (CH2)4 , NH2(CH2)3 and

78(NH)2Fluorene ligands. The properties of all of the complexes were

very similar in all respects to those which will be described for the

(NH)2Mxyl example.

The complexes were synthesized through the reaction of the

tetrachlorozincate salt of the ligand with an excess of

tetrakis-(pyridine)iron(II) chloride and six equivalents of triethyla-

mine. Upon mixing of the reagents the solution color became deep red

and a red-orange precipitate formed. This product was collected but

was never satisfactorily characterized. It is believed to be a pyri­

dine adduct of the iron(II) complex with a mixture of chloride and

tetrachlorozincate anions. Analytically pure complexes were obtained

by dissolving the initial product in methanol, adding an excess of pyri­

dine, imidazole, 1 - Melm, or 2-MeIm, then slowly adding an excess of

ammonium hexafluorophosphate in methanol. The resulting red products

were often of variable composition but careful control of conditions

yielded pure samples.

The Infrared spectra are very similar for all of the complexes

with an N-H stretch at 3420 cm ^ and a broad absorption at 1580 cm \

253

The IR spectra of the pyridine and imidazole adducts (shown in figures

66a and b) are representative of the series. Absorptions due to the

axial ligand are typical of those described earlier for the CO adducts

of the monomeric iron(II) complexes. The l-Melm adduct has a band at

3140 cm ^ due to the C-H stretch at the carbon between the imidazole

nitrogens. This band is absent in the 2 - Melm adduct, but a broad N-H

stretch at 3390 overlaps with the N-H stretching band of the macro­

cycle. Bands at 3420 and 3150 are present in the imidazole deviation.h

Absorptions due to the bound pyridine are obscured by ligand bands.

It was not possible to obtain solid state magnetic moments for

the complexes, using existing equipment, because of their extreme air

sensitivity. ^H and NMR spectra were measured for all of the above

complexes in CD^CN in the presence or absence of excess axial ligand.

In all cases, the resolution was very poor but the spectra did indicate

the presence of a diamagnetic species in solution. It is unclear

whether the poor resolution was due to air oxidation during the experi­

ment or to broadening caused by rapid exchange between paramagnetic and

diamagnetic species.-3Molar conductances were measured In acetonitrile for 1 x 10

molar solutions of two of the complexes. The values obtained with Py-1 -1 2and l-Melm as the axial ligands were 214.2 and 221.2 ohm mole cm ,

respectively. These values are at the lower end of the acceptable89 —1 —1 2range for 2:1 electrolytes in acetonitrile, 220-300 ohm mole cm .

A number of electrochemical experiments were performed In order

to learn more about the equilibria in solution between the iron(II) com­

plex and the axial ligands. The complex having 1 - Melm as the axial

254

I4000

\r

3000I I

2000 1500cm-1

i •1000 500

Figure 66. Infrared Spectra of [Fe{(ra-Xylyl(NHEthi)2)Me2 [16]- tetraeneN4 }(B)]2 (PF6)4 , a) B = PY, b) B = Im

2552+ 3+ligand had two oxidations which were attributed to the Fe /Fe couple.

The first had values of E-jy2» |E3/^ ~ ei/4 I» and EP of "°*350 v » 33 mV, and -0.300 V, respectively. The magnitude of the second oxidation wave

depended on the sample used and had a peak potential of +0.030 V. Upon

addition of 1 drop of l- M e l m to the cell, Ep shifted to -0.385 V. Fur­

ther addition of l-Melm shifted Ep to -0.425 V. This large dependence

upon the concentration of axial ligand indicates the involvement of the

redox active species in equilibria in solution. The dimeric nature of

the complex makes the potential equilibria very complex since one or

two molecules of 1 - Melm can interact with each metal center. Fur­

ther complexity arises from the possibility that the two centers do not

act totally independently of one another, causing the equilibria at one

center to be affected by the coordination status of the second center.

Unfortunately, the exact nature of the equilibria cannot be determined

from electrochemical studies.

The 1 - Melm adduct was also studied by controlled potential

electrolysis in the presence of excess l-Melm. The first oxidation at

+0.30 V versus Ag/Ag+ yielded an n value of 0.82 electrons. Reduction

of the same solution yielded an n value of 0.67 electrons. Another

cycle of oxidation and reduction of the same solution resulted in n

values of 0.58 and 0.60 electrons. It is apparent from these data that

the oxidation and reduction processes involve more than simple revers­

ible metal oxidations. It is possible that the oxidized complex reacts

irreversibly with l- M e l m giving rise to a reduction wave at -1.16 V,

but this has not been proven.

256

Similar electrochemical results were obtained when Im was the

axial ligand. In the absence of excess axial ligand, the peak potential

of the first oxidation was -0.240 V. Upon addition of excess Im, this

potential shifted to -0.420. Controlled potential electrolysis was per­

formed and showed that in the presence or absence of excess imidazole,

the same average n value of 0.82 electrons was obtained for oxidations

and reductions. There was no indication of a further reaction of the

oxidized product with the excess base, contrary to the results observed

with 1 - Melm.

In acetonitrile it was found that when Py was the base the peak

potential of the first oxidation was much less affected by the pyridine

concentration. The potential shifts from -0.08 V in the absence of

excess pyridine to -0.130 V in the presence of a large excess of pyri­

dine. This would suggest that pyridine does not compete very strongly

with acetonitrile for coordination to the iron(II) center as has been

shown for the monomeric complexes. Experiments were also carried out

in DMF in which the complex was carefully titrated with pyridine. The

changes observed are shown in figure 67. In the absence of excess pyri­

dine, the peak potential was -0.355 V versus Ag/Ag+ . Addition of one

equivalent of Py shifted the potential to -0.335 V. Further pyridine

additions resulted in a limiting value for Ep of -0.240 V when the

ratio of Py to iron(II) was -60:1. These data indicate that under care­

fully controlled conditions some useful equilibrium data may be obtain­

able.

The interaction between the iron(II) complexes and axial ligands

was also studied spectrally. The titration of the pyridine adduct with

- 1.0-0.6 - 0.8-0.4- 0.20.2 0.0V vs A g / A g -*"

Figure 67. Cyclic Voltamagrams of [Fe{(m-Xylyl(NHEthi)2)Me2 [l6] tetraeneN^}(PY)]^ (PFg)^ in DMF with excess PY

258

pyridine in acetonitrile resulted in a regular spectral change as shown

in figure 68. The band maximum shifts from 446 nm to 460 nm and the

intensity increases upon addition of Py. Although the spectra were

complex in the region hear 400 nm, the regularity of the spectral

changes suggests a simple equilibrium process. The fact that even in

the presence of 900 equivalents of base the spectrum is still changing

significantly suggests a small value for the observed equilibrium con­

stant. The simplicity of the spectrum suggests the observed equili­

brium is that described by equations 42 or 43

[FeL(CH3CN)2]2+ + 2Py ^ K * [FeL(CH3CN) (PY) + 2CH3CN (42)

[FeL(CH3CN)(PY)]2+ + 2Py [FeL(Py)2]2+ + 2CH3CN (43)

The above two possibilities are expected to show the same type of spec­

tral behavior, thus neither can be ruled out.

In order to eliminate the possibility that the observed spectral

changes were due to ligand deprotonatlon by the pyridine, the same

experiment was performed using the non-coordinating base 2,6-Lutidine.

The spectral changes were negligible relative to those observed with

pyridine thus ruling out the deprotonation possibility.

In order to assess the role of solvent in these equilibrium

studies, the pyridine adduct was allowed to react with excess pyridine

in acetone. The observed spectral changes were much larger than those

observed in acetonitrile and the equilibrium appeared to be saturated in

the presence of a 900-fold excess of pyridine. This result verifies the

suggestion that pyridine competes with the solvent for a binding site on

259

$n

$

o'

■uveT

*1•c

.<u

os•w-us

£!

CoVO8<5>ft/

260

the iron(II) center. Since acetone is a much weaker ligand than ace­

tonitrile, the pyridine competes more effectively, yielding the

observed results. This result is also consistent with the equilibrium

described above in equations 42 and 43.

adduct as shown in figure 69. The spectral changes are very different

from those observed with pyridine, with the maximum shifting from 453 nm

to about 485 nm with a decrease in intensity upon addition of Im. At

low concentrations of axial base, the spectral changes are

non-isosbestic. When the imidazole is present in greater than 100 fold

excess, however, an isosbestic point appears at 482 nm. These results

strongly suggest the occurrance of two equilibria whose constants are

such that the spectral changes due to each overlap at low concentra­

tions of base. The first equilibrium appears to be saturated at an_2imidazole concentration of 1 x 10 molar, resulting in the observed

isosbestic behavior due to the second equilibrium at higher base con­

centrations.

the observed behavior. The first possibility requires that the metal

centers act independently of each other. A stepwise substitution of

acetonitrile by imidazole is then observed, with the imidazole entering

the dry cave in the second step as shown in equations 44 and 45.

A similar equilibrium study was undertaken for the imidazole

There are two different two-step processes which can account for

[FeL(CH3CN)2]2+ + 21m K [FeL(CH3CN) (Xm) ]2

[FeL(CH3CN)(Im)32+ + 21m [FeL(Im>2]2+ (45)

(44)

Figure 69. Titration of [Fe{(m-Xylyl(NHEthi)_)Me„[16]tetraeneN#}(Im)]„(PF ) with Im in CH_CNL 2. h Z u h J 261

262

This explanation is consistent with the observed data since the second

molecule of imidazole is expected to encounter some steric interac­

tions with the ligand structure of the cavity.

The second possible explanation requires that the metal centers

not act independently. In this process, the first step is substitution

of one acetonitrile in the cavity by an imidazole. The second step is

the replacement of the remaining acetonitrile at the second site by

imidazole which sterically interacts with the first molecule of Im

resulting in a smaller value for K2 than for K^. This is shown in

equations 46 and 47.

[(FeL)2 (CH3CN)2(Im)2]4+ + Im [(FeL)2 (CH3CN) (Im)3]4+ (46)

[(FeL)2 (CH3CN)(Im)3]4+ + Im [ (FeL)2 (Im)4]A+ (47)

It Is not possible to distinguish between the two possibilities based

on the available data.

Other investigators have shown that bis-base adducts do not

readily form when the hindered ligand 2 -Helm is used instead of Im.

Because of this a spectral titration was carried out in acetonitrile

with 2 - Helm as the axial ligand (figure 70). Upon addition of excess

base the maximum of 450 nm shifts to 445 nm and the intensity decreases.

Sharp Isosbestic points are observed, indicating a simple equilibrium

in solution which Is nearly saturated at a 2 - Helm concentration of _28 x 10 molar. The conclusion drawn from this result is that the

observed equilibrium Is that given by equation 44 and that the process

described by equations 44 and 45 is applicable when an unhindered

0 .5 -

0 .4 -

0 .3 -

0.2-

0.1-

4 0 0 4 5 0 5 0 0 6 0 0“ I—5 5 0

Figure 70. Titration of [FefOn-XylylCNHEthi^jF^tlSJtetraeneN^} ^ - M e l n O J ^ P F g ^ with 2-MeIm 263

264

imidazole ligand is used. This necessarily requires that the rela­

tively large imidazole ligands can fit into the cavity in dimeric

structures and that the iron(II) sites resemble those of the porphyrins

in their coordination behavior.

Reactions with Oxygen and Carbon Monoxide. Before the dimeric

nature of these complexes was determined, a number of studies involving

reactions with oxygen were undertaken. Schammel had shown that in

SOXHLjO/SOXl-Melm, the particular complex with which he was working

apparently reacted in part reversibly with oxygen. This result was

duplicated by this author, verifying that Schammel was indeed working

with the same complex. Further studies in the 50%1-Melm/50%H20 sol­

vent system were performed and yielded some interesting results as

shown in figure 71. Upon exposure to 0^, the band at 490 nm disappears

and new bands at 760 nm and 370 nm appear. Application of vacuum to

the system results in reappearance of a band near 490 nm with approxi­

mately 1/3 of the intensity. The absorbance at 370 nm is less than in

either of the two previous spectra. After 12 hours under a static

vacuum, the absorbance at 490 nm is essentially unchanged but the

absorbance at 760 nm and 370 nm has decreased. Reexposure to 0^ results

in an Increase at 760 nm and 370 nm and a decrease at 490 nm. The opti­

cal density throughout the spectrum is less than that resulting from

the first oxygenation. From these results, it is apparent that at

least two processes are occurring in solution. The first may be oxygen

adduct formation which results in the apparent reversibility. The

second reaction is irreversible and is responsible for the overall

0.0-

0.7-

0.6-

0.S-

0.4-

0.3-

0.2-

0.1-

800400Figure 71. Spectral Changes of [Fe{(m-Xylyl(NHEthi) jMeJieitetraeneN.JU-MeliiOj^PF,.). with 0„ in

50%H20/50%1-Melm . 2 6 4 2

500 700600[Fe{(m-tralSp }(1Changes ■Xylyl(NHEthi)of )Me [16] Helm) (PF )ec tetraeneN with 0,2 2 2 460/50%1 265

266

decrease in absorbance. When a solution is allowed to remain exposed

to O2 for extended periods (e.g., overnight), the initially formed

bands at 760 and 370 nm slowly decrease in intensity due to the slow

irreversible process.

The interaction of the dimeric iron(II) complex with CO at

ambient temperatures in a 50%H20/50%1-Melm solvent system was also

studied. As shown in figure 72, the reaction was essentially revers­

ible. Upon exposure to CO, the band at 495 nm disappears and a

shoulder grows in at 380 nm. Very high vacuum and extended periods of

time were required to cause any spectral changes indicative of loss of

CO. However, upon exposure of the solution to sunlight, the band at

495 nm returned quickly. It thus appears that the loss of CO is photo­

catalyzed by UV light and that the observed reaction is simple revers­

ible CO adduct formation.

This result is particularly important because it suggests that51 52the flash photolysis techniques of Gibson and Traylor can be applied

to this system to study the kinetics and equilibria of reactions of

these iron(II) complexes with oxygen and carbon monoxide.

The equilibrium constant for CO adduct formation is apparently

very large for the dimeric species. A study using the flow system

(described above for the monomeric complexes) showed that the equili­

brium was saturated even at the lowest accessible partial pressure of

CO. This is not surprising since the CO is not expected to be steri-

cally hindered by the ligand structure and linear binding should result.

Solid CO adducts of several of the dimeric iron(II) complexes

have been synthesized and the CO stretching frequencies have been

0.8-

0.7-

oe-

0 5 -

0 .4 -

0.3-

0.2-

0.1-

L4 0 0 500 600

Figure 72. Spectral Changes of [Fe{(m-Xylyl(NHEthi)o)Me0[16]tetraeneN.}(1 - Melm)(PF,). with CO in50%H20/50Z1-Melm 4 2 6 4 267

268

measured in acetonitrile. With pyridine as the axial ligand, vrn occurswU—1 flfiat 1973 cm for the (NH),,Mxyl, (NH) Fluorene and (NMe) Dury 1 com-

••1 —1 QOplexes, and at 1970 cm and 1967 cm for the ( N H ^ C C I ^ g and 88(NH)jCCI^)t; complexes. It is apparent that v ^q Is quite insensitive

to the nature of the bridging groups linking the two macrocycles. This

is expected due to the fact that the linking groups are essentially

parallel to the Fe-C-0 linkage and no Interaction between the CO and

bridge is expected. It is reassuring to note that the frequencies

above are very similar to that observed for the unbridged monomeric

compound as an acetonitrile derivative (1975 cm which is also

expected to have a linear Fe-C-0 linkage. It is also of interest to

note that the xylene groups demonstrate no unusual effects on vrn inLUthe dimers, In contrast to the observations for the monomeric complexes,

and thus supporting the conclusion of unusual pi-pi interactions in the

latter.

Further studies of the dimeric complexes were not pursued

because it was apparent with the solution of the dimer crystal struc­

ture that they were not the desired model complexes.

Monomeric Copper(II) Dry Cave Complexes94 94Dry cave^ligands had been chelated to Mn(II) and Mn(III),

' • ' fifi fifi RRFe(II) and Fe(III) , Co(II) and Co(III), Ni(II), and Zn(II) but

the copper complexes had not yet been prepared. Because Cu(I) com-67plexes have been known to interact with and CO, it was of interest

to examine the chemistry of copper dry cave complexes. Copper(II)

complexes were prepared by the reaction of the appropriate ligand salt

with one equivalent of CuCOAc^'l^O and three equivalents of NaOAc'SI^O

in methanol. The highly crystalline copper(II) complexes were obtained

in satisfactory yields. Analytical and infrared data confirmed the

stoichiometry of the species as four-coordinate copper(II) dry cave com­

plexes. The electrochemical characterizations yielded the most useful

information. In acetonitrile solution, a one electron reversible oxida­

tion was observed with an<* lE3/4- E l/4^ values of +.580 V, 65 mV

and +.640 V, 65 Mv versus Ag/Ag+ for the (NMe^CCI^)^ and (NMe^Mxyl

bridged complexes, respectively. The cyclic voltamagram for the

(NMe^CCl^g complex is shown in figure 11. An ill-defined reduction

wave occurs at -1.350 V and is irreversible. The return oxidation wave

contains a peak at -0.570 which is due to the stripping of copper metal

from the platinum disk electrode. It is concluded from this result

that the reduction is a two-electron process yielding metallic copper.

Thus the copper(I) oxidation state is not stable for this class of com­

pounds, but investigation of the Cu(III) state may prove fruitful.

APPENDIX A

Rotameter Calibration

270

TUBE

SC

ALE

REA

DIN

G-

MIL

LIM

ETE

RS

g g j a Q I f o s s o n . nFLOWMETER CALIBRATION- S c a le R ead ing v * . Flow R ata C a lib r a t io n w ith Both F lo a t s S im u lta n e o u s ly

FLOW RATE /M IN. AT 760 mm. Hg.

./<£>&21*C .

O

TUBE N O .r ^ g j SER.

.£>00

Sisii in in

m m:i itti

iiilrFLOAT

/ 0 FLOW RATE

£0 35" 3 0 W/M IN. AT 760 mm. Hg. A Z l'C .

271

83

84

APPENDIX B

Final X-ray Positional and Thermal Parameters

and Structure Factors

272

[Hl{

(m-X

ylyl

CNHE

thi)

jMe,

.[16

1tet

raen

eN,}

1„(P

FC)^

*ACHjCOCH,

273

n

i ^ . X W - C W - P O On | j ^ p j o o

5 !t^-roorpI ^ r v m o i r p * * o I I I I

IIIn » ^ i" i t 4

f u* ^ c | r i r f s .e x 'O ^ O i C O

> c c -n p p p p i n c m - 4N r r m N p O N N N P n Ci--------------L7—f s i t r f g ^ f n O < * t ^ i r M >

I I f \ j " ~ u w r s j < \ , '" .O f - - * t i l I I f H

III( v l ^ I* I

wlCr<Mr»oC !.n i r r r i

( M iM o np n n

■•COW' i pim I

MP 4fn EOmO._ 4<M3<o n (m — C\J4*

r* i im p- pyp m is. rv*x* n rt ir

: o i r a c & M r *£. PO D— Lrr.'^■ M o^crh ’tCD tr <

rnn(0<rg I « n I I

r I rir.iriOp'r,c 90 <rot lcu-co 01r* I r i i i i

m C i t r .00 o o o o r - i r h o i r c r l r .4 i M r14y r . e e y o N n Htnri&p'r.o 90 >ri>c|ucb«OtC "•( BBhBo O1 *-r mm)9 oc<v!iiO*£ 4 r-immiP4<m to^-Nmc-NoitnfMrWiM C*lo it P 4 4 net rerctLtCC or o4 f-a4 yir rr>«ta<»9 0'C>p <ccfk>a>crcNjf (nfnirfs«rgr>l4«r<o«rrkfwIMM

, uMMy. irooo ■x n a p c r o n n n ^ x n o o n ~ n p - n / - n n n ^ n o p * .

► fs p - M T C V im ,I | HM |o «o p n ------------->r*v

s *£ NOON r h-<4cr<Mr.rw - t rsj

.#■ yriC.GrMir p O O N O k p t t O O

:X>DC>PNN*CCO'*C D

Mpoy \f* ro m -imim I

r N iM N O'Chh

M\NO ) pI I <M

'•-■■••iif ff1o«o<ov

*4f-00 - O 0 O

a carv.cohH^i0 C i r ^ e o 4 a r f M a ^ 0.90

H I I H f 'JI I

| ^ r

I cr o * r r * «-■ r - e o N r c N u y * - 4 c e c f ,* N > o i r B ^ * o f « r i c m o - r\j | | < \ i r n o o o N N p a : i \ i a : c & 4 r v j r - |n u - N N t E 'C N P |A N N a .p " t t i^ H C j£ {! Lr C-C-Lrr J L- !__

t f j i i r r ' c i r o t r | r N p r , D 4 < < r a e r - p n N N p oi cn O M C u a im p c c f - Q N O O ^ - r - O 1 I Nr Oi/WMON-rcEyofvcr r) r i r - * o ® P « P 4 0 4 0

I c ILCD0 iflPQ I r*r»nNNN*-» f « i u*0 - * ( n O M T c c C <r

bNir-4? QHHm n o op i m o *m m o i r

>n.o 4 v■t CGNiTCDrNvfi r>o<om

• 9 i r « o 0 <O i T f ^ ^ i r N r P C f - f f i C Q m t - P O p HfH(VH m* f «4 £■ 4 •

n r «O n © f* i t . N p i n N im u“ «x O o r t o p m i t . i u* ir-oo4PO NPtnNOPlcoipMrnc^co r.tCNO Nu* itclcl rfw4r 04icno(M4 rw rl—4,or*i r i i i i 1

I (•‘f-OfrNU'p I B C C <*■ C N 9 I N o n O N - s c i t II c r o C n o m r *

r * r > i 4 4 i n 4• t o r n 4 j r y

4 N I M P « ' m n 0 0 P ^ ^ B ^ n O M O - p i t l T P ' . l T ^ O O y ,

I I

I I ' l l )l f-c;mcOOit-ol -nct fxtfMf>iGirP<<l(*)PcraU’ fMnrgr i Mp rc 0 -r.« wet cp-'J9 p£9ic- o.n -oPf j'X-ix.a. I Nrjr.rwrppN i f-Nr.tcr, ■"♦Occf'r-pP isi ocr-tr I I imin4cPO*CCrriri«NO,p*o Ncoooo

E m e t e n

^ M T i N

o I - « a

I h>»rjinir‘«9' l »rmin4ch*POCmrk NPp*o Nco I* t n r t r - ^ t N ^ N 4 ^*^4I h-p icporsjN *cr»o <

r < u * > c u n r f i r v ' u n r P ^ ' C n i ^ u n o

i p p rv«c 9~«rir;<Gm 3fn*r*nI I r J ( N i p t f y - » 0 p|L— I —1 _ _ __ _ _ _1 n n r 4 m r f r k r " * o f " , r » t r « f j r « * r - S j f r o r w f t b o o s N P V ' 1 1 r p p * < ' f , r : r * - r r . r ' 4 N ( r cr c r - r . t r r . p f i O ^ c K c r p - f f . I r>a;0 t*goM3*£P'if 4 nri^p* I * ^ 1 4MT9 j-i l r ji * *J* * ? nrjflJrmn y~*

,j— L - 1 __ L L______1 p-oir f-irr-f* f'PiTior.ira,n -»rc|M n > r * P 0 - B * N » £ £ * c r » c

I fiflMfl' tpir*o - rirviA111 -Pr-o nPipri g r g rw 1

J »4rg<-4ra.au.

p r ^ N r *'*«Cf**’O ir .* o0T *n c c ^ P g

t o < t n

U 0 4 S B O m rvit irfp

c r - c ^ r r . H

i n * 0 i A ^ s a r pU .U U U .U .U U ,

r*-«C-4‘tri£rgirKrs.co cir•£•#«g rv#inry I o !iiPhhi' 24tK7Z^L'UU|JUUu LjUOU<

p»nrj

> i'"I r\o

!-~!p-n hd

12511 p- 1111 air* I nc I 1I aj«| 10(4

* ifirg CDO

■4

I f'U' I Of I rnj'

I--I ~P". I Pm. m rI Nm1 *r>o

C(M

1 r*r41 op<|H3 II IT CD I Of»I pn

} 7 NI in*oDMON . Ny I CM

I “

II NCO I 09 !l I H I M- It M M .1 r* nI 'ONI —J IMP 1 PP ‘ IMPsT ir>m

J NIT1i m 1j 00,L I j -ON1 i r o I * • 1 **

I

I r - o I <in 1 r.m I H |

i o’f1—I *4*P I o«j OP

f Pms«l *

r**JU m mUU

M M I*6 IP. 1 O PCl O

l ~< I

N M i (CIMO O 1 N r .M B i N O

1 UMN 4 ^ M

1 If tM

I p m I ai M I 31- I N I ‘'7

P 4y O o p cr

0 r . I M N - lp a .f i iQ P C O N ' COPN'fr.U* r.y OM«OM <>n«h 1 t r.Nm I o I I I I I M I ^I V

2 I3 I I I I

»f y <c IM p m m |r. yinrpQpifi0BBCOir

'* f o p r . N « 0 I T * 4 0 N O O N “ N P C 0 N N N N f f * P P O

OON9 or-’ON In i f i r o y c r r . y Cm P.cnpmi I I I I I

I Pbkt iTPr fM I 0 ( 0 0 1 * 0 1

3! -- —I r.4 omimI NyM x t

(o r> \ 01 r, i m ,= !ab:

L r a : < r o r < i 0 'ON*-rtNirr. m mIMmNI MNU PNNP -ry I f4i|i4i|

ND

o«C0 «ooiroy w NotNfvlr 00 opjcuPc<poo« «*h04<c>t(rOCNN*| CNONOOkPcP O pN<rN«CM4. .CP NmK<OP rif-N'p x irsfCtraffOBrnB

I | — rg — *t

I ;I NCNff??-'rr«cSiF!5?CVI I m ONOPCoCp «9n«0H9

"" 17coTcC3pr r pjMp55( pnnrv Pir*! xo b x h o b I co'ON'C*finr»'rf.ejpPNPr>r}“M n Mm M

I oco}9ir( .N-t -rtynriNMN I occPMpoPr.riooobooI M M M f 4 | P * r t | f , f t j 4 - ^ N N

I * 0 a . C O C E p 0 M U C f i . p p r > M in I op Mr:nP*0y o NNiPMmrgcn ( c-yNNNNf.P MrnNMPlM

0^inpq0i3<N0p<tf^(nm p m n f . r . *c r t o m o o o cm r .Mp Nr>*rKO<Nr»pca>iMMO riOMM4j«xc p*p u)0C0M% l pp^MPOoof-r 1 *p‘Xni Mr.I 1 4*Mf4|4 | I P4 M H) »jI I I I I I III

I — I N I N 3 PNC. 4>m IMNC *X PP NlrfSfr. N ^O N C O N N p IM O <0 f t r g m

I im f o c y < ^ r » r . r t — y p c - x p N M I popr,«oonPPC r .M r .p « 0 N •4# o y r. y t ’N r* r4y a jy <o«o n rriOiONf 4 «CNWtvN4 I HHH

P p p P d P N O N I M C P IMP1 firrCB r-NNpON4IP-

ONMlMM

D4Nnf\,r.I N0 XfjNf&H(TH0i0 h(f cd I 9^0000^00 P NON *Otn 1 jr+tfihfifiiooctf 40 5>Mn I oi-rwr«nir>i0/ c>l' n<ihfsi fX(T,

pbMMnatn4 nitpDmim m *m imim n n n cm m N im im p« i n n r» UjJUUUjJOUCOOOU JOO

z71■4/)E14>5

274

a 584 -9B ST IB 813 8S7 499 a l £4-|T w lO l I J 2v3 a J J 6J

3 6 -1 2 4 G7 17U £ J w#9 -:*37 S I4K 1O -I4C 0 TO 32 -6 5 9 - l i t IwJ U - 1 A l< -16:2 a £721 61 £-1 S i ) - u lUlV67-lVw6 £4 ft 0 L 6^ t -i* IwJ |£ j

10 2U7 i<o 74i s i v t r 1744

- ; u i23 01500 1624 2 J 3 0 L

1ft 371 71 2 H.T 117-CO# 81JB £2* - e c u 67 8 740 Vil itJ 0 era

ID 21* JXT <4 6 261 jO i 8-4 £'-»■. J» 21V 197 <3 9 139 • 199 03 < ■JH C JJ32103ft 10V0 £3 10 699 -C J’/ £1 u w v - « J J 3 /Sft £09 VI U 12 024 -9 4 J Ul □ £•;> —< u J20 ICO • Lft 67 14 Tftft mV M s s 10 5; J - w ?2 0 —V2 249 199 1* <94 £S— 33 IJI121J - I J J J u*30-S<2 £48 160 IB 260 73 Ift -Y J - I J J I I J

2 J - I2 3 S6V 110 Iw <13 •111 # J| 6 L 2 2 «3 -< IwJ la 623 -Iw J 3J

Sft C l -01 i « 2 J -£ 3 1ft#f i« IU -f tM 4 <3 a 6 -£ 0 7 m lOi 2-1 113 twM CCftiu£3 1SC3 21 u i r j wl l i e “ < 5 i i -V J C l

I 121 u IBI3S4 13M 12 IiT3 -2 M 14 499 ( »1*1004 lo s s ta SOS -M 3 SO SOB 443 2 3 &S4 *334 003 -4 0 9 34 4 50 -£ 0 3 U U 3 8443 • L

OOS41-34S9 3 t7 4 7 -|V C 9 4 1 0 4 0 -1004 4 40* -0 1 4

48 2 - I I <8£0 < 1 u s e - 1 CSS SI31 6 2 J I2 - 2 IS 0 2360 CI&62- ICI4 US&V 10 417 -CIO £0£9 13 776 •7 2 7 236C 14 ICft 138 9ftS3 16 o c a 64V ft*42 IC 2*0 Sftft 33

SO £01 -2 7 0 61LC2 73

34 181 166 107IS 26 -2 3 7 -1 7 6 IIC

S3 114 !£»> 173

4 0 L

S TOO 0 97 £i O I 7 1 - 2 I J I 3-> u 113 -JG ft 11J O -C JI 12J JO

N I U X U J I 3#13 5 i£ 5 JS S J14 £66 3 - J 3414 4VS -1V 4 34 13 7 . 3 7IH ST £ > |b O 34 ViS3 < U - 5 J I v J S i 313 l i S J#

to o t

ccvoa 2v£B 6* 01582 1775 IO c - i c a j j I 0 |I t 697 -6 6 9 C« U 2 67U a s 31 21i a s e a - a i o C4 4 e c u £■)£ 29 ft li-iO 7#1*11109 IftlS £4 6 171 201 73 w c .o v J 3>16 4 03 612 <8 C 193 22-) 73 C 331 3*IO 60* -601 33 10 C23 £71 a* 10 <120 <9 -630 113 ILIbTV 1517 I2 1 I7 J U « J 3#23 -L 3 -1 2 4 167 Ift <16 <V3 SI M WiV - J * / CJ24 733 -70ft 63 10 663 <3 1# io r I I I36 2w7 212 79 IC -tee - « 7 91 13 ftv l ft#SC-1IB CpC l<0 2U 613 -ft 10 £2 S3 v*o •#*3 SJ

2 J <98 91 a s He* l-.vl ClS • L 2ft 73 117 1<9 J 0 - 6 J / M J1

SISS4 1043 31 CIVGU-lwVT 24 4 S J I4 2636 24J VU7 V « 24

IDlOTt—IwYC 24 12 U as 014 4114 Cv2 -1 9 0 78lk lk 4 4 * I IM 31 JU sy » - t o o 71 34 337 - t s v Obi

24 134 -SO 149

IB 43414 STB IB 2*4*0 14 -4 3 IT 29* ID 374 I* 223 SB 341 31 -2 9 7 32 |4 4 S3 310 24 243 31 171 24 122

1043 M—f YT 3 0

-3 3 74• 1 3 2 143

- o s oa111 4*• i s n

-3 4 4 47-3 4 c a -4 * C l

2* 49D«5 4*

-1 4 7 194 - |B | 144

2 -2 3 •5 0 4 IBS2 -1 2 7 ft t . J

IIS*>J

< 1241 1249 S I O Mi 1 ,»* ! £ /*)G9J) i t s * S3 □ i r e

luYJ

C 6CC <30 63 C>IO C l <73 « l I . J ■1#12 £23 £33 S3 14 j j j 2414 471 -£ 7 6 SO Iw £ >6 UJ

M B t -1 3 3 189 B 274 S3 S I31 9C -3 4 ICO 7 - l v l 6 ) f 712 J 149 -8 3 o c O 2£ft 3422 2 |3 77 CT 9 S£ft - I J * u*24 299 48 C9 10 ICI £4 IOJ

I I C..7 1/1 £7I I

1 2943 143 • I I I I '4 9 *49 2244-1 * 3 7 373 1 743 V 409

19 204 I t 43*13 237 IB 12314 £ 2 IB 31314 1*7 17 1*315 IT* I* -7 3 39 243 31 -3 4 4 23 141 89 144 9 4 - ITS

-3 7 3 T9 *9 24

■1190 23 -4 * 7 01

• S | 49-1 * 9 43

337 49- i n a*

0*4 <G -3 7 4 a s

403 38-2 0 4 41

23* 48-1 2 7 43

349 4*-1 7 4 74

- 4 9 B7 381 84

- | M 141 -3 2 3 79

41 74191 44133 10* 149 101 •1 9 187

1 <172 s e aft 1744 a o a3 l i f t4 27*7 137■ u a* 274

19 IS !11 24412 11713 IB!14 234 10 2L9 14 147 17 1*9 1C JCI 19 IQS

SO 240s i i c a 23 23* 2 0 -1 1 8

I L

<99 44Sift ft* -2 3 4 91

370 40lb* 110 347 70

-ft CO 145 76143 31-6 6 *1

-3 4 4 43CO |0| *144 c a

5* 41-£ 3 3 *1•SOU *3

43 7012 03

-1 4 4 123 IS 44

-4 7 127 —40 Ol 18* I I I

10 3 - J Iw 194 17 -41 10 3 J0 19-130

SO 1 U 21 £07

121 3 J -2 4 J 91

41 131 3-14 v J -371 c r

-7 0 12J 74 1ST

•4 9 *0

12 1 L

9 744 -7 5 4 331 044 -3 0 0 432 446 407 23£-141 I* 77 4 a o c 304 47ft 243 -4 3 3 BS 4 627 -4 1 3 28“ 1*4 01 49

0 6131 ICO3 ££4 U 15ft4 CJI 0 -2 1 4 li - I S J 7 C..2Ja to o9 S IS

l » - M I I 3L0t a 303 1S-3JQ 14 203 19 MS I* ISO IT - 1*7 10 373 I* 184

-7 7 0 24 -ICO 77

- 0 3 04 -1 0 0 70-SO* 30 30 9 7 J

-401 100 400 30

0 4 1IU £13 94-VO 111

-2 0 3 GJ 37ft 60 ICO u J

• a i s 61 • i- if t l a i

- « J I I J -1 7 2 10 |

9 19 97123 9*

a 131 194 93 1 <01 323 44I t 1 L * 193 -2 0 4 91 3 ICS <3 31

I t 243 -3 6 3 98 3 SCO —i7 S J9 414 •1 9 4 81 l l - l t s •3 0 77 4 3*3 1*5 # J1 -9 4 97 119 12 •5 3 -4 5 IS4 B-2-O •C J 4*9 1*4 179 PI IS 2 33 247 43 6 - 3 -3 5 1ST9 168 -1ST Bt 14 1ST ICS 9 | 7 IGS Ift* CJ8 IBS -3 3 «3 15 134 -6 ii 104 0 vC3 -4 2 # 39B S3 69 134 16 i<4 -1 1 7 101 9 C«S -C O 918 S 13 -TU 74 IT —<7 120 1ST I t UJT <JS 917 274 a r t <0 10-164 83 90 11 INC 943 01■ 5 6 t « i 01 19 2bS -2 1 9 73 13 l ’/9 -JV 339 -E 2 C3 ICS 23 191 ICO 93 I3-L S3 *v J ? J

I t 144 *4 77 21 937 2*9 B9 14 CTJ •3 3 3 S II t 40 19 123 n < •141 -B t 109 IS 7)& -7 / t f 94I t • 0 4 64 16-15* a r e I DIB 234 -TO 43 19 1 t 17 c o r 27# 7 J14 317 -3 7 40 IS 37 •111 I4 JIB 392 •2 3 0 B* I 419 -831 SO18 173 -2 6 0 69 a 194 -3 3 2 73 IB 1 I.IT 364 -IB S 84 3-•116 - a 9910-204 1*0 09 * 377 • 2 ~X 91 O-•151 - t o o 13118-394 -IB 69 L 139 131 90 1 < ia OS

18 731 -3 8 4=0 iJrl -6 8 2 J 4 J4 494

12 O L

.0-017 - 7a io o i<4 f t - J v41 o c : j - j 4 j j a . 7 8 J i

14 2-«3 I J 2 / J 3ft4 1 4 -IS J 2 1 164 14 —31 -£ > 4 1*4 u m - . j t *4 24 ftftl 840 4*£ 1 31* 14 44

19 0 L

U*» %7

v J r j

u a r a

2 1 .3 4 1141 214 066 -1*3 080 16*J -O J -113 10 311 *4 --

13 JJO 2 40 7114 -J3 14 311 -2 * 7 I J 136 3 / 4 131 20-01 37 168

14 O L

0 321 -2 7 9 432 Uvl -loj 66 4 -1 6 3 |9 O*4 386 200 Oft 8 3 68 —JO 40

10 -01 -Iw4 13 / I J 4 02 ,)t 671* LOO - 1 4 / * J 1 6 -11ft 6 Iftl 12 042 440 40 3 J 1163 -1 3 0 •O

13 9 L3 337 621 S3j -1120 V-l

6 -0 0 0 - 4 VI4-i-f.* ft* Ivft

j j - l v J 171 #V 1.1 |7 J i J 461 I 021 -2 2 7 *21# - ^ 4 0* 6010-012 » vO

IB 0 I*

O 121 -3 1 103

J u 2 —Jwft 101

18 111 67 19919 *41 -tft 8.7 14 3 f l - 1 £V t l b 14 -4 1 *0 SOT

IT O L

5 118 S3 1434 jiV * lu a t c 4 o v a - u t a t o 0 - 1 6 8 - I 63 lu a

19-171 * 4 1STi a SCO —329 118 14 ^ 4 , 7 8 118

18 8 L

9 248 - 1C I 97a 477 077 794 319 ft 1(41 4 147 - r e * l - v 8 4 3 0 < 0 3 VC

14 148 S I 163

04 IB * L

2 IC* 491 IC94 409 •< 4 |LO8 M 6 2*0 79

a 1 L

> 099 947 IB9 w£* -7 * 3 22<33ltf-£iVU 1191563 1 0 46CWC5 IV50 £6T -8 4 -3 2 4 |£ 39 £34 -2 6 < <69 VSft -ft VI £5

)B |I M l i t # 2311-165 -5 * 4 |0 113 367 259 64IB <47 373 <414 244 •29 4 TOI I <19 - a i r £314 403 l«0 5717 £34 <63 6719 3*0 <519 269 •22 9 63S t a t* •41 3 <o21-164 40 6123 350 Z!7 6023 213 216 0124 69 -1 * 6 |£B23 StfT -VB ftfi» 1*3 -IC S U S27 209 -3 7 7 792 0 £23 i64 99

a 1 L

01371-1248 IB

9 2«S S 1328 - 2 /3 a »ro * : n7 <24 0 1239 -1 * 2

10 260 I I 21 I J 3 7J IS 431 I* U7ft13 *ft14 If

1 ftSft a is j 9 339 4 £*t 9 3 3J 4 971 7 109 O 369 4 4£*

Itf 376 11 49713 - 4 3 13*33414 *263

18 1 L8 £*r 30I 317 273 I3 -1 0 4 -4 1 l9 S IS 9 1 4 £64 -19ft 3 334 434-5J7 1*47 341 9 30O 331 -1 1 4 9 9ft -171 I

1 8 - 8 0 -1 7

S3Q 44 -0 3 9 194

1633 v* ft** 19*

-3 1 4 IU3 • 6 | | »6I

996 114 - U 3 67

* VJ 3*2 I79

•9 2 0 V« -■*92 41

£02 ?S s t a lo t -1ft* Oftft

-3 2 2 48 S ift 191 223 74

-lf«U VJ “ J i t

•9

134 3 « <9 418

341 139

7|44Cp- | 4S& O 9ft* -441 * •129 l if t

Itf 613 CIS 1114*1 1448 IS -2 * 12313-233 17314 fttft ISO IB UtfS *23 I* 027 -1 2 9 17 474 -bftT ID 479 414lt |V 3 6 -VO4 SO VII 240 31 9 0 -IC SS3 4ft -IftS n 41 -8334 111 IOC aft 418 •<*£ 24—324 *4327 294 3712 8 - IB* <3 29*233 3498 ^ 3 4 8 7ft

111583 1507

-1 9 6 1JC -S S I 73 -U£3 | I 0

269 ISO 137 SI - IB 196

22-123

I ITS I£42103 SZC

Swlb

UlUS,T ICC*) 1C&C£ 997

v |J>

V."J 11

9 210 ____101900 -OCft £311 -4 6 -G« 1ST12 641 -4 7 5 Cft IS Q IT -OC2 3914 ft* I CCS 4115 633 <03 <3I t <77 - O l CS IT t<0 -2<C 136 1C £41 <77 3ftIV IXft COT 01 20 Z£/> - 2 0 3 vS f tl 3 3 3 4 3 06S2 9C> « 1S22J i c s * i r / oft24 £94 B i t ftv 2ft 267 107 YJ* 6 -2 5 3 0 IftO

332£4-SO;.T w l^ .4 I J U7 < » l -J .6 J C - l - 6 . / o i . a -

l u J -£v .11 Ct'J -v<6 iC L#ft UM i'J i J J V"_‘I t <IU - j i t 3> ill Uv9 '*j6 6J16 I I S -S I S IftJ17 l i f t - t * i |13 £61 G JI *6 19 tOft 3v6 S3 ftft ftftS I I I it 31 C Sj —u J GO 2 3 -< 6 If tJ U f ftft*2J7 -6 f t Oj S< 2 67 STJ 70 t t - J f t l ftftt 9 / £6 ftftft 10 J3 7 £ 3 0 - r w a / £S ftftft 368 100

s I I*

I - 177 733 - 1 11 -1 6 06 c o r - o ; j8 611 <6391473 917 8 IftO - 191 707 4 1 0 0^0 ftJ C I4 6 9 -I4 J I JO * ftftft -£ 0 2 CO

I t f l l ^ j 11 /6 31 JI1 3 v 7 I232 2012 U’JJ - 6 1* UJ l £ - l f t l -1 0 l u /14 C i2 -0 0 6 9015 971 -6 6 3 30 |i* tftO 716 2017 719 C>1 3313 90 - f tJ H I

31

19 239 4033 UvO -£0J f tl - U J ft* 3 3 <06 6^0 <0f t j -O J OJT 1C1 2 4 111 -3 1 7 123 23 J : 4 -0 2 4 CO f ta - l ,U - I JO ISO 37 t f t -1 2 9 137

2726

27 104 B t 183 6 1 L9 0 95 -1 9 1 20#

0 333 -151 644 1 L 1016 21

3 Owl g j j 2 J02205 2070 ST u z a •Jlw 2 J1 a t a 860 <3 ft M -) S C J *21 e r e 1774 Sft 61* .6 I J J I 21£ 766 •CBft £v w i i ; j - I I . 5 214 036 — 101 6? V i£ - - - IY JJ 22

71141 1314 95 0 773 769 39Ir* l<S S3 93 ID C JI -u Y J J4t i l 10-1830 as 11 ISO 8 03

10 721 -631 so 12 < I J -8U J SJI I 44? -SftS 91 12 sVJ -ft#7 <u12 SCO 0b |< M l £J 61I J 270 tea BS 10 6 J3 -4 JS 4iK -1 1 2 -9 124 16 -63 -j3 l?ftIB 624 -< 33 ftft 17 IJ * V7 7 J16-199 -1 0 4 131 10 1-3 3# 0317 553 <co r a 19 6 -3 - s : 8 3116*254 03 97 20 1£<3 CJI a 119 039 C34 27 3 1 -2 J3 -S J4 0334 911 -Sft# 4ft 23 CIS - 3 0 4*21 239 2CJ 72 2 J UI4 319 4*25 ISI - S id 112 24 371 371 5723 533 s 33 25 107 -3 1 4 9324-104 -4 94 2 J -3 .B -1 7 11323 2CJ 203 BJ 27 U /l 331 9 J24 77 -ICO 144 JO -<66 -1 9 9227 ?<3 -3 1 7 662 0 -9 8 183 149 0 3 L9T 2 0 -9 8

IS

IB I L1 -1 9 - 191 1312 - K 3 -2 2 0 U J2 43 -JO i v r* IV3 204 1£M3-131 174 1476 T* 83 tin

0 a l

01531 1C3B 911 S J2 -S32 22

31744 IJT J 2 29 I4 S 3 IftftJ 2#•4J31J-I324 izl9-lwVJ UVftJ 4£# 2 J9 l-Jw 9 J 04

a • L 12770-2603 S3212 ID-10ftJ 21

1 94* -761 19 6C6C6->2361 34a c s s - c v t 24 <1771 1666 2484 I I I 4412 « S (.60 664 538 £57 31? 20 4 230 SftO 44• I J 9 8 - 134-3 21 T -9 4 IDT 12581 I tD -1 199 a t 0 -1 0 3 251 1177 22* 98 49 V I Oft • IC S 1010* 181 194 93 10 SOS -1 9 0 0391815 1344 9 i n e r t 1097 25

14 294 •2 3 84 12 202 63 U3I1I2V B -12I7 34 13 270 345 4 ?13 434 SB4 44 14 534 -2T 3 43IS - t a 24 12* 18 104 —136 IC*14 497 719 55 14 239 233 B5IB 401 409 42 IT 510 433 8314 262 449 49 IB M B -411 4917 <43 - 1 H 64 I t 223 113 7110-ISO I t a a 24 -4 4 77 14719 24B 542 54 21 *44 - 4 id 5394-103 47 M 23*213 103 C391 845 58 54 25 Cl - a t 1<319 1*0 -8 8 0* 24 274 •1 6 3 7093 331 •8 B4 25 3 |* -S 3 BS58-191 a t *a 24 816 194 10325 -4 7 914 IBS 27 107 -261 14724 -7 1 - I M 104 a * - u a *43 IBB27 999 a i t 7899 19* •a t a a * 9 L

S w r • 944 -1233 9211124 1144 21

42793-3324 S3 23134 1059 27is * ta 2401 B t 81891 1475 23a h o —C3 49 8 949 -934 5533334- 3 g |4 S* 8 476 914 25831*0-2123 27 6 833 —4C0 33B3V03- 2V0I 54 T 704 709 53B 079 -9 * 8 94 9 941 *019 23

11570 9 l3 ’i£ a 31560 < c'j t8 S IS 4-160 7 667 D 2 J I9 S£ft

ID <63 I I 764 IS 337 IS DT3 14 400 19 -0114 242 17 2 0415 -«T19 20420 341 31 177 22 -2103 3 307 2 4 173 29 -1 6 334 COS 37 323

1478•1413 1923 -S if t

967 317

—■! 2 -2X 1 -3 0 1

30ft-<■>202

-139167

-S S I

8 B02I-IU T 3 89*9 778 489 B S O ft 379t c o r a - o s • <66

10 7< J 11-176

Iftl ISO -S IS * J

-6 3 167

3 L

-0 2 3 3 ? -3 1 8 37

337 37 153 112 80S S i 123 82 129 82

-7 * 8 31 0 8 110

•80 1 30Cftft 37

84 Oft

a :[297 1999 23# TCft 72# 3w

i j ftJ7 <44 J#11 v 13 37

— * ill J Ji j ::~j : -V JJ 30IftlIv J J If tJ l 3wIJ* IT # 12J I J Iift - M - J J J *1>7 233 <210 313 -1 3 741ft 731 - 3 / 4 36Uft SftS M 2431 221 79 692 J IftJ -114 VS32 m 17# u 131 uo -1 7 0 IVJ3 J - I J J -OJft 132

l£ J 23# 12137 449 347 V#

1-1_2 £31 J W 78 w£0 0 I6 J1 - 6 -1 0 7 7 <£0 ft 76J ft 61ft

IS 278 1 U C O 12 20ft I J OmCI 14 -62 I J <60 lu COS 17 O rt 1ft SCft I t ISft 2S i f f 31 90S 3 0 SSI 3 9 £01 3 4 -J1 4 3 J 90 3 0 -2 6 0

222 —<S 81

*97 37s i r <0

-4 1 0 *1•IJV I 34

«** Jft -0*1 JU •1ft* IW

414 ftl -1U7 30-8 4 0 J 7

BO ft* 3*9 lift

■SIT 7* 903 29

-1 * 9 77-5 * 7 <8

10 . 6 - s o l i f t

•170 132

a i l

61308-1117 11630 jftftO

2 £61 -SOI J <62 -807 4 331 - I Ja i j f j - u o o6 ££> 0447 2*8 7 0a 61* - v t j9 2 * 0 - J I J

I t 6*0 -803 I I ISO*13 2 /8 J* #

11 <99 IB <3914 91115 O S16 15617 933 13 SOI I t 76 36 -lftft31 £71 2 3 ICS 23 £43 3* 19432 36ft 30 -3 3 3 37 37*

I 7673 o ca S 104« i ? a a f t i s4 123 7 34fta 9 5 i91243

10 32*11 «*12 uUl 12 4 1 0 Ift <64 IS 2*9 14 3JT IT S3 18-138 19 S t I 3 B -I9 43 1-144 33 S3*a s i t s3 4-19932 -2 1 9 34 -2 0 8

4113 41 SO# <7 83* tf t* 02 2 3•4# US 30ft 24

•089 69M 3 13#

>140 9 2

29 73t a t n o 34 IBS

-7 0 S Sft •GO 93

—230 86 1*3 ft#

U t f t 32 - I f t# 76

277 <3—493 92

944 99

404 a t48 IftJ

•1 0 4 Ml 313 <8,-3 4 99 —3 J 193

•4 3 0 92—itf* *4

197 9#•S 3 74 337 I40

91037 I SOS 3 174 3 SCO ft 324 B SOft 8 1C* T13T7 O 133 9 -1 7 4

19 9J7 I I 3 ?S13 Cftft IS 93314 a r t IB 747 IB 111

3 L

-0 1 7 S3 St* 4# -7 4 7*

-4 2 3 3#-3ft *3 • M S Sft -1 7 9 74 1993 S

8 3 Itflt i a a a

•2 0 4 42 44—U*8 *8

• a s s i 331 ftft

•7 7 4 29 - I t l *4

1

3 " f i l l 2 1 3 A r e i r r - f* n 1 151 VI T g t t ■n 4*1 « l - o x - r z 4 9 e r e 1 45 IS 0 5 319 t* 9 4 CX r e c e e i ift* Cft" 1 / 7 7 <2 —CS S«S 0 P.CI r* i * 1 1 -6 8 S> 3 9 6 ZIP RS 1C1 c r e - C l t c Cft CS 9ft! 01 1 AI 2 5 1 - SB 0 SX n* Coft 017" 7 9 1 - cr* l f f t r t 111 f 3 49 1 4 8 - 0 * 2 IS 4 9 09 3 0 9 3 ftl 5 4 501 R ft2-4 9X 51* 441 z 91 n e t 9X2 4IT. tto T -ft ?ftrf, i * n 711 01 4 C I-2 S 1 4 5 9 - API-OC OX ACT t r i r t 9 /1 4TC- ♦-OI e 19 • I f 4B S-I 1* 4 4 8 - 4 c c af i l l 121 r n r r t 2 5 * - IC3 CS 6 9 Z S!* AI T At •X COT 995*11 14 n c - O'C X 9 1 £22 3X8 XIT, CICJ P2«1C I 2 t tt- m r — 211 • 1 - t i l IR EOT PC • t i n i c r IC 7- c » z t l 271 c r c r » * 1 1 • I •X 51 1SI *HI 1 6 1 - < r » -n »C1 C.*l - — * 9 ! > C I- 08 1 CC P i t C*T r o i x t 80 99C cr> s i CO 61C 9 5 3 0 B* 1 AC- A lt'* t** 97* I P* c l i t f-7 i r l t n 6 2 9C S- 0>B 41 9 2 e r a C6P "1 2 4 a it 161 AI ; m « - 1 f! 1 * t i l d i ­ RBI 41 IS 4 14 9 5 4 AIV. CPT- 2 T 1 r a r t — f F l IO * 1X1-C l OCT X I - C *l PI 4 * c r * CAR Cl f 5 C 07-B CS e t s ♦ i s i t 0X1 9 1 - 1 0 - BOS i C V 6 6 1 0 o i r - r : r c n Z1 £21 t i l XI 16 9 3 1 - OCA M 92 IT2I t r r r n 9 4 i / . r - i r e 8 eg i n • TC'*11 261 c t n t g t C

rt- "■'P 13 r.* r t P - tOS *1 C» 1 1 3 - i> 9 r t XT e r e - e r e i i 'C t i r e ­ IX - 1 16 t a i ­ m - * r 8 6 1 4 9 - 0 * 9 11 f e i r * *71 P.* 1 -2 3 a ICC- ACS1-SI cn R 9- Q4t Ct CR irc l-cb X T C l CAT g i e c s - 0 0 4 n t 191 Cl 0 > l 9 d - 4 3 - •

25 r n - t e n <>i r.s 172 COS *1 *8 t ic z 0 * 9 II 9 9 (T 9 m e * 9 * 0 9 0 - 4ZS *1m * T - / r r e IC t r e i c n 19*> 905 21 *0 e t c 9 6 1 At r s t e n r r * p 1 c CT e * 8 4 0 - 8 3 9 51 6 B Ct* * r c n — c m r e 7* TfC If 3 M 5 9 5 1* U T. SI t o t *4 i e t - 4 19 1M — e s t x n t VIA 0 1 0 i tm l ftrs: 111-PR r t r - 1"T "1 901 m — 021 II c c fTCPt-BTIBI* r t ♦ e z ♦46 9 t e r i n c s t fit 8 9 0 A il II 951 B I 9 1 - CTro r e * c m m r r r r * 51 n z c A l l 61 9* c i r - e u t x IX 5121 t e n c r o C6I C .T Cl 101 3 4 C SI-61 1ST « - 4 5 1 e z* 3 PAT r m i c f t / 5 fP fV I 61 c > 26.9 4 8* a r * c n * * IC CC1I ♦ 5P I9 s-c ♦ i i ♦CS II 1 0 r e t 591 6 281 i d ­ C 3t—1EA* P2TT- i m r t r>« I f . 1 - ir * -p * o * i r t 0 0 3 3 CC 154 4 9 3 ■ r e r t o l ItrfiK 7Cl x r c - l o t o t ♦ I I 0 8 1 - 5 4 a ♦S t e a l r e - A iin m - r m c i If! f-'-| 31 0 3 IC S- 0 ) 1 - 1 TO 0 8 6 * 1 4 A 4 * 6 4 0 9 2 C 911 1 4 1 - ♦ 6 | 4 eg e a - i t s i 1 9 t i n ♦A - 61PX c p - M R or <■ * p? " I* s II 13 56 0 3 1 * 4 i n 4 5 2 - " 9 | ■ 18 e r e U 9 t CSI B1S A ll a 09 C 9S- CZ2! • 0 4 c u ­ B St-B Im CT- rr r n PC r r b - t-76 01 £C n z a - C91 9 c z Z Z S I-C v v ii e* 1 2 CAR X X* 49 ♦ 5 3 3 c a t r e BRI-1 1

r r r - t t r . "1 1C « g 6 0> 7 7 2 - *A3 * 8 8 S9A* 0 0 * • 1 0 1 T4 7f»l o r e * r e ♦ 5 3 - 695 A 99 0 4 1 - BtC -914« tftT?- r r c c t r t 7 * 7 1 -1 * 0 g t c t x * 0 9 9 O 1*1 51 t t i B 9 * 0 2 - 4X2 1 c n £ 4 1 - A fti-a t

7 f 1 - r " 2 t-T rn ir p t r * rrt o z n i - f t c a i s 1 * • 141 BO- A re OB 1 9 e i e - 4 5 9 A CC 8 0 1 - 5 4 * 8 XAt X I I - X I1-91r> " t * r r c bi r s ♦ r e fti.C 9 18 IC *1-C 2>11

9 * ICS911 ll* i r e 4C C lt 4 7 - c n B r e 0 5 8 - BXA 1 9* ZCB 4SC 51

ft* t r r - r r > c t 9 5 i m cr 3 9 BBS r e zo 44C - ♦C* c £ ♦P t r c i r e C Of 181 CA* A SX CA 40 2 -8 1ft* * 7 0 CftR II 7 * 7 7 * - > 3 * • M l 5 t — CO- Z i r e 591 CIC-1C C4 ♦Cl C1C-I IX i i c - 4 03 IIftS c r r t r r * c l r e r . t

191 0 9 O il 1 8931 0 9 1 - i * r e 14 1 4 * COC 9C t * • 1 BA AIB ICC *1

f t r r c - i r e * r z pr 3 - m i 2 1 9 9 r e c - r e A ll I t - c i i r t 1 • £1 XA 9X9 e r e ♦e»P f t /e - t r r c n o SIX 1 e x ftXI 9 0 * 8 3 9 0 3 2 A M AC IM C3C- OtC t t « 1 o v e ­ ABB re C* • I B ■95 •iftl C l l - 9 * 1 -1 A l l *SI 9 1 1 - r t "9 0 6 2 - 0 4 2 CS *11 911 — 10t * c c e x r t - • 1 * 91 24 r t 4 * 8 O i c a t IB - • 4 1• n 7 50 CIX * 3 * * i i z e ­ A r t r z r t 0 * 0 0 8 CS A* C A t- ♦At CC 1 3 91 c n Cl e t i t i z n i * i S3 419 CA* *i t A- 7 7 3 -P 01 r o i - ARC 7 8 n CAS t i l IS IB * COE IC c o t « : A r t 91 t l > 58 4X8 51 AS 4 1 8 - e i c t

r " r i py-rrc 10 r r c r t 0*1 5 9 - nn* O t c z CZI 9 7 3 e c IX * 0 3 - Cftl CS CX M l XTR 51 2 > ! 181 SX I t A* XI* 939 Ar * r s r i r - c A r t r t 0 6 5 3 1 - SOI in 10 * 9 9 1X6 41 ft* m-A- ♦ IC 41 TCI c r r - m 21 * 4 C - O il At AX CM 152 B

•*3 r m - i r - l c M l r r - r r i - ? 3 I I I / » r t l - p * 05 9 11 IB* BI r t C9C- 191 f!l C6I 4 IC - 2^1 t t * 6 C = c- PAS t t r t Otft lo ft Ct : r r c CCP 1 t a r r t - C r t r t fi* >61 A r t 41 1 1 T r e - 4 0 XI r t f L i ­ rf!A XI ( 5 C7I XZC 01 9* r s 9P3 At 4 1 CS ABC 1

t o r t 1* AM * CIS 01 *1 6 9 1 - a r t 91 761 l t s S 7 I -9 I r t c r r o 4 9 5 ♦ 3 3 P f3 * ft r x rV s- r* H 13 IS *C 9- Z63 XI 53 991 r .r z o i r t r w I ft l c i r s f f i l /R 0 CPI 5 3 - 3 3 - 51 1 B II

r * Af — -P - 5 16 *X> 41 IB A /4 - C l* AI AB 54T 19Z 41 c t I e r r c r r - z 4 4 o x t C23 1 19 8ft* Bt z r c - r t r e t I " - a* .' 61 a t Z P I- 6 * 1 -5 1 09 C89 9 1 9 BI ft l 4 C 3- r ? r c t ZI9— r / 9 9 CA 4 ♦76 91 901 9 4 - BXI

8ft * * l / s i : n « f . : r nr i " •*.69 A69 *1 r t en rr CP3IBI *Z o i r r - i r t i c t r x i Aft A" a e x r o t — I ft t 6 0 4 <111- t o t r eIftt r r r - r c t - m r r r,*r: i t 19 5X 1- 31 9* z p i - O l II r t i r g CZ9 Tt 9 1 r n s e r s *. x a M t — 831 g 0 6 Zft3- 602-

i f t i - c * r - r n r z m o 71 ZPI -'5* r t 21 3 1 5 0 C - e r e o i i * X4C 97 3 Ct r x c r s - •3 15 2 7 5 ACS Zftl r x - 4 1 - ISfi" 711 ♦ r t IR IC P7ft1 AP'ilf!! ftp PW r i *91 II 1 2 4 m c 111 4 r e 7 / 9 c m e z i d * f t l l 9 Aft 2 P I - n zt 0 2!*• n r . - n > c c "A e c i - m M r t e n s 99 9 o t V* T ilt­ e t c ■ t 2 45 I t * C * —p t r r n 1 0 9 X5T ICS 9 3 9 >5* i r e ♦ 1PA 7PI f P l - f t i M l C ’l 7.1 761 011 '.51 A * 5 o n * CAP 1 4 9 * * r .r -c - f3 X fS I 551 — C 3 1 -0 A3 153* CZ3 A ASt I t Cft- 01"ft f t " i - 5 7 t - f f m t-r t - r r * RI C3>- > lfl 0 CC z r t l 55BT* AC 9 l r r - t r : T 9 15 ♦IB i £3 9 4 5 * 493 XI5* f " « - fftp IT pfti f : ; i - i n II * 3 6 1 * - 14* 1 AC ft*P- * 9 3 ■ 5 3 r / ' f : r x * r e 1 C 91 M l c r s - r e 8 *Pt 641 A* 31ftA r x i - 1 P I-7 1 PR r r n 61 ft* XT6* 1*4 9 r t i r t - T r t l* I S ir M 2 /rrr* 54 i l i - O SI-I o n &TTI ■ 1T-CIr r m - 651 Cl r r t r * - r« * ft 1,t ACE ■ IC 6 /2 1 * 2 /2 1 2 f*P ftR'R r r * 'R t t f f t ! * i r e Cl BA 7 4 ! - IAR 91m i M f.ft M r ; . 0 7ft 7 * 1 4*4 4 r t 0*51 P IM " IR * t r i - t r . - i c f i t rt.p» /.I 7 8 Bt 0 9 ftprt f?AR 31IT. 1 T 9- * i * n r e F r * - 5>1 * s t e g 4 in f 7 ! r - ? 7 f t l 1 I7T Z*.l * — p-r CP 0 3 7 311>P 1*7 C l" Cl r m - 9 ftp i r e 8 i i z s c e ♦ e r a 51 r : - r : - n ? t i o 1" 0 / 3 d PR* ACT-88 CP IRP- Mft IIftP 9 3 ! - r r i i r-*» P ft" 7 1 5 - 19* 1 r — :■ r "7* ftft— TR nft w OPft 01T* PftP e r r r i ** ftip r-*" 2 )1 7 0* » 0 3 * C 1 * 0 p ?T f f - •tr "ft pft “ |%|-"R A> "Pp re p 4

"1* c m ft "<i f - i - rft 2 / T '1" p "! •**** r t * ftl 6* fft r*r; nV« r r - r r c r * *■<*. jj 3 * * 19 A P2- i c * r s 96* r e — 591 i t 91. 35" ftl ftft —r?t— rfti zi r i v CfT A IT? ftV3 •PO 1 cn 111 ♦ • 3 - / .S r*» in i r*-* 9 r r n (-61 ij" - XI IP o r r e nf > i r r r . r * » - e i r z - C M 0 en 631 * c * *9 441 * 5 3 -R r t i - r p.* r * r —■— a I I I • « I m i "1 111 ftp* O il B

f r * n r c /.or 2 6 - 16 IT. 34 OPS C9i r s -•"i pp’i - pftf . i ff? r t- — " '* Q ft* * 0 1 - c .r e -p i 1 6 ft"A 96ft 9m IT. C*2 * 1 9 9 O l r o - M V 3 03 2 0 If** AC O il 1 6 1 - £ j t /f t r - I p"* -. * ".* P 6T- CM >1 I" Aft CX.P cr n tn ~ S f l - T l o t r.9 i 0 * 1 -PR 61 e r e r e r i* (■6 271 PI f f j f 1189 « 9 4 4 - CC* 6 9 8 S - CCS x c I * O lS - ICS >Z *S O— V* 4 9 3 CS i e « : a z i 4 S - IC - c 5 1 c s t - 3 I S 31 : > o o e - e r e 1

E l 7 0 - 6CR O

ZCI l»< " 7 1 -TRr x •* rftn 7 M - - r r rnr e | r r i p - i r tr t p i p «-3r in( p t r r 1 7 1 -7 5r.6 o t c r r - c iRA r n ic r r - nrn " 7 9 - f ? 3 x tf 6 rn _ in r ? l17 t s s c i6ft 7 3 2 - ir r a iI A 151 c z r nr p r o - frM Cli r f / C - ♦ I f Itr z 3 - ( r t - 7 16ft r r e f fir? 4«v** r i T - r /■; ri r t r t Aft! X

1 1 7 - w : 9i r t 6ftt m r6*t P"A r r r *n r tT re* rr t r r e i - r t f t in3 3 3 1 * W t 1

1 3 4

PSr o

m i r f l-Pt! *75 m i « : i t* t o eIJ . r e r.r; A *£-

r r

C l l - f f P6R PC e u i - m n n r e i c e t c c a * c n

r e i c s « f i i m - p in p i o n - c r r * f .i 11- r f i : i p m r e ? n m i - p m a i e r - i r e p i p in i r e n

a s p f * r r c 11n r o t— ^ ln Cl I * /.Eft f W 6 * 2rt 8G1 X9P tPI C/l *n o n s e s c b *1 m - o x i i * * r r c - r / z r t f i r s t r r t - t n t c n u s ? r * iVS l l f l CC* 0

1 cPTC Xr » n o - r p i m l I t SCI

* r r .* f - * ' f t i s »n i "i <.m or. ♦r i/.i c:c bif / . i r e - / t r - r i*•(! f't 613 ZI — f'l. „ , v a p i

* * 2 m - r t - i m n i I t s Z » Cl c m cic* r»

xt* r-tr- t f,> ni / f t f f J - I I S 4 re *ffti jjdftt i re" w « r x c m t r i s t c r - * - r - / . t- i b C " *- r : r n1R L *Z I /.IR IS*♦ i:« si i-i

i ccn x/.i* * 6 CCS r t c r#■9 7 * 0 -r x w * l e t e r ­r s i c x - r> i r e z r r / i - r n z i p - /C *Tft- f-c m

l r r -« t l*•<>

c i - c i r i r e r e r r t - M e r e v s i r e r s

c r 6 ' IS i / p r s </ z o i / / ? s i

,«|p.'C n r n - f i i C T IIM n t s i C r t r t

v f t v ft p c t t c i t c zee.

VI91 A Cl CPC ft •ftP lCa w i

-7 T M 3 ft’M ft i r > > ir* -f ; r ,

IS C - M S S I z e e - l e t XI 9 631 6 )1 1 1 1* * c m c i n l - w i - * i4 1 * 4 *8 Clt e e - 6 » e r.i 0 * 9 - 1 * 5 11 I SOI C M 01r a n i « i • r ♦ > - m e n t s i - n* zOfftT-CCSI* l i t - i f t i - gr ' l t r e s t * z c v t p / m♦TT- m l 5 9 9 i - 6 3 1 Ii o n

♦Cl n m M T-ZBc c i 6 ) : * t e c * s r a * i a - e v e ' * c a t ft© c v - > s c l 1 * 1 - 0C8 n IB IC l c z a t no x c z - t s r . l IQ M l 0 8 r * r s « r r > « i e g 6tt> e r a a i i o t X* M l I I c n c o r - a c i - a i0 1 O i l CftS 91 0 3 R 9 4 - U 6 01“ M l - XOl c l

rrm c s s n i l i s t Z IS II I re- w i ol m s tr w o p r o - f j u a r / n i - t o n e r a « i t it t f t 0 9 6 S

m l CTZ OS- 6o s x o s - r w s r e p t i - o x zC 7 C O K S n t l-- — - uai

c n c n i i m PI c m r iCi'.l 31 CCS n Cft> 01 0 7 1 6 I M I S CPA X PAP *r e s o♦ 91 » / t t l l C 7SI8 1 0 9 I

C9

n or *c c1C

01 li­lt ftCS*x ovt ca me­lt 961 «l */.»•XX 9 2 7 -re -mlC8 P U

9 ? O U * IC CftAt Z8 I API C8 0 10

O il « « Of 1 -0 *A t O ftl* 0 1 8 IB09 0P8 6C8 •»«50 DM BOV 7810 r e s mt i l OS- I t - t zo s o r e - c pc a 101 « l * p IS 41 C0I SIC «CM 108 *16 *100 I M - * i t C l 6* ITS- CSC XI SOI t t - ** • ! Ifc 0 0 3 - OtC SIo r m i - r e * * in o t c n i i a - * i o x t s c r r - c i51 * 5 0 - P*C I I 031 C O l- IS t l *1 Z»* C6 * os reo- to* ■ 6 0 * •» n r X62 600 OS* t c e n s T i-^ s c T i *3 wii-trar» g s M B AO* Ic cC* CP*- 6*0 ) N IW IM *

1 «

r . f f t i n c c CAI-OC 1 1 9 GE

CV

*1 8 * B l451

0 4 -* 2 2 -

•o e e l r t - t e l i f B 9 | 14IX r a — tBA IS 80 49r t C l C cS-98 M l 9 0 —r o t c t 1 - 611 « •6 1 4 —2 6 CS6 COA AS C6I 0 3 * -"■> C O P/A r x 11 0 1 2 -S 3 9VA e z Oft 11

tf t £ 0 p.p 5 0 8 IS 09 33Rr t 9 0 261 i r e PS M l 1 3 -

P* 1X5 3ft* ♦1 r t 1 5 -12 RP I P I - 75ft 21 IX*

*P 4 1 2 3 3 2 XI Z9 n e it-♦ 7 t * IP P - CAP 91 3 > 2 X 0 -

061 IB I * OS•A S 6 3 CD I 06 0 0 - t t 01 CCt o n i cOAI PSr r o * i h i n i 0 * 3 11 c m *1 x in h i 1 S 9 *1

"" ART r r n r i16 u r r / " r tr n 6 fR - 6 T - 11p> r r > f" '' r t/»" c / r r 6r * /. c r r - f tX" t r k C76 X<1. 7 3 " - r r * •/.* £ 7 2 7 7 6 EIR TV. r .m *n •*"R t r / * r0 6 6 'r r - - f ir . 'SS3 1 7 P I-4 C C I1

ft 3 i

tn* E6I x * s c<"i /■"_ r - s *A r t 7 «»»»• IX*' r t s c4 4 CS 1 7 3 1

1 z 41

""1 I * A ll 01r x OX- e r e «IM i r - XM CAft r r t ICC XA ft Of • - I f l 9T il IC - p t c e6ft 0 6 - r s c a-C l 19 f l l - B■* TA i - r c - cT i l ro » c s - 1811 i n 1 4 1 -0

i e BI

A te e t i CA Clr e t 1 9 - 1 9 1 -8 14TI X C I- ZCI 112*1 c e O II-C I2 4 1 1 2 I1C 4M l Cfi- 1 6 - C61 v r r e c - xA l l r z r e - *ZCI r r c - CCI •r z ♦ r t • 5 8 A♦ * l t e c M 2 rr e t OS f * l 3ZCI • t l 2 * 1 -1

1 c Xt4*1 « x - c r c - p i*R» « ♦ 7 2 Clr e t 2 1 571 *1"A 9 2 - e r f? -c i* * ! *1 e e i c i•71 r r - 6 1 2 11CPU x c - 1 2 2 -0 1- r t r r - 6ft 6r o t r r - crR rr." T 6 - t t z - t .401 *B C 4 I -*

t r i r-ft : n m- f !T P f - t-M I t f t ' ? ! 0 7 3 0

9*1 ( S r x r c t7 7 5 - M ft t .l

r r t f." r e r - o rn /• - c m r tr e m - f i n * ir - r e T-r.T r tr z rrrr- l i f t CT9 1 M f - r m i tTO c r rCP 6 7 2 f ' S 6r o 1 9 " - 1*'1 c" 6 C -— ,’ Mr n P f t - f T — *e g C ftl- PZl 2<*• 6X1 1 * 5 3a i t r t ♦ 4 ftr x r r r MR R♦ X C 33- 0 1 3 1

1 c ST

e z r r t - 1 ? 2 416 / t * C9C DlCC 6 0 * 7 2 AI7 4 CC i n - p iXX f f t t 172 Clp g CAT- TGI 91t o i x c - R"S SIr o t f C5I Cle g 0 6 te r i i1CI 6 * T - m r c iM l 361 t o r ar o R"- c r i - oXT* C S - 17ft 1IB ZXT I r t *201 r r * - c i r b1 1 Cf»- I ft l 9c n 0 3 T - r e - ft5 4 ♦ V - ftftl-fir * r t Gift 1r e ♦ s c - VGV 0

l»r

AI

r o i C f - *11 IRm M • 9 5 c nr x i r z K - ftlCM 6 1 - 11 c»1 2r z i ».*- 6 2 M7 1 t** R - *C8 f»f f t *• t r - r . - o i6 0 r t *p.f —n ir ( 7 - 9ft? RIITT r f t f - n /.t i ic c : u - o i

;r , a * 3 - m * pai mi ic a 7 0 n c i 631 X c n t o t - t e a *£0 ICC 60S 5r s 0 t t t o > P 3 c c * - n s n ra toe is*-cC3 o r e 9 1 * I

1 S 61

m od­es AWn o w ig * 9 * . o * « i - e*oi 7 t c - 19 C 7 2 -O* *X1- *C A* I OS ICS C l XTo s i c r tCC AC*r s c a s ­c o io n ­i c C 7 II o * * r > - x * s i t - na c t s i a c c nOX OT ci rent 0 * C IS -

0 0 B 38 l l > 16 - 3 3 OC 3*2 61 *68-01 0 - I I PHI *1 r*o> s» m i * i 16* 31 C IS XI 10 I I t n * o l e r e n e r e 9 l * i u CPS * -08 * * 5 8 » CO* 8 /S I - 8 Cf77?l I CSS 0

6*3 9 — *61 a7 8 W O­OS Oft* 0 9 0 * 5 RS OC X* 8 1 - IX «t

T C 81

CX 1 9 5 — 1 03 5 8 IA C S- 0I8-7T8 031 *rf! SCI 181 9 CC?! * 7 8 P 361 A »l C 5 At O il 7S C - 111 HI c * 3 6 5 - 0 3 0 XtT Z t r s i t s i CS >91 CO* 91 c ? CSC- O S o t Q9 PAS CCS i t 0 * 9 9 3 - DOC 81 CO A 9S - c o t II CO CCS BSC t l DC 9 9 1 I 0 9 1 IAAft 1 0 - « ! * - »7 9 C S - 6 0 8 X m o - APR t ZC W I - 9 T 1 I Bn efts m * n !? « * c s s i n r * 7t:*9- e c a 3 9 9 - SCO t

1 6 Tl

Eft a 4 1 8 -0 8

x n g n r c r s 931 r*R 33 A** arp i s 3 3 1 — P 3 I -P 8 m - fltft a iX I - 033*71 * 9 3 f f » I t * 3 1 - « 3 *T f t l - 11C Bt

" t l *1 0 * 9 Ct 1 *5 81 W i IT ICC Ol 9 18 A 2 5 8 O

C X C t-C bllX Q C* * 9 * 6 53 2 1n i c o r *orst **R c 9 lf t r o t 8 9 1 0 — 59 0 I * * 6 4 1 -0

1 9 «0 2 1 -8 8 n i o s £ 96 CS I d CS ft*+ 18 7 1 1 -0 3 461—61 IIP. 01 CCS x t 911 At CIA SI OOt * t * *»-R t 102 SI • II t o * ftl pxn * r n n 1P9 X AIR *I ** t C2I * X31 ft 101 S t * 3 I

BCI 1 * - 321 M - 0 9 * 1 3 BIT CIS­CO Aft*—0 4 Cft-05 Oft CX XVI 19 X 9S- 161 O t l - a i a * - 9 0 IA* 1 8 9 *6* 9 3 fi-t r z t v*» * 9 8 -0 8 6 8 3 - III 0 9 * 1ft I A* * 9 7*9- ftS XI9 9 * 0 3 1 - 13 I Mt- 111 70109 I1C

*1 1 •

M l l o ­ c l t r e2 0 CftR e z< » n g s 7 3API 9 1 - r t l - R Sr t f t p | - 9>r a sAftt CPI 18O il API ♦ 2 1 -0 3X I > W ♦1ft 41s i t t g API Cl9 3 0 0 1 - ( I f 11

SLZ

CD M C t e i 9B t» * «W5 O • i w c r x i - x c t i r t c c 9 *2 tti- rr* * i> r t i r e * r a c * r tr-* r * /. o n p m « c9 5 C 0> - 1 9 : 1

n * *C3- ( t i » -

c nh m r c * \'5 r z r t H> e * -

n i h * n c i >W 9 * C - t O *c* i c * t i - «

r a i t e a « t c t « a - *61 •

f r 1*^8 o n t t6 6 9 c t 0 4 9 01c m c i m i ic >

D t t 1 1 -i n - r n t r s

n r 9 i nr i I » tnK 9 Cl

e r e c i M l t o i - n i t i “ ** **R CC O i l CX IA I-IB t * * *c o n * i

o ii i

5 5 1 -1 1H n s tl* B -* l * 4 * 61 t * t Cl R I I* t e s i ict * * I S •n m i o t * * u n it i t - * M X 9n i * e ♦ f i t I

cm re 9 C - c iISI t » u r i i i

O il" 0 * 1 -1 r /R - c c r r c c i* 1 1 -M

e a t e r ­i c a £

x*- r ti t s r e n t » e C ll r e x> c e c t * i s l i e s c t e c s i o s a t c o s 11601 S t Alfi S t116 *1 e t i e i o s e i09 t lo s o t o r »4 W 9 6*9 1 3*1 *e s i a* 9 f *1 93 6 - It O S I

SCI * 6 1 -W i i :i r r . m n - -pr-t 4 ftT - £R / r e I * n r " i r r t n t

r r r *» r-TOIC0 tl r * r . u

C 9I *1 r e i - n ii o t ftn1 IR Ct t i t r .i

r.» r> * i n o n r r c n rc i i c ?93 *93 O l *9 *3 9 1 Cl o t4C 1C 3- b * CIO o i 0 6 C l C9 *81 0 9 -8 3 I O ­CS 9e> o c a c a c n t t o i c c e-ox Cl 1C t c t I S94 l»l-

c c t e i r r t - P tca r c t(9 1 -1 1 H R 9CCI-Ot / * r i t -

m * j z - 6 i r - re ?ic r e r . t

r n c r * -t 5 C*A-

- i . T t rr t t x i - l o t * ew x A co o n

i n i r t r e i - i r

r.i-r o r * i u 190 VM r.- c i

r m rC9» 91e t c I

6 9 1 -9

tu'A Ct M l t t C t r t r x i r . i n t t A* I I

r r t t a o i t r r l o t t r . t t* iz i r e r r i n t i (-* ! PI CCS I I C l 91 t t n r t ,* .ir t9 i e r e r i

r t

i r rk : r r r ’- r r r e i

1*1 0*1-CSt 9 C t-:» c o i

r n tn r m e r e o

rzt t r i r c i - c ii * c cc m : sr t t i i

r , ‘ 3 & 091 * * 6 9 I -5 6 ACS 4 8

e e s i s r s i a i i s c m o s • 01

» t90S 11 061 *1 c o i - s i n * e * is i t - a t n o * c i

i t n i

0 2 - A *>5 ft ten i 1ST-* 9 0 S 6

rm r to * o i t i e « f 99 6 I Ir « c *i

61to r , * i• I * 61I* * a :9** *1 9 6 0*6 ♦CA- ft nr?* i

4 'A i i

*1 6 61 M 9 9e r a a

E l l 0 1 1 -o> c ? er t a c i

i r r i i

9*1 W -r e t r e tm t i s

c i ? i ti * ( A r ­

i e l ts* e -n r ? rr i ftn o

(56 21*1r e t n r - i s I IK '. i d Coi r e •

m * eK««j i 19* * I O C

101 s o - c o t u cSOft 01r w a

i n r m * n o a i n g o -g i i * * n u i r * i - i n s i o 66 t i l - C l l 9 18 * i r i w i f iS3? o o * m c i s a t o t - c s o i

e r e s i2 1 9 91CSI Rt

C*CI11?S DIBI106 016C1 O

AffJ 210 0 * 30(2 01 ZZOl

0 9 1 -IROlft

I M 18a i r oV IS Ir r c e

rn n i

0 8 1 - 9 ce s s t iO il cc o s * e

101 C M1 0 1 - c n i s

1 9 09S v n o s9 4 3 41£61 31

161 91

r s s o l 2 9 9 SIC*| 321 -*2- 01E99 *18 0 63 11 9 9

O l 113919:x* .is

0 9 6 * 1 -

32111

15 n * r r t t 8 I t 1 3 5 9 > - 91ft I

« t 6 6 1 6 1 -46A * - 6 4 6 -0« i » e i - 6 * i - ic n e * i - c i s *1511 0 *1 SCZ-9 071 U 1 * 1 -9re re- ir 8C« 1 6V t-C H I l ? n - 2 5 3 I O il S IS* S 3 0

1 6 01?« .*6 rec-siICl ?4 9 1 t lS I r t W 41 r o r e * - r . * a ir ,i .*.m - 9s i o t s i r n i n i 991 r n - o c i - o c s l i e c n t9 9 t I I 0 9 “ *s o o t a - o o * t r o t s t s - t c z - e

198 At

051 11i r e - * i

9 l f -91* r s c ir.re " i

s i c a

r e n r r -

o c n i

1 t 61*1 9 1 00 2*1 S9C t

111 At (5*1 4Vl i t 9 1 — O lfi 3 5 1 t 11 4 9 6 3 - m e AIP t l 3 - r / 2 •6ft 91 1 n i a iCM n r s r c 8 4 « t - n r . g i 1*1 I I - Cft £1f t l s n tc 66 n i - crz * t ft* 965 6*5 *1161 c m 61 re o n r i t i r c m i * * 1 4 - c m t t(A a* r 1 2 1 -f ff C l m i r e a m 1ft C 9I* r o r - * l

n r - m rt t-c *4 IMS 11 *?r 0 1 1 - 1 7 - r if - i O f» - * 6 6 5 1 - r i f t o i c * s r e - 4®t! Clr n 1 1 2 - A.'S ITT M l 9 * IRft 4 19 «TT ACC i ir c c r i - 2 * 5 Ift 6 1 A 91- CC5-C Aft r e s 1*4 ATr « i m Cft ft> M l m i *4 M l * IftS A3c tTft r e ? 61 041 r .n - 4 9 - 2 9 1 *41 C6I *S 3 r e s n r o n > ’.5 - C3I ft 0 9 111 I4C 1A ll r h » - G— 11 601 21 A 4 I-4 81 f t* - 0 5 8 933 r : n 121 n 3ft I i r r - 0 3 I - * 051 1 « - £6 4r n r / r i - f A d 121 CA w r 0 1 0 8 Ift *41 e s c 4r n t * r M W! f i f t 1 40 in * - CIO •1C i r r i r r c - i r i 10 ICO 912 8 *> oift—11X; n i n 15 c c i C l l 13 4 r e i - t t* i i ft fi fit7 Z f t / r . c m Cl ft fi Cl

re rv. o*i *■ ^ « eo r r r - r r e r r * i*r*l- i t r 9 r,t* r » - r * t - t s p * i r r - n r r. r e r r.2 I99 01 6 CCS 0

(5ft M 3*f?-C Cr s r e - f i r - t to n (3 h- m CC

13 6 ? r ATM i l - CM C»

f f t ATS i« n - 11Ift r e 261 91A I r e * r e s BI2ft £ A | - 3 5 1 -9 1AA rr=; 161 SI2* 3 1 - ICR C ln r r r - 125 116 4 r i n m e OfA* r a i * 0 3 Atl c n - r e r - oca 341 TT.I 1|W 4 98 r u e 4(511 3 1 r i CA** c n t - r tn -•4/.*■ C 39- 3 94 £2** 15* (532-•C93 c o t - IC C 1

« l t 3*1(«*i r e ­p o c m -OA 1 1 2 -2 4 o n |A | 9AI *ft (T * 1 l i ­

t r e IR

r o t r t93 1 -1 1Col 21COT t t

13 f f t -r n i nA * 1*7.CA *C Ino r o i - r e r e c *RA J2Tr o ivo-

r r e r i

W l 01

021 Cr * i r e t / « t r * 9 C M - 6 1 6 CS

r t t s e - CT9 «t s 3 r r c t c33 *1 c m nr e 3 3 61C-KRm (3 1 4 1 IC(.* 4 14 CT4 ftS<* 6 1 1 - n o o rr n (•(•6- i r.9 c r9 9 C 9- C.'.ft / . if f t l IV C i n mt o ( f C - t - 3 31res 7Xn r : * i( f t e r r - ftlf 6 C fft- c r c c rn t c r n 4 2 1 I te « r V f t - 121 01r m : / l CM *r ? i 1 1 - Di n f " C l - £IA r r r «»*r r i p n r,t oTft i r f « ( r e *r c C i i - (p .: r.r e i r t r : - . - ct r . c m - c r r t iCS 1 55 0 6 5 0

ft fi 0

CCS r r 9 1 r e111 u I - « • 27.m c i t r e

f»-9 4 * 9 <rsCA r r e / . ‘.I f.*i

r r c i n? A 'V* i n - c s

r * ; — r*:- aiIC l /* • . r,* '* 3 1

r r n fr.’ t AIT l CG5- C - > 4 »

* i i i c e* 5 8 M O W*1 o i c - i B t t a631 9 1 1 - I* *861 i c e i r e r s

• i i - b*c r e i t - e r e t sft* I 1 3* 48C2*“ r e 61I K * 66* Cl 95* CM 11 09C - SIC t l

__ C9fi « * * 61 Ml ft£R HI *1 ftft 6*2- PI* 81re tnt* m o si <n c * * srrt i i

9 9 C - 1*3 61 601 Cft* 4 9 * 9 e * l V K f l W M l I

r e i c t - r s* *61 (H3 2AI •6 2 e r e - I I S *9 8 r e * 0 3 * Iftl 991 4 * 8* 5 9 2 3 - C31 IS3 9C S- B t f I

re- ten 4 r r e t / . t o tp t f l - i s i c-r r e ft* ? f l ,f5

r t r n - c c s M e r e r i

i i r e t it*» re- t n i 3 9 -re 3* f i r r - r « i so i* i * r e i r e t i r e r i m

f 9 i * r c

i r e m

C f t Ct

CSC Clc m c tt c i - i ir r c f i

i c e a

6T3 6

e r e c

^ i i - i r n oc*-o i - r * a o rrr.* ; r* i n

r - f t i ** 9 6 fft051 *1C l l - E lM t - e t

u r to

U)t I C t - CvC I 699 ft1IC 912 9 5 -5 191

9*1 tS I

COI B tIeft i c e 8 6 1 -1

C6S I

t s 5CI : ; j i

ft fl i

r n n n r ’-n *tr - (•»•“ : • rr c r r s - r e r Cc n 0 9 “ 5 5 5 -1

ft 9 61

p i 4 P fft 6r o 6 9 1 - i / s nf c r IP f r - lr ? m ,*.'■7 9i ? i c n - r n : rtr n m - 6 * 5 -9CM c r Cft 1 -5r e t 5 ( 1 * O i l cc i r r e 06 1 -1CX CCS CCS 0

ft 4 C lI2C 61

r i c cc

e t i - a

331 O il9IC -B

*01 6 " !

K i t e c i - I I 1531-4 3 l i t 0 9 C»C- 991 H I SOI 1*8 £ 1 1 3 8 - 0 4 C S I- n e e l0 4 M r -0 9 e e r ­i e 0 54 4 9 1 - re III- 6 1 60 c a o s

161 416IS f t le r e i t s e e 9 i 021 91 CSI 41r e t s t C H -C I r o e i i l» E - 0 l 1 6 8 4 6 1 2 ft 168 £ 4 1 4 4 491 9 9*1 9 0 5 1 -3 tfT* S 2 3 5 I 6 6 9 9

1 4 91

£81 15155- r e i i eB *l 0 4 - 3 | “ OS*0 6ftl — S ftl-A I1* Oft r r r . 019 4 IIS 9 1 1 -11r e i CA «ft 4 14*1 #vr> i r e Pt911 ftfti —331 *1*.• m i i m r iOft ; j i t - C 51-RIS l l 6? r 66 i iV I PR— W l n i0 9 {*»% 63 * A6 * 55—“ CCE 01 8 9 1 2 -• *1R 0 3* 5 r e - MR •MCA 131 m i PICA 1 9 - M l At91 « s - i r e *14 4 29ft 691 Cl8 4 e n c -■ o r e *169 w CCS -21n o i o n 219 Rt* 9 R * 8 - H P II0*1 0 9 ffftl AtH2 A38 I PC A

1 * 1 -■ C*A aAft t t c - **S A* 8 ISA *0 3 99 9 * * e - o r o 96ft * 1* - or* 4K C01 Tt* •IC m i - c t n i e8fi n t c w s 1c e 99 6 CSO •

1 * «

8 1 4 - c n c *r o c - c c s a t “ “ e c a r s

* Mo s e t i 9*1 e t cH I 6 -a t 9 M

c a t ­t l e -e t c

r s ,.. . r e o » a i9C 3031

ft • 9tss H R m 18e i 101- 113 *e391 r e 4 1 - CSC3I 491 •91 *3Vfi e c c - A9C CS(Ct r s - *01 t t*e ftTft *1* IBno t 3 i r . - R91-9846 101- *1n 6 1 - ( f t l C l4ft S 3 3 - 26> 11cv « r> - IRS 11< s 191 31r e CCft

,4S3—6T> ftl121 “T.*— 19 CtCS 57St<-1 S 0 III

015-21IM -O IRBI I"8*1 H I Iff 1 0 1 -

P « l f * * 4 1 4 - CAI-C1t e r r r i* 45 r ce r s n t r nOOI R l t - 311-^93

r r . i - o ir e i r e f9T!t ISf r r i cM r Cft

r c c ar n i i / .r r c 414 M t ci r e c i

1 3 1 -4i n n i 0 2 1 -4i c r 4 i -w ii r e i C91-CI219 11CM "I

IP ft 1ra *iCCI 9b0115 £1

111 <11A r e - t Art c tf(*RI2CCT 01 to r , iW I P

« r 8 8 c o i - o eu r 1 1 - i * At9 1 9C S- 8 5 8 v r• a AIR C5ft i ity> 0*1 S93 * iCSI *91 9 9 91* n C ll 111 *1051 2 9 - IAI 810 1 * 9 8 - 0* 8 5121 o i c - IAI I tO I t - I t * At9 9 8 5 5 - ETC AI* « C1C ■CS I I I t»B 11 9 8 8 5 - ACS 911 S>* AAI tCC r o * 0>4 •6 3 7 9 1 - 1 1* 89 9 r r e - c s a 5CSI c t c - 5 3 1

SO 5T.I- ft? II; o i e i - c m - o i C l l 4C f C9I p i

«a gi gec-cs S l l I I I - 191 18

*1 414 98 81OtC I t 9ft* *1 4QC tl - «1S *1 tic- te> ei

COB o * ei rn *68 it0 1 01-321141 65 8 4 * 8 ** 8 4 CO* a e t c - e r e £ ace **n * 0 3 8 IE* B R 9 1 - 9 4 E I * R08- I OS ■ C Z fl 46018 S I 45 5 -1

4 1 1 -4 3c a i - r s4 6 4 C tr o c i s 06R 3 8 6ftl 61 crSl n i n i t r i c o r c * c tA4ff *1i r e n i 404 SIe r e n 8 6 8 01

♦Ct

ft a

6 0 9 -AM 4 1 -C* i i nfi* prr>t l s i nAM * 9 8 -I I I 1 6 1 -U t 1 -• 1 r e -♦ftt 5>28 A1* A4C-0 3 P > 9 -Ifi 9tr .AC A l l -

9 LZ

277

t*l

t o r e s - s o Ton ul* - w v u i s iv j t » L i15 IM IV4 VS l« 1LI -U Uis uiu era16-LCU Ol 17 IM -1 6 0 |U f I O K T -6 1 I I I 19 99 '/ u t a

9 0 39 IC >£0

I I • L

J0 -2S I

i i J f c

BI I 0 t- r e 3 1 3

31 19#i r i a i

• l» I ft|Ya £137 3 - 3 * 9 ft-123 0 - i r e• 113 7 5 3 * O 17*• sa

10 IS*11 IBI12 -9 213 ISO14 lU > 0-1£3 I * - 177 IT 3 1 0 10 9 (4

234 709 3 *1

£00 Cl • IS O 0 2 - J lC ILL

IT I 4Cc 1211 C l =00 L3

-1 2 3 07- I I I 1*4

134 *3-0 4 Cft 1*3 129 - 7 0 ICC

-1 2 4 *0 -2 2 0 43

09 00- 4 7 C7

-1 4 0 *1

1ft 121 - l i e |0 0

IT 4 L

i-ois is: &tSi-ITT U7 ll£J 0 -1184 ICO IC 131 • ICO I I 117 4—104 -2 0 |2 27 *3 -B 7 1793 -2 7 3 - 7 5 Tt9 139 - L i ISO

< ; n o11-121 -1 9 9 199 t x e o 40 it s

10 0 L

0 -1 7 2 - 9 2 1371 4 3 -3 9 4 3142 ICO *47 |U C. S tC I I * 11= 4 333 - 3 7 443 3 3 3 170 1093 220 44 I t J7 -1 3 3 -IC 3 183 0 - IM 138 IC l

r l

C1DT9 1077 I W J - w 7 > 1 i 3 2 3 0 VilOiU iu , » ft Cv> -2 J 7 a 213 —2 -0 l i l J i l v:Mi s m i - i o u& ‘n i - 7 SO0 IL3 - , 3

lO l i J I 1ST11 4 . 0 931 *2 W l 721 I J 7 33 -0 1 3 10 O.it - 7 J 19 9 * 3I v - 1 17 lb ? 17 O l t 0 3312 203 |J 710 i*Vl -0 1 7

= 9 -1 0 7 0731 2 97 28023 -20 43 4 -1 1 7 13024 923 2>v 29 l= » - I J 4 2C 120 *131 1 37 903 l i f t

a r t1 ret no3 1 7 1 3 -1 3 1ft

I =93 A I J > 7 113 o ; l -/3 4 i / / J

I J £ 0 * I I 1 C13 *W9« >3 tftO14 410 13 193 Ift 8 3 - IT A l l 13 813 19 493 3 ) 3-pO 31 99ft3 3 1*3 K ) -V I - 4 2 3 3 S U -L b l3 4 C3I

143>IW 1- • 3 01826u - 7

-3 1 1- l < 0■ M U

0 4 3974

17ft41

- 3 4 0-1 0 4-tlfc l-a ftft

c i24

113

VO

IS S If a 5 3 7 -SJJ 6 7i VOS - 4 2 0 49 • vu* - c o t 3 31 IM 3S7 0 9 £31 - M 3 5 0 r 135 3 7 8 1063 1*5 < 2 CO 2= 9 £ 4 4 4 7 0 1 1 8 0 -1 1 5 1 5 6B -IV 3 •10* tiZ 410C9-105S =3 9 -1 0 9 - 5 2 4 74 Y3 -TU 180 D 44S eu7 39 10 7b 3 r o t 3 3S -IV 9 ITT CS V B=9 0 0 0 2ft II 053 * 8 « 4 2* 92 * ICO t a 7 ISA =s too >2 102 I M7 211 B7 M a vco BBT 04 13 SIB -2 b * 08Q -210 -ftl It* 4 3= 9 433 0 4 14 4 8 4 -8 .0 089 -S 5 B - l « 70 10 940 - C » 3ft IS •579 aoT ft*

SO 184 9T >27 II e tc - 4 4 3 3* 14 BIT so* a ttl-U O —44 1VI J 211/50 104? 3= 17 0 ? 2 -9/9 2 613 1 IB BO 193 13 £40 4 5 0 CS 13 77 UO 13213 273 140 9 3 14 car -154 t o 19 5*9 -3-6 47|4*ICB 0 l«C IB -27V 94 CO «V= -3IJ CJIS -L 20 sv l i t M IV= VO SI l#7 06 96IV SUB -ftS 98 IT 3 7 ? CO =3 £6 0 =85 07

IC -CO -11= 129 2= Lb* -IU 4 71IV ft t. IV <59 496 9 0 O X ID -86 9 7

20*370 - 1 6 0 ft* U3 166 -U-J 10)0 -1 0 3 C3 12= 21 >C4 • 31 C7 -=0b >071 -2 2 4 CJ ML 2 2 -1 7 B 24 94 2 7 £5* -v S 95

3 -8 * 1 - w VI 2 8 - 4 7 l » IV4a i<7 VI 1*3 2 1 > 2* -I V Cft « r l4- IV / -V 11* 3 3 -1 0 0 ->B 3 9 0S >61 - t v 142 S t M l - 0 1 • a o u ; > i t r - > S3ft-IV'J H M 7 >7 0 7 4 * 7 9 r o 1 257 (#9 -IVV l«X CD b i i Ul0-151 —811 1L3 8 T L J LL> UJ6 « J9 £210 VO i t e ft =8= - l i t *.*

1 2*3 -104 M2 <■! -1S9V 5-4 ft*lLb <M Ivv 4 LIU tCC ItCa i i o i j n cU 2 0 S O I l £

u v l2 “L i l v'« C 1*9 b 4L=

IV 8*#0 C iT { 4 U leU -4 3 191

10 T L

0 £ 4 3 -3 7 4 ICO1 UJ IIC CO3 4 2 2 * 4 S ib3 IbS -IV C 11.94 IV 4 ir-v 1*1ft ££ = - i c e h vft =70 —415 ICC T - lC t I Mr 137

« » L

0 S IS CSQ1 3 3 3 - 4 9 3 22721-271;* f t lb v * -4 » C 4 V4T -VO7 ft IftU -9 0 9 ft CM 4 VC T IIK 9 -V 4I B 718 -77C9 4 3 0 140

I0J77V-1UI4 11 U21 -7 * 0 |2Ji>43 >0*313 323 43114 243 -1 9 410 4Tft 401 ic-roi 77 : 17-204 20ISI3C4 1103 1*1037 942 Sb *39 -IS C 21 SJO -8l»3 23 1V2 -2 7 0 2 2 - IV2 -4 234 40 2SV lM *U3 C4V 3* 190 - 3 / 27 S3* -2 7 5 2 0 O -IC C S 9 9 - 1*3 13?SO 507 126

T T i l

I ! CIV

ICilli-VU

111 SCO

23 313

27 240

I S S IC -1 5 9 15 w t5 - 6 / 3 Iv C*U 0 -b 1<# ——5 V .3 «u ‘-Jl — j ' 3 IV w /J *8.*J j v L I - L ft lb M 2 I J J S J 1 .6 —Mr £11 v .3 UA*M l#M —J-«SJ 121 18ft - i v l i b 2 0 U /J 1 - 8 49 lift— 8vO 8 ’# / 78U 6-L -J — 1 1 /

1 1 L

t 704 -CCS 378ILV 4-U V S 233 273 -4U« £9ft UC7 VLU Cl0 VlU -LS*£ e i« li£ 4 /- |IV ft £4

0 6 0 i -e ra1 447 e v e S I 1*3 1257U CO I « i 4 37ft 9 0 /L e t a G<£ 41510-1537 7 TSft -4 6 3 OlVftS 13130 70S -7 2 J

10 137 -ft 111109 m i 13165? -0 5 5 12 UTO -0 3 114 CS3 74V15 105 - I V i IC 427 -0 7 5 17 149 5310 9«0 - 0 9 IV 724 -9 0 7 9 0 0U9 1632 1 -3 5 0 OV !S3 £‘w!l -SSrO LU 3 * 0 - 2 2 9 2ft*lC3 5 7 25 07 -3 9 •24 |2 ft 035

B B C

1 I t f i - 1 2 i2 BBC CM ft IM -1 2 f t 4 87* -S IS ft 449 SI9* -1 9 * r r r s a s «4s*0 ftSO STSC -2 3 2 00

IV SIC -7 7 5u - 1 2 0 u a

1 a sO K .!#

O llt.

v - i e u

I I C ISU#T I I I

IV—1..I S - U 9

31 37JW J 128

1/11 1=5 -8 ft 135

-3 5 1 I J 3

I - J 5 4

3 L

I* =3a tuft - l . ’J V/j 1U6 111! ? 24 = 1 J 0 68 *v£ M 5 - M 7 Uftft i># 3 7 J I 2bV 2-"5 166 4 j

M l £63 l i t9 =52 S U 4 3

IO 1'#/ 264 OlI I 1057 2b12 l ;o -5 1 3 Bb13 bb* 4414 151 Ot15 IV* —»■" 7 6Ift IUI 4 6IT l / J 2 -9 t l

3 T L

1 3= 3 -5 3 3 31IV 3 I U 30 J39 -S 7 J ftO lttb -Jlft* 9 =57 -3 2 3 4 254 4=8 T t i S 4 W B 070 OBI 9 131 -390

M Jftb 4-1457 11-109 -5 2 9 1 2 1 0 1 I >54 10 352 *5414 250 13413 229 -3 3 4 161553 -9*17 17 C j l 4 / 111 2 13 -* 4 19 317 -4 1 = 4 107 7131 174 -IC 3 SU LT9 -2 7 7 3 J 555 3 4 I 24 254 2 J I 3 5 -1 9 4 SO 34-221 I I

« T I .

0 H 9 3 I3 M1 323 -I 64 3iai7-iJTJ 3 IJ9 J l j 304 . 1 1

3 £03 -3 0V v j r 1551 7 347 -LUO 3 459 -5 1 1 9 1 /3 158

I J 151 -ftft

I I ISO IS 054 IS 2*1 Ift ( f t l 11 lb * 1C I U 17 104

i a u »*2 V* S l lM N U 4 U 51 ?93 3U S 3-1*0 a il 2ft -4 7 a * ft* 992 09 =0-141 k7 94 471 44

I VO

' £ i - « *HI 81080

|VU 1IUCD* 4«• 291 ft 2=5

44 7 SV9a B 172 3 * • « •U 19 *49 ■7 I I 313 4 4 t ? O 0 U IS 119 SU 14 490 C9 I I ftCOSU I* ■**

IS a 17-241 *5? 10 407* 19 441

K ® i* iu r31 * 8i j Sft 244 X 24 1S53 4 0 BS 2*4‘3 •i t • ! «

-IV * 67 -4 7 4 £3 -M il Cl

tS£U TL -6 1 6 61

£33 62 ILU V* - f i r 163 4CTJ £9

10 104 -2 9 9 60

ID-=74 • a s TC = -£30 -< 214 IM i t i ST a < s i -3 1 1Sw ILC Cll# u a 4 C O —1'J721 12= so r S L # j 143S= 141 -1 0 6 V? 4 £14 = •420*271 • 17 74 7 -M 3 v a24 a v s

ft

-M 2

T L

70 = LJV =53

t o VI

*35-3 lb*

—li‘#b

IT 2B2 -IB B B* 13 153 -1 4 4 l if t 19 U37 = 54 77

T L

i - a a ra « 3 t s ICO 4 ST* • C30 B ia7 - 2 2 6 & M S C -3 I I

1ft 64711 l€3 IS 24312 221 l « I L3 IB *12 Ift 269 IT 133 IL 17719 -7 4 CO TT 2 | ICO 3 2 =3220 -B3 4 319

- 4 4 08 -S22 63 -2 3 4 104

174 130 rj933 29

6 63 -67 ft Ul > 7 .3 &

*06 «3 -6V 7 CJ - IV 2 97 -BOO 30 —190 60

CO 94 96 03

- I I I Iftl1 140• w . u s

-3518 a *i a s o t

S t t *7

1—160S 249

- n oft—ICO

D -107 ICS 160

IV 606I I IUIIL IBI

3ft 103- 4 1 1 I J I8i<

-VIO = 14 ft* • |<6 02 6 9 92

114 lOI

I t 142

10 243W 1 2 -1 3 3 114 IIC 25 104

-IVY 69IV-LV4

SIC 23 101 I t -U l 64

- 1 1 3

14 V37

fUt IV-ITft

C3 i s s a t - i f tn 40M 59 VJ Iv l

t * S J I I J - M 2 1 IV83 111*153 - v l Vb7 / 2 J 2-fi VP *it83 L 8 - .J .I - 1 IV v tJ j 21 210 - u ; j J5V# 3 J-I0 -J 15 161*d) 2b*6Vb 42 i u |

0 J ft J L

0 33 =1 IS*1 63ft 7 07 UJ3 S if t —44ft L* 5 -1 1 9 13ft IV*4 -CT —316 I w 3 G23 -Vft* 316 155 -3W 007 1551 UUft 4 Ja - L i o i s ? \ rV IftJ 151 U10 !L4 -L5J 10*

11 S i? -Uftl 3515 158 17 bVI J 5 VO -:i7 5 4 J U 191 -U IL ?ft U U l -1 0 5 9416 - w J 7 11317 S /0 -1 1 4 7* I J niii *01 M 19 316 -7 4 VJ3 » * 3 l(31 -4 9

S3 134 4 0 152

o a t

0 1 I S 4 - I 1=5 10I ICC -Urt CC2 rv i VSro 2.7ft £51 Wft LVft tVL (S 3II UVT - p pU V9ft i i ;7 -VLU £9r <vu <4a n o 7 (7 £29 36 ? * 3 £2

IB I U -IU 3011 UI3 -= v l eft19 ua* -£> £ £315 M2 V Cl1ft C44 < cn13 £74 £U4 <vM - 2 « -C l CSi r - y ic , ICO 74ID X V -4C4 4319 M9 *132 VI99 W 8 4VV ftl81 «□ Cft l »0 - 1 i/J -1 4 7 |£ 5» - r 5 » - t o * i rM IM - 1 ( 7 ILL

11 a L

TtIbO*3

1399143

T B L

1 £37 -7 * 33 9Cf|ftM B -381 >434 3 53 UJ3 3 ZZi uftft6 376 - 3 /f t7 41ft -0 6 0 J 33ft -<—5 9 364 -2 4 9

10 4 10 74111 3Jft -5JJ13 TOO - i M | j 7 0 6 -VftJ14 3 9* -10415 0*4 -3 4 b16 304 IC l17 93 4013 -09 -160 I f t - 191 -3 4

= 0 ICO 194 31 -4/ -20 £31 L7U 4*4 3 J -1 T J 45 36 -341 -3 3

1 401 •B I7 <2S 4L5 924 tr /B UVft » £ i £l>ft (4 3 - to v 43B 011 -£oU ££>ft 14 J Sft 182T 191 •> 14 Cfta t e l O« 7 Cft 160 =5

IB 25ft -8UU ftlt l £0 ft STB £11B-IC7 —=49 Yft| « * U 4ft CCIft 70& i t a =710 107 Sft 9=14 404 -5 4 2 <8IT 0ft •M U 104IB *90 21 £ 12819 197 0 Oft

Ba 124 - c lif t• i 192 • s o 93S3 99* -ftSi 44

t i a -1 3 4 ICS

1SS

- 0 j |097c a ;

- C l t -26=

SOI -7 0 -4 1 —19

-3 0 9 LBV 4=6

-3 0 5 - I I

t t O L

B W T 690 421 444 £19 S3a CSI -v v s S*B £84 £ M ££9 -IL 9 - t 1ST■ 178 • 18v vaft 393 37= LV

1 = 3 S CS4 £ <57 C itU l L &C6 0 *26 7 135 C 3L'5 0 OLl10 4t2

11 «V t12 IBSIL -IV t14 0415 S UIV 2 -517 *06I J t<UIV ICS20-1192 1 -2 1 0

I* 0 . L

O CM -7 5 3 | C t* -3 9 0 U LC4 -IVOs - i o i i a * :« B i t 164 a cc* i t uC CM ILL 7 (SU -1 9 1 C C U - K 4 -0 0 - = X

10 119 <68 1 1 - l ‘J I 96) J S3 - M l IU 197 -SOS 14 S47 430 15-113 IS4 lb -9 * 1*3IT 344 38* 13 14* -SCO |V*3*9 - I T I Sift S t* =17

IL Iv J 15-3*1 14 -L 7 |U 3 / 5 IV 06 17 s : u IU |L = 19 10*J LO 160 L I S J l • 3 3 £187

0 4 371 =13 • S £2-6 • 0*119 4 O il •D a .-ft ft -3 57 95 0 -1 * 9 9 SV9

10-134 11 96 ■1= =59 13 331 * 10 -3 9 15-169 16 S43 ■ IV id) IS -S J J 1V-L-J 3*— k i i • J l - 3 - 0

Ift? 131 U -5 48

3 76- u a u >

- J 6ft -2 |0ft l?ft 77 176 Oft

-1 4 0 1=9 25 ICO 79 170

-1 2 3 170

t l T L

I -SO -1B1 ICO

T 47= 42= C COL -S V i 0 1<0 - | | i10 too -<to

11 2<L -3 81£ M J -£Vu IL Ml -111! IC LUt -L I t C«4l -= ?8 IV STC -< IU IT-129 -1 5 5 IB 2«* 6014 *83 6L 29 S IS -4 2 *21 >71 -S 32 2 - 4 3 f i l l

1

1

15

« ?

T L

<r£ J3 251 5.10 = #b 1«5 434 0JU 11= <3

tv-J - 2 >4 V ift t J J 03 7.*7 - L / l -6 6 CJa l i £ SW lU i9 Lb 8 91

ID -* 6 =58 M iJ 1 - i i J 117 231= - L /5 >61IU « 'J - I 5 J 71lv U-.B - a j:15 iv * U J j f t iIw UJ6 *55 i b

&8D ) t 000 •1 9 3 i a<2 y j j - I w J c i45 B J >«J l i t 7031 4 MV l#3

S Lb? 61o t ft M ’J - M l l b .42 7 *b£ 2 / J 15Jc a a U bi t’ : . 5 5

IUU 9 M b -M b 9873 10 MU -8 _ J 737 J H - l / J -VJ U#46 IL-IUU -*#3 M l71 13 — IJ # l i t

IVV Kr-SUJ 77IU 9 1631* t i £ - 3 7 / V,'1 / *.#> - M 3 VJ

61 10 156 1-5 I5 J41 19 MV M *

14 0 1/

0 S3S1 L-J2 11/ U 1^1 « 353 S L ^ i C tv * 7 358a j ; jO 15*

IC— I dJ J l - L /8 S3 1 .6 1L-JJ.*14 2 J I15 &6l I t 315 17 - 5 J

19

1-237 VI 07 L -153 - 1 /1 1-6 6 151 - 2 dI 13- 6 L -5 3 5 1 ' / /S L57 L iJV - . 6 -1 6 - V-6 tft “ 1 5 3 L . J - J . JV L.l “.-J

15 8 L-ft i i i<:j -^ 5 M i 1 3 - U J -1 6 4 V / I J L j J - f tJ Ib J I4 * L :6 ftl * c iI* IvV -31 138

I t S 1.

IM

ZJ

0 4=71 (-33 aw3 I f t/ ft 1*83 ft*4 4u47 J0 O 398 9 813

I * - 16* I I 3=8 13 IwJ U I I* Ift / J f t15 IvT16 LJ •7 * J J

t a v7 3 0 Ibft

•3ft9 111 •SU7 Ul •3*9 IV- M * 99 - 1 9 74 - 0 3 1=0

•3ft8 b t ■I7J 9*

I3 J U l £30 40

uO IU6 S J 141 105 IU*

0* IB 857 -e f t VCc ii > 19 T L98Si J I - 1=0 9 130SJ a v8T 403 eO

158 3 (06 -1 2 7 U l110 ft 858 -211 5124 3-35* 91 9843 ft-LVJ -1 3 CJ70 7 £63 ■5u 37

117 2 UUb avft Tft03 9 t lU -8 0 3 efta j 10 5ft J -5 7 8 73

!□ / 11 M J 98 1137U l 13 163 1ft 1287 J 18 U50 •5 3 99

195 11 O I8 J =574.1 t J 216 - l i f t lo J1*2 1* 310 •1 7 * 115

153Cl IG 7 I.

0 00*1 658 3 -6 6 1 8 * 5 -1 6 -8 1 3 3 371 O 16J 7*363 a 31*9 J i t

10 9111 =97 I J ftl 1 IJ O 1

33* 45•663 Ul • I J J 90 • I I I t #• If tl lb* 6*0 91L /7 K J -6 7 .b*

■13b tbb iwft l :

•IftU 2 1 1 163 4*VStU iU

•31J 3 J3 1 *87 *111

4 2 0 S t=5v ftJ

1 / M> • U | 7>• I t * V#

/ I 78 = p j wv 81/ 8ft

-3 1 7 6b - I J I * -159 9b

bft 65 2 # I |Uft

Ml f tt -U U 77 - J u J Cr#

a l

3 -2 9 4 - I S B48 -1 5 5 4 7 >81ft-651 -V J 19J * UJJ 48 left id Ib7 —|b 'J lb# 7 - ? 0 - v 7 llift 5 - J M I J W4 -1 J I <ftl lu#

IS 818 -1 = 3 5V 13 3J5 41 l i f t

17 S L

I LL3 - 7 * S I3 1 /b - l i l # 1-0 J 5 18 118 1(0ft Lib 843 lw 5 5 .8 —65 vil* £ 5 / - t f t U l 7 -# 5 S J l ‘#0 J -■/•* —Ift* l b / 0 J i 4ft i ; 8

U lb = =05 M l

10 S L

D 4=9 -6=8 Cl1*328 7 M JJ £ 2 / 85 8 /ft M J 8ft Iv lft £58 165 950 -1 5 9

1

ft

9 L

IC7

I U l 7 J 01 L - . v l - IV W J .._*J -3 5 J 41•I 5 #6 —168 6*3 w : / b - J 8ftt i t a i ’8— J 15*V 5 - J 211 VvJ .8 8 - 5 1 / * 50 6 ‘ftb -b U / *.8

Ift 0!#/ Ivftl I I 16b 651 I •*13 r/ J 5 -'IV.' - o I J 211 J l v . 0 M - | t * 3 /v 8 j13 C l l -v ft# 65 lb bbft 8 oJ Ubit n t 0 j n o I J t J j - 3 / b • *I J Sb ft# J-ft 2ft = Jy -=>* vv U I-J6 8 - u l II* at r / 8 wlU ’ IftJ l 5 l I lb

2 b -5 5 0

278

• <IB 5 3 0

a = m 9 (U l VIU 4 U .9 -W .I u = « . tv = 4 =CV * M T IU tU -IIL to - iu a c«V -»W -Ci-'/

l b 5=6 5C7I I U7J M lts iio *■:«13 =m3 -U V3 l « IU4 3IL* IS - I# * H I lw 2 4 '/ »3V7 17 |M 110 IO V74 H C 5 »« SCO - ‘JW C O -I37 l lf r S i 23» Sl/3ca sa i i*o2 3 -1 9 3 O f 24 =*□ -cs 3 3 2 7 -1 9 72 4 5 6 7 3 4 4

1 243 ’ 3 -7 4

31*_lr* 4 22* 0 7 U 4 -1 5 9T 202a 7>a* MO10 «rV

11 t»V713 027 13-10714 y io15 SJI16 39317 87* 10-293 IV 2< 020 17621 <!U 3 2 <23 7 1 220 3 4 2 J2 9 3 -0 5 0 Bv 223

0 L• I 0 | T7

|6 l 131 1223 14

Cll 72 -7 4 9 U* 12* 4 0

4 4 ) 34741 31632 33Mtft 47

•4V* 61•4C 3 67£=U 110 406 iff <46 39

•1 4 4 32 -6 6 3 36-1 * 0 4V

0 — 63V4V

T 6640 *41 6 -2 1 6

1 6 -IV* II 1=6 1 3 - IV* ia 4*214 7 « l 19 3 1616 27417 U09 10 404 IV 2 3 * SO -6 * 31 661 2 3 -1 4 2 3 3 -1 4 3 86-969 2 9 188

1 IM2 340a 17* 4 330* -VO6 6907 IVV• 41* V 9 0910 9*0

11 7 9 0 12-31413 J S 014 201ia a « oI* 771 17 669 I d 4 I* 166 3* 24* 21 24683 106 39 16784 147 3 9 137

a *72 I 247 t - |B | t IV3• 310 0 «C36 a ir 060a s i r* L7T

10 1*9611 40 13-12* 10 £ u | 16 33

6 BOO W-ltnt7 0 4 oW = i* VII

Ik* ev il n - i c ;|C « 3 I Li VV4 |6 124 YO VO* lb 90* 17 - 7 9 |0 874 IV *64 SO I £6 3 1 J l*2 2 -C lsc -2 1 12 6 -1 1 223 CM24

H C3SCIc ;u

- U m

luV=

*»*>

CiICvUl

&D6 - t = w • L

TO t t 41... Wl

CIO 7U Si/ 4 2t v 7 2

7 104

I *63 31S 7 0 3 -7 1 0 &ICSI-JC6V 4 ICO IV B CCU 70U C -CO Vv 7 2 1 2 2 7 0 l i COO -9 0 3 V & ta -C 46

1 0 1127 1=0=11 u< ca | 2 6 4 6 -<02 IC IVI S I 214 9 13 -4 015 C63 3116 5= 7 -4 0 417 2*6 -UVO12 S 3 -SO IV 3VJ -127 2 6 I6< l u ! 21 2 7 3 -S 1 0 =1 - 7 b 16=2 0 2 9 6 2IC 3—-SCO - |m 33-2TU 02

0 * L

4 fi 1* * 47 -8 2 5 39I *03 *47 27s 3uv -rwu *1« 43 -=HO 1046 -1 3 3 * 1 3 * 11/7

•DOS 37 -*»*/ CO

63 £6 • I I 113

(1 IC9 6C 71 •344 CO

-71X1 26*141 £.<317 69375 6V 31V 46-7 6 73 -7 4 I 4* CSI <4 194 113 7 3 ItB 43 71

-3 3 7 ICO

•601 C t 993 <6

6 60 - 4 0 0 <9

O t l* •13 7 40

113 77—4*4 4 0

4 9 0 41—40V 99

I M 84 -3 9 64-3 4 01191 04079 4V 094 27*00 42

IB 190 • I VI

-4 0 0 67 ICV 74 331 *2

-1 * 7 102 -6 I I I

- 6 0 134

I4 0 49 8 0 13

-1 * 3 CO87 r e

-2 6 2 93613 4127* 191

•6 4 3 300 77

399 40920 t * 136 127 •W *3

-2 7 4 CC —2 6 ICO

fi £C3 H K 61iiI6<9-IU £*2 3= 9 • 3 1 6 <Sa 0 3 - 1 1 3 1214 «V DCS 41DISCS *8=36 2 0 3 6 3 7 67 7T0 -C4V = )S 846 - 8 3 0 SIV l*V tv U2

15 8 1 9 •ISO 7J11 47TV V II —

IB S I 2 ISO TO16 ISO ILJ Ol17 2 7 0 -=V m 691= 8 99 • 6 0 2 <619 12= - 7 5 1C22 > •1 (3 103

ICO 6 2 121ku &6 C==5*•S07 •—6 0 6U3 4 2 8 0 • I t t 01

6 4 7 19 L

I M 9 -S ? 03 i l l -276 8 631 4164 *3 139-201 - 0* 9= 3 9 1 2r S 4 0 - 1 0 4 C U r6 46= 6 1*4 3&J

10-1H 1U4 I I LS7 •*U S 13 =93 -15013 203 -SCO14 ICO -3 9 0 19 CB -279 14 237 • IV7 IT 6SI -3=3ta i r r - 18=IV-ICO -7 84 30V - 7=1-319 0322-213 10922 274 -139 2V -32 -2 3

• 10 L

* 626• 9=43 =00 a u<*4-360 S 6IU* 203 7 223 0 1V7 V 30*|V-10911 94*12 260

IS 90314 -8 715 IM I* IBS 17-169 10 244 IV 444 70 2M

= 1 64*

19 0 9 3 - 3 1 0 =3IU 70 -VS»l 3J>!•; u u - j u / i j i . e - = » c ; Iw I I I - 7 / U J 17 I .7 - U i J iW i s i S - u -;•> 6m IV SIm —1mm u< £ J IV-1 1*1 W J Ul "VU 5mJ Im J =9 147 43 IUI= J Vii 3J Iv '2 * | y | —i l N23 263 -363 61

0 tTO

41CU600447CO96

U S00101

I 7 = 3 -ID S 3 IUI UJ SW -U 1SJI =3 6 W J -1 m 3 * 0 3 <mJ -4 iJ 03 * t J * 6 1 6 Cm T <=0 - 3 3 3 < 3 3 - 3 m3 130 f i lC J i IM S 2 /lo-uo - t r r viII f lJ i r lU j ? 3 4 13 U - 1 u 3 131 10 = N 1 .9 O i 10 3 . 0 17419 ! i : i M l W -K > 3.*7 IT C 6I -I 1 C ID 130iv :

SJ *0 B|

16m n olu*J 0 7 4? 90

3 J9 4 0 JU |3 7

31

19 L

1-1723 CV> 3 1 1 O'4 = 2 ) C < 5 / O 2.1 r < ;rj 3 63 9 CSI

10 3 J |11 &JU12 3/* IU 2 )7 14-UCi t a t o ic =11 i f u ; a13 ITIio - r r

33 -2 = 3 2 1 BIT 22 -2 6 0

3 1 - 5 2 2 -1 4 1 CT U2-164 63 101S3! IOJ *216 ' VC

9 4 L

I C M 136 2 -5 0 3 Ul3 623 -06V4 3 2 6 3 0 65 <30 *030m 21J UmV 7 - 2 1 0 690 3 6 3 109V-2JT -ISM13 CD* 41*11 W37 4*914 -3 ) 194 I J - I J I -2 1 4 14 121 <J io c i o - a w13 J mI -161 17 0 73 ‘03212 - 6 J -4 6 1 <19 M 3 0020 I3 J Ul 1 31 006 -8 * 6 so * te a -1 0 7 i 30 -0 3 90 i

10 V L

VO

2 321 4*9 14-1 Vm =J DM -2W2 4 123 17

a v l

0 = 9 3 9 1 7 t t1 VJ7 V J / Cm 3 6 6 2 - 1 3 6 v i2 7 W - 1 0 3 1 0 i <- I j —S i6 112 U Y .’i -V /t f U i m 1-v <SmO 66 7C*I u/C 06 > M - 1 6 1 7 6 V 46 7 - o l i S I

10 SlO 0 1 2 J-1 | l 2mI -4 ‘#J 46 12 U J l i t VO 10 I’ww 2^2 = •is-it;* -1-6 a : 1 3 -1 7 6 *>> il-i|m 2mI .J 60 17 UJ -114 VJ 10 000 -3 >0 Sm IV 2V> s ; j 71 2m .26 — 11.0 IU

0 = 91 3 63 9 2 1 * a -3 » T4 1388 £.43

933 69-211 W - l!6 4 * 0-163 6* -121 -7

0 3 7 6 6 U l '7 - 7 4 - 1 1 2 119a s m -U J J UU9 = 17 1=4 * 2

19 177 2 9 VJ11*313 - 3 9 7 2IU I m2 VJ 2 7I J = U •1 = 4 5b14 / J —97 u aIJ ICJ VJim u a u .1/ 1/2 - 7 9 s o. J 5 9 J • J 0 U iIV .MM • 7 4 6 2= • - 1 IV -1 159= 1 - 5 - 9 24 WU J - 5 .J 6 4 U l

M016 006574 27

■ I l J 141 • 103 U - 1JI C l =13 8m

123 60314 S3 IUI OJ

-3 .2 8«- 1 9 3 Ol a >o 4 0

172 * 6 -308 141 68 * 2 • 1 4 7 4 4

4 3 C2

0 17=1 178 3 2 7 3 3 11340a 16=* •1 1 3 T 131£>J3| -99 191 -IUJ 19 =61 -343

II 904 *53213 043 —8V0 IJ 27= =8114 a s 3 3**1

8 0 10 10 L 13 93 -1 9 7 U l3 0 10 174 ' 3 . VT

122 0 491 t t f i 92 17 2 * 4 • 163 48*7 1 6 0 4 -6 1 0 U 13 2 8 3 - 3 * 7 TV6 0 2 DC* * 0 0 4 a t 14 481 6 4 8 «*B t 8 4 3 3 0 1 0 3 3B4 4 ImY 124 7 7 19 1 0 L0 2 0 * 2 3 0 = 4 3 38 3 6 8 1 2 4*r4 34 I 3 93 3 16 4 38 3 T 4 8 3 • 3 4 41 3 143 • TTT3 8 <UJ •2 J 8 99 9 804 -STD 8 7

108 * 4 J 0 i a i 40 4 <37 -03V 6 01 0 -2 3 2 -9 87 9 = 37 9 04 8 8I I 617 IU3 4 4 * JUS U7 6 *>2 6 2 ) o i l 4 4 7-■=00 1=4 8 0

3 8 13 0 73 -3 7 1 9 v 8 8=0 4 . 7 4 941 14 2 2 3 -U 3 7J V 4 3 4 •4 4 8 4 26 6 )» * K ' i 2 4 7 VJ 10 UU3 • 4 l l 4V71 1 0 - K 6 TJ S J II =V7 5 4 | 6 0C3 IT 159 3JU 94 13 491 04=1 44

18*103 2 1 4 IW 12 7 4 64 1*169 19 4 0 3 -4 1 1 43 14 IS* 0 3 IM6 4 = 0 219 • 3 .9 = J 13 5 43 • t v * • V07 3 1 4 7 3 340 4 7 14 2 4 3 - 3 m4 8 031 IT 233 3 * 3 4 6

14 19 L•0 1 61 t • 3 9 B*2*7 98 » * su s 3U7 0* 8 53 71 131• a 187 a ti?4 V i) UJ 1 H i -= 7 0 116*T T* « « 9 43 98 3 =57 3 3 16

• MB 8 <3 3 iO 141 9 -V i 94 11341 101 6 K 74 a t 4 3 0 • 3 1 8 V6

•9 4 4 46 t 2 53 - J 4 Om 9 « J SmJ m4064 48 0 a * ) •u 3 64 6 U is 347 u l891 65 fi U i l -v 7 SO T J - J • M 69

•8 6 7 66 10- u u - Jm Ol D 7 2 • IS 134IM 124 I t £ ) J • U > 3 J 9 =31 373 44- 6 4 110 I > K 1 U6 01 10 JSJ —43 I t b

13 3 4 1 * 3 .7 5 J 11 DM 3 3 J 74

a -fi* •T 11a9 -D4 3 ( 0 1=0

10 U l l 7 7 7111 2w« • s a t vOIB 9 6 2 t s12 ittO >7 6114—ItV - i d VC1U-IUV •I T * 10616 ca 61 15617 C3U ITV t «IA -*l St 1541* i t e 161 I I It a 142 2=5 118*1 ft l - t « l 150

l u .1*1H i

8 8 4 4I 210a -u v8 7 44 184 0 - 1 16 4 -1 7 7 T—140 8 IV4 V S I*

10 96*11 *U 13 2 1 8

CO

• L

U l- I S *

38 8 * 1=4

•IC C VI - 8 * 7 101• 100 113

117 VO-1 3 4 ra

10 6 T tu a

lie I I 77

l a =11 -IC S 74 1 9 VC

59 U l14 3 1 7 I I - 4 9 t* l i t 17 -3 6 1

4 IT S IV0 =13 - = J is = 2 109V «= u 6 0 6 Si Cmm -C m6 * SCI - 2 9 -

!v—JCU —I60 I I < 6 9 -= S 2 1 2 -1 0 1 -12 19 879 6=214 DO - I S : 115 300 -1 0 6 14 71 8 2 I

IB V L

1 0 4 4 3912 < 2 4 -2 6 =0 0 /4 -693 4 -63 ~C= IO 2 0 * = 0 9 lC-IV S 197 I T 1 (9 7 2 Ia <4b -tooV <06 *640

lb -CU ICS : I t 26* |C 9 1I3 -V 2 3 -03 1= =21 - 6 6 : 16-133 -U ;

16 * L

t l 9 L

1 137 0 9 C93 161 -2J9 Is l2 1 'IJ —i*il6 --wm - mv> 1*93 £61 — iU6 S3 4 - M I “ J / y« Y 3 J - 1 * 6 117

14 IC3 - 3 1 5 0 519 47U 8 6 3 W t* S 6 J 111 6317 2 9 3 - 3 6 J w3 13 S U - I J 3-1 IV 0 33 101 6 73 9 U U - 8 2 8 VI

13 13 t

110 0 L1 19* 74 VTtt 192 *6 VS0 8 7 3 9=3 9 36 -IU 8 2 3 2 III• • 3 8 -D 04 U4* 147 O t lT 110 -BS ICO0 * 3 1 0 • 6 2 7 4* • 76 CUT 3 8

10 190 1 10 10911 1 * / • 4 4 UZ12 131 4 7 MSia =T3 6 3 6 914 a c a - 4 4 68IB 1*0 23V * 214 S2u - n o UIT = 23 - 1 3 2 T t10 -2 7 - 1 2 7 ia i

14 0 L

0 0 4 4 601 caI STT 411 <*

=91 2=2 640 142 TV 0 0

2 = 7 2 9 • 3 3 3 VO

-TO 57 —w7 106

VI 143 6 4 * 4

3 0 3 I6 3 -07 *V

1 2 *4a 2*33 231 4 -1 5 7 B 308 6-1=7 7 IVC O = 9 4-16*

IV 366 11-860 12 SCO 18 8 16

• 3 4 3 C= 14 I CD

2 * 2 106 03 112

- 1 3 *t 4 « l«S

•IC O ISO • 1 9 3 CT

=6* 104 134 02

- l » * 3DO 114

•IO * 5 3

0 8 0 7 -ISO 0 41 5 6 2 - 5 6 66t t > = i 7 2 ice8 tUi -49 M S4 137 4 6 1(1tt 169 too 1ST*•=32 15 Iu77 -1 0 7 — 146 |2 98 -0 4 4 bs TS0 541 2 4 Cl

10*300 •25 ICSt i n o 83 u*

IT 10 L1 -8 3 3 -110 00 0 - 1 * 0 137 123a 0 4 7 SSI« 6 2 - 1 7 3 1 2 8 31 0 6 4 1226 26V - 2 0 * 7T -JT 4 - 4 7 *7

• j i n l• 4 3 9* 7=9 0 5844 160 8 177 6-0 V 7 7 G3)5 2 4 0 0 -1 4 9

10 -TO11 4 22 13 CTO13 U 414 4*J 13 MQ IC 149

our.6 ||5= I .X t -4*8UJ.MM IU I

OO 7 0

- 4 3 ICS

U 1 J . - - I U 7 6 = 8971818—I=mJ & VvT -V .’V V list b.V

10 u ; s - e u s11 6=2 - v ? 2 13 47 m S /=13 S /I - 2 8 J H I M s H t c J l 121016 IbJO UM IC 1=3 104 10817 488 =•= Um IS 183 -1 = 2 |U i 19 4^7 - 1 8 / 2 *=3 0 2 9 -3JT 58 U l 187 u l j S ) UU =»V 0 89 SJUm- ! J m * |J 3 9 m-84 WO 7 3 |Um S 8 = . ' / - I U 0 VJ J 3 Im Jw 113 3 ) U 7-— v 188 108

|U ) 138 U* IV3 1 /0 IDm 53-U7 -i) 1*7

6 U W -i.= ;u"J -Ml - U U.T 4 8 3a : ; aC v Jj 7 m!9 O 124 « < 04

1J1U99 II 3 0 3 U IV )13 42914 7 / 3 13 -1 3 1 I i S7J IT 080 10 vU 19-133 04*1=7 91 =99 2 3 0 3 4 2 3 010 2 4 -1 0 7 3 0 - 4 63* s a t

I 6 1 3li 107 c w>4 £ 7 3 S -0 4 3 4 - I t* T 0 31 0-299 v a i c

!U 80 * tl-K C 12 422t S«2-210 S 4 0 0 4-501 B O il - 2 1 = C—1=0 7 103

- l » CS- s o t CO 1 10 L- 2 5 0 13=

- a s TV 1 1 (» = * 1 0 £ =94 04 S lS tf i- lt ' .* *

9 1 9 10-1 a a t « ; j OJ- < S |3 4 4 = ;T —5 /u 2 J

■59w B9 U b i l - lO / V 3 J- 6 2 ISO t < o 3 i r r 4 /3 0 c r 7 * j 9 - s r o 9413= CT C £ : 3 • = 7116= 123 V S i i V iv 3273 c a 10 DiO UiO SU

11 r u = - 6 J J J ?fi L 12 0 Jm S i J

IC -.13 - U l l i ?• 3 3 = l o t »<■ 5 .-5 —mmJ SU

Ol 11V |U 2 -U < mJ 5 J

S3147 i

I I I I «**

I I t ta 260 1*8 I1 1 41 lC 4 ! 9 - 2 7 3 27

|m VIU 9 18 17 788 -b Im 1 0 -1 0 4 US IV =0-1 -S J 7 =9 =62 2/0 U l 17m U l =J 2U0 3mm UU <82 -CJ1 29 -*8J‘8=J - ‘3 / -M O IJ J 29 MS -|J1 148

S tO L

CJ

S J

IS =41 8 4 5 1C=13 e c u —* o c c s1 4 -8 8 0 - l i b CO 13 1=0 = 6 3 H U16 -1 0 1 -V J ItU

IB 1 0 L

i r - ! 4 4 - | 5 3 V71= 2 1 b Iv C2 tu t i u -fr.M =o = 0 -l!M - l - J |O J 51 131 M M i US ICC 2 3 9 1L= 2 3 5 2 t = 16'/SC |VO -SC 1C9 iSii |Tm -4. I Cm

a tl l• I 4 i a - I < 0 3 2 3 I 4 2 3 - ’2 4 1 <3B 4 1 0 COO =2a *ea cso 4 a i r = 3C 4 1 0 DvO * 7 S 7 -T O - T < 7 5 4 1 0 C 7 * 7 VOt V 17* 2 2to i c s -iro

1 1 -2 3 7 1111= 4 16 - c z r13 541 2:014 CIO ii*J415 b=2 -3 8 *I t £ 7 J - 1 5 0 17 2 6* -1 = 1 IU <CX *S=J IV 103 CS 2 0 -1 2 4 2=821 2 « m <3,2 0 - 1 IS •SJV 2 > | S | • | 7 | 24 —177 * 1 7 0

n o5 2 U* 4 7 91a*5 3 9 4 < 2 Co

1177 3

15aI I II0J0 9

12 r..j V /JIU vv14 = :U ■*u1S-5JI1 6 - = • 1 sIV 1 : 2 Dis tits S 5 410 lit 2JJ= j < i < • U J I= t “ '/m Vfi= 3 j Im •>lU J - U - D u ;2 6 S.« < »

139 VC CSC v s .

-U I4 » I -USD 5 5 II

• J 4 76• 6 3 I I I

IC IS*< 6 7 CT

a 11 l I 841 -2 2 9S « l C«?3 7*0 7134 740 -C IU5 603 SCO6 = 50 JVC7 1*7 - ? 5 IC 564 <30* « 3 -SC J

lb V<0-1CJ31 1 D72 C<=12 663 6VI 19 63m -C M *4—1 IV 13= IS 8 |9 '

16 810 17 4 4 8 ID 3S3 IV -1 1 0 8 9 168 U l - 0 4 £ 2 2 * 2 -5 3 7 D'm-=> CO l > l t J £U1

I e t c 21JVI- U IvD6 U89 5 u : a t r.M7 381 C <02o =02

JD Yv3 ir-lviU U i 13 101 16 SOI 19 IVJ10 = uIV »_i 15 I J J IV O .J=9 0-:9 = 1 001

• 5 9 2 <2 ‘Immi j ; • 1J6 h i

= ; j j j10 4 j180 O i

- = ; ? 6 7—<89 47 -10m =J V‘J3 2J

'Jl IJ J - J l 7 > 179 VJ

8 *6IM8 81

DU *3 =

184199V2

161

**•9 I mJ 6 8 m Cm = 3U i'/U

-U W SJ SOU 616U0 MM

0 4 ( / / 99 1 UU

1037 Ef/ - U 7 CT - J 9 7 Iwm

b 'U Um 3 0 7 1 /

- 0 U l 4 8 7 « m

-2 0 1 4 *• 1 4 3 4 2 - 1 2 4 W

6 7 t J •& 8J V9 • M 4 6 0 - 3 * 7 37- 1 3 1 IJ J

16U U l 141 TV

a ivm4 58S 1 4 <0*1 9 < 04 7 =11 a 0 7 0 •i ISJ

19 6 7 4 J I-N1 12 16= 1 9 -1 0 3 14 = J t i a 37 10 = 50 17 2 4 J |J * I7 4 10 127 S J 5 0 2 U J-I-'J 0 9 10J 2 J v J J U l -M’l 33-11=1

•1 9 7 1 Iv -6 9 J Uu

II VJ • 3 7 2 I t J

-UU OJ - 0 0 7 UJ -4 J J 93

-V J 92 —'m=0 u " •IJ9 tiJ -1 C 9 IbV - 0 4 0 VI -1 0 0 VJ “ IVJ 150

6 3 2 <u OmJ lo o

0 191

4 I J L0 122 1010 £31 Vmm -0 4 0 50J U l 110 J l 9 5= 7 - 9 4 1 9 24 U ? —1W 6 61 8 4 1 / 4JU 4 0 6 w0J mv7 50

0 cr.': c'i S31 . ro . 3 1 . .0 = .= > -J 91= =.M -M.M OJ6 wV -W O 10* 9 - 1 . 9 7 0 l i )v 6 v 2 0 1 0 = /7 3*0 - 0 0 . JO

£ 3 J u .m - 2 * 0 J«<3 0 e / a - ; j 9 /=2 ID 501 —81 DOu s 11 = : j o - j « ;

J m

* 1 1 * 6 —1 2 -2 £63.M ,*

a V5J V»M 2 0V 2 1 2 — J = MM

10 5 - 5 —<v11 2 .0 t Vv ^ s12 5 yJ —V212-■I..) ‘.U14 %ur - a n uV13 U J -U2*J U i1 M 151 •2 1 4 U i17*>3M 1 VmU 2VJ •9 4 J u«19 U S • I I J V5

= J 100 7 J21* i :j =0 IbO2U j j - 6 3 TV2 0 LV/ •1 0 -) 9 025 IVJ -2 1 4 154

3 ) -1 > J U . -JO S 0 0 -21 UJ

- , U U l - 2 8 J VJ - U 7 V ita to

= >: a t - /O VJ

-2 8 V 70

6 II L

0 t < * 2 - |6 l 3 23 1 = 0 V i ) IlJ

*on s o u n o -:o l u4 S , J t* *2 505 U -0 —U7 4 0

r 11 l1 5 3 = = 4 9 422 1 9 1 7 ImmV V / 9 O0M -MVm OV 4 W iS - l iO l =5 U 203 u?.* . .J 6 U<3 J I 9 m2 T UjI -00/ «v J 7 0 3 m/U ='J4 <M= - 5 m4 L8

u •/ :u -uom 5=11 mmJ =90 v412 40J 7 63IJ SmJ —5 09 9 21 4 -1 5 6 * W J mm13 5*03 — WO W 16 441 “ J 4 0 ».=i / - * a - u i to o I J 2 1 9 12; 1619 =41 -1 2 0 7=

£ 0 1 = 1 169 Vmji-ioo -a t no= 3 5 u 2 - 2 m2 6 921 211 1=1 59a 11 s

0 6 53 | * l v ! J 271 U 7 4 6 -1 1 43 U05*4 u J3 7 =19 9 -.07 6 914

10 01 11 : o i *3 w l 4 0 U2 8 19 Om9 10 1 /5 1 4 -1 9 9

5 * 3 =7 -I V 5 2

• 0 3 21-I t tT 1 15

-I D VO = JJ 94 6 0 9 =*

-= 3 J «4 -•00 49— ■ J<m 4 1

2 b 129 I J b l

ImJ 5<J =V0 *9- 4 m9 92- 4 J l i*0

r r 999 T ' * 0 -9 f t - p19 Af'- c r * rt / - 9 * r — *■4 - ™ *1 CI ftt 3 RI Clr.- # —— i r r • T “ —• r ' ~ . i -

r o * - TA* * 9 *^T •■ ** PS "X 6*6 0 6 3 A 1*? RC OR-xrr “ P */« 1 1 m SGI t « c a CA r.o - ftftt-91

•i- f 11 f* '- f - l - R I 00s XS Cft X 0 9 991- t r ? ctf r *9 * “ :■ a i r.31 OAK 6 * 1 -9 ♦or rfti o t

0 .0 ’ r * f>. r - 9*9 Tl TO C I I - « * e 3 311 9 3 * M l Clf n 4 r r : - a p i n r Q s i t - * 0 9 jjf\| oar. ci

CS 0 « • OT ‘ *• -i or PA Tftft GO* 9 >0 m c o r - Hrr. 6T - CM M Pftl CM W fi*5 ftft PM *31 01

1 Vt ft t ' f t i : n r t CM ft>- Cft 1 CO v x ftAt-ftt o M ? r i t XX 9 3 - 3 9 3 -0

* * l r*.f ftA- rrr t r C 3 r i 1 S 1 M 0 199— IPft Xp(i !— -TP in r ' t t - t - l l i 0 3 CCS e tc 9/.1 • n .v x m - c n r n f - 9 51 6 - rtl 10 3 3 1 - 6 0 1 -0«,■ * % r ^ . A f r*. I tP 9* 9 M R -11 10 xa- eci-*r " f i r p i •ft -*" c*n 9 ftCt S> rtrtl-PI 2 1 1 t r s 931 tPA —7J» m i XI ro ip f p;.G n 19 m OHS 6 9 * 911 c e n c»m r * r - * t Tft I f fi- K 5 ft M l .331 r z t a 03ft 163 169 t*P i p * f i r t l 1*1 P nn n « - n a x

r r - *M fti ? r PfA p»P n *x IXI OCS-9 1 61 I tr» 6* e i ft? C i t l Cft,‘.I I v x IftS 9m - r t 0 9 AG- 6GS ft *A 6ftf e /X - ft l

*■*? ICC C.M* rr *1 ftt 1 PS 901 m : a 9 H 0 9 £M C l' i * r t r i 10 09 ftxt-c 3 9 nxi- 137! XI

e r r m o ft P H r:rs cn 09 T O - 0= 3 1 ■nr xri oiA f M C - r v n p r r r r r - r r s - r a C3I >51 - M t -O SX 9X 1- » C 91

xm IM -X r r . f t in - A P f-« n GO Ql M l ft lr r i AM IP 9 z p i 6.M r.* 9 -* e *1 CI ftl XX I f t - CIR «1tft M r * * 0 9 c r n £ - p i p m r s cst A *l Ctm r r * A ir 6 Aft r t p t-s SX c e OXS-91 CS p l - lO P -rtpa n r - t-TT p n <31 Q*t t a - c i CM B l l M l I IAP n to I / t ' l rn AM

>isrCX- SI 9>f 911 * 9 ft

*ft XTA* ci*.? 1 r*r r r * *91 IR CX t n s 11 >9 n i one *m ; r - i rxi *n IP1 9 > l - CS 01 3 9 XOI icn x

1 t t R f . i t r r - o r t o TOC 6 GX CR»- e c P - 9t r c t 1- n if* -9 t 191 m i- eo- r IX im eon ■

0*1 r r - T**T rn * ! t - P*P At « | ftft o>r x 9 9 1X 3- CAC ftT tl i p f - r - t - m '9 c - t ".** *» r o i f t - n x i 0 V* PU - ►cn 1AB K * t r - r rr ' 9 r.-,r «i f.a v n 0 * 0 0 XX CO c m c1—7 m - cn r e r * r t-l i p - &P9 ft X »l X I - 661 1«> Ar.r- o t c M TX r .: * - T T PI T-ft *0 - r o > n ftft 65— CTO •PA1 PM r i .*» f - I,4* PI W l r,r — ftO- cPS ItT! tfift XI r n t-* r - T f.i r t 9A 0 3 - o o s t 1 Cl1 M'•9 C ftt- X99 r t r ft X*P P ’ ft Ctr * r t * l*X c t X*9 r “ * o 1 31 Cl CO XX C1R-9Cr 9 P *— c r 9 6 t « P 1 *0 T'O S *P1 SX 601 61

■ r r s n m - r i m - o i

>% *»W._ c n rr r i H « - i r n r xr*-p*r r * - i ;* “ fr* M U ..«•. •p** r

M f— .***. ci f 1 f i* - r v 1

r / r - i '•tr - ' ft"! I f t 'f l l ( r V . j

t - x i -

1 M O

P * t o

M C K O I

1 * J ci n i»** (Ae t i u .n

r s - t e i * i0.*,* 611 SI i c i - u z * iI « ; 116 Cl.U IM -C 1 r y c t i - 1 1 * :i* e l i * i » w CT3- I ftl nr.1. rrrr-xr .- | f|.v .e - rr.?. s r .M -.\i- r

w r* 1 - T p l - '

C*0> 9A 3 C

tzx S I - .Ol flAC— AX.fi XtM l M l 1)1 r i x t s w : / r e g i i** r .* ' c v t 11•4 ■!“ I« * • •x t jxs ♦ n *:-* *p *re-

“ S'" SXm A re c s t z i \ t o n r a o * i w . - g s i * n - 01 r r r -

> t84 cot"■6 r r * A r t PI fft A rr Tl*3 01 r s n - AGS CS AM 4 9 5 - 9 9 1 -0Oft f i p - CPC o . o i l i r p - 0 O il o n - i n a i c * r n r - AIR 9in p o t - n r r? TO i r t •A 31 032*01 3 ) » r : - tr.R flr— r—— A -l X r . i r 1 * T I I I s x S - a c t x i Ift n rt'— OftTT ft

f c m *> r e ti.‘ r 4:- 9 RX IG 3- 1IC 91 t s Afifi c » cp i Af r r r : fi AX AS:— 9 * e r ftt 9 9 - SI s e rtfifi — I R C

no T M -ft r * PTC p vn * w *21 « « ftl 0 6 = 0 - ♦M Ir n f l*-| rn* r r r r tr 1— *•*— ft 6 * ficfi 5ftC Cl

m - *** r < n 1TR- AM CS » a - 9X1 C t 1 81 95=1 CCI &X- 1 r r i c r s I M l H * Cft I t

e t c » *t - CS* C 5 I-0 r c i TO! a x - 01 9P 101 51[ 511 CR C S I GC9 ft t z t 3 9 m i c r

1 ? l1 01 PR t a x CSX 0 l o t OS 091 3 26 0 9 S P - c e ? XT 6 3 AR­ ftftl-X ox 4 9 - f l x r - t sr r . t OO- CO *r r e i e o - 6A I-IR n x GOT e a t 9 IX 9 9 2 f£R 0 8CA XST- 4tP r i r c i TTI - Of. CS CS AA5- 6 6 5 9 X S- . 2 0 41*n r c r - 91 r o CP c m or CS S M e r a ft A* r x i e c s a tM l 63P r r f r t CS A 6 I- / / T M 6S 9 5 * ftft* D A* c o - CCS x tPA Oil! A m r i r x r m R.‘rt XI C9 IM SAI 2 AM 16— * 1 1 -9 1on io n - ir? . 11 46 c r * C r t « i XS ftC>- 01ft t ♦ i t tfft- » • SI*0 x r > - i m o t m l n r ; i- frPI-CI CCI CC2- 1 9 fttn ( 9 CXI- 4 r s r * r t- 601 fti *1 SI1 X C9 0*1 K t I IAft r * f ;- r o c 11 Aft I * p - CR Cl AS « * - C99 816ft r i 6 C fS X 6 9 o c r - K l Cl Cft 99 ftfll-C S n r 501 ♦ t - II6R CCR IXC 9 r s 6 6 - r . t i - i 1 Xfi 3 X 1 - ACS CS s * x x t - s e e •>Cftt 0 6 - c c e 6ft c o r - 01 SSI 19 9 6 IS 19 9 4 1 - DSC A10 ox r e t 6 r r 9 * r - 1 r e A Cft 6C o x i o s cn ♦AS Oftfi *6T ftft f x r - e c c n r x * n o a SOI c * r ai □ 9 ♦SI S9R -JAO 6 1 1 - x r i - c in t c * 119 X 301 0 * 1 Ql □ 8 0 1 0 - c w a

*TR- c t r r Act n r on • CSI IC - OX XI 0? BftX 5 AX •f t t c r e r .c s 0 IX t i t ft CX a i 1 U S 91 w Sttfi e t a ♦

Tft r r i * 601 6PC - ♦ C l-f il in OX ta r a1 Ri c i r s t r - f C c CM m fttf- ftl AC COM IC* 8

r n fi.'C- TV-* 9 * c o g 0 3 M Cftt w /C l 1AO 931 r t i Cl CM t x o n 1 IG 6 0 S l i e c i X9 99C C X I-*IC JTJT- TP9 XI o e m i 31 rt 11f!ft A M . e t c *1 n c i 6 19 * i e OT3 0 | T *11 »r>« c r n c i c n 62ft* 0 9 6

S4B -9Sr * 01 p r t S M r s 6*1 - PIT t c 6 S s i > a 19 t63 PR r t l fil A9 API — A '3 Cm 6A 151 o x t X art c m C r t c z06 m r o r Cl r s • f t o f n M P9 t v e t o e 9 s i t x n s to 1 c eOB 6=9 r i r x cop fit f-A m i 6 * 5 -9 541 *91- 1C 1861 t m - e r a e i t p i r c i - x t 3 9 ACS ft AA 3 X 3 - r x t - e ar.n OAP 6T3 6 r * r t t - 91 ft> 9 * > - e » a 051 C C I- 0 6 - 41EG ICS I M P i e i r c - ft i ft fit fi* G tB - io n c Oft 9 9 P - r e s 01m ftfit •XI X r g i i f i - «* • ftl AS X* o n 1 Cft XOI m s x im i Cl CX 0 t-Al PI M 3 * x&x • 0 9 CR 6 3 0 9 |on * r - c r > c 6ft r : r Cl XA xnfi 0*1 I IPA PftB t* = « * r c 6 0 - c n r i 1 n 9 Aft 6X 1- S4R 91*01 ff* * - c r t fi on XPS- r / .* 01 CO I X I - O X I-Sfr r r e t c Aft (■ n - 1V2 9 X9 62 H S CS c e C IA - IA* Clf t i T5 Cftt 1 *G i r - 0 CA 161 t t AC nxx OIX II

r e x * s i m X XOI f«S v t i - t a * r CCT 011 e i t r ro. r e ? PTR * C3 « XftC 6 8 H I * 5 1 - I ' l l - *

r s m - I fP 9 M l SCI 1 8 61 99 OIC ♦ t c a* • OAB i c e r c rx t t r - o x i * CR 0 3 o p s a i 68 ftrtO t a xm P f i f - PT- o t 19 p m OTP c CA c . t - 9*1 XI Cry o n Aifi 9T« 1 1 6 - P 6 c e» c c rrr . i m IM □ftl ftl OM IAI • x ar.o CT8 n c x t r r f.PA 1 PA C l t - 5 )1 fit Xfi m t ICPlftr o 0 4 r r c c r c e CS* IT> 0 «S ftfts 66ft ftt IS Xt A* 6H i 0TO f r c r x i fi 1 CA O K I o n i r * - 62ft Zrr. rt*A c o x 61 1 C l ? 091 Crt n c s r ♦51 64 H I 1f M 6R1- ir . fil « 0 3 1 - A M t tIBP r t C - o i - fit IT r c c - CTC r.G r o n - C !> Ol f i 11 •6*1 XX XS II t o t &- c x - IS 99 x t s 0>C 0

IX A ll > * l XC . m 6 t r - OX 9X1 t B XOC AMPM XAC • I I f t f - PX f i " t - r-rt ir— r ,t 19-* Ml * O l-

■ t n c • i n r r - J r r cr.t- ■o* r r - k s x r t r * r r c o n « * poi *rs: r s r e s ­i t c n

C S- 1 r c r > « l fi Cl * XT * 3 - 4 AC I tr n i * i n*fi a ♦fi IR- CXI *1

I 6 —f. P ' m— rv.n 0 ot X 9t c n p i IR *39 t s * c rt — 1 • TCI 8 6 — c n - c z 6 0 BS- CC t-SI

r t r - i n r r m - Oft 0 9 8 - 5 2 1 IB 1 = ft>9- C64 IIp m - o n r**=- e g < 1 1 - ftftt 0 8 CX f t ir CSI 01CC AI • = rr. t - ; / 2 - > r x *9 ft»C-*1 t c 194 9 0 3 «t r c c r f . r" r rtpt P K l 9ft 001 fit ♦OT A*C* 4 ITXfS XI r c n ir - i : : rt 1.*. 9X8 ♦ c e x t c n ■ At r tC XCC Tt r c n o i K (J t R9 V8G- ICS 91 C SI ♦ 1 r s ♦c cr 19 ( f S - 0 r a C*3 fil Oft m e ­ SO" 1♦ 6 - M 001 ftxl *3 1 -9 1 ITT s ­ tfifi *m s r r fi C l 9 0 6 ROI Cftl PI ■ * n e rsf i er r r.i 6 9 CAS 0 5 8 51 r.>i TPI — r i s• f . t 11 t-1 rr fi­ <93 r.fi O i 661 II 33 XX- ♦ I S - f♦pr p i r s •rp-C rt 631 fo r ♦01 PICIS 6 IM OM A ft in C3 6CC- 0 2 4 A 1 81 1t o - fi • I t f— TCI Crt OX S l - Cftl fiC6M X i n n T M -61 S3 fj^s s m x rw IX - 9EB-XI T ? ♦ r c i XPf f f i Cl 1A 6 0 5 -9 ♦G 5 4 1 4c t r b r g fiTft xr PG ACft 3G> tt 1x 1 A c i­ 9<1T>«ICfi ♦ r t l M l 101 ICl 5 6 ♦ o n n i XIC *r r r fi Cft • ' .n t i r s r c g c RfiC 5 fi| a et i t c r n M l PR - M 0 9 0 0 3 - c s s s Cft CS * 6 5 -2♦TT I c c P f? CM M z v e ♦ c e 1 in (2*1 i r r r♦ s c 0 ro t <*,•.- f ' . 51 031 ♦91 r e i - 4

•ft f f — ir f t 11 1 t l tfi Cl[ 0 P6 <T— • • 1-01 1 ftl

e g m g -IO I M— PA PAM PC r * r r e o « ?M « e * i r - cr* i r ­on f f i . c c r w - r x t e r . * n i i n n w cAX P I P• s t i / n - 5* m ic n p - r i n e r eMS ftp - .ft? m -t 7 9 M 9

C tft r e • s i cc c r e - x i r i c iICC XIe t c «*t r e > s r o n <>r 1x 1*01 cp p c r e r e u o - 01 t r r . » m o CC X xrrt * I I P c x o t ♦ P 19 Cr r - c CSS 1

< e

i nr v m -r,"*-C '9 I

r r o 6 I-: r - n c n x m 0■AS ft flCT= 9 C5 5 tS n « i v,C V i I

<Ct r t

1 C l s

IC X CP

..Jt c t c m s i n r 11♦ m • p v o e-r: x s i p « r v t 1 ni ft c m a R I S

fi 61 Xf t i a i - p r o cn r i r v .c - r m

m i - r n <*n r r r . r r > m

« t*"- r n r i • * n o - rrr . x t

9- - n r • ! i r r e r - C M - r t t r m i - ip - : c-i +* r o r - r - n r.i m i r r c r c r .i ftft 9X1 C « ItIR I 591 ! f l 96 m /-■,* 9:-“ - r n c o l p p - 9 - r - c r ►9 * 9 1 - e e - in eft rrt— « :■ m am cos ci- M

ir p xt-g in r * m - c .‘.r c n « • r s - r r r &i :« r .\ - <?e s i r c r.\ * • ! x tm r" - r r - "i o i l p m - r o - 0? r a r - - ££*•> **t c* r i v t - e i t 6 x*r :rr. 11 c o l 1: s - p.* 1 o l c n t v s — - o

ao I c e ftc psi—c o s e ­e n C 5 I -OCJ l o t10 1 33Tflf V 9S- C ll C S I - 911 .T lr s o o - 99 t mir. pasft> f.3>- C> R 0 » - CX <r X9 i i * "X P* s 00

X I I - 1XS-PCIAOS

c>

09 cn cot t-rs i » : ic »s-

TUI »S C IS -5 S c s s - c n s e c m f X cr . CSS AI 0 9 t Of i s r - x r 111 —o i 9 * c r.i CXS ftl S C I P I EXfl S I « 3 II X9I 01ftc e * sx r 9 cctt x □ IS ft Aftft 6 QIC ftx tc cXCI-S 1*4 1 IftC ft

Cft A lC - CU! I I fti 1 ft* f t ic -e is s t t r x c n r « « * t 1- c s f t g i f t x x - x c n x i f t l c n - r c i *ftSI Oft tx t 6 V I Sft f i l *a-* s x t c m rs o x ».M go “*■C 6 I - c * c I

1 S t Cl

I I r r i - i - M , * . c r »

ax ftxn-0^1 SftT-x - 'i ft*n 9ftI 091 Oftt 93 ftftT /.A XOI 0 9 1 - Cftl O ftl- tft 60Sxn **oQftl At I - 191 *A - 9 * t H\z> i » -

s r r - s r - r - n t iSSI 0 0 1 - 0 X 1 -0

■cot r o o t r *< ^ t

f t f t t - i ; : ■ci- O v s - 'f t

r m n i r c - n i i n i t n o t f t l l a x * o A * - x n > i *99ft 0m i - • o n i - cP M - 3 f l f t l - l X » O

E ftl

k Cln x r » r r n /.1 x * p c e t i - n CA ft C M - f l *91 TPS M I - 9 1c c r e p c m p i

►m tftr c t t e e t t r x - r t

m 9 1 6 - POP 6n x r « - r ; r n IC 6*A tP6 x eft PTfr rx* 9 *n r n i * < r f i i * r e r r r - p:p p

i t 9 - r i c r p S M -iS M r

rr . r r c ? r o 1 M l K - 9 f I O

1 c i e

*exii rx

jr.

t o p.*.i r* / / “-r p | : r i r o rf“- * 9 ,*rr- 10 r c r - / r c p a -PS 9 ln |rt- Me­rer r ~ - rcr r r - tc n o rft* * .T -c-p m u . „t p 'c rfS fra IP u o .*n e m i.*C CTA*ce <75

c n nP.*. XI«■ 1 91m o r.i /.1 t i C .A PI

- r t o r t.TO I t •M I -Ot <■ ■.- A r * e ier* — f* M l 19C?*Mrs(“9 fte t c n . r u nM'S Is x c 0

w ’ r r : - i iC i 10 - 113-91

9M P C I- O il A,*.o i n » - o r » a rr? 9*1 m i x r n ft*# x t f l ft6 9 X0« I R Ic s t a i x ft59 ft f t - ftft* R 09 ftCZ- 9>E c C-OI 6 rtT I CS Otft CftC Q

9- « P !* SMT BI r.i m s« *:**« *1 C9 M l r r r . r.i•>1 4 9 - c m Cl06 o a t o x i - I t

SOI A ftft 0 nx n x e - t o i xtO I f t l - M l - f t IOI * 9 3 - 931 f60 a- *et ft6 0 t 1X1 CM G9 9 o n s i -SCS 0 1 9 17ft I

1 11 I I

r e f i t - r - s 9 r 11 c a K - v - sU IBS f f t l C r c i OC" X S I-t

CO xnr XT5 ♦5Sft e a ­ AtC CS fi t t XIft* r n ­ X6T c eA* e r s t e r . IC r n m - r r e -649 XBfi I f fZ m CA < r t W rt fin x i ♦ft 45 61 r e t ATI flt*T XCft •X* 969 Ol 59 T IC - CT* 9o * fTI- TCC Xt IOI TM — rrr: «not •Pfi * d Tl M l Xftl CCS-fti a i r t c - c t r - c t rtr t rr— 0 cAft r e ­ CAR ftl m • vv 191 Rn i t ft x s - r r a ce 0 O 1AS XM r t ? 81 CS IC 2 - 5=9 08 8 r iT - cr.T 11Sft 8 6 9 — c t fi I f 91AT xxg r r r A

n < nW l r x - CT- P f i c? 5—R * « - r r x X ♦ r c 01 c 11ft* M f - COT 9 rp t r ? c i« tftftl-lM lIC ♦11 r r - •r i a• e r m - e r f i i * M l rtrs- c

516 « P ! « r c i rr. 1.4. - j .n»» CT- XI1-C t r C“ l - ?» ft TAft c x s 6C3 1 c n r n r ~ - =

fi 11 91 911 041 621 c zOM 1 1 - t t 61

9 » lf!9 — « 4 * 91 I d 1 9 - t r i - f i tc e t AX- CM 41 • f i n n - i r s Xt/ a t r.=t CGI-91 POI £ 2 1 - x * t GI16 PS CR1-31 s o XXI- ta r . *!r x r-’C ♦ o s r.i Cfi 1*8 nrn ftlCO r/.R 01c 11 Ift Cfi- SGI Cl9X m : - Ifts 01 tfi 4 0 - C*l Ct69 n * i - PCR A 46 t P t - non IICX « e c m n IOI 461 — Crtl-OI0 9 ET3 X r n C61 C*ift 66 0 a i 4X 1 -9 0* trm O t t ft6 9 6 1 - 1 5 2 fi 5 2 « * *GG Xc a C T t- A *t ft XG ♦♦«- Cft* 9o » S tfr - «♦ > e X*t 49 Ift ■111 C3I 5 96 0 1 - XCT ft981 3P* 6 9 1 tf i t r ft»l a

3 * c o « x c e 8f i t l I t 34 411 o t s 1

18 ♦ ♦ ♦ - t t i a

*91

1 t l fftl IfP -C B

cC--APtri-rei f p ; r pTi: rr-. r i rn

I * t ; r - t i s r s 011 f p - x r t- e n cr* * c e : r i s r x r x *M cnCGI 0 9 * Ift IS

t r » _ -* u / * - .M c -n tf. f*»- orn rr s i w v c s 1

n 11 c it p r r - r r c c i • 9 r * i - n * o m * a it : x f e - e rr a x*c pro n p ; k x»n r tCS ACT- 0C5 01

HI DlOCI-ftl

x e t e xr » i o s

XGI 012 1 1 as;OS- XISrtfi ttf t i c - e i icn -9 (

i c s 0♦PC ClO IS-X

9x n nftXft 01

5 & 091*0 Sft xftn o OM G 099 6T7I C AM C f i l l I

161—ft1 0 o 1»t 991

091 —

Xft M I ­

PS P*79-f.ft n r s - u. txn- oPS CSI t )e s i r s

n x r s ( « ftt a 9 p i - l e s - a i XX SAI *9S -X t <y? c n - a / s - m r o l a i - t M - M AM Ann- IS - ftl t n r m - Co 1 r i * o i m i - m i r i * t r m - * 0 9 . t r * r a t - c e s o i 901 O H - O H ft

m i oft 1- eci sn xa n- /pi-15cn aw- pftf cnvs cfti rin*Mcn 163 r*s nr1 9 Cl 69C-XI

6£Z

280

10*514 02j i - 1 0 9 r u15 = 3 * | | a t= £<ft TV

U lIti 2 VJ -1V «16 199 -iGK IT IV3 -4 1 6 IC -ItU S3 19-169 99 SO L-O <64 Sl*W T -131» Z2*2J3 -JLO

S U L

173 69 -ICO IM -2= 6 l i f t

CT T9 c i a S3 162 ft*m ra-4ft Tft

- 3 |3 <9 *B SI

-4 7 0 43-1 3 3 *9 -949 « • -20ft Of -BO C l

S3 T* -S 3 T3 -6 4 04• I I |6 7 T CT 311 64190 |M

- M 3 Sft-3 6 3 113

319 41-1 4 9 77

SOf 33 —ftf» CO 317 Cf

—473 27273 79 -6 0 137

-5 5 3 66-411 43-SUV 81

76 67 14V ISO

ft 144 173 3 493 ft =497 107 D-tUT 9 843

10 16411 423 I S - 137 19 442 14 14* 19-107

, 14-331 IT =33 10-SC9 14 -4 4 29 240 9 1-163 23 -169

ft 419t a* a 96*f t - 163 4 403 ft 432ft 332 7 44* ft 190 9 -79

t f t 239 I I 27019 330 13-137 14 4413 33ft16-30917-103 10 16314 2*620 293 f tl 193

t -8 9 -f t ISO ft-33 1 47 7ftft JU3 -1 4 9 41ft-U O -0 4 1929 116 34 |2 34 114 -26ft 177 T 47 J07 164ft I f tl 233 100

I 133 S LD3 C CM 4 19= 6—IIJ if J<= 7 U7U 0 25 7 9 76

19 427 I I « M 13 12 IS KU Ift CT6 I I 9316-11417-277 10 163 19 ICOw - m

143 ft)8=2 36

-TV2 36 -1ST 74

0 7 10= S I S 3

S5& 9 015,' 61cy> t= 3

-8 6 3 CT 294 4ft

18 147 8 S3 CO 19? 63

- I M 1=0 •2 0 HO

62 67 111 103

- j j j i o r-9 7 101

0 I O1 »9 3 1643 23 04 6C3 ft 74* ft S99 T 102 O 424 9-11*

10 24411 4012 204 Ift 8 0 14 302 19 110 IC Ift* 17 244 ID 239 10 *67 29 170

f t l 78 - 4 7 83

-1 7 4 T3 S U 40

-6 4 4 2D « 7 J 33

42 43433 10ft

-S 64 a o - l i f t |0 4 -3 = 3 43

I U 43 S=3 f t l

- 3 7 9 4 7 - 3 4 6 83

•6 7 120 124 113 21 7S 02 02

-8 2 3 78 -1 4 4 9*

IS 311 - r » 7 9 1 S O £ 9 t v19 106 - 1 0 3 91 > I U ) -14ft IM

0 I I* 11410 14 L 4 ftJft SvV c a

a * 1*1 2ft ift i0 <23 - £ 3 5 C i ft =J —ft V IV*J1 4* - j J D I V 7 -V J ^ i

I J 3 fti □ £v* - 1 1 0 c a3 2VJ 7ft V =41 3 7J Tft4 3 .0 =00 40 Ift =6 ft 4ftJ ■9ft CM - a n 9 > II HO - 9 0 163o w a —4 6 3 iM IJ U = 5 7 Iftr * « 163 u v 1= =3? •I ftJ 63a r /o 2 J 3 OJ9 IvS - I I I VJ 14 14 L

i o : j5 •0 9 TVII c u - S i ) 83 0 S ftl -COO 8613 5 33 -Oftft Bv l - y f j 183 7ft13 < S! 4 13 46 3 2 1 3 13V 00I ) 40= <JJ_ 9 J U * J7 u a 17015 -1 4 7 167 -* -c ;o 129 77J4 =33 - = 3 SJ 3 *00 41 r . J17*1=2 -I'JO 13k ft 2 1 1 - J 6 3 6ftID-163 -3 1 0 1=0 7 3 *6 * 5 3 6 4

a i7 J 57 4411 tf t L 9 Lv3 -3IV 43

10 190 - 1 7 1691 n3 - 1 =0 ? J? 4 QJU 8 171 6 232T 2= Q 0 2 v cva

18 <53 I I 3_J13 71 1 3 -3 :314 322 1ft Kft 14 2=4

• r a t i10 I U

-*CD 34 - 5 « 9 J

324 OJ - 3 3 S J 342 S J 464 43

-4 1 * 83-< 6 7 41 =59 ft>

14 143 - 3 0 011 17 CT

-3 3 1 1 U - 2 J 7 27

LB

-1 3 3 134

- 1 3 0 114

-374 114

7 I2C

0 - I I t I S3

S Jtl -6 > - S 3 131 - |tJ

S Joi s .

f t - n oft O l 313 6—IvJ 2=2 7 6 :1 - 1 ) 1 a <,0 - I I I |2 J 9 = ;3 2=2 7 J

10 S3 -V I 13511 2 2 / IS ? SJ 13 IVO i t.’ | J J12 <33 —) / J 'if 1« S J - J *J 15? Jft-232 IftJ S J

13 16 L

IS 14 I*

1-232 97 1992 -2 2 3 143 97ft 193 - l i f t ISO 4 -2-JO - U P I I* 8 -4 3 VJ 173 4 =9ft -1 6 3 06 7 143 OS 144

I 13 L

443 SO IM lif t -2 3 32

■DM cv l* J v J -3 6 J J • ft? 9* * J J Jlw

VJ 73 wV VI -V CD

116 7= 1 Tt OJ I S J mi = J2 94 • ? ) *ft=

■Uc7 113 •S J 1J1

■.III V= IVJ #9 I J 114

• I U 91

4 3 1J ft =24 6-K SI 7 126 ft -V J 4 - I f tl

I J | 3 ll l - J I J12 Jl.' J J fJ? I >-=*713 17 J I - 2 6 / 17-122 <6-10.1 IV I O SU-ftft* =l-|ft* 22-221

2 IS

0 301 C I4 CP 16 400 O ft 44 T ITS 119 78 9 <08 -8 6 9 431 Lift ■LU'/ VP 16 336 •0 TO a : : : j -2 > OJ 6 U 7 eft3 6V6 -4.VU Lv Ift 12v 9 -V /3 OJ 7 -0 7 1=10 lb « •G5 Tv 17 C i -Cft I t J Jft l,.f • f t i a j 8 IVJ • iv P 5ft4 I7U -YU *%D t c e c u - t o ; CV 11 J l i . P S J V =!ft - ; v * f t i8 *0 - I K 1V= IV—140 — 153 i J IJ J - i / f t l ; i tP ft v i tftU ftV6 5vS 5Vv 51 2 J =92 i ’.v 5ft I J - l . 'f t j j IX i J i -x= = J7 <42 GUi CT S I-1 0 # s-/ IUI <4 Ji.1 • 3 15 j :o i j ftPl =*•# LJ0 - 5 J —54# 54 IU C ai VI 1 J - l f t i c z VP9 I'ftO •V V4 B 15 L Ift v)1 S /P 11 V / - I J P Iv#

10 149 9S IT -I.U => 13 - j j j TVI I =09 170 73 S 414 44S 4 0 IS LVi - O l 5 J IP -9 3 c t u a13 150 74 *4 a to * 55# 22 Ift-le ft I I10 = M 210 C* a a m •35ft 5 2 t l 15 L14 U U 59 4 03U -6 1 3 24 3 lu 518-144 •24 0 JOI B 804 0D3 CT 1 221 i u 73Ift 9T 159 128 4 ICO -V J Tft 0 Sft* 3<3 52 = l a s =ft= 11317 -V J 2 Cft 194 7 860 -24Y CD 1 ft'Jft ft-ftl f t j J 0= -ft** JJ4ID K J =44 90 O 873 -3 1 9 44 3 - . v t= ; ft Sfta ftiO • O19 -0 3 S3 IM * 250 SSO 85 5-1 11 UP VJ # -J> 3 -= J u jm s= j -5 4 * 14 10 8CC <2 53 c cr.-j 1C i a 0 t i l -X Ut l - 0 0 4 0 Cl 11 813 01 U L lJ J3 wi 7 f t . ) - j j #1BS 842 114 Cl 12 173 Cft 6 f t j / -17= •11 a 1*4 =*■# =4

i c - c a - i c y r jv V iTft #6 S I V-1VP 4ft Vft• 1IB L 14 57V 55# s i a = j-i -V I c : IP -K f t V? IP?

IC-179 c ? 0 2 J ) U l p j I I =J1 21= •li*1 71S *770 37 lb 103 1CT 10 IVJ -S 3 S J 13*144 81 i U'i*11=4=*I=£U 20 iv t o r CC CO 11 U.'J U - U i i ft VTV =44 •5V3 cT ID 531 ti) U 6 i i -U JJ 44 14 11? - c f »=X4 I M 120J SI 19 133 -V J 12S 12 1 - J -JftU J l I J - I J J 4 126S 114 140 r s 20 I d <9 143 14 Si.* I3 J TP6 SCO - a w 43 31-107 Ci 184 IS - 3 - t f t 10ft* U 115 LT IS* 92 fU Ift £51 —Vft t f tB SW 64 C4 4 18 L 17 U i 5V l=ft c US# U P 499 016 -4C 3 58 ID =#* - lv « = # I UftJ I/ft W

t o r v t *<V SC 0 TIB <43 37 19 = JI - I f t J VJ -31 IS Ja i a u 5 0 1 Lift 1 45? CD U C2J £1713 841 •59 Cft a v i e - B i t SO 9 13 I 4 *D4 -ifti IJU18 01 -SCO le e 8 7*2 Gift S3 0 146 7 IP iIB 443 -33= <5 4 2SD Cft 60 1-222 -•S3 C7 « = 7 3=1 4*JIB-218 59 T9 8 ic a -£&£> C i it? 7 CTJ 1=9 V’J16 =39 347 TC 4 8=7 •151 62 2 —CO ft) I J J D JftC -2 J4 \l17 243 313 T* 7 193 - i a i 71 4 413 - 4 J J 6 J *•=66 • 4 )IB SJ9 •55* CO c to a y : <C U KD - j j ; 7 * It) Ift# -3 1 4 lu l19 314 • |5 * CS * 316 c i CD ft = JI - 2 J J S# IJ 3 1J •14=*0-311 95 VI 10 3 0 419 40 7 -1 J l - I W 13J 1 3 - j / j U l ? J*1 160 —9= 117 11—ICC -14= 75 S f t iJ UJ i j i #j UP Iv fs a iv 334 70 J2 C94 CCS CD 4 ift.J I . ) 5?

IS 5=0 • n r V= IP 22* - J * 1 PI 13 13 L4 18 L 1< 474 •<7< 41 11 Uftft *= IC v,1

15 171 51 91 I J -C J •V Iv J Z £61 ICft DC01C 6S-I4I4 19 lft-161 TV Oft I J I-:- - I . p 1P1 2 l> J -y jf t ii)i re v 7=7 17 =40 JG3 74 Ift-DwJ - I J v J = 5 JO H u i 'l2 « U lU f t = 1 ID =97 r*."i 52 J.*U J ) •) J> L#*l I P3 1(4 -ICO 55 Iv IOC -3 * 104 Ift-If tJ • l . i 123 5 - l v J - 3 J 1 <J4 (icy 6 = kft 2 0 44* •4 3 0 50 17 -Vv Ift# ft j : j * 17J

-CT» 46 I J l . 'J 11^ I J i V i f t ) DP6 VI ft -4VU Oft T IS L a u/t •JvP cv7 -6 5 *7 186 10 IS ft * i.*J - IV ) Vft1) OlV Dl 81 1 4TB 439 CC i p U ) lft‘i U Jv*= to —14 CD 2 BBC -4 6 Uft 0 272 221 O ll-JC T -•= ?

II) -4 6 -1 4 7 ICft a s*9 -144 52 J „.V , , , i '*?II-J7U - I f t? Vv C|D=< 0 39 LJJ 1* „• -• •« 5 li 14 I J LIJ ML -O il ft 392 -JC J *;j ft ft . —J # iJO 540 -3V4 06 L, IVJ *CT ft t ift -1 — I w •551 **

7 <02 448 C4 13-120 19 139 16 106 -SB 1530 '*15 • u a <7 1 163 - 1<3 S3 IV IftS ft 111 17 DM 141 v JV I •99 1*7 ii 13* - u ; to ) ID 1*6 V= 1**

>u u : - 112 1ec C 1C2 -71 f'i 4 17 1.

4*127419 43sa 4ft42 TV

157 741*9 131

18 143I t l t d

| l =14 -=?U 13 l<9 110IU 2vV 160 IcIB -3 4 - J 4 IUI

JO 5*314 |u |

110 125 210 fll17-134 IJ 199 t> IV 312 155IB I J ]-1 9 7 3713 = J l46 I9 JI 332 *97 119

1*3 149 I2T1*233 43 11*

19 160 14 1972JU J44166 120 I I 184133 119 184 67

353 822<5 160 171 fft ftv? 63

- I I C 72 133 93 » 4 I OS too 64 8 IT 79 I DO 76

-itcT 76 -1 4 9C • 8 0 83

12 242I =3010 321 Or I v . 9 1-0

19 Iv7 I t 27=12 113 12 14*119JJI16 17117 21913 IJ 10 CvO

18 MO2 J60I6-PJ7I 4v7 -Jl 11119*370 II 063ft B26

I 4783 919 I 2934 8*7 ft 277 4 896 7 *47 ft -41

114 »16 1690 so1 := 334 S 339 4 196 ft 173 * ITS 7 403 0-143

ft 2J*J10 804 I7-1G900 Of 13 301

14 2 J J13 733 iv it*:113 I Kia ai9 80-187

I f t -K J10 2U6 17 =43 •34V *1IS 240 ft 810201 122 0 86719-101I U 1431 1 -3 1 14 891

Ift 234 13 177O 4328 840 ft S7u - l u ' i v l- 2 3 3 117797

124 81 200 121

-81ftft 1*4

•2 0 4 Tft 2*7 879 91

-4 0 2 B4 194 Tft 169 181 199 18ft •9 3

23 146 -9 1 4 832 -2 0 0 I <2

121 1*7

140 193 14-117 129 11413 19318 167 8 CIOIft 341 • 259

I 403ft sir■ =49

-134 m16 -U l8 314- U 134 14 14619 831 7 89=

13*17416 21319 07 J= 141 194 164 O 2 iP17-194ft 403 a * avo to 273

-3 5 184 ■1-25013 1*3I 343 J l CiU14 839

18 833 16—144 17 -7 7III 837IV 244 ft* ft*8

174 IOU IS-1*648-163 8*1 11V•201 123 1-23813 UvOB 474* 901 TO 103940 14114 249 13 139* 824 ISft 71

350 41166 »3) 973 9}

74 149•9 0 188 IB 914 IB 191•9 ft 1306 B03

IT 3vDT-UJ2146 130 6 <»14 813 42ft 874

ft 871* I I * -1 3 9 ft =6* -2 3 0 78 0-129 178 1167 ft*ft -1 0 4 ft *4 197 IOI ft |9 6 161 BO

I SU13*370*2311 1=3 IB 373

2 034117 ICl 10*146 I * » 9 803 ft 408 4 014 8 8326 JIB7 1ST ft ftlft

I Gifta aoaD

Tii 8 < ft =7 l i l l O =43 9 3__ 10 =1=

u ;1= 35= is a14 =«’= 13 £24

10 U l II 317163 141 19*174V 248

- I f t J 7 J99 911 316 IIJ 14*16419 19714 40814 153 ft 39317-156 17 104 10 U

• 879 -TT7 97 U«t4 VB7 31 9 091 *931 0 - IM 93* C* 0 -1 * 4 ^04 B | ft Ift4 I 4 S ift 1ST 7 -9ft Ift 149

II 3111=6 l i ­ft 434

I 42) 4063 =64 -=D6 170 -134

4 300 IOI ft Cftft - 3 3 J 6 484

19 IU 18 148 I f t f t ) 18 91ft18-192 IB 992 IS 944 14 199 IT

Ift 502 ft =19 =05 148 293 1P9a 230 *4184 19 JCD

94 J-J • ifti -nr m13*130•B IT l i f t

12 937BT CS

17ft 47 14 117

1 51

116 188 I 7ft -137 |97 S 973 -103 59ft -37 60 13 -610 CJ u7 4/

M M P T - C U C2l 2 II 41- 24C 9 4*1 ITT. CO 8 •4 44*- tftt-I*

OT* B T - n c *r.t a m r a c4 1 CCS CSS I

1 IC t

r r i r s c f t t 'C OS t e c - o

r r * f c i c ft r c* rr-p t t> c CO U S - C63 I

7 CC fir n rct-p fM f t t r — v/ft f*il ffl (!rc n m n r c ,•*1 c - r r » - t c s r e s - c k o

( 7 2 ft 481 C91- 44 — ftP M 5 C M 9ft 111-2ft s a l 8 />!->

*5 M S * 995 Sc m — Pftl 131 4 4 36 v5 1 901 A3 CST 1

19 M l IIS 0

is

5 9 9TI PCI 4 9 m i - PI!/ / . r . \ - s::: r / . m r * ‘

i tc

: a: 6 C l 6 1 8 8AS 01: a ftei a l ­ 4 C I-9I — IS e e - 4375-0>1 1ft 9 1 - 62 r A

2 7 r o i I I P or ,\ »;.« CWt-3C9 125 C IS 42 7 '*•25 2 1 3 S

-ft »ct m - tit-C20 33- CAI-IM!| r* 5 f t - / rr pa- m-ftP91 t t - i— . ' M a m - r-t-rr r rr- r'fo-e r(*re Kft r r * * r r i f*t 1• i r r - M " p esi ftt- :i-o»“X301

•M i-iftt> r - r.CS? 1 7 CS 9

1 tc c '*.*.( it* :r- cr ■ 1 *■

fm t «!- t i l t P*f t rr.i to- f* r* r - A- - p

/ri* r.'.p — cri * r— '■"I '♦M | /■o- r"1 A i f- • r- r* p r rr ir“-r* 1 6 1 * |A* ft • 2 »•— 5* *7-1

,*.ti f i ­ 1r e s « c r 0 7 CS 3

7 CS 3 M f •■i f - ; *ir f t

14 t n r m n t-c ' 1 * .i *.*41 C ICC (Of CC CIS-1

-a P " - t - n

.V. T*6IPA 5QI

oIC M l*(C l 6 5 79 05* CC* 91 6 9 PTC" r n ( i t

fil' .1/.9*ir "si-06 PCS C* C fl-

( • « * r r .- r n r *••. '‘-i- n r ft ri i«- smhii<At #.# A

r*-t r / r - r -" . m r on r t / r - 4 ft ."*3 4T 5 9 c o t CA U M tft*S r r 5 r - / t re* r - i - 3 c c 9 2 - i c f i - s r•* r « t - t t r s - e a v 5 8 2 4 5 -> 6 0 0 AtA '! rite c * i - r i n t / . i i a c o t “ 91 091 PI/ . r t Cl CM t l ICS s CT 158 1 2 4 Cl**> « * - n r p i 17 / • i CM —1 5 7 r<l* c m i iPR 1175- r r : n r e s e e 4 4 9 0 1 - 6 0 1 -0 16 " • r e (T 9 t t PC 61 Z 9 f -4m f i t r f t t o i 7 A t C e> i n i - a o > aRA r t - r t i - t . R l 9CS 2.*.“ 1 N C M l r IC 5 * 5 • 2 9 o i 16 5 n 1 48 99 2 .* t f - ic r* / . PCI f ' - 1 U - P 1 2 > l 4 4 C S- fir*.P 1 6 4 - 4 1 9 6 n < : ? S?R Ct t e VS>- 5 6 3 6n*j « r i s / r r - C ' l I I 691 6 9 9 7m f V - t f t t < 6 CT5- t? f« Ol 161 r o - 8 9 C/.ft t o t IC l R r n r< . C U - 6 6 0 rt-s O T t 1rr- ! ♦ 21 t f t- C ftfi e r a 0 3 3 0 O 0>z 9 0 8 ft(— r*v.* f i l 1 r s t 14 t P r - i2 8 5 1 6 - 6 2 3 0 ST 3 6 1 * CAI 6 7 At 6

'P I 0 0 - s7 c s e r « r t e - M S 4 E l i C t*;. O il 21r " « t m c 62 CCS- 2 2 2 41

191 t t t - ♦ fit 9 18 PT 4 r.\t z 09 /.AI 2 AC P Im i W - 631 5 A it c c c - C C - I SOI E l l C4I 61m C l- TCI 6 £01 3 7 6 9 1 -P Im * 2 c t ( - r . 7 AI 1 911 AS C C I-C tf o ft- r r s e ■ RI Ofi 2 4 - I t0 1 3 3 - 6C 5-I r o 2 1 - n c * f f i 4 4 O fC - 4 3 6 01

r s r r f ■ f6 61 7 9 0 0 3 2 I S A7 AI 11 /A • 2 1 - c r i - n 0 6 122 6C9 V

c r i* r i r p * r'2» Et CC GCS- 9 i e i

C6 I l f A tr. 5 ' l 9»C 11 0 9 5 2 1 - CSE-4*4 1 4 - I M « i n CC 0 2 1 -0 1 i t SA S- PCS 7ft? • 6 1 - ♦Ol 1 -? * 1 1 - TT 0 17 C 6- 4 6 7 *C0| m - C?l 4 c r s 1 49 0 (-C tO6 2 4 0 fi69 r r . i 5 4 ? - 5 */p i m - o n i 59 4 9 1 - CCS Cl i m C f2 6 15 " '4 — C 45 4 OS O 9 9 1 -1• f t PRI m - c 0 6 r / - C M -fiR l t 15 t r . t c p ft M 5 0»C 6 7 At aA ft C* rs i /P I c . ; cCA • i f ACT 0 r t? £.* CM C IX I r s ♦ fit 21

<-9 f e ­ 9C S-I IOI r s - CTT-917 AT 01 c e c i — 1 0 1 -0 6 9 w C6C-ST

101 C l l 441 61Pft 4 4 - f t " II 7 AI 9 4 6 4 4 1 tlr r ITC n r - r i 1 3 5 4 ? - s v a s ic i C O l- K ? A t e U fi e r * o i m e r - CA- IIra 6 4 - c m - a i i C fE - e t c PI r c i 5 6 AO- a t£41 611 6 1 4 r r C P I- / • • rr /ITI c a - ftr c i m i Rft » t r . t t r . v p n r o c a r C M - 3M | m - f t - 5 r s r r r . n C6 o i n - c m i4 4 4 fC 4T 9 4 r ; , er- i t ? t t SOI 1 0 1 - 561 91 9 f t . r c r - r ; r i r / , r * ? n i 6 0 551 CM 9t-Pl r r r - o n s i r tV :|- i**.? o 091 CM 94V 0 9 5 VOS 1 14 C T9- r * p c 901 V 3 f.A I-3

/ p i 2 /.— I - 1 101 03 r c i r7 41■ A 19 l t - O'. 2 - 0 • 5 c /— r a i i

0 8 61- ICC B c a > 4 SOCHI

me- ra •C4 «* 68V-*0 4 C H - I t * 4 U OPS- C K I 2 6 « t 91 4 S u 4ii m i

7 « I

Cft 4CI- 4C 5-11 2 3 C P I- B!X*4I CS 1 « - 8*4 ft49 C M 114 • CO 0 9 S STCS 1 W 1 0 4 - « * * CT C t - CftC ft M * 1 5 CI4 91 4 «ii i n a9 8 WTP 4*9 S CS 9 4 8 4 4 0 1i a o z s - t s z a

ra « -* i p u -ir 64 L> r o t a m r - i -Cl f « - 86 11* ftC i " l 411 Cfl 0 4 144C l l C4C-

IJI IIP W 01 2EC-4 T«*fl 8t!-2 IM * 6*1 t C M 4 IC l 9 L C t C **M-I C1IH3

e r a c i 9St ft M B 0 I f t l t

S I CAI 4 /S 67 2 p— 3M l i 151 —309 c s - 94C 1

7 IS A

n ♦01 - c m i4 6 29 CSI 69 0 A ll /.CT a4 9 O* 6o n CSI - ni R4/. OT- m .3—| AIR- ( p i tC l l O il CM 0

7 IS a19 C t t - OM ft

r s p p 9 c o s *C 4 | S O I- C9 P Tft C4C- CT4 C Sft 001 tft I I OP CSI

SCI 41 611 (771 — 4VI Oft *91 M - 6 2 0 9 -?* CSI l i t tft S3 ft- SB 1 9 1 - 471 6 3 1 - • 1 0 1 1ft PfC CO CCS aft c m 0 9 ACP- IS 0 5 6 —

i •!6CI «01 141-1is an:- ft** ft a a r c - t e e aIft OTt ftOCHf4« p o t - n t «4S tec C4C | Cl tee O S I 4 4 S I S - I t s ft

*1 Ot ftlCO 479 n -re cci c m -? 4 CA­CTI 0 0 1 - 1 0 C I­OS C=9 06 *0442 0 1 5 -9 > l C t l -

f t l 041 Oft 0*1I6| CTI- OCI 14co rfts-4* 46-t s er r . t a n o CPI ft 641 66- OT 4 SC- 11 45C-93 199

orc-fii6617 6t n c 1 1 6 1 c i - r ,C5R C-n r 6 i n r - c 5C I-R t o « CSI 0

r> fie­ri 671 CS 6 6 9

ff t l 46r o O M - • 1 2 C I- / f i l 41 ir.\ ofr<rr c e i r i r e i n t f i ­r s i CVS* ca iri • - w-

eip-ii *91 61 r > i n i 611 61 Rfl- PIcsp n tICS I Iv s - o tC M * 561 ft •6- 1 ttC-ft C*t ft 64ft 6 l e i a153 « 49ft t

1 1 6 ftt9CZ 4 111-ft t i l 1 CSI fto r e a 111 64 4 5 a R t a u I

• e ci0 9 1 -1 1 Tft- ftl C«t « ICC V l « 4 ETC ftc i p a001-ftSCI « v i e C icn i 449 0

CP I XA

41 C« ir-v t z

tt- i. to- ? 6ir-v e r r 6

m t e c e i c * - r o e c t a t f i s i - i1 Cl t

co r i s i n - c i GQI M l * C SI S I

481 4 4 1 - 2fll 91I f t PI ft? crft4 f t l - f lS - 4 1R lt 25 c n - •Clm CR- CM E lt f t 4 2 - 4 4 - 11m rf- r o - 01t * / “G 9 1 6 Ai i w - CIR-C0 1 t f i rrr XCT r r c - rm 9♦11 n s CEI e911 r o 64- 664 C S - 441-8

te?6 C 6 1 ♦ e s - f i t * aM S C ROI 261 401 6£ 8 8 1 IO t f t * c a m

2 4 a t * 6 6 I - *S 9 5 0 •4 1 AAI 1

8 1 6 6 - IB * ft

(Ar iX1 tvs r c i c r -

ClC fP c t f.T-l I CA— ot r e - o ur-e c n : * K ' 9 (■6- 3 6M ft 1-C‘t-B t*"2 8r r i e s i «

I M S

7 I S C

1 IV t i t u s - r e t i tC M ItZ 6 6 f o i PC f t t CT6 b Cll A TI- CPI 0 i t e t c - e t c i i n r o - c c r - f m i m t - r n f T i r n c p c - a 161 i f t l C f f - f .m i n c 10 O i l - If tl i

1 1C sR I CAP Ifll.flft* r e s ft in u m r o - o c r - o i * n r t - m o r o t o - i - r c i rftft IP*- C7.T- i a i r * r r e - f t ft* rr* irft e /•» 4 6 P - ICC ft 6 " ! M l f t Pr r \ r.R- c r - cr i / r r - fCP I it 102 133 0

7 IC 6* p r ff t i r-*r rr o r rt* ; r * n p*. /.*ft r.’-: ii PA r r r - r r f t ,w r-->* r*“ f / ,» - r|.— r m i . - i t t.*> ; «*— »•<rr r— '**r rU3 LOC- i l l 6

f-p p e r rrc r i r t r r r - ft.*p n

ro .r - r t t - g i n / i c t i i - c ap rr. per 4 rr* nop c-jp a »** e*t i m dAPI 1PT- PA ft IC W * CT3 C(■r.i r c n r r - c ioi i c - « r - i

i c i o

f t t m i r r r fti ff t l f t t i r e r i,*3 t r ? - u r c i *o -pi- ft c r - r t 46 n - h i r tftft « C - CCft 6ftp i r p o f f r6 6 ft"T c r i 1 IA ftPI- IPT ft If tl o r e - w * e * 9 r r c t c s 6 m t i e - <r-p c i s rcn m s c r o n i r n I U I R * K ? 0

C l c iti m i r i - oi**» r * - *cr, e l m r t - r r - t r6 6 65 m Clcii irt- ( c i - r i i n 4 * p - c m r i 6 9 XT, c e r - e »£3 TC 4AI-0

* r l “

C4 111rrc ce­re 43 r»i eftC2 11* ill Ct­rl in 11 H I *0__ meel c m re rf-c o i c c i -

- rcc-ct It- Cl 973-11 Cl 01 ert-6 c n v- 4CVC 6ire-a

tel ■- 01 fie­ri OOI- C* CSIici ce61 CI* ICS lit CSt 911- C4J Wl-41 roc001 AC- 141 09

46 C6I-ccr co eel 61- 11 CM 1404II41

r e s

i*. i: 639 C £41-1*1 IC I

col­o n ­ial res91 9 M *601 IRI 61 151-94 91C-61 r-ss

a n e t16C it lOS-Otiai-a16- 9ASS 1e **401 8 >4 4438 t CSI c Cft- I

461 RI 46 PI 411-11 CTC-OI CAT 6 C ll 9 195 1 ACS-4 Cl 8 ret > CSI—o CPt-sT lit I 115 4

CT 593- 0*8 1 39 ca nic 4II 94 042-aIII 05- C M 6 44 41C- 39C a 01 14 E M Z10 0/5- t « I 441 4- 14-01 48 6

« 3 ! f t - 6 /. 9( 7 /(■0 e-r.z Cr n 551 m i 6r n c r r i R

T? i s c - i ‘ (t 1e> 2 2 5 - C O a

*T OC 4

1 05 01?fti c- rr- o »-ei ii- tei-i fi rr c m 9 rr, rrs c m f.rr r/fi- M ? r rA xt i- .vt-p 55 eve rtf i

9 CS 6

c c i i c i t : t - o

941 16 69 S -cn i ,ft9 401 691 CS- CC I CSIsol r>-26 C- Ift oil

41tzt siP>l Cl 6IS II 34- 01 ftOl 6 0 5 1 -9 MI-1 C9C 4 — - C6- «

r n i r s - a i s 4pit 271- 16 Cc s 491 s4 1 > 31* M S I

T 03 9fill O l.'.T >| *5*. ;**»- ?s» fti rn t-Ri- *n pifA *| .ftPI-l* rs •••ft-M;,i i r: r '*_ a4 1 3-3 I v e

KRIT

mr i

f f i - e COT 1

491 8 081 1

29 * 5 £ - W 1 -0 1 VI ft

7 C l 9 ♦ 9C l

t * 1 - IB S -fil • 4 1 - B / S - l lf ft B E 21 061 O i l - C9 91

i n r n - r r e i fr l 4 1 1 - CVS 81r e t tt-Z Pn t —51 PT» ACS 181—611C R l - r . i s » i RR» 8 0 S 7 01 515 0 t r - m r i 0 4 1 1 5 - 3 5 3 Mm 5 C I- r,‘. c i R6I C IC - 4 1 - 11r n cr C T (1 o c t 0 3 1 - 5 4 f l |

e r e e / , i o i CO CO 4 2 1 -9/ ? i n o n o rC 7 0 9 7

c n c r s a ( 0 4C t (CT 119 ♦f i - o r e x « i f l l - 133 9

CT- C l - f)r i r n M l 6 I f i lr o CS I 3 C2I 3 3 1 * C l 4O f r r c » 16 5:*c n t 0m i f “ t * m e nC 6 1 6 2 9 2 Cr s f f f r - f i / 6 C O « era 1to 18 1 -1 9 * I d - 8 1 9 ft

err w . ni arcC6 Wi PA Cft T9 Cft- 151 661-C4 ire rt (o- C6 PT- 14 Ail-

16 CS r e tr ­et* i r e 18 CS

in-ciCM-II 511*41 iST-Ot 611 61 vr 51 C C Cl im-ri cm oi rvc 6591 Oiri-it*Z 9 6i3 a r.M ft m cCr i f t i 533 0

OSt IK 6 4 C lS - Cft I 631- 44 144CO tv> 6 4 593- 61 53-U 015- 991 R 6- 19 CftCtft e s cCT 9 6 1 * CS ftC— II ICt-lot tftCP 614 Aft ftl* 6 3 9 9 Cft 303-

50I C4t- cot 301 — 40t 915- COt •*1 IAI Ctl M * C4 664- 041 15 56 4COl 44— 69 005 46 01561 RCI- 051 CQ IS 8 9

OS 095- 49 41- 13 1*5 55t I- 16 601- 94 01071 47- 49 d 1 6 10036 496 lit 161* 69 II- K t Rtl*737 IPS AS CCS

«AI 61 til 61 4/1 C! 913 Cl A>3 II DB1-6I CS4 A 61* V 191-1 641-9 4SC Btsrc 6 4 iB a c i t - a895 I

044 81CCS 61 04ft RI 101-51 roe it C1T 01 VC 4 ISC Vc n i94S 4 031-5 0/6 4o v- e ESP CIN I025 0

I R CCft /.ft* Rift BI lot ftC RM-61 tf 66 IPS CI 6Pl 4ft SA- St i n fast- cftt M 4S crfj- OftR GI C> 719 610 6S M ij »ft* CT in rftft- 711 i nt ioi ft >ft v.ft- Rfft R —- l«y>a »*yrs 4 Aft CR'* C"ft 0mi rrs rn 3 54 OSS- RT.*l

1 CS I441 449 G71*31 era _

ox cm* Ate i 6 TI 91- 911 944 1 4 8 - 9 * 2 0 59 RII— RCP 4A t c o r - n m - c « 1 4 7 - C31 5 4 3 “II- rsft I AS COS- C 33-0

i oi aCA 61 401-9*1 rs- 593-0 C M 14 CTI 4 14 998 c m 5 e e l c a - c c i caft 9 A IS t

7 II 51

ict aieSft atIOI IIr c » r to>4 st O S 61Its; R| CftS Rt 04 11css 010 1 6 9 334 a 561 1 332 ft 911 3 ORA 4 992 S 0 3 6 3 59ft I

i l l 6 6 1 - ■ 51 91 71 HI

AftI CCI ft Ci err?. 641 lo w ­e s t s l ­

i d - o i401-6 6 53 V COS 1 IC5 * • 2 1 - t 0 4 3 -4 6 8 5 991 8 661 I A ll 9

7 ei ft6 1 M fi4 0 « •1 0 e r e - r o i 4 S E - 3 8 AIDi n 4 9 -(6 1 6 ’ C W « T r s t r f t - r * r r c -n? pp- ro ftn ro Apr 351 6r- c j r n — » i w . Vft 251

I I I 8 4 - 5 7 5 4 -37 IR- CA 6S 19 IC 111 71 99 09-a r i rrc-02 691C lt 0 3 2 - 6CI 121 CftS IO 731 AO O l

O ftl-C t RR7 II S T . 01 *91 A C IS 0 631-1 521 • Cll fi CAI 6

CPR C l 181 CAI - t S 8 4S1501*11 CM 5 0 5 - AAI CS 1 IT 1

e r e 9 t 041 28S 6C4 1 6 ♦1♦ i i - n c s t 3 4 — «AS-• t s 2 7 I f l -

C O 61 f i l l 6 9 - CAS CS 2 4 O* c a t PIcr«t Cl a*. 1 54 SAB t c • a f / l n e e •Clm Cl r e t r o r .- C4C c c C lt 5 7 r c i I IC4R 11 64 C f ll - r o e 41 B9 4 1 - G /I-O Ie r e 01 6 2 0 5 fCT 01 R I C4— 9>S Ar s s 6 f i l l 6 35 CM —At DM 2 - IRI ftOAI.*2 0 9 E l l - 26C ftl 961 0 1 ? * 961 1r / . i - i CC 691 c m 81 4ft 10 5 R55 6« r i 9 0 4 0 6 1 - 61 9 9 M l 1 9 5 a2 6 — fl C9 C3C- r i 861 C 3 I - 69 661C 6 CA 0 9 4 109 n CT GR- /A t •C5 3 (J 16 931 5 / 2 i f I S 431 C 4h•CC39 C c « i 4 9 141 01 4 4 8 4 1 - 4 4 8 1

182

[Fe{(m-Xyly1 (NHEthi)2)Me2[16]tetraeneN4}Cl]Cl•2CH30H

u u

Z hCU2NIHZM394M5MbClC2C3C4C5C6C7tiCIOmC13ItClb

illC19C20C21C22mC25titC02Si

H31

-976491 1034221 437321 777331 6J 995741 68

1125721 61 90845 6 t3 9 7 85433 714251 781581 B l) 912781 8 8)

1122691 8 8 )iiisssmlii 2261 Jot

923941 8 9 ) 833951108)

250001 0-326101 19 -2 21171 20

n-233101 51| tu-247681 6 3 )

lil

714081

-77031-90491

-187471-235431-274161-348211-417571

6 5 53 64 63 I 7 4 ) 6 9 ) 5 6 ) 59 ) 651 66) 69 )

-1S4HI \ l \500401 26) 165331 6 2 ) 116161 6 4 ) 266791 6 2 ) 31803r 6 5 ) 418411 6 6 ) 686331 6 0 )J |? e \ \ X \9l 81)

C13 574071 8 5 ) -1 4 1 7 4 1 6 4 )tit M m h s i

968241 8 0)ill!1"56361

555211 82)tl®726641130)

5211 82)

m m6641130)

677341 9 1 )79957-49721

-62923-39593-72665

2 $ b |246 )

8 5 )*96 )

232151 6 1 )i % m h i

8551 6 3 )3 8 1 6 i I55441 7 3 )

-TSIIIt 11!-9 0 5 3 1 6 2 )m m i t t-190521328 -333191 60 -205321656

126 17449

61591 152821 193131 398271 486641 440371 270301 90 238471 96 12464) 87 167071 86 536361 9 33861) 612821

87)969 6 )81)81)82)

iiiif!81

If’ 81) 84199)

BtHI5435 01 651821 730511 827971101)

HI679571 80)

‘821731209•6581 8 1 1 0 7 )

780531754)

u j

II

9387 I 0 )

IHII1SIinu i si12761 1 0 )Wl I §|

6620 ( 0) 6616 I 0 )6269 1 0) 7584 I 0 );?ij I si

-S i I SI6581 1 0 )m s i5736 I 0 ) 8056 I 0 )

79

m-5 6 0

•ii» 1 8(2219 1 0)M i §1m i si1 1 (si18?? I 81-349 J 0) 1419 ( 0)m i si-927 i 0) -2960 1 Of

1793 I 0 )- t n 8 j2339 ) o)

81 0 )

SiSISISI 0)8!St

im1170439533731912317421401132

4325237H H9226

■6301m39436578

m7581 3391 263 J 3401 4881 4061 5271m5111 3461 65) 5381 81) 297)

23 i23)4753)461585253 61 57 70

3221" l l

68)56)57) 69) 89 87395 4551 7031 555) _ 853) 97

4111 59)V&I n\2981 64 4501 7‘ 1137111 14421 136)§1315621 78)19001287) 892) 80) 659451 #*•)

) 3581j 394 )t 514}

ill

4 .0 0S :8 84 . 0 0

t:884 . 0 0t:884 . 0 04 . 0 04 . 0 04 . 0 04 . 0 04 . 0 04 . 0 0

S:884 . 0 04 . 0 0

2:884 . 0 04 . 0 0

U2 2

iW7s\6891 2413121 It I5171 50) 851 46) 52) 46) 351 i 42) 301 342 157 4911 69 4531 72 800) 86 562 398 384 3581 62) 394 514 06

6 5

I III!I fill 111I?l 74) )l 72) l) 60)

65)74)73)60)62

4781 66) 4611 69) 235) 60) 4691 82)t m m3971 63)iHSIzIf93071971 972) 72 2T947)***

0.08 :8 0 . 08:8 | 0 . 0 t8:81 0 .0 1

1 8:8 ( ) 0 .0 10 . 0 >8 : 8 18:8 | 0 . 0 i 0 . 0 1

8:8 i0 .0 ) 0 .0 )

U33isnjr709 1 19) 3221 38) 479) 49) 4001 42) 461 348 I 402 I

U12 U13

,1 it\I 41 |

W 81361 1 56) 1 63) It 75 ’) 73) IJ 57) j 52 1 55) >1 63 ; 73!) 62) 701 1 69) 5171 66 295) 51) 3461 51)SHI Iti50 1 57)

) 8 l S III

471 1 63 | 5931 '6121 483 365 361 1 416 575 392)

360!360 570 477 1 73) 4601 69 349) 59) 3271 551M m1194(201 2330 18 640

1 2 4 |-3121

(201)1113*!

1 0)17)18) -32 [ 40)-118) 42) -321 48) -881 44) -29) 43) -108) 62)

5 * f 8 11281 50) -271 -951 -801 7 7 i391 109)-99 -254 -176 63(-451 59

-2 * 1 1 W-21( 55 341 60 121 69 -1451 86)iKI u \-54 1 59)-B?8ll$i[1678 392) -2711 66)

3 8 6 0 7 )* * * )

-53?J 6|1 ? t 15 -2311 18) -681 341 51 42) 31 38)z \ m i s i-1321 "411

-1031 —46 (—1 8 i-381

39)45)53)54) 63 59) 47 47 516364 63

U231 ?! ” r-99 15)136) 16) -33} 35) 981 401 -361 46)-HI 3611441 53)

il\

:l« St-127) 51) -1151 151 -2401 -2261 56) -320i 70) 12) 46) -261 49) -72} 62) -333) 66{ 151 47) -441 52) -2921 74) -4101 84)- m \ m-1231 54)-1 7612371 -3611187' —697( 79

130391501145)101

iSs't-551-81-13316-139

45)56)61 j66i62)47)50)5315959)I 111•1391 61)

f f l “ I1451 50) -29 56)3) 63) 31 51) ?7*1 54} -104) 55) -190! 63)381 81—9BI 50)t t f z H l•1927(342) - ... 2091 81)30125)•*•I -186641***)

UIJ HAS BE1N MULTIPLIED BY 1 0 * * 4 . THE CONVERSION OF 81J TO UIJ FOR l .N E .J INCLUDES MULTIPLICATION BY 1 / 2 . to00to

283

| 82 44 1*

ft 4ft 19 ft1 141 129 -a2 122 • 8 -1173 71 T3 1224 71 03 480 188 12ft - 1 *

2 K - I I

ft 41 IS ft1 U *1 -43 79 8ft -S ta 17ft 1*0 Ift*4 119 4T •24

0 K -11

ft 4* Ift 1001 18 47 •98

3 139 111 -9• 31 9 2 3 9 9 44 114 T3 144* 44 BA -l*T

ft 4* 40 I M ft 74 82 7 0 J 2J g “ 12j g JJJ . » * JftT |T3 141 4 ii* 133 3 143 §4 -94I 137 44 -34 ^ __ L I S ' H . 1 , Sit |4T 133 5 -3« 44 134 4 139 143 37' * ** ? *?* ?■ *•; *z 'i! jSi :rr « * .* «. hi .u» i ** 19 -n*

2 143 1*4 -84a •12 73 • 1*74 71 77 174a lift 192 a*4 Tft S3 70

• K •ft

• 193 199 IftO1-107 29 20a 13* 10* -SIa 140 1*7 •1*94 •2 5 3 - i t a

• E -04 334 314 114I |44 134 -110i -i! 't? -'til ; « '«-<** • ■> •«*a 993 404 1B4 I 71 T9 -ITS- f " w i - i ' j i k - • * 3JJ : f i

>** ' - - . ! - . . . . . . < - • . n * ] i t - it.T lit H -ItIT .IBS 1 33 IS « ! i! II

ft 174 374 100i 17 48 37a I** 170 7a 40 78 774 219 21* 182a 194 99 724 *6 4* 14T *a ■7 -40■ 49 #4 1704 14 4* J24

1* 44 •ft IB

ft 13* 149 IB*1 33 *8 633 101 ITT -383 1*7 (30 834 9* 94 1478 290 201 -IT*4 90 44 037 13* 1*5 -3• 84 04 -454 ioa II* 115

Ift 77 * • 40II Tft *3 -29>2 -41 80 -141

0 9ft 111 -80 4 ITT 03 1554 130 187 117 8 193 9ft -147■ 237 347 -174 4 19* 82 -14)4 I I I 109 144 T 49 7 5 H I7 a i t 3 1 7 -a • ■ 3 52 -I ftl• 13* 12ft • I * 4 1*7 113 1419 1 IT 1*7 188Ift •41 01 1*3 7 E -T

t l (44 139 -228 3 IM12 142 lift -40 • 4*

Ift 00 89 170 1 124 lift -1 7 1a 4 * 75 -2ft• E -r a 15* 199 - t

4 44 3* 1810 IT| 147 Iftft 0 Tft 7* 1471 374 2 *4 -« T 4 44 83 Iftfta 120 117 -40 7 -*• 94 -41a s i f t 24* IT 0 M IS 05

> * -* . . . ) I 12 TS i i i U . J i - a ■ T l » l ! « ■!* • « IJT ' «

• 170 103 •1 131 124 82 0 ■ 13 ft* 1*7 -155 1 12*a 150 144 143 a Tft4 15* 182 -7 a 192a •34 44 13* « ISOa 2ft* 293 -1*4 ft 147 188 1 If -I I 4 420 293 297 • 15 T 419 04 129 90 0 45

10 193 178 141 9 •6411 6T 193 -53 14 T t13 1*9 154 •Ifttft -71 a* -ft 014 44 54 -47

*ig 3 is: is ~s * -s s j is «: ->« ■ * -t • »•?«?it it: a -,s ? Ji 3. j.h ; 5 ntt t & is '5 . - » .« i i f:, . . • M It is ■ ■ II tl -IT 1 117 *■ -ITt • St StT lit its -s I I ^ • lit ttt Its a TS SB ISl t sts SIS. M B M B 10* A ii ii -*s 10 -AT 03 I4T 3 1*4 79 -93 • IT* 141 <

is; is! -ts 17d Tti % ? a 'K -ssa « « -a ! s s .« ? •» 2?iiisu: i:s s»T| .« a-i? »-«” |;*f - ii? « «-* > 1 -* : ss is .»?a 03 OI 114 I 144 14 72 • 144 194 |rr . m It .m bi .?i 9 40 49 *149

** ft -44 19 10*1 01 19* 1*1a 47 52 T)

ft a 149 9ft •9•199 4 04 74 ft•1*1 a 93 *2 130-30 4 193 90 110Ift 7 50 a 142'134•145

0 ftl 52 -40

lif t 9 E “ft

92 41 114 I I M M T3 * »” " 0 974 -71 144 * 119 14# 9 II -23 41 -2* 3 44 43 *149■ H »?? 3 * ?S !* J S 3 K ** » « JJ - > g • * ™ H * > S T ii? IS -44 19 79 91 -7 9 III 197 -45

I E -19

IM-45 ft *9 24 IM

-3 1 SI 08 93135 3 170 2ft* -ISIf 3 01 *0 -17

-34 4 123 1*4 ita140 a -42 at -43124 4 153 a s -80-77 7 40 a* 100 ft* a * 170i 9 •44 ftl -89

0 74 23 IM 7) ITB 172 -4*a S U 233 -95a 192 03 414 117 117 41 ft» 107 101 -IS l 14 4ft 99 -01 ar 43 •9 -33 a0 9ft 90 37 4* 120 111 12* a

ift 09 4* t*ii 47 4ft -4212 09 Tft -172 A

• « # * i s s * i 4 « s - ' f . V H I a i b h j * r . - r« « .ii i ti a its " -n : us 'si i kt ts a « « -« « « «ta i t IM - - -■ i i i i i i i - i s ! 1 1*3 5 1st ? is? i s tlit M .It 4 44 94 104 4 49 44 -01 2 4B ■« -19 • 74 703 {!? ,S “Ji : ST n « ? S ST :;i a S? !i -J* s ««

5 15 *7? 133 S ITB 344 -IS f « « JJ 4 131 74 173 • »{ 09 - j .o . j | , j . j j j { » U 4 1714 S3 i f » .01 . « 7*7 . • 129 m 12* » 70 27 77 M 14* MJ . J * .«■ * s«3 344 -1*4 I 331 943 -42

4 44 44 -140 « - « » -43 II 47 4« -99 I 0 -T ± jJJ 203 '19 T 42 03 I M7 *? !» I M • I** •? *?? I* » » t I W t a 4 * ••• , I W 101 |4I ft 17J 127 43

IM 0 113 Ift* ftIT0 1 Iftl 104 -4*•4ft 2 22 T a s i 1*3

9 0 121 132 5041 4 344 323 -02

ITS 5 219 21* -(47144 ft IU M 17ft-4 7 B2 74 •4011 0 ISl 19* -33

Ift* 4 14* 122 143*3 19 190 142 147

-29 11 0ft 20 -27— 1*4 12 (25 111 -41

13 •31 49 -41►7 1* 177 1*4 1*7

3 E -0 0 1*7 344 a1 95 199 -1*52 113 94 1*8a 233 8*3 -814 13* 124 048 290 3M •-15** 22ft 223 -1*37 12* 13* 200 134 111 429 IDS 14T 144

19 -79 19 -2811 99 74 1312 99 00 -19IS -ft* 47 *4

-27 ft 143 2*5 fta 1 91 21 -119

04 3 239 234 170150 5 100 1*7 82It* ft 197 lift 23• 1 3 345 1*7 '- l i f t

-59 ft 232 34T •1*7145 T 189 139 4179 0 ia* 109 a88 * -44 24 90

19 292 190 (•911 54 *4 12*12 01 05 1

IM 19 142 9 9 I t157 Ift *7 5 1 II*

ft II* 4ft a1 *9 197 33 0a 323 340 -I** 1a 14* 143 •ftft a4 248 35ft 43 3B 03 19 fft 4ft 2*2 3*9 •It* 17 IftO *3 -138 «0 193 293 19 74 140 131 141 A

19 113 51 171 911 05 83 74 Ift12 43 24 -0* 11

• 147 134 _ ... I 233 939its its .m t * ? js '» ig iljjili.iK j :*;:»?.•»: . * -t?

- il4 m *3* * 14* 49 1W J 4* 143 « * 22* 923 -143 J 2« l « -jJJ J j M j*j g # - T0 5 5 * J} J? 0 I U Tl*

! s? !:s Js-'H ,? ill »: iH : « !t! -iH *!Hfs:!s 2 ill :2!t - I i » IBS t Iii i « its r IBS tt -4t 1. -TJ it -as t « its T .. .. ; -- « t -St 23 IBst " T* ■" : n t: -ii t -Si t: i*s n i: « -» ss >“ « is .? ;** » .« • ,*> « i 4si •«4 2 -1 * 7 70 4* -1 3 0 I I 103 44 34 |9 -4 # 47 44 _ 11 14 44 124 7 131 43 14 9 143 24* 12*

0 47 42 —143 11 111 33 *43 _ • 12 01 03 I • 3*3 201 - 4 4 334 374 -3 30 43 74 1 0 0 > r - 3 * T . j i M K m 13 103 43 | i 9 4* 04 -1 4 4 0 1*3 103 37* “ 74 44 - 4 0 3 9 - 4 4 K. - 0 o o b o T IM I 3 6 #4 137 14 47 H 114 ! • 144 144 134 * 3*4 3 11 -1 * 4

\ ill fi'iii t'ii1*: it? t*?? a is : iii is m sis? is -s »* - iiaits ^t l « U t M * *ST *ts ist S SSS SIT -ItT It SBB |JJ M , a „ ,, ,g 4| t „ l u | M I -St tt -»it 29 :ii? i *?? * ‘ 8 i ?» i|? si i *St -18 • ■» •; ,\” ii S I” i 5? ii! 'H I 11 ii >Uis !5 -II t in , 1 it : .is .it -Iii ii *» ’ii «? • « « -»* <♦ ■“ — ? ' » ? * -?i -«is -s :: 15 i .it ,s? a:t ts ,5 “ 44 m • - "• >»A .. _tt tt I*, t.a _IB

3 E -8ft 217 223 ft1 212 280 •232 *1 127 -1435 107 IB2 147ft 2*1 21* 328 10* 193 -449 315 391 -Iftft7 144 129 -1700 145 1*7 *74 125 129 23Ift 23* 244 1*1II 107 13* •17915 139 121 4ft13 172 (Tft -3Ift lift 34 -119

4 E -5

ft 299 214 ft1 8*9 491 10a ITS 342 • 143a 293 290 1*44 229 211 80a 133 14* -9* 209 2*0 -1*57 103 175 -1210 04 1 9 •349 214 239 74tft 133 181 13211 Tft 23 I U12 1*9 140 -2*13 97 117 1914 -Tft M -194

8 E -aft 191 179 ft1 •57 ft* -0*3 07 9f • I I*a 44 34 IS94 251 253 IS5 143 ft* -1314 19* 170 •I t*7 39 03 -1440 393 295 *149 01 SB 10

Ift 41 09 IftftII 7* 77 lift12 II* 121 -Ift15 02 *4 -27

ft E •A

ft179 IM IM1 49 *3 - l i f t

a 19 30 -5* B E *-ft* BT *4 -lft47 a« 73 -184 ft 49 97 1000 90 98 ft 1 *3* *53 a9 IB 10 173 a 2 3 1 230 • 0

a 194 111 1219 E *•0 4 43 199 -1*3

a 19* (50 -0ft *3 48 ft « ■2 «4 - * •1 21 S3 199 7 101 104 -127a 113 00 179 0 Iftft 160 -131a 27 72 -0* 9 134 III 434 40 07 7 1ft *0 90 4*3 194 09 II* II ITT 101 -1*4« 1*4 (40 -171 (3 (59 JM -1327 -37 ft — 178 13 14* m ft

14 •54 *0 7910 c -•ft 16 90 •3 142

ft 1*4 lift ft 4 X -41 II ■0 1*0a 1 IT I M IT# ft Iftl 128 IMa 07 49 •44 1 553 STS -344 140 129 28 a 193 143 •84

a lif t 12ft 1811 E -4 4 47 37 -113a 1*4 17ft -47

ft ItT 180 IM * 40 41 - 7 |1 893 at* II T 144 130 1392 1*2 208 31 0 Ift •3 -TTa 02* 017 Itft 4 02 S3 149

ft 05 83 ft1 231 213 -272 114 lift 170a 2*3 23* -1444 1*5 197 128 12* 123 -23ft 129 164 -IB*T IM 191 ITT0 1*4 190 •49 1*4 Iftl •2

1ft as ta 74(1 132 lift -IT*12 M 48 -74

ft 49 148 IM 1 -341 27* 270 •22 3 *92 2*4 2*9 *44 a *a2 197 197 1*3 4 4*4 123 15* 40 a 113a 2*7 237 13 * 70* 03 ftft -103 7 lift7 13* 143 -137 a ffta IftO 80 1204 102 177 82 11

19 114 08 -111 1*4 119 -140 9 -4712 142 133 181 i 12013 *7 117 -a* a —V*14 41 125 -24 a 133

4 -49 79 -9* II IT* 149 -14* ft K - 4 « r - « • 101 IBS 1U10 |24 I I I 194 13 44 4 4 62 9 K - « « ■£; ■ » »“11 -94 30 -170 13 177 139 I* 0 0*4 3*9 104 o m 31 0 2 «3J 445 -I*13 -43 » -140 14 77 « j 1 373 934 -4 ? ,J ? »« J % « g * £ f t

, r . J l3S *** . S i 9 4*5 SI? 9 7* *« 1T7 4 341 239 143T E -ft 14 70 * t -133 9 337 *34 | i | # | t i n | ]24 123 -115. . . IM l i 4 , . - J S J? JtI *f 4 393 217 0 4 944 111 -15! . » !S? !% 3 1 at . I U ■ 1*3 I** I* T ? • f* «3 i i v i i « - - v - - - - ■-*s « ' J ! r i a . . . 1M 5 ,2 i . J ! l ! J ? 4 04 43 -140 0 274 340 144 4 74 10 *194I .!5 . i i ' 2 1 155 l i : I K I 15? '51 .! ? * 2 im 1*0 - 1*0 1 « *1 -4 ? 7 k -a9 114 140 20 1 333 3*4 -*• a 191 TV —|1V ■ - A . . . i . Jra 943 . 11 I E •>]« 170 123 34 3 170 137 7* 9 314 32* 01 7 .!? u -3 II 133 173 132 0 203 3*9 1008 -74 0 -192 0 444 402 141 ! • 42 143 113 1 1 ,1 M 3 13 *7 6* - 40 1 (17 1*4 -24 0 147 224 10*4 49 39 107 4 9*0 343 -13 II 199 1*7 -133 | t r -4 13 111 44 34 2 « * 3*4 -31 1 1 2 *3 -T t7 7* 0* 74 0 17* 211 -4* (ft -12 *4 147 19 0 * ' J ■) v » a ^ 3 544 gs« a i0 210 193 -3 0 4 *3 40 -97 la (39 122 4 g .44 22 0 18 144 Iftl 1*1 * 44 10 -33 ft 499 40* KT♦ : J * - T t . ! I 33 I i " i i ? 1* 1*4 104 04 | |0 *7 II I* 49 77 143 0 141 13* I l3 4 797 771 -1*4

19 170 Ift* 194 0 77 40 19* , , , « u g 79 17* 4 47 129 -19* ft *33 *43 -171II 37 Oft 04 9 232 2*0 -7 ft E “0 ft 0* 104 -1*3 * E -ft 7 *2 33 134 I 41ft *43 ft*

Ift ft* 24 -4 4 « 15 t t j ft *ft 27 - J J 2 T 93* M3 -330 E -8 l l H I 122 “ 14* ft 47 ft* 100 | .M 94 31 g Tftj 7ft* jftft * | u (39 -0 0 9*0 990 -1*0

12 79 *1 137 1 142 197 -11 1 flS 12 ..* f t 7 34* 379 -2 Ift *4 9ft ft* 4 239 2*2 t*4ft lif t 102 ft Ift 140 242 -15 3 177 174 44 * *** ” >T" j a „ f ; ? U 07 42 133 Ift tftft 133 01 104 49 -141 14 1*3 74 -15 0 3 )8 232 1*2 1 K -S ft 3ft* 3** 199 12 I I I 94 - (4 4 II 1*2 1ST -92 179 120 -121 15 177 101 II* 4 104 102 12 * 911 817 1*1 1ft 70 41 -2* 12 2** 240 -143a 41 ft* -41 14 41 84 -127 ft (19 * 4 ** 34 ft ft 1*0 1*8 “7 13 48 124 II*

* -23 75 - I I I 1 m b i | | 0 220 -ftft 0 E - 8 14 B4 72 ft*7 329 )ftft 1*9 I 40 00 0 T IU 193 -49 15 177 147 035 ft -13 44 132 0 334 233 - |4 0 ft *9 TT 10ft Ift 1*2 (13 -12911 'S i *55 ii? 4 418 41ft 192 4 98 M8 -43 I 130 111 -ft* 17 -30 41 “ I I I14 4* 79 -1*1 | 14 t | .11 i | n ifT |A 3 *10 At 9U *22 25 »2t ♦ -a* '* a?T - j i a o 133 i t s - i i t a e -312 -* 0 82 -91 • | . | .91 t ig 230 333 174 4 IftO 1*0 91(5 141 lif t -4 g W 147 145 13 4ft 143 ft* ft -4 48 -118 *19*71473 ft

_ - . 9 4ft 90 -110 14 Iftl 120 * * 197 54 -41 I 492 488 -95T K 10 1*0 132 - I I 18 J 10 ft* 173 7 124 ft* 173 2 1*4 1*4 -Ift

11 M l 394 -1*3 ft -73 94 -34 3 IM 80* M12 319 212 1*4 8 E - 8 4 117 114 - IS 4 44* 47ft |T713 -AT 28 -14 19 ftfi 9« -37 ft 3*3 33* -12914 173 1*2 -14 ft 458 4*0 Ift* II 182 124 1*1 * 375 930 818 -37 84 -183 I 192 213 I* * * I 272 21? .1?I* 147 14ft “ 1*0 2 041 84ft 1ft 4 t *0 ft 918 94* 144

8 114 237 lift 9 323 983 -1700 K -0 4 181 181 181 ft J4ft 12* 100 I* 377 073 -8

8 157 119 -47 I -19 43 -» II iftl *1 “ 1*2ft 44 t l |M * U * 124 ft 3 94 03 24 12 91 *2 -47I 4*7 473 38 7 7* TT 15* 8 04 *5 IS4 13 Tft I* -1*43 413 42ft -19 ft 100 10ft -135 4 78 44 I** 14 t*9 IT* - I I6 301 844 191 9 *0 7* I I ft 184 1*1 0 19 79 82 ft*4 479 4*0 -174 1ft -48 *4 1*4 4 3ft 49 40 I t 19ft 128 *111

m w ft 139 131 II II 230 2ft* IftO 7 117 48 -184■ B ft 2ft* 274 -IT 12 Ift* 147 |44 ft 78 04 -144 ■ X - I

m « i no t k 7 741 233 -14 18 140 (44 14 4 87 42 tft? 149 ii* l 52 • 844 »3* - I f * 14 123 *4 -10 Ift 48 4* ft* 4 40* *7* 10fti is? i” -m si ?ss ■!? " ■4* •• 134 i>«-* i “ ii;0 119 1*0 -ITV J* !■ *ZZ mBI ft r - a ft 108 Iftf 484 tft 00 19 f t 187 13ft - |T7 ft 00 27 Ift# 4 421 421 -143

284

« 13* 14* -IBS4 JTT 37® —■13T J92 99* - 1*• 3*2 24® 173ft 30* 3 « l 1*1

IB 143 IBft B*11 111 IIB -Tft12 *T 1*4 IT219 iftft SI M*fl14 ®2 ft* 14IB 40 lif t 9314 141 137 -IT*

U « " : i? r » * - * ! ! " • ‘t t * « -« • l I f ' i ? f l ? i d ? S i t ‘H!« - I ! I t " ' i i • « ** i m i« ' i i " S i i « • a s s « * i m j * ,■ ! : }» Ji s i t t t 14 t t n -* g i a t* i t * - i » i i i j *1 T** { *5* *” '* !* * - § *31 ‘ii-i?: ii *ii 'ii i? iiiiit: a * 8 ‘S 3 I g tl a . * .• *n as ; -ii ii "if * c -i : in ns -\ii i "?s f? -ii i? ii? i» “ . . K_ V

11 K - 3

• ftft ft* Ift*1 S i *4 t2 139 114 -ftft3 fti 94 -1 7 *« 4* 9* -1418 -2 9 17 944 ®4 a i ®r

1 K -1ft *87 Tat *1 827 OS* * |7 t2 329 824 -ft*3 ftft* ftft* 14 »*• 139 -3 4B 943 3*7 -17®4 IS* ITS -1847 4*7 489 a*fl 423 434 ft*4 234 243 -1 * 3

SB JA* 2*3 -a®It 137 143 2313 ft® «3 -3 *13 73 • 4 -1 7 214 14T 1*4 -1 7 2IS 4* 7 1 -11* S3 ft* -2 417 7 2 9 9 - 1 1 7

ft * -1

. *1 U M 4 8 -2 3 I f 94 8 I *1 ■ 17* l*B - I * * * »» • • J " f ' S « * it* ITT i mj * i s a i i - ; s • M *' ” . t * r » . . i j i ? , s : 4? » e - • i 3 . ” " * s -in* ,1* *{ J l i i e - I T a i l IT* -M . « f t - I i i IT M T* - I M a i n II* i t *. . . . . . . . J ^ i i « 1 * 1 3 |* t n a - m • I t t i t i i t * • * i t i i m , J *JJ J** r . j t i i * i i - * i • **? r a t * * a*a a** a i i* * t t t ■■■ 1 -* a r * i* t * * * « i t ) **• •*.**7.1. ,« 11» ii* T» i III Si; 'ill SiifBS it B'B 8-3i I « « Si | S|| iK! « ? ii-ii S8JK5-.I siaas fil «'« a-ii .*. t&i .? sg!§!-?s

ft 17ft 1*31 49 *1ft Tft *aft ®J 974 7® lif tft 74 S34 -ft* 437 70 *9

i a K -ft u Tl1 -9 3 74a IB* *3ft ftft 43

• E

19 -3 7 ft* -IB 411 Ift* 41 -® l12 01 4* -4 3IB 7ft 41 -1 * 414 7* IBB Ift*Ift • 1 44 *4

* 7ft *8 184I -39 24 1*9a 343 as* Ba 144 1*3 94 2 2 * a t* 1*48 *3 4* -4 94 1*7 21 ft • 2 ft7 333 243 -14• ISA ft* '-193• 14* 127 '-144

IB i* t IB* 1411 194 1*4 -4 712 23* 244 '-1ST13 64 74 1*7l« • I *4 •SIB aa 4 -43

i au* ajj ■« ij; in J! ; JJ* •» _;?J J «« «» 'J* •• « " *■ • * * § §}J SJS . g * Si Si -,ma a -i -H1 « H a *!H iii as « •« - s,«riis i «g ■§ -«|J SI H: Iii Ti■ J » * J M * ? i | j * ♦ « W . . . u t l 2)1 2 3 * - 4 1 ■ 1*4 13* IM i * 1 4 • • * 3 ** 3 * 4 Tfl 13 *4 1*7 -B 4

J i? J 1 ? _ _> m * < i* | 2 4 3 —1*3 IZ ' 4 4 3 4 * M t 3* * 173 —1*3 * 4 * 3 3 3 4 b l 3 T 3 1 3 3 1 3 **■ IB * 3 4 3 * 1 * 4® * i ! a iS U C tl Ta* aJa - s a i i i n im - i m a ,J a 4* o * ■ -* * # ® a 397 a n - a i I* ** ®i - i j aJ I f 134 - I M 4 3 4 0 3 3 * I BO U 137 143 » | 4 « I f I* I 3 M ! « • « ♦ 4 *1 * 3 * * 1 « ♦ « W 4* IB * »* • » 4 0

| ! ! I ' T | i? T I 97 I I M*S Id t a Oft - 3 * 19 173 174 - 7 4 |« 3 7 3 144 T - 4 * • * IB 144 i f * IT®n 134 12* B* 3 3 * 4 3 * 7 —IB 13 7 3 * 4 - 1 7 3 1* - » | 4 » 134 « |ft* TZ IB* ® B M BIT 8 7 t l 2 3 9 2SB - 1 3 T C ®m i m i m s i m inti m i m iIft 44 • * ITI T , * * |« 0 _ ) x r * * - I 3 173 l i t - 1 4 11 7 7 73 - 3 3 14 4® IB* - 1 * 3 „ , . J 115 H I . . U

■ v « • 4 44 I * *47 A 4 *9 4ftft * 3 13 * 3 At IB* 19 - * * • * * C B J 3 4 7 I I I IBBI t I** 19* 47 • 3 9 1 931 133 4 3 9 * » * IB* | | . » 7 * 3 IT® 1* » * ♦ * ■ » m T l i f t S S a|T 7 * 13 - I * * 1 * 5 3 ft3T - 4 3 • 1 1 7 B i t 1*3 ^ ^ , IT 1 * B • 3 M * 3ft* 3 T 3 * * J tZ »»,«..a — it* a»; =« *>« } 4? « ^ • * *' > « • * Hr is :iIr is U -iii

f * * * B 4 4 4 44ft 173 • 14* I* * 111 t 1*1 l l * 173 1 t R U J ■ a t * a « • » * * | j * i | 4T “* !i in is? -itt i i?s is iii i? .is u .s i\n ?si ”i ?»? «J -iii i i: s i *s s Ii H uli3 a i a i f l i - 2 4 a a i 3 317 -37 12 i a s ia s - m b 4 i9 * i s * - i ? a * 4 * 3 * i * -*5 t a i * » s *# 14 tf t M 1339 | *7 IB* 172 * 3 4 3 3*1 1*3 12 T 3 U -1 7 * ft tft I 14* 12* » 7 3 *® ‘ JJ • ? # !4 ITI I** 1*2 I* - 1 7 *1 - 1 4 1 J4 *T 3 7 1*7 I 147 *fl - 4 2 * l « 1 23 111 * Ij*! tt .Si 11 !S iSi ll "JS “ ” T* " I ii? '?! -ij! S =T. aSS IS !? SS Si7 - a * 49 141 13 I U 2*3 137 3 C - I # «T »•! * . 1 f j a S I -1 7 4 13 -33 *5? ■■ 193 IST - 1 2 * 14 14* r*7 -1 7 ft IB 7® 4 # B* IB 349 3 9 3 - I T * 13 - 3 3 17

l! J2 l?2 *1® I* J2S *2 -9* t !“ “ lR 11 1171#4 II337 iii is 'SI ft*II -*S 17 IS* IT 39 * 7 - 1 2 * J l* J IJ* I* It - I J J j t K a K " ! * ? '* “

■ ft c - S 3 K - I 4 Ift* 2 * 3 I** 3 - 1 3 IB IB* 19 *B IB - I f t* 9 ** 941 2 9 3 t lB 1 2 * 3 2 * 4 - 1 7 3 1 2 1 9 1*4 - 1 * 9 I* 113 I I I J J _ . . .I 123 199 - 1 3 2 B 1*2 2 1 2 IBB B ftft 2* B ft 2* ft 2 3 4 - 1 0 9 18® 18* - 3 3 IT 31 3ft - * S B 3Jft I t t3 3 37 M 3 - 3 9 » I I I ft* 3 * I 2 * 4 M 3 *7* T STB 3 * 4 - 9 * » 7 * - 4 1 I J**3 *4 II Ift* 2 142 199 -ft 2 1 4* 931 |2 3 • 9ft 13 B l 4 !* 3 * 2 {3® 3 K 3 3 J M 9ftI4 3 * 3 3 1 3 IT® 3 TT B® - I T * 3 7 3 * 72® 4* * 1*2 B* |B 1 B 3 2 7 2 - l i f t J i ? a U SI I ] I I IB® 4 Iftl 129 ITS * 9 4* 33 * 44 Ift 137 121 -T ft 91 • • - * 2 * J JJ J J 3 3 * *7® 3 Ma it s it a ft 117 ft* 91 S 9 29 32ft —131 II 171 13* —ftft 7 * 9 7 3 IB 1 ®BT BBS Jftft ® 2B* I f J « * •7 |7 * IT* 19 ft Iftft ®9 * 9 • 179 ITS Iftl 19 193 IBS *141 ® 2ft 2ft IBft 2 * *3 *®9 1*1 ft 2 * 4 2 3 * ITT• i t t 1 » -1 3 3 T - It *1 - I t t T .3 1 .3 7 - I * I* IM 11* 1*3 » .3 * l i t - 1 1 . J «*3 « T JJ T » • 3B> •t t T T I U IT . . I l l . . . - I M « IB3 ITT 31 ! « « ? • : « . . . . 1 ! ’ ! ! “ - T H ! i i i U S . t i

.1-1

IT*13*

9 E •

-Tft • aa 71 B-1 4 t 84® 221 ITS

-IB* a lift Tt -4*- 1*1 a 1*2 1*1 181 tft 4 13* I U -1 4

-4 3 B 311 942 -171* 344 2*3 173

• 7 2 *2 248 -8 3fl pa® 12* - 1*

ft * IB* 147 IT4-1 0 3 1* Tft ♦7 1*4-1 3 3 II 13* • 2 Bl

-7 13 Ifttt 83 -4 *ft 12 127 I t* - 1**

i . i i i i t r ii i S a i i . i i S i i i u * i* i i « i f 11 c - . * • » » « - m » a » a a . i . t

3I..M.-H. .a « .. ...... jiuiji is ■ ixt.SJ !« .inn? itr !?in??i-isn ■ \ t u h sis a:-if I ii v, rj r.r .«• ij'S'a ;«} ?*} ! f l I | i | 474 ft a 327 S3* - IT * * - IB *T tft* | l l*fl ift* -1 7 7 IB T2 B* -1 4 *i ii! ‘ I I is Hi i? s asi a:i "?? ” 'K 13 * ' if >n iii in . * » j n n-i! Issas -n ? - i” !? '?• ;* :.b.s-.tS ii nj a?| "i« • » ■-K f a! iiihr,:ssss r. *4 ',T swa-i i?.«.a -?i i % -..j 312 ®* I* -9 y ^ 3 3 u j - 14® la 9 X7 J lft -1 * 3 I K i ft 119 ftft I® * *49 99* IBB IB K 2

B *3* *«* •1 *43 431 *a 32ft 333 1*4a 327 234 -IT *4 2*1 2*1 -S 3s 7* *S 4ft* 3*0 337 - * •7 198 14 1 -IBBfl 33* 23* 244 2 1® 390 7 *

10 3X7 J l* -1 * 9II 73 ft* - I f t i13 1)3 13* -2 4Ift Iftft 141 *414 331 31* 174IB 30 BT •*14 •ft 72 IB

1 K 1

B 811 BB7 *

8 E 1

• 2 7 1 34® •1 Bft •4 a*a 1*1 3#* -1 IT8 ftft 0* -14®4 1*2 177 BSB 14ft IBB I*4 IST 143 *TS7 IB* 8® -4 88 1** 2*1 8* 32 T| II*1* *4 9* 4ft

II *4 Oft -0312 4ft 01 - 2BIft *9 S3 1*

i l l S8 1 1 1 1 1 1 a l l iiiiss a lli-i iii s i l l

11 E •- t

8 -T t 41 1744 111 10ft 17*7 S* 4* 4a ■s 81 -4 7

13 E 1

8 Ift *9 01 Ift* 114 -174a 1*4 83 - l i ta *7 7ft 44 lif t Bft 108 132 4* 18*

B S aB T*T 78* to t1 *11 877 313 MB 4*3 438 441 432 -IBS4 34® 392 •4 *B 43® 441 - I B4 84* SST *7 • 34 BIB 14ft■ 1*4 l«* 14ft* 4* • ft 83

IB 184 34* —41I t 372 2 Tft 174ia IBS MS 14®IB 1*2 17ft 4*14 04 48 ft®IB 184 I IT - I t *1* lift •4 — I t iIT 181 4 3 10

t E •

0 IBS lift •1 1*4 TS -1 4 7

8 44 •4 B ft4 2ftT •4 4 a®8 144 1 * 8 - 8 44 1ft® 141 - i t a7 177 IBS 1*4a 3*7 3 1 9 1* * 9 77 49

IB • 1 83 •14®II 71 70 IS*12 87 03 -31

•» * * tiftai: a ii ii? iSt *i?i . 371 a.. • •«*«'« * ‘ 3 iiSiisi . •« m«S:S0-BJ SSJKi .« i-SaK-.S • SfRSS S.??.S-!iS- -■ «*'« ; i i r ; tti rs? I s: tf. :s; n \s ,r, . 3« if;. na in ij; i* i» jj .it . a . • |»j ijj . 7*i ij* «» * 'j; ;a t3 » .33 » m ». -m* .!? "'I :s;?? K a . . » u. ..«*•},,; .«. s. j....« -,m ...» .» . .a..« -n! "JJ ? ! I E . a 17. H I - I t s I . M » M T 124 .11 1 .3 . 3T1 * •« *3 H » « 1*3 1 . «T t t -1T3

.n ?? i” . j . KaK -I !i s “ -S : ■:*, i? ,u \n -;k t . . .. E ." * • h!i?n "K :? « I??:!?? ,s ” “ '* itin??* m u. i i . » .1 m • .IT* 4 lift ft» •!» ® 979 94* *13 * 1 1 IB !*S !?S 't* !S ii! !» IM i IM TSl -1*1 a air 2*9 -*7Biis's's • U-III Jn ^ ,i! ?,8,s *s « H s-.s .... sssis *" »? -ii *i .j? I sii ss -.1: : n 2i\ !?*. i *s ‘j . n *j . »aS « ,».>«

I k s I n $ - H -Tit -H !i -Hi : *,«■»*■« s.;?.n s1 H 10- si:?!?? iii issss :s .S'S'a ii. ■; *1? ? ? ! If! “ ' • * ” • 3T TT - * . | t t l . . . 31 - — t — t - t t ■■ . t t I . t - l u'* * • !J Iii Ii* tS * E l » »* J3 13. 3 t t * *3* JM_ u IM IS I4S 94 Ift* I® lift *1 1*9 fl 217 21* —121• It I f , | K 4 Sift | S - 7 ft 993 3*7 ♦ II *M 91 - I* * 4 ftl* ft23 - |S ft

I "S .? -1? ,T "“ “ 4 i ?!i iii -SS ” 'W * i ii? iii i?i ii S it. .it *'“ iS *?i '• c * J‘K ‘ii'i?S. r . & 1*2 12 2 ft | h |f t | -111 ft T l 13 • « 219 2«* -21* K 1 I B37 827 -8® * •* * *12 -> 99 I ®3 H 12® |® -91 ftft -B*

ft * 2 IT IBB 3 9B* 97* - I M T 9* M ®» 3 U 7 1*1 -IB * I t 124 192 - I I *? t” fi; 'ft a 7«2 7»B ®2 a as® 23* a® • ia* nr • 12 it# mb *•1 Hi ill I HI in "I: ii In Hi i;i i HI -iii ii 'Js ‘H -Hi •1 a i !S in Hi ilHHi.i : si ss fe is :'r.'n-.n .srJ ’ • ! ; j* Hi H I - J ? f ! l *T 4 1 u u * M * * * i S J S i 31? 3? f t i i iS S■ I *ii * 2 l « !a !*1 !‘« -U T E I ll * I . Ml M. . . « 12T I*. -IT 13 IM 113 -3.

0 119 18* 0 7 4* 114 -1*9I 877 ft** B 0 19* 117 Tft3 242 37* Iftft * 1*9 101 IBa 2S7 3** 14ft 18 03 *4 704 243 33ft -92 11 1** l*a -144■ 224 a 14 -44 13 40 7ft -44* 172 170 ISft 19 124 IM -IT7 334 217 ITT IB -47 1® a*a -S3 tft -13** 23* 224 B 0 C 2

IB •J Oft -117II 17® ias -172 0 *a 187 B13 ft* Tft 34 1 27ft ftft* -991® 14® IM « 2 IM Iti 1741* -ftl *4 IBS 9 It* l » 1*7IB 1*7 l*B -1*7 4 -11 4* -10414 ft* 41 Bl B BS 14 OS

\i *S Si! "'ii ii in a" iff . 1.1 1 .. • .-.3 II • i“ S ...2 ®! l* l ii ! f T l* l i f t .in I U ftft - I t ftft 49 l i t ® r ift 3f tl 1*3 7 M® 9*2 - |B T2 - f l . . ! ! j ! '* 7 '{J ’ j , I i n 127 - IT * a IftT ftl - I f t l 4 4BI 43T 0 ■ ®3 • * - 2 • 199 tS * ft1 t H *11 I i i 14 I n ' l l - t 2 119 13ft ® 9 * 4 * 4 3 * >9 * 4 * 4 * 2 2 BB I 13* ®l ftft

1* 119 1*7 -4 1 * 9 1 ft I * 41 121 4 9 2 94 49 ft 444 *14 -1*1 I* T9 1*7 -1 7 2 9 14* |C9 tft®

11 • M 12 B1 788 7*1 -A

i a U « 294 1738 *4* 4SB 1*70 4 137 1*0 -3 771 B 170 ira -0

149 * Bft 8® -1 * 4143 7 0*0 0*3 -1 8 70 ■ •S • 4 -ft

-ft * 4*4 429 BB181 IB TO 1*7 -17ft

0 114 II* •1 74 ■ 0 **a l«S IB4 -18®a Tl 70 - 1 1*4 1*9 •ft Oft0 •a * 8* ft®

0 E 0« 07* 0*7 1®*1 414 4*0 1*3a 7®* 7 Bft 49a ITB 17ft -1244 444 III -142• ftsa 040 -8 44 BT* 873 *T IT® 174 -1 3 00 393 3 2* -IT®* n s 127 -IB

IB 171 IT® -1 4II 14ft 103 8213 S® 4B —BTIB *• 47 -B®14 ftft Bft 3418 - s a 48 -14414 *4 0 2 *144

285

I K

• III W1 136 1433 334 3333 143 ITS4 3*3 3 H5 44 *1• SOT 8137 I4T IT*B 3 44 S S |• 106 00

I* 2 U 380 i t s* 4* 13 l«* 14* IS a 83 t« 49 M IS *4* 48 I* 134 IM

143- • 314*118• 3

I4T1*3*44• 4 31*4t i l

- IT S-3 *-IS*IT*

t8 *18

1*7- I *•ITT

33*•1*8144* 0

T•113143

3 X

* 330 333 I SB* 8673 144 137 8 1*3 IT*4 4M 4*3 3 434 43** 727 7*3 T 112 1*0 0 33* » * l* -S I 23

I* 144 m11 *1 Tl12 TS 11313 - I * 3414 ST * •13 -4 0 414 *8 1*0

3 X• M 3 *I 33* 3IS3 413 380 8S 3*6 3*3 I*4 42* 414 -1*4B 24* 2SS - I S4 9 4* 83* -3 27 2*1 237• 28* 2*4• 1*2 127

18 IT* ITT11 133 12312 123 133

18

13 144 I2S -4214 11* *1 -2519 139 136 16*19 133 13* -19*

4 E 0

a rat 7*4 IM1 094 ST? -84

a 4* 49 IMi 411 414 -1822 via IS* •29 4*7 4*7 4*4 313 1*3 -1340 333 236 -IT S6 II* 1*4 •817 S23 934 24• 373 274 182* 2IB 217 -184

14 4* S3 -4011 1*1 t l -212 71 12 — 1 IT13 133 1*4 -13214 6* 10 •49

6 X 0

a -4* a *i 1*4 07 -1*42 I I I 164 303 231 3*4 - 84 122 142 • to0 2*6 214 -1764 338 944 -23T 193 120 I*0 M* ITS 142« 134 192 164

14 144 131 *33II SB T* -2612 IT 8* 1*113 136 117 14414 119 42 3

7 E 0

a 209 30* IMi 103 201 -I T *3 2*3 182 120 14* 176 834 3*3 2 M ITSB 243 2 * 3 - U T6 U * IS8 2 27 1*3 1 IT •6 20 a i *3 -161* 140 194 -149

I* ai 49 8411 1*9 IU - 2 112 -S3 14 13113 42 84 IT4

0 X 8

9 843 8SS S 337 S3*4 352 344 8 | » 141• S3* 38*7 132 1218 M l 8*3 -• |S 4 188

1* 1*3 1*411 114 142 112 T4 •* IS IIS I**14 144 18315 84 |* 3 '18 *8 83 1

V X I0 SS* 8381 3*4 ST*2 B«l 8115 IS* 13*8 4* 7 8 8 * •a i*s *i •8 SSI 8*7T 148 17*0 3lf 3*4• 21* 2*1

t a 17 i tt t t t * 114 12 -S* 2Tis nr imI* *8 7818 188 143

« E

>1■IT*171- 8 0

I*ITSi r a

1411*1

108IT81

127-1 7 2-1*8

211 3 )

-1 4 0- *

-3 8- 1 * 6

141-10

8710*

• -83 7 4 8 3t a - 2 * 03 47i i 13* 13* 10412 2* 16 - 4 413 133 I U - 1 814 2 * 16 -71

0 E 0

a as aI 2*4 217 0 *4 1100 184 TS 8 I I* I I*0 1*3 IBS 8 143 114 T 1ST |S 31 ll 11• 1*7 133

I* 48 S |11 121 1*412 02 0710 118 128

a X i8 2 1 * 2 1 71 107 IT*2 I** *f a 142 121 ■8 184 12*• T* 117

• I *- 1 * 7

ITSIIS

IT- IT *

17* -8 1

_ 1*47 | * l 140 -1 4 4 0 - 1 0 87 - I I ** 4* 07 SI

18 27 78 184

188-02- M187188

a 3 8 7 ITT 0 II - 3 0 3 3 16*i U S U T 9 13 87 9 3 * 1 6 42 2 *0 M 3 -B|0 0 33 84* -IT T 1* E 04 241 ita iaiia 2 * 7 3 4 3 8 134 *T IM6 1*7 1*8 - 7 * 1 184 l* a 137 II* 193 •1 4 1 a 89 38 • 1a 101 103 171 B I U 121 ISS* 123 10* 87 4 « » 1*8 08i* M * 3 -9* B 164 108 17

n 11* 1*1 - 1 4 8 * • 4 4 1 • 9 *13 11* 1*5 147 T 131 130 14919 ISO 123 - 6 0 • 9 8 BS IB14 Tl TT - a 4 113 16* 8 2II 7* 08 167 10 T 8 2 • 4 0

T E 0 II E 0

a 273 25 B IM a 40 M IM■ 332 29* -4 i 2*7 I t* -4a IM 164 -8 a •4 t 72 -1a 169 it s 136 0 1*1 16* -1074 IB* IBS • 1*5 4 10 BT 33B i* r It* -a? B 183 117 II6 •S 3 79 -t*7 4 -0* 07 -4 37 IS* 82 B* 7 149 127 -1420 7* 11* 147 O -3 * 47 -84

12 Tl ai 113 IS -88 2* -a* K• 177 IB*1 - 4 1 BS2 144 1413 -10 438 23 0*8 -3* 388 183 IS*7 I t ! 1640 IIS 14* -I4 T8 8* 1*2 -1 * 4

I* 40 41 10I I 87 84 8

-1014114*-2

I* X0 ITI1 1*82 122 a i i a4 828 02 8 T27 84 • 008 12*

184 10*40 177

133 - Miia a*23 148*4 -1 4 3

1*4 -S 3 T l 8 47 -1 8 * 1 0 - I S S

I E

0 247 2041 3Tb 34 1

2 17* 133 ■ 3*4 3*1 4 I U 31*3 1*3 474 2*4 2*8 7 45 23• 14* 107 « 218 223

I* 363 26* I I * 0 T l 13 100 14*13 1*4 0414 186 12015 -3 7 8

1 1 1 8

• 180 131 10*1 -48 71 -1212 |I4 188 -238 *83 81 -1834 183 1*S 1670 00 8* -ITI* 4* 47 -07-72 II 1231 2 K f

a an m iaa1 C 76 -1442 Tl 83 a

2 E aa 143 238 at 437 43* •174a a tr 4*3 l i ta 033 921 - 04 236 323 -3*8 241 294 -1704 1ST 1*0 173T 294 357 780 IM 05 -23* 223 220 -ITI

I* 1*8 148 -1*411 114 133 8418 IS* IU 4*13 48 M •12416 142 120 141IB 68 09 13

a «* bi taa1 0* 77 1412 I I I *3 sa a 103 164 684 13* 138 t l * 8 34 B* -1 2 1* a i 1*4 -at7 133 128 20 13* I 94 I 47* 1*1 I** 138

18 TS 1*7 -8 4 li aa I* *80

a e0 680 642 t 832 88*2 43£ 6433 180 1814 3&2 STS 0 |8 * ITT 6 07 03T ST S2 0 218 1*0 » ITT 108la 162 171

11 14 0712 184 104 IB 08 4T 18 76 0*

0140

-184• 4 4

134*

-1681*3

I*• 0 0

-1 * 642

- 1 4133

-147

» E• 943 2741 U 4 2372 232 2 2* a 104 ITS 4 107 1*4• 248 270 6 |4 8 184 T IT* 1*0• 6* 03« 2 * 41

1* - S I 2411 141 1*412 IT* 17113 • * 4014 1*0 1*7

4 E *

• *34 384 •1 31* 2*4 -1 6 *2 231 231 1770 43 S3 IT4 0*4 211 10

12 E 2

• 44 72 10*1 a i 48 Ift2 113 0 IM0 0 3 4 * -1 0 2 4 21 7 1811 10 06 -7 2

B E 4

• 176 14* t 6«* T*l2 213 238 a s*a ai*4 203 241 0 0*8 340• 01 7*7 7 0 70• 242 24* « 334 2341* 12* 11*

11 28* 34* IS *7 7818 164 172 14 123 i a i 10 188 142 I* 4 2 48

I K• 892 SM I 810 11*3 8*a 00*8 133 1164 000 304 I U S 144 4 833 848 7 3*2 242• 801 073• 134 0*

I* 223 23*11 226 31*12 148 ISO 18 #4 118 14 118 1*4 is iaa is* 16 9 0 44

3 E

a a i t1 8472 278 8 I IT 4 ITS 8 1*0 4 4*6 T 03 0 33* * 84

I* 2*711 13112 04

a-1 4 8

116- 8 *•81

81168

S3- 6 7

• 1 2 3167

1*-1 4

-1 4 3143-8S

0 X *

a 350 341 at 1*0 07 - I S ?2 247 2SS 104a -3 8 BA 414 1*0 1*9 -a8 174 145 • 166* 37 17 1627 297 223 -4 2• 12* 12* 14* 170 183 188

la 13 27 -B 3l i 86 41 4812 110 116 4318 4* • 6 12416 6 7 31 ITI

a1T2166-4*-31122III-14-34

>184■18?-I*

8■102161

IS 120 131 IS* I* 103 1*8 -8IS -60 12 -*•I* 123 182 -I6T

0 E 8

4 470 8031 n a i* i2 4*7 41* 1 144 134 4 348 4*8a •** 436 a** aa*T 22* 22*a 227 222 * 112 116

I* 182 137 II 13* 134

- I 188141-47 . ..8 8 12 64 82IST164

a10

111•180

16

■lie18*

i*

•17>1*8ITT60

aITT71

074 206141 - * *173 ITB 2*7 -163 443 -I 1*4 -4487* -170

03 -133 9*2 -47II* 02 60 -164

10 t«16 -22 *615 31 3316 I IT IM

8 E

• 313 087 I 29* 299 0 74 167 8 842 *43 4 848 8070 178 149• 41* 418 T 311 170 B 181 IT* 8 *4 76

I* 88 4*11 23 4212 1*7 1*713 I I I 7314 41 6115 00 08

0 E

a 74 01 iaa 1232 211 1*1 8 221 23* 4 112 133 0 03 **4 247 240 T 126 II*a 3a* a a*• S3 76

I* |* » 2* 411 112 13*12 -34 4813 44 3914 BB 72 18 23 21

04-46174

•110 • IT* tIB S3

-92 l«8 181

7680

-IS*-II*a

BT-176

114IT

•1*3 • 121 123 -8

-B l 186 08T 2* •46 • |48 123

8 004 04* 1846 199 191 -I6T7 063 264 IB a *9 4* -42* 1*0 M -04

I* 13* 143 -14111 48 06 M12 II* 4* -* |3 70 7* IT* 14 S« *3 -162

* E

1 161 1832 13* 14* a 164 133 4 43 3*0 It* 1*6 4 7* *7T 343 213 • 122 1*6 * 130 IS*

I* |*« 07II 61 *2

9 E

a -a*1 4*2

IB*116121

16218*

180t24186

4 E i

a 78 781 126 1382 *3 III5 >4* 297 8 3*3 273 B 277 803 «6 149 168 T 187 1*2 0 0* IS * IM 02

I* - I * 4411 33 B12 1*8 *1 18 -16 0

T E 4

0 184 184 01 11* 6B -03 « is* n » - m0 123 114 804 40 • • -408 230 238 1018 a* 73 0*T 184 II* - I I 0 0* 49 8** 00 IIS 122

IB 83 TT 17011 *2 S3 -11*12 va 83 -04

B E *• || II 108

a IBB 141 IMi 197 14* -3 7

a 1*6 134 - 28 131 107 034 3UJ 31* • ITO0 194 I U 1*04 i t r 204 IB7 140 170 60 279 28* -IB S* IM 30 3

1* 124 1*0 SBI I I** t * -1*812 B* 0 t ITBia -4 8 84 - 1 3 116 BS 01 —0

t X 4

* 211 224 IM1 |B4 161 -IT2 14* 18B II 0 1*3 1*0 -147 4 *1 06 16*0 1*3 63 Tl* 134 143 —IS T 71 47 -133 0 122 122 -12** 118 T3 a*

1* 126 0* 02

t i e a

11 IT* 161 8012 09 *1 TSia B6 IM -ITO 16 20 81 -ITI IB 11* 120 •

t E

a IB aI 199 u s a 183 140 0 *1 4T4 07 T9 8 180 1*3 6 220 229 T 64 |*3• 114 124* 117 190

ta m 1*1t l 97 9412 I U 143 18 -86 68

a 122 1*91 TT 042 01 04

IM116-23-94

- 11*-168

II*—0

-16914027

10* 6

4*a 6* M 18*4 *1 70 123a - I? 31 -27* -8* 18 48T |42 84 tIO0 -27 23 -110

• 278I IS*a 328 a i*t4 234 B 2*16 1047 1B3 0 81• *0

1* 11411 14T12 60 18 1*3 14 118 IB ISS

28* IM IT* -162 011 M 1*1 -04230 - * l I** I8S 212 84IM -8 40 -66

IM 117 *8 -110

144 -804 ta

128 IT* 06 148

ITB -81

13 X aa Tl l i IMi IM T3 •a 07 80 41• 47 25 •1838 43 44 -8

8 E B

• 4* 88 IM1 84* 8*2 -1722 363 994 106• 31* 818 04 1*7 126 -27 8 42* 44* -17*

0 E a a E • 47

3 1 *131

0 1 3I IS

- 1 *2 8

a 031 838 IM a i a i 113 a • 2 0 07 T*i ta r i t o 13 i 2 8 * 2 7 * 17* 8 144 144 IT*

a 84> 241 - 3 2 122 U S - * • I* 2 2 4 2 2 0 - 1 * 0a 82 6 2 0 4 3 0*3 3 1 3 • a II ISO 163 404 143 1ST -1 0 4 4 13 4 I U 12 01 • 2 011 U S ito -1 * 4 8 I U I t s 1*3 13 * 2 1*9 17*6 1*1 * 2 B3 4 7 4 71 •0 1 14 2 4 *8 • 1 6 *T 33 8 3 -1 * 1 7 n o 137 -2 T 18 116 l« * - 10 17* 10* -1 8 1 a 76 0 4 - n ?9 7 3 6 3 113 * 313 a i * • 1 2 0 4 X 8

18 I U 114 35 1* 187 1ST 1*9II SJ 78 -1 7 1 l i 116 13* 23 a i t r 184 a13 6* 7 4 - 1 4 1 13 -4 3 4* 46 t 2 4 8 0 6 0 - 1 9 0

13 131 143 - 1 7 * 8 2 1 * 214 118a X 4 14 0 6 78 16* a IB* 147 - 0

18 103 13* - * 4 ITI 1*8 I U8 - 7 * 4 3 I M 0 24 7 2 5 7 -1 7 41 134 n o - a t E 8 * 1*3 M 10a 13* 129 - 2 1 T 2 9 3 3 4* • M* 114 112 I U a 164 173 a 0 2 2 2 8 18 484 06 * 2 -I T S i a t? 3 0 0 - 1 7 1 t 3 * 3 3 1* 17** -0 6 4 3 6 6 3 167 1*6 I U 1* 4 7 7 2 - 8 36 193 148 - 6 3 130 173 •IB t l i t a i t s - t T7 -TO 14 07 4 IT* 102 - 4 3 13 8 9 01 a*0 191 117 - 1 7 * 8 U * 23 6 164 IB 143 184 -I T I* 0 4 01 * 6 1*9 104 -1 * 1 I t 76 61 • 34

1* 4 0 BO SO T 179 I t * 61 18 m IM 14II 84 1 9 IM O 20* 1*6 IM

* 176 ITT •1 7 2 B X •16 E 0 1* -36 83 - 6 6

■It*IM

14-12139

10-24-1016*12*-03

a s a** 13 18*** IM 142

105 174 2273 81 II

174 104 -19474 7* - I U

174 173 -4III M I*OI 1*3 IT6 *4 *7 -118

I* E *

a 4* 4 a1 114 163 -1702 06 4* 89a 19* 139 164 TT *0 -161 ■ 73 *4-170 4 9* 87 60T 1*3 IM -a

1 Ea 23* 2321 II* 1142 007 300 a 43 07 4 lOJI 2M* 140 1846 140 1217 ITS IT*0 270 2B4* 40 112

I* 044 233 It IS* IM12 II* II*13 -M 43 16 63 87

2 Ea 3 i7 a i t1 1*3 1142 124 II*0 239 241 4 2*4 213 0 24* 22*4 7* 90T 331 2 3* • 0 |77 IB** 6* 130

1* 13* 12* 11 0? 4313 101 129 18 4* 2*14 II* IM

•IT*ISO

>6

•101•1703*-IB•14310296l i t

'180

a27142

-144-T4*4-78■ISO

19-40ITI-87

0 07 *T 48« 131 14T 47

19 11* 164 - I t *11 1*5 *4 - l | «12 171 US •13 I* 2* 78

B Xa 01* 244I 4* 03a tar u s3 03 4*4 161 ISl 8 134 104 4 121 44 T 12* 143 a 167 170 * M 08l« it3 iai

II 69 1213 131 139 13 M 77a E

• 080 3831 IB 873 340 341 8 133 1314 143 IST B 1*1 8*6 238 240 T 07 330 123 III* 1*3 131 I* M "

-124 -198 • I 10

-81 -84

-162 168 - I* • 131 -187

41 4

03

a-140

188141 32 — I*T 143

- IM 48 178

■114

0 64 6* ** -92 63 ITO 1* 87 43 -IB7* E ta -l* 04 a1 40 6* -TT3 T4 81 -170* -04 ST 834 II* *3 17■ 01 119 -14*6 46 83 1827 IIS 03 -90 16* 121 7* * 4* IBBI* E T

* *B 4* a1 *4 77-1802 ISO IS? -14* I TT H 4T 4 I U 128 27* 11* *• -1436 I M *2 -1647 *| 74 •M E T

a B6 * a1 M 83 -02 83 16 1739 -43 87 I*4 HI 04 U

• E•* 0 X T n 13 14 9011 E 4 12 IST 197 f a 112 I M I M

a 41* 8*6 8 i 013 166 21a 46 *8 I M t ia s I M - I M T E T 0 8* 44 6*i I M 109 -ITO a 216 314 170 0 160 t? l - I Ua |* *• -8 3 253 24* -ITT a IB 78 a 4 71 BS 0*0 140 124 12 6 1*3 at -47 i 72 44 133 9 0*6068 216 -71 16 • IB* 0 237 939 42 2 114 1*1 ISO 6 1*4 1*2 1730 41 02-16| 6 193 14* -164 8 63 06 -Ift 7 334 234 1664 -08 10 -8* T 169 1B2 124 4 T8 03 1* 8-87 M 03

0 146 isa 116 8 62 44 -ITT * 114 78 11a E 7 6 IftS 1*7 -2* 6 134 12* 12ft 18 T0 110 •32

1ft 103 176 -ITI 7 1*4 2*7 1ft 11 | U 114 ITSa 08 1*8 a 11 IftS 03 -164 0 94 B* -66 12 Bft 76 117i 04 IB 01 13 2ft 7* 16 6 1*1 1*1 -118a 13* 13* 191 13 71 32 •8* 1* 1*3 U •IT* 1 E •a 181 I M -149 14 13* I M 100 II 61 24 83 46 I M4 1*3 U 1 •21 a 870 107 142 12 4 X T a E T i 1*1M 2 2* 101 II* 170 a 83 TO -47T 104 11* -177 a t i l 132 a a 113 184 a a 011 M l -18*• 62 1*9 -4 i 233 24* -3 i SI 21 •196 4 Iftft 37 • 143* 84* 24* •21 i 2*9 1*8 1*3 3 2*3 106 • 14* 0 MS M l 28

1* I M I U -107 3 M l 227 • 143 3 *7 0* 71 4 M *3 61II 1 It IBS 182 4 239 UT •23 4 ITS 14* 27 7 840 U S • I t *12 73 *2 -8 8 617 423 41 0 127 ** It* a 82 0t —4710 -80 II IBS 4 *7 04 •4* 6 13* IM -14* * 218 108 •41* M 11* I4B T 183 Iki i a i 7 77 60 -a i* 74 07 •03

286

|T ft JBS - 1 7 4 H U M - I M _ 3 j * I j i j , l ! i I T l l M 4 I U 1 1 2 - 1 4 8 I T l l l - 4 2 I M * 1 - I t i— ii ii? • 1 * I'H'H.jsi j g Vr 'is •*•■»-* ? r. n r. *n siisja !«::*!*. •11* * * ». I ?S ?K -.si l 2 n '}“ * * • « >T " T-S 4{-!E .,» « ..144 IIB -44 4 2TI 374 - l i f t 4 123 T2 -47 « t u ■ » Ilia ft X Ift 3 *4 74 IB 1 112 42 -1742 194 ISl I M 3 |44 IS* 144 I II* III -IB IB |3I 12* -14 * fl H S7 * 3 43 41 -14 3 -43 13 -17*3 314 3 M 141 « 04 147 144 4 337 333 IB II 43 44 I4l * ’il ‘ij .!{! # »«« • 1*4 4 M 13 - I U 8 8T tS -24

* 1 3 4 141 BT 4 131 BBS -39 7 104 IBS -171 J ?} Jft 'ft I ftfl 77 IT* 4 -4ft 43 111S 114 17* 3* B 42 72 -I 0 42 4# -111 I t t ! >M m |2* t TS |B5 TO ft X II B -B3 47 14*• BO *7 113 I 41 M - I I ft Tft ftft -78 _ _ __ 5 f t £ jSj > 0 3 47 3 * 11* TB 27 143 ISO 174 T 47 41 131 IB U 9 ITI 2* * *7 03 IM J JJJ 'Jj J |J J |T t tM lt2 ft -43 13 Iftft . . „a 4* 44 14* B B* T* - I II *4 *4 BB I 144 133 > ▼ BS 77 -IB ■ Bl I* I* I IBB 117 17* B t 11• 2*4 23* -22 4 74 I ■ 137 2 194 12* 2 I . . . ■ - » |* | 147 22 3 -3* 44 2* __

ifl 31 *9 -0* IB 123 12* “ 114 | X B J IJ* IBB -143 * 89 Bft -1IB T 43 14 -11* 3 84 *1 -2* ft 44 fft IM11 33 IB* 1*2 t t -41 48 (SB 4 “14 4* -184 fl *» 4» - I t* 4 111 1*4 t t I I** l*B " I j l12 03 41 -1*1 B 137 129 184 ■ 41 1*1 I I K IB 4 -1* 48 -112 8 |22 IJ* -1*4 1 M TT 0413 73 BA -17 7 X 8 t 41 144 1*4 4 144 77 Bl « * IB » * * * • » * « * *+ 4 *4 B 174 |78 13

2 48 2f 24 7 JI7 148 -IT* . .. .. | M B C IB 4 til *• “ ITTB X 8 8 214 Itt 8 3 244 3 1 1 - 1 4 3 8 144 134 173 * , U |J$ ft? I X 11 • TO 1 4 - 1 1 8

I t t ST 4 4 313 349 14* * I I* 111 -0 * 1 ■£» 14 8 -SB 21 184• 211 24* B fl 340 317 143 B 113 IZT Bl IB 14 84 -24 J f t , 44 -9 I IBS |3I 7 } 8 44 48 |8B * K III 14* 144 >4 t 137 7* -143 4 144 44 -4 _ J 97 3T . |« « » 87 83 84 I 113 133 144 („fl 124 MB 48 4 tS3 124 -14 7 12* 1*3 144 B X B 8 8* t«3 I IB fl 44 48 -44 2 4* 81 “22 8 “■ ! 4* IB*3 113 139 14* 8 Bl 77 -34 8 148 J31 III ? ft JJJ * 4 34 *1 -I** * 1*8 114 “4 I 124 03 1274 137 1*7 -42 « 112 71 -tf lt 4 tlD 143 * •» B IS 8 IBB i . U * |{ |5T | |flfl 122 2* 4 34 17 141 3 II* 141 T*B 214 fl2* 13 7 47 17 -147 IB 1*1 128 “* I Bl J BB I 2 I 77 m7 . { ^ * 1»T 134 -1 * 72 BB -122 9 141 194 44 107 TB 44 8 147 l l* *7 | l IT 21 -91 fl *9 * 1 -1 1 4 ! JJ Jj 13S T *4 83 -1*2 ft -4* 8 7 -1 7 1 « 43 42 -1*47 14* 114 -112 4 -44 34 T* ! ' f t l i t B i l l III IB* T *8 48 888 *2 34 -41 IB 44 94 -IB* fl X V 4 44 T l III ft C | | 7 X 114 144 142 -8 * !♦* a i* »* * 0 K IB f l K II

18 *4 |B -137 ■ X 8 8 IBS It* IBB ft 1* 47 * a -Tfl 24 I8B B -AT 43 IBftt 127 lift IT* I 42 Sft 71 t IBS 111 -147 9. ,1? . f t - l i t B -14 91 IBB ft 41 73 jBft I 44 43 -1*413 ftl 34 -23 8 143 14* B 2 IBT 171 8 8 II IS2 144 ' 2 ' i i JSJ * 44 ft* II I 124 133 l»*

I 1*3 43 84 3 144 194 -139 « 147 IU 37 { JJ} |J , -ft j 87 * • -2T 3 123 Ifl4 -14 1 X 134 X 8 I 11 I I 171 « 112 142 141 . J !JJ I i -144 8 -41 84 “74 a 13 *4 -ftl

S Tft 77 147 3 1*4 244 37 7 K B 2 ' f t f t i« * 172 148 - |4 * 4 II* 134-113 8 Bft 48 8ft 118 13* B 4 BB ft* -OB ft 174 172 9 ? 22 ii J?! J U 44 -IBT B -44 S3 141I SS S3 -124 I H U >11 7 123 IU 123 B -31 I 18* L i t g ft 111 114 ft * 43 * 132 fl X 13fl 31 34 19* ft II* 72 13* 8 43 1*4 -1*4 1 1*7 187 -tft I . E mi » T -44 31 -22 7-IB4 13 1948 73 33 -191 T *2 20 -141 4 ft I ft* -34 fl Ift* 143 24 ! ‘TI V f t ! T ft -Bft Tft ft4 247 244 -43 8 *4 09 - I * IS fl* ST -9ft 9 131 I4B 1*1 *•* 7 X 1 * I X II I 71 M 1*8B 118 144 -ftft ft 84 87 -1 I I B l 17 114 * 120 44 -1 8 1 ft E 1ftft * 8 4 0 -1 7 4 • 120 114 - I 8 0 1* # # « 8 * Bft7 117 138 -Ift* * X fl 8 X B * 0 8 *7 -ft ft 74 21 IB* I -2 3 34 18* 1 IB* 13179 ft* 131 T 121 41 l i f t * m« 127 3 *.77 23 -ft* fl 48 84 — ft* ■ — * (ft -lit 193 -37 B 194 14* • B IB* 113 18* 8 IBft Sft -183 2 , ,2 J J .3 J ||* *| | | 2 fl |2« 83 “94 1 41 ft* I M

7B 37 1** 1 14 87 -41 I -ftft 38 111 J jT ft -Iftft 4 IT ft* -144 4 4* 8 J 14118 Iftft 144 2 193 IB I -171 fl 133 03 -40 fl X 811 118 Iftft 144 - - -- - ---12 ftl 43 I* 3 114 119 144 « 8* Iftft -31 _

4 121 IftO ft 4 140 112 —ISO 8 -BB 23 8B X 8 8 ft* 70 - 1 S (39 Ift* -4 3 I I U 194 -IB

ft 02 03 -1 4 * 4 133 Ift* I 2 -1 * 4 47 87ft fl Ift 239 B 7 I U 113 141 T 122 134 131 fl 81 *8 ITSI 132 12* I I 8 IS l *1 124 * 8* fl* -1 8 73 138 13* 173 IB X • * lift ftft -74 8 -43 Tl -SB9 143 149 ISO IB 124 Iftft -24 ft 88 » II4 *2 84 -1*2 * -ft* B7 ft l l lift *4 *7 7 Iftft 127 1778 72 80 82 I 14 84 -ft#ft ftl 83 111 fl 148 Iftft 17ft ft X B ft X *7 IflO 44 -173 8 S4 1*2 -l*S8 134 IS l ft* « —24 Sft 2ft B 84 88 I Bft 8 *8 74 IBBft 132 14ft IB 8 -Tft 88 31 1 1ST 141 • • I 83 IIB “8

[Fe{(m-Xylyl(MeNEthi)2)Me2[16]tetraeneN^}Cl] (PFg)

unFE 155131 91

110281 171P 375 9 7 1 1 9 )

f J --------- S n ia ft! 5 6 ) '

445751393291

9311915 5

1594919601

6)1»

212321 4 )144361 8)747431 10)

2711 4 )5121 101 3581 10)

394691 45) 256651 4 6 )

3IJ BOOof} S|-i?S3M?l__ 2 6 ) 685421 3 0 ) 15611 4 6 )

-3 7 3 1 2 9 ) 804241 291 -39271____2 9 ) _:_690?7#_ 23 )94631 29)-829361" 24)

446451 23) 491651 22;

N3_____ -67321 4 6 )___ 347591 22N4 6 4 9 9 f~ 4 6 ) 33B04#"24 !N5 251041 4 7 ) (00631N6 >33381 4 8 --------Cl______93938)

"C2--------- 556221C3 417081C4 212891 6 2 )C5 62481 58)C 6 - S 3 1 9 t —59) C7 -216651 6 5 ) ))

130921 2 1 ) 323191 23) 329691 2?) 127841 22)" 103941 22) 589711 21) 1 2 9 1 5 1 _ 3 |‘

22841 5 8 ) 7571 .31 ) 610) 28) 2971 25)

2 5 )25 )

3461 26) 7 )i 4 8 ) 219651 23 • 589711 21) . 4041 27)

_ 6 8 )___ 53 1 6 3 j_3J. ,^ _ J 2 9 1 5 # _ 3 2 )______3501 3 4 )67 ) 5 4 6 9 1 P 3 7 1 229551 3 6 ) 3231 3 3 )

1 68 ) 57486} 3 1 ) 294751 3 3 ) 459# 3 6 )444351 29 . 364201 27)

~34533t“ 26)-2 3 1 3 8-1 0 1 7 6

13993 31001 .428111 39

68651 74—254901 11

363051 37 5533 ""

F 64 ) 2'6 4 ) J

38}55) . 2:

3625329848"4176

8130i " 2 828091 37003 22286 " 2 9 1 19368 31730

4668 n B 9 l“ ~ 3 7 1 36 280361 7 7 ) 854'

’___53803I 1''1 37) 1IfH

-74651 73 ) 17780 36i ^ u ; — iU k -if" f? 2! "

1 8 1 5 8 ) . 140 9 1 3 9 1 - 3 8 ) 1 2 4 5 '

294751 . . . 412121 2 9 ) 460961 2 6 ) 4 2 2 1 7 1 '2 7 )" 3 3 )29561 21779 "2014

7 9 7 2 , _ 8305# 25 94161 29

______ 7 8 7 ' """ 4 9 5 0 1 _

69981 26 55359# 27 .1 8 4 3 1 37 6 1 9 3 8 C 3 5

70631 39 693791 32

349# 3 2 ) 3131 3 0 ) 3 9 4 f“ 3 3 ) 2361 3 1 ) 1981 3 o ) 244# 3 1 )

7316} 3 1 r 252# 28) 2791 442#394#2721 2 9 )

■ m if I"T60#"47r 523# 37) 4901 371

t 29 ) 2791 29)1 3 5 ) 442# 3 6 )# ^ 4 l 394# 34T

— iifMi» l l ]

444701 27) 35662# 3 0 ) 3M

U2224l“3174411 8 )llial Hi

7961 24) 13651 33)

■ m t k n2851 181 2501 18)

2861 1 9 )3 4 2 *233 233

2611 22) _242# * 176580# 30) 5731 31 _5?2#.29 2691 23 227# ?l 2781 23) 420'--"450

308

m \ n360 #^2 3371 26 3831 26'fulfil f??i ii

U33 U12

158614081

689'

U13—661 ■1031 >126#118'623 ...4751 34) 619# 35)-83("flI ■100# 18) -4?i 19)

-2o! \%\=60i_25). -63# 26) -95# 25) -90# 233 H-8-621 24 •175# 26 203 #..26 -70# 22 -14# 20. -571 22)m m

U23

-1 3 1 3)70 5 )

-131# 7)501 20)

-4 4 9 # 2 8 ) -3 1 1 24) 775# 271

..-497 # 2 4 ) . -8 7 9 # 2 5 )

-8 2 1 1 5 ) - 3 3 # 1 5 )

_ -6 5 }-4 6 #-9 1 #- 2 6 # 14 ) I

_ - 7 9 1 . l l - 7 2 2 2 )-4 0 # 1 9 ) - 5 3 # 1 8 )

. - 6 3 1 .1 7 1- 2 6 # 1 7 ) - 5 7 # 2 2 ) -3 0 # 2 5 )

_ r r l3 4 t_ 2 3 )

AT#ill—l i 11

-4 4 -5 3 # 18) . .1______ -2 « —75# 2 1 )_____ __

*181 - 6 3 1 2 3 )

r S 8 ( _ 2 5 110

- 1 1 3 1 2 2 ) 5 0 # 1 9 )

- 3 3 # _ i e J . - 1 8 # I B )

-2SIH

M00

288

U

o

o o o o q c o o o o o o o o o o o q o o o o o o o c o o c o q o o o o o o o o oo o b o o o c o o o o o o o o p Q o o o o o o o o o o o o c o o e c o o o c o eJ 1 L L

oooooocooo^ooookooooooooocooooocDoooocoo o o o o o o o o o p o o o c o o o o o o o o q o o c o c o o o c o c o o q o o o....

j I1“ <c Bf-f* o- f»f»nso e© © ®«f*-f*N«Vrvi««VrvPjWN<VtVPjN*VfVNr«i«V<'lfV<V«VfvtvlVfvNIV«vlvlvmfiM'»l<llVf'if'l*iril

<0*«3 ««v>*mii\0'lniv«'»<rj|O 'tt o - r G o h> m o o tf> go

nb*r•£ ys Qt mi if HD *f» N O O N Vi ^ r* f"* **•ro-'ffw«o»■ r i t . r. ifiaosfr'Qh'MriNeo C canaNOaNrhOffiO oocDODO ^ coo5#,**0'«r®o- ^NNNfW^NNJ^NNNWfV^^NNNNNr.WNnNNWWNNNNNNN«N*Of i,ioLjiflp4#<,ittir-*'CtyW1iNeceoMOsL*Jiir»i,OtCcMh*#eo »'e«Dfr5iy ** cf-a triOorv F-i‘tirc5*ririO3ir0OirfvjftJ«i''*‘frio*-'ff,fp,-<,Mir <CM f*+cOfW|l<«o JONOsof O'W <1 r*ir

|4IP*0 n

GCDILsa

o

2oIrtIU>suUJf*toI >03oUi

C li i r i H ^ ^ N I G N N ^ H i q ^ A l l - N - £*

^OCI!KII>'fOONMlD«4in 4) « tn m * vi I » -in —•j-m -r ro l . ^ • «pij>cj*'airt**%ovi«sj n n M

. rgrrt»«pjf"«Mm*HPjr*W(M(n<vfook» iv (n*m4in 4i p» to o-ommio *'-*'«•□ O'O'O'OOO-*Mim4«'4K»»i-iM'-ia<£if(infnr(iiflinin4»;—•*-;SliSSJCiSCSifiSIHSf i i i i i i i i i i i i i t i n r i x i z . i i « i i « ? i i i i r i i r iC I I I I H I X J X l t l ii i r i

T - 2 4 1 4 Bft 10 1*4 -I I B IB t - ♦ 7 1 10 7 344 2 4 3 s t t :XT* SO* 0 IB - 4 7 T 3 0 fl 4 3 - 7 1 23• 1K > 14 0 194 123 IS t i 0 0 70 3 3 9 71 - I N 19 0 - 2 9 • 5 4 8* 12 ITS -I f l* II 11 131 - t e a 12 10 5 *4 2 0 3 *

ft io n - 1 0 7 19 13 17X1 -13ft 14 4 30 a 2 2 4 4 47 -■46* ft 10 264 2 4 0 « 12 fld Tfl 16 II 2 5 7 ••537 71 - 5 1 fl 93 in 9 0 >43 44 ia >21 99 S i 9 031 157 fl Ifl 94 - 0 2 no 14 2 *9 -1 0 2 II 10 89 - 3 7 5 7 12 1*2 2 1 6 11

l i 4 4 4 7ft 14 - 8 6 3 14 4 01 >74 ia 11 9 1 2 -0 * 1 T IB 1*2 IBS 12 14 160 143 IS 13 90 >7* 41• JE - I B 7 2 7 * ISO 7 12 1*3 Iflfl II 14 IM >12* IT 19 144 *•104 l l 14 141 —|ftn 16

fl 1c - t a • X - f l A 4 0 a 2 4 13 77 -7 1 2 3 IT II 44 60 14 137 133 IS 18 4 4 - 1 4 2 81 04 >3 27 fl 207 2 94 T 14 2 7 2 202 * 10 -AS Bt 42 IT 136 - 1 1 4 1* 16 103 - I S l 04a 77 4 2 M i 3 4 4 024 7 1 0 1 2 • B N B Ifl 282 - 2 4 2 7 IS II I 70 |4 10 42 IT 43 IT 31 40 4 0a 44 • 3 4 44 2 Iftft - 0 7 IB a m 931 S I t 144 Tfl IT 14 ■ 3 14 42 i0 X 2 10 B l - t a ft*4 4 4 SB 34 a 3 3 4 2 34 4 9 2 1 7 -2 2 9 6 13 40 - 7 6 27 IT 02 > 23 40 i0 X 8

4 0 3 Bb 2 4 4 ITT 94 19 19 00 fl* 20 t o 149 -1 4 * 10 * 1 4 9 4 -1 0 2 7 0 t X 04 1K - 1 7 6 ia a - i a i 14 9 327 - 3 2 7 B 14 4ft * 1 7 Sft 1 01 1 ■■014 4 0 '2 4 6 - 2 4 3 4

6 73 41 33 ft 74 -1 4 4 to t s • 4 3 9 0 02 fl K - 1 31 124 -1 1 2 4 7 1 4 9 4 -4 3 * 4 0 2 * 1 - 5 5 * 41 7a 143 34 7 0 3 7 - 3 2 3 a T 46 -7 7 1ft 1* 04 13 27 0 'TO* 740

1S 2 :317 a t * 4 1 17* 14* *

a >94 - S I 41 0 104 129 2 4 e 0 4 —6 0 14 IT Bfl •1 1 6 Bfl 1 49 Ifl Ifl 4 >14 0 3 0 8 73 ■•S3* 4 2 « i a ■•A ll 4a i i a -IS T 14 4 164 - 1 8 4 19 * * • 09 33 2 4 * 0 - 4 4 7 4 B 168 - 1 3 3 0 A ■644 * 3 2 ft ft :014 0 20 B4 14 67 57 10 2 2 * 102 12 t* - 4 6 41 29 * 3 - 4 a .294 201 4 4 420 429 4 ■ 31 11 1* 4 :034 -3 4 6 4a 2 9 fl M 11 7 7 2 Zfl i i «n - 4 4 3* 4 '6*1 6 7 0 B T 4 44 -4 1 1 4 4 '097 -•343 * 9 111 174 T4 41 74 34 13 44 - a 12 7A >27 2 7 1 i t s 1 7 3 4 3 '3111 37S fl o ♦Bfl 406 4 T ISA 17* 7 4 ;l i f t -3 0 7 B

IB 124 Iftft 14 3 77 - 6 0 12 6 0 * 4 *■1*74 4 * 43 •BB 17 0 940 -3 9 7 9 7 1S4 - | 3 9 a• 1C - I B ft K * l | 14 109 -1 4 * *6 a 4 0 0 -4 T 4 B 7 017 0IO 4 I* • 1 4 07 5 0 * .054 019 9 0 Tfl a * 16

174 13 l i t >3810 7* 10 m 4 ■ 13 Ifl? 4 0 A l l > 424 B 1 1 2*0 > 350 0 10 ;221 -2 2 * 7 fl flft 7 2 14

t 144 1 7 S 441 - 4 7 0 4 4 0 4 4 391 B 12 2 26 - 2 4 4 * II 83 >3 1 9 IB - 1 4 ft* 412 74 -4 1 Lift 2 2 3 3 - 3 3 * 4 • 1: - r • 1*fl IAO B Ifl 27* 2 6* 4 10 169 121 12 15 1*3 - 1 3 4 16 II On • S 4 t*a 97 7 41 3 37A 9 7 3 T

4 37 2 2 4 - 2 0 2 4 t l 123 Iftl 14 14 79 - 0 4 34 13 247 22* fl 12 I I I 119 IB

4 I I -1 6 6 23 4 114 - 1 3 1 IS 1 - 4 4 l l fl 1*2 - 1 3 2 fl 12 2 * 7 2 43 O IB 173 179 14 14 0 2 |* 4 33 12 104 • 0 * 16a 71 34 tl* 0 - 3 4 14 24 2 2 * 4 •Iftft 4 fl 131 18* II 18 3 43 ■• 3 34 a 14 0 6 -1 4 4 2 0 IB 31 - 1 0 02 14 * 4 • 4 tfl4 Bl 44» a* 4 4X1 -I A I IB a -9 ft 4* 30 Ifl 121 - 1 1 0 12 14 4 2 40 27 IT 1*4 74 21 14 • a * 41 26 13 * 0 4 0 2 07 > 47 II 33 T Bft - 3 7 2 6 4 944 > 9*7 ft 11 4 * 4 414 7 IB 142 - 4 2 24 10 • 8 4 - 2 0 SO 17 a i “ 0* 57 16 74 - 0 4 2*• 34 IB 46 0 -4 1 4A 2 0 a 144 309 7 13 147 -1 9 3 10 16 44 >26 4 0 10 -0 6 - 0 2 7 1 7 - 117 IT 21

ft 170 - I b l 13 * 44 3ft a s >3 5ft 1 2 1 0 1* IT *4 9 3 3ft 0 x 0 10 127 “ IB 2 0fl X >IS 10 ta n 131 17 7 999 >334 * 14 IAT >149 13 I t •Tfl 4 4 39 0 X 4

t l BU fl 04 a - a i - 3 0 a i 10 - 3 0 - 4 4 44 • 42fl - 4 * 4 0 iB X «1 73 31 24 12 113 16 21 ft • 3 3 - 4 31 16 - 3 0 >7 44 • X • 1 20 4 5* * • 2 7 10 3 39 14 fl 54 13 7n A 33 i« 34 Sft 0ft IT •3 4 - 4 0 4 0 *36 -* 2 6 * 1 T * 3 7 • '41* 4 2 7 4a >fll - 1 3 24 t i 2 4 4 -2 A 4 II 2 4 09 *98 4 a 3 34 - 1 * 3 4 2 12* 145 A 1 2 2 * - 2 1 7 44 73 03 24 ft K - t * 13 144 I3S ia • K - 3 a 44* > 4 9 2 4 4 7* • 0 4 12 3 2 ft6 •3 4 * 4 2 114 - 4 4 to1 143 t3 4 IS 13 (.9 —1*4 24 4IA 48-J|M 9 T 0 616 61* 4 4 34fl 3 * 5 4 9 .23B 2 74 *4 I I I >134 IA 1 1*7 -1 * 1 12 14 *74 -3 =4 II1234 1294 O B 66 > 74 14 6 101 i n i 10 ft «4U -4 4 1 4 4 *6 MB 127 44 i n i 2 6 2 2 1 0 -2 2 ft 7 19 1A3 44 5 4 0 4 6 94 IB 6 4 9 > 42 Ifl 7 4 4 * - « l 4 4 9 1 4 011 ft B 111 IS* fla 117 - 4 3 21 a tna 1*2 ia tft 1 Ift -1 2 1 21 3 3 1* -1 * 4 S 7 2 1 9 2 5 5 D 0 3 9 2 321 B 7 0 6 4 > 073 4 4 (4 1 - | 4 7 fl4 • 4 4 I* :i7 4 04 *3 IS 4 330 931 4 a IB* - 1 4 * 7 fl ra s > 1*0 7 0 109 -1 2 3 fl 7 134 “ 120 1*

9 41 43 IS fl 1: - 6 ■ 333 - 1 4 3 4 4 S i t 34 2 ft tfl 0 43 931 0 • - 2 * 33 0* a .5 96 - 2 1 9 74 K > 14 4 S '| -4 f l 23 4 144 140 4 Ifl - 4 0 9 39 II 3 2 >3 04 1* 6 0 - 7 2 10 4 3* 65 27

7 14* Iflft Ifl 1 103 102 B 7 044 -S 5 6 B 11 ft 12 24* 7 12 30* - 3 in * 11 2 13 - 2 * 9 fl I* 4 44 -4 0 1 41 234 - 2 * 3 4 fl 241 0 2 M 1ft II 0 241 2 0 7 4 12 14* >11* 13 19 2 0 * - 2 tft * 15 7 0 00 3 0 II 110 120 I*a “xw. 2 1 2 11 4 •JtHi 231 ft a 48 134 I t fl 121 -1 2 1 II 13 • I f l - 6 04 14 149 04 16 11 •n * 10 a * 12 2 4 10 41a i in - 1 16 10 Ift 01 • nr. an 4 B4ft - 3 1 7 9 Ifl 70 S* 14 14 ■31 4 # 4 2 18 ITO - l f l i t 10 IA 102 - 4 4 to 13 1*4 i * e tfl« 41 (12 21 II 27 3 0 4 7 B 7 r i 71 2 B II • 9 3 a 91 IB fl* -4 2 52 14 7 0 *A 26 t l 1 Ifl 1 10 10 14 141 t i * 160 •4 1 *n 2ft 12 71 -n * an * 127 — t IT 1* 13 m 7 1 IS 14 83 O 03 IT 1*4 33 2ft 14 73 - 4 3 3T 13 41 - * a i4 47 • 4 1 2 2 13 02 • 7 0 8 0 T 13ft 149 4 13 l o t * 1 4 9 14 17 96 • 09 07 10 - * 3 1 36 17 - 3 8 2? an 16 129 0 2 i a7 43 44 31 I* 4 2 z a fl 0flb 2fl» 14 • a t - 4 4 24 IA *8 44 24 i a 144 -Iflfl in 17 16* - I S l 14fl 44 2 6 4 ana • 203 6 IS 41 ■ 1 94 • X 44 H it 173 14 • V: - n Ift 177 ISO 4 16 4 4 Tn 41 4 X 1 0 X 7 B X 10

I* -3 4 - 4:1 *7 II 2 2 4 -2 3 7 Ifl 17 06 41 94 • 0* -7 9 IB1 4 7 * -4A 2 A 13 (11 At 20 2 43 2 4 6 2 6 1 H I Iflft 6 0 01 • 7 4 13 o :29a 0 4 5 4

fl V: - i « a 3 7 0 fJJ.1 a 13 fl3 - 2 9 23 * f a 14* 122 7 2 IB* > 169 6 1 106 127 7 i 129 “ IIS l«a 4*;| w . ; i i 14 i n • .11 4 4XP1 4 0 2 4 0 flt • 41 10 -Oft - 1 4 21 2 :2TI 2 7 a 6

1 141 - 1 * 2 13 .« 3 0 2 2 11 H7 >11 04 1 n i t Bin 4 9 J A3 074 4 4 2ft > 16 3* 0 AT 46 II a ;2 44 - 2 4 0 6a ITU - Min 11 r. 2 3 7 -•2 * ' 7 tft ISA 113 2* 211044- 124.1 a 4 5*7 r»* 4 II 0 04 flftfl 4 4 1X2 -1 9 6 * 4 ;929 S9U fta 2 1 1 -1 7 4 IA H Zt'l 2 1* 7 ft 6 9 >9(1 14 7 i s * - i a a 0 h Iftft -Cftfl 6 B 1 tfl 119 * ft 4 3 6* 2 34 (14 72 2 * T 141 1*1 11 ft K; - i 4 n t* 3A1 4 A 42 2 0 2 * 7 9 M S ift 4 4 171 -1 7 7 7 4 1*3 04 10a 44 r * fl 1*7 •1 2 ft 1* 0 3*1 S * l 4 4 M l -3 4 1 S a 30*. ■MW ft 7 175 -1 0 7 7 7 fl* -1 * 1 104 l"4 inn 12 « nr* 144 ft r 2*7 = 02 1 * ISO 1 99 4 1* (14 4 7 t s * inn 1*4 7 0 Bflfl 361 S a Tfl SA 16

4 1*4 43 14 12 « i 42 24 9 120 124 10 - 1 * 4 4 Bfl ts 11 44 - 1 3 41 - 1 0 B? 01 0 3 - i a 1 145 106 1414 34.1 - l u a a 19 120 • 4 4 10 4 ia t > 7 | 17 - 4 124 - 4 8 SI - 1 3 >06 - I I 3 4 -1 3 : 69 7* BO •IB 4 4 14 ft*11 m o 3 23 0 14 147 147 16 5 1* 27 S 3 - 0 7 2 flft *1 1 1E - 1 4 - t l -A * -2 1 07 -1 1 28 3 561 A - 1 7 140 IM I*ia 2 13 -2f»4 14 IB - 3 0 • 3 1 4 4 6 11 -9 1 06 •T 1 ) -Oft 4* •IB i 114 -1 9 6 10 • I I ■ 4 3 -TO 23 • 1 6 TT • 9 4 27ta -3 7 0 2 3A 14 144 1 IB Ift T 112 > 12 r 21 • 4 103 1*4 10 • I I 79 - 4 4 S3 - * 1 t3S -1 4 * 14 *4 *2 119 IB - I S 4 7 Bl ft*14 12 >44 BO • Tft 2 4 24 -B 4 4 *7 -1 4 ■ —AS II 41 • a 1 123 4 4 14 -fl1 134 - 1 3 2 10 • 1 4 41 0 S4IS • 4 7 -BS a * • X 14 4 190 M l 10 - 4 43 -9 1 0* *19 t t a ■ f l 74 -T 114 • 0 9 IB >7 37 3 -26ft a - 1 0 1*4 - I M | l1* 77 3 34

a i aIfl •Sft -2 1 62 - 8 34 17 B4 -1 2 , ISA 104 14 • 6 0 2 69 Ifl •6 S W •2 6 9 a - 1 2 133 177 12

17 02 >2 2 0 ft 140 II 1 1 >44 -2 ft 27 - 2 1*4 - t f l* 2 0 - t l a* -B S 41 - 8 - a 50 87 •3 IB* 17* 1* •1 1 973 - 9 * 0 7t 2 0 6 •2 4 4 0 13 4* 4 7 44 - 1 134 7ft 17 -1 1 - i * tfl S3 >4 3*1 573 a >4 - a * 3 0 96 - I * 174 JBI I*

4 fl II 3 123 > 12* IS • t o > 70 20 -fl ■ 2 B l 91 - a 109 -I T I i i • a i IT* -5 * fl IB -fl 146 “ M ? 12ISO - 1 3 7 M

3 TO 4 2 2 4 • t : t o 1 144 117 i e >0i 4 2 - 2 7 21 - a 170 • 19* 10 • a : 0 1 0 2ft* T >0 Bft •ft* 17• 4 Iftl 117 I* 3 172 - I t * 18 -T 2 3 0 3 8 2 * - i - 7 * - 2 5 * - i 2 * * -2 * 2 7 - 7 I U • tf t* 01 241 261 fl 3 140 174 I t • • 9 6 • S 3 34 3 91 34 44 •ft 1*4 - 1 * 4 14 • 3*4 - 5 4 3 a 0 07 49 17 - • * 4 43 142 i t s * i~n Ift * 0 3 • S * 31 1 AO >49 2 7 4 19* IIB Ifl -B -4 1 - 2 4 91 I 3** 231 * i *2 - 1 0 4 M - 1 8 9 0 l a s *a 272 -2 4 4 0 7 3A3 071 0 2 3 0 - 3 9 4 4 I -BO tfl Bfl - 4 144 -1 2 4 13 2 47 -3 * 2 9 2 2 4 3 343 1 - 4 21* - 3 t * 74 IK* > 3«a 1* 0 224 -2 4 4 II a 9ft 2ft 3 7 - 9 - 1 3 II 94 a 39? 23ft * a 911 -3 0 1 7 -ft 437 441 4B ana - 3 7 7 7 ft 03 0X1 29 4 04 -7 1 2 0 1 X - 1 6 - 3 1*1 - l l» 3 IT 4 44 •0 3 23 4 2 * 5 3 0 9 0 - 2 2*4 •2 0 1 6• 2 44 202 4 Ift Bl - 4 9 3 9 S -3 ft 02 3 0 -1 142 B f 10 S 123 - 4 4 16 a 2 4 4 •3 4 * fl • 1 2 *9 2 0 4 77 o 3 6 3ft II ftft - 0 4 21 B 72 -SO 33 - 1 3 IIB 09 2 9 fl 144 I I I 1* * 1*1 —* 0 1* 4 104 - 159 14 * 4 * 4 - 4 0 1 *6 l i f t » l T 12 -4 1 - t a 0 2 7 7* Sft 24 - 1 3 ■00 • 0 2 3 0 1 - 4 7 • 8 4 94 7 117 - 1 * 3 1? 7 «6 ■ 9 23 1 6* >43 104 >1 4 3 61 13 4 3 in 24 0 - 4 4 >82 34 -1 1 4 * 20 81 3 BB B* 9 * 0 2 4 44 4 0 a , 3 0 | -3 0 4 « 2 2 *1 “ IM a

14 74 Bfl 33 14 -4 1 24 34 4 - 3 3 S 3 Bfl - I f l 6 3 fl 82 fl -2 4 - 4 2 44 « 46 Ifl 00 * 2 04 2 0 4 1* ft -f t? - 2 * 2 211 - 7 7 21 33 19 Bft - 2 4 37 tfl 104 >0 23 • 4 124 - 1 2 4 1* 4 04 0 3 0 tfl * * MO 53 1* II* -1 3 4 Ifl 4 192 104 1213 111 - t i e 14 -B -7 6 s * 37 3 I t? - 4 2 in i t 131 >71 20 t i 1 13 74 21 B IM 107 IBta • 4 -2 J 3 0 • 1: i» • I : i s - 7 0 7 - 1 7 3 9 4 14 ♦ s o 13 21 - 2 4 ftl • - 4 4 >6 9114 137 • I f t 16 - 4 246 106 12 T - 1 0 >11 fl* 1 X - t l Ift * 0 30 31 7 TB 0 5 2119 3 0 0 4 31 ft 194 t a i IB « IB - 4 14 -ft * t >11 31 0 1*3 *1 33

T |0 2 *4 314 10

14 -3 1 > 4* 44 1 2 1 4 - 2 4 2 t l 1 1*2 - 4 7 2 6 - 4 14 74 f l | fl - 8 7 fl 0 0 >17 *47 3 2 1 1t -f l fl IIS >03 1417 *0 0 4 OB 3 194 111 14 2 37 ftl 43 >3 SB ftft *1 • 1 6 4* -1 4 3* to 1*6 312 13

: i sa 139 - 1 * 4 19 a 41 -2 1 43 - 2 04 - 2 2 84 t E - 1 9 - I S 6? 41 3* - 1 0 t a • 7 4 2 0 11 2 1 * - 3 4 4 II

fl R 4 43 Bft 0 9 4 SO 49 36 - I 4 7 > 47 22 49- 1 4 4 4 -IS A 31 - 1 7 - 6 3 - 1 6 34 12 “ 34 4* 35

19ftft 4 3 - 7 3 2 0 B 31 13 4* fl 4 4 Tfl *4 - 1 6 fl 33 - t a ia n 136 17 - 1 6 147 116 IT 10 4 -B * 67

• —1?6 12 ft 144 I2JI tft ft 3 9 -6 ft 94 1 > 64 >40 31 • I I -0 4 - 1 2 0A -1 3 124 >flO 16 • I I - 4 ? 4 86 14 100 - 1 1 2 2 41 inn 122 13 7 Bfl - 0 4 0 9 T 4 0 - 3 3 41 2 •4 1 • B* 43 - 1 4 •fl - 1 0 a* - i t 2 2 5 52ft 1* • I * • 3 121 25a 27 7 -3U 7 a A >42 94 0 7 a 6 2 - 7 2* 3 69 fl3 84 • 1 0 1*3 -1 1 6 21 - 1 * 3*3 • 1 0 4 11 - 1 0 123 • JO* 1* 1 X - 7a 34 fl 39 ft 141 Oft IS 4 44 - 4 1 Bfl • 1 2 U 99 #4 •fl 2 4 0 2 5 2 ! • - 1 2 61 2 264 144 176 tft 1» - 4 7 -2 1 24 1 X -1 * ■ 40 BS 4* - I I 78 -4 4 24 >0 - 4 2 a 34 -1 1 4 1 0 •4 2 1 7 - 1 0 fl* - 4 3 23B 71 -3 4 a t I t - 7 0 Ift 0 7 4 13 - 0 7 63 - I f l 1 IS I** 10 - 7 a«ft - 3 3 0 A -1 * 101 •A* 14 -I T 24 I t ft*4 1*4 -I T 3 i t 12 IAA - I M 13 - 4 S3 >09 4fl 7 -B l S | 41 -fl 7 7 -TB 39 - 4 TT - 1 1 7 22 - * - 3 2 - 5 * 27 - 1 6 1B4 - 1 * 7 147 139 - 1 1 6 13 13 12* 47 21 -S - 7 0 B* 0.1 • 0 194 131 IB - 3 401 -4 * 4 T • 0 2 3 4 3 1 3 a -I B * 4 4 a? 2T• 2 0 7 2 34 14 4 3 -2 A 4 0 - 4 -9 1 86 ftl 1 X: - i i - 7 flt 7 2 2 2 - 4 5 04 143 10 - 7 20* 2 42 7 “ 14 4 0 • 4 | 2 04 163 -1 4 7 12 - a • • f t - 1 4 91 - 4 Bn 4 * 24 >0 3*1 - 3 9 3 7 - 4 4 7 0 2* - 1 3 539 3 91 *

I I » n 3 * 0 tft • X 14 - a 43 ft* 04 - 1 4 61 0 9 34 -B •BB 17 2? - 3 4 9 0 476 7 •ft 4 7 4 44* 4 “ 12 4 4 U 30t l Tfl - 1 4 33ft*

• i 43 - 4 4 26 - 1 9 • 4 8 12 94 -f l - I I -JO Bl - 1 2*6 0 * 0 0 >4 6 * 0 •6 1 0 4 - I I 136 “ 146 14ta 137 ISO 16 * •4 1 ftft - 1 2 6 7 - 7 7 82 • 3 4 4 44 01 fl a* 77 3 4 - a 4 14 4 0 6 * > 10 107 IB* i sia - 4 4 -♦ ft 94 1 73 ft* 09 1 X > 1 6 - 1 1 117 • 4 I* - 3 102 - |6 f l Ifl 1 42 >103 10 - 2 471 - 4 0 9 * •fl 2 4 0 •5 3 7 a14 62 fl* 3 3 3 114 -Bft 17 -I f l *8 - 4 4 2* -1 120 133 1* a IT* -1 3 6 10 -1 *1 - 9 2 14 >0 4* 63 i*IB 111 •6 fl Ift a B* 74 9 2 >4 44 - 1 9 04 >4 4* *1 02 • IB* -1 6 ft 13 a 177 “ Iflfl II 0 12 • 3 2 2 3 -T 1*4 • I t s a14 114 - 7 » 3 3 4 IBB ia a 14 —O -1 4 > 34 ftft - a 43 - 4 0 *4 1 69 — Jftfl 24 4 BIS -0 6 1 T 1 144 -1 5 9 11 >6 3ft S3 3 0

10a 197 ••1 9 7 IS - 7 87 0 4 36 - 7 7* 47 24 2 76 • OB aa 1 44 3 2 Ifl 2 5*9 2*1 7 - s flft •0 1 Ift■ K 4 IftO 134 13 - 4 - 4 1 ft 32 - 4 7 4 -4 4 3 4 a 148 162 14 6 143 - 1 4 0 14 0 8 * • 101 29 • 4 54* 2*4 6

124 |6 fl 147 24 4 - 2 4 * 13 -B • 4 4 17 23 -B Ifl* B* 10 4 43 1 IB 04 T 2 4 0 2 3 0 I* 4 2*1 3 12 fl • a 21* - 2 1 0 7fl 0 S 3 - 1 * 3 9 - 4 16T - 1 4 2 14 - 4 44 - 1 2 *4 t 92 5 2 01 0 123 - t i n 17 B fl* - t l I? - 2 140 111 *

t aa :iT 3 7 ft 44 - 7 7 4 4 • 3 - 0 2 72 24 *1 7 4 SO 34 * 137 143 I t * |4 « 133 14 4 911 14* a -1 1*4 -1 7 1 ?3 114 Iftft ia 10 116 |* fl 2A • 2 '-4 1 > 6 as >2 112 01 10 T 161 -1 7 1 IB 1* - 0 7 - 3 3 24 7 • 2 - 7 7 23 0 14* 141 aa 16* 173 i i 1 1 0 2 - I A 27 - f SI 11 3 4 -1 114 - I f l ] Ifl 0 114 1*4 21 II - 4 9 -4 1 34 0 • 34 -4 1 06 I 21 4 211 T4 • 1 >44 a s 12 Aft 44 97 « S3 fl 3 0 o :2S4 * 4 2 tfl fl0 3 2 > 0*7 Ifl 12 —6 4 - I * 53 fl 09 67 3 2 3 * * • > 0*4 6B .29* 3 * 4 4 13 113 126 33 1 1* • 4 44 1 2 24 >331 I t Ifl 23 4 3 Aft 10 ISO -1 * 4 19 2 244 2 5 * 74 :W -1 4 7 l« 2 119 > 4 0 2 9 2 7 0 71 u

; - 1 21 I : - i a 11 5 4 - 1 6 4 7 4 044 -3 7 0 4

T I W 134 11 b r 17 a —64 4 33 3 - 3 2 S ? *1 1 X- 1 7 10*

12 0 * 42 33 B 5fl* 212 0• 4 3 > |A 3 5ft 4 4 2 - 1 3 s o * 1 4 131 - 1 * 3•1 4 1 IB 13 u S3 5 0 * 34 * 146 fl

4 126 ■ ItO IB ft 112 >A2 2 * 1 X - 1 7 S B* 7 9 34 2 2 - 1 4 2ft - 0 4 4 0 14 Bl “ 17 0* T 914 -2 9 9 414 1*1 1 14 5* 1 tv » 12*1 Ift * :23* - 2 1 4 11 -IB -B S 27 04 - i n 14ft — l» * 16 a Iftl 1*1 ts11 03 -fl* 23 8 1—*2 - z n a t -it 34 - 4 94 7 - 4 4 6* 34 *14 -4fl • 0 04) - 1 4 39 • 3 0 43 1 X: - a * * 7 -1 7 23

290

IB IB *2 08 B 34* 942 t -13 IBB 143 13 12 *9 196 96ll 142 - 1*0 12 1 a m • 1*0 4 -13 171 - ITO 1* ta 9ft 91 flft12 24* SB | II 3 373 3*6 6 •II a n Olfl r 14 1*9 1*4 1319 171 -189 14 B iti -104 B -16 204 283 7 13 72 -1*7 2fl14 31 07 90 4 348 381 « -ft 443 -440 6 16 — 9* -97 4919 ftl 74 26 t 137 132 II -fl 919 911 9 IT 120 •11 SB

6 ftft -42 14 *7 137 -13* ft1 X -4 T It* -Itt ft •4 93A M 3 fl 1 1t -1

B -43 ft BB -9 340 22* 6-Ifl •87 -IT 97 ft 144 IB* II -4 ISl 194 f l -I* -Bl -Ta fl*-17 *4 11 91 IB 249 •284 B -9 104 10ft 7 -10 136 1*4 33-16 IBft *27 a* II 336 383 ft -2 no •IBT 19 -IT 99 •at 49-It 11* *9 18 ia Ift* -161 II - M B A * 1*04 ft -14 77 -86 24-14 1*9 -1*4 12 19 149 1tfl IT B 331 221 9 -IB -41 at 87-IS 4B »17 IB 14 -44 14 07 1 147 149 0 -14 • 4 -Bl 2*-13 140 -194 |9 IS •BT 03 96 3 3*4 -3T9 8 -19 -ft -91 ■ 4-II 391 231 B IB 43 -13 8* 3 Tft 64 14 -13 -9* -1 92- 1* 12ft •199 19 ft 944 S*ft t -II Tfl 03 31-ft 914 2ft A T 1 1C -4 1 u a -26A 7 •IB Afl -44 It>1 27* -3BS 6 6 -6* 47 17 -ft IB* Bft IS-T -tft • a* -It 80 m at 7 IBB II* 12 -B 27 -aa flft-4 944 321 t -IB 119 BB 22 a si* 396 0 -7 440 41* t•fl 114 -174 8 -17 3B -7 40 * 73 4B 31 -6 491 •412 fl-4 94* 948 fl •16 IAI 139 Ifl It *8 96 aa •a *8 -IBT 12-3 9*7 -9*9 fl -16 too -*T 13 n *3 -IAT in -4 Sftft att ■-2 419 427 a -14 117 4ft IT 13 *79 3 23 -31479-1440 II-1 3*4 •3«9 9 -19 43 - 0 * 24 19 -94 - f t ? 9ft •3 0*1 072 4* 74 77 14 -12 12ft M * 14 14 94 9* ftft -1 429 -B49 7I ta* *7 IA -II 144 -IBI 13 IS 04 -29 39 B 107 -100 62 12ft 11* 16 -IA M B ftft Ift 14 73 -23 31 I 8*3 -946 Ba 9A4 3BA 0 •ft 62 -9* 2ft 17 -01 44 91 3 *63 674 fl« 34* -37* 6 -A *2 *3 14 3 340 396 4a 31A 31* 6 .7 23J 337 6 1 1C -3 4 -41 •93 396 46ft •606 * -6 117 117 ll 9 106 -14* 77 -19 -62 43 -a 2ft* -aft* fl -Ift -Bft -2ft 39 4 £21 •0*1 T■ -17 4 44 —4 4A •39 2ft -18 41 2* 99 7 401 ftBt ft4 129 -119 1* -3 230 277 fl -17 4ft ftl 39 0 411 -414 4IB Bft •44 2* -a -a« -20 24 - 1ft 39B -210 11 « 39* 23ft BII ISA ton 14 - 1 349 243 0 -19 143 131 19 IB -•fl 41 24ia -69 33 20 A 24A •21A * -I* 1 Ifl •19* 1? 11 12* -196 1419 n * 40 =4 1 437 43* 9 -13 -20 44 9* 13 1*3 194 1214 TA tft 91 2 137 - 11* * -13 42 -2* 91 19 IA4 -19* ItIB n o -103 33 3 *92 -494 0 •II ta* H A ft 14 -30 4 44

4 fat 73* • -IB -41 4 33 13 -3B -aa ■ fl1 x -t 0 44* •433 9 -ft *4 03 a* 14 ■2 30 39

4 2*4 3*8 4 -0 4TB ftft? 0 IT 07 13 36-I* -44 8 41 7 6* •Afl I* -7 40* -434 0-10 41 68 23 B 2*4 7 •4 423 ♦ IB 0 1 1C B-IT 04 in 29 4 72 -|40 32 -0 318 -313 ft-14 ITT 179 14 IA 191 ton 12 -ft 1*1 - 1*0 7 -10-183 fl 24-IS 183 - 10ft 12 11 Itt 170 12 -3 397 91* t -IT 94 -44 99-14 2*9 1*4 II 12 1*4 -344 It -3 9*7 • 8*8 fl -t* tfl ft* Bft-19 -22 -61 49 13 Tl 14 2* -1 •22 -I* 3ft -IB 14* -42 It-12 STB -274 0 14 -33 -84 flft B 4*7 tft? 7 -14 230 26* *-11 9H 34 96 19 4* A 96 1 99 43 3ft •19 120 -1*4 16-IB IIB — 1*2 14 16 ftl -I* at 3 206 2*6 0 •13 9*9 2*2 B-ft 3JI7 94* • 3 s im 07* 9 •II ISl •18ft tt-8 S M -3*3 6 1 1C -9 ft 34 -7* 1* • IB 979 •300 7-7 394 nit 8 9 400 4*3 0 -ft 200 101 7-4 313 -;v* 6 • Ift-IAS 48 24 4 337 -D3T 6 -A 839 -960 9-fl ia <• fl* -to 96 -44 4* 7 2*1 flit 6 -7 147 142 B-4 74 44 14 -17 IAB 61 33 8 474 •448 ft •4 444 —62* ft-3 n o - ■ an 16 -16 6A -71 91 ft -4* 42 26 •a *46 M l B-2 Oft -:tn I* -ID TA -SO afl in 161 Iftft 16 —4 77* -740 ft-1 IT 14 - 1* 39 an *3 ll -43 •43 92 —711491 1497 11

- 1* 141 -144 I* 11 47 B* 34 fl 342 -274 7 3 349 •2*6 A-IS *2 *3 S3 12 -2ft flft * lift 191 19 fl •83 -43 27-14 -74 B at 19 1*2 - I M 19 7 33* •2=8 ft 4 ft* 09 fft-19 ft* -64 ai 14 Tft 63 39 • -ftS 93 29 B 291 289 4-12 -1 -40 61 10 •49 -94 3* ft IBA -iai 1* 4 Sft -ta 03-11 97 •36 08 1* IBS •ft 24 IB *12 3* 4* 7 344 3*4 0-I* 101 ITT II 17 OB *14 3ft ll 14* 1*4 It B BO •III 1*-4 4* 1*4 24 12 144 •l=B 14 ft 112 IB* 16-n •ft aa St 1 X ft 19 IBS 12* 3* 10 9* 79 94-7 317 -SIB 4 14 -52 -n« 4* ll 1*6 -14* 14

-6 399 2*9 » -19 12ft • 191 33 19 jnn ua 20 13 07 *1 39-8 m 719 II -14 144 J23 10 1* 1*2 -13* IT 19 1ST -144 19-ft 163 17A B •10 TO -4A 27 If 1*3 *t 10 14 1*3 194 16-9 224 2*2 * -12 7* -Tl as 19 124 -IB* 24-2 *4 7 17 -It ITB ITB 12 1 K 11 16 TS 94 9|-1 20* 323 4 — 1* 114 - n o ItB 2*9 377 fl - f t 901 377 fl •14 -77 -13 96 1 K 131 393 :i4 ft 8 -B 949 •330 7 -13 *2 79 93a 041 -772 7 -7 1*1 16= IB -13 67 -9* 81 • 12 -73 -29 82a 4 S * 4flT a —4 74 -43 2ft -11 -72 - f t f t aa -II 113 T9 214 41A -41* 9 -H 124 -14* IS -IB ISA 137 Ift -Ift *7 -ft 8 398 43| *44 0 - 4 16 -4 42 -ft 2*3 -anj ft -ft •4* It fl*6 4* -Tfl 1* -3 6ft •02 31 -fl 3*6 24ft M -fl 01 •41 347 fl* I* 39 -a -IS It ftft -T ■T -IBS 31 -7 199 194 19a -44 48 16 -i *9 -42 1ft -6 10* Iftl IB -4 -If -06 09ft IBf -|*3 IB « 373 atn 4 *9 *2 -7* I? -a 44 9| 3*I* ■ 11 78 IB l 244 -213 T •4 ISl IT* 1= •4 IBI 04 Ifl

11 224 -3=8 * 3 40 04 19 -3 6* 116 29 -8 1*7 -3*1 IB12 173 174 13 9 4* -lift IB -2 931 -Sit? 7 -a 104 191 1919 -41 17 93 4 139 IBA 11 -I 2*0 32* 7 -1 •94 -87 3714 12* -78 14 9 297 *376 7 B 33* -22* T B 34T 394 flIS 94 07 44 A 43 IA 31 1 ft* -9* 17 1 134 -122 1914 aa 17 82 7 •Oft -39 96 2 22 •14 tfl 3 106 197 II17 4* 4 24 ■ 68 40 23 a 127 193 19 9 -Bfl -37 2918 142 60 28 ft 194 IB* 11 « 113 132 10 4 30* -3ft* ■IB Aft -91 1ft a -03 •*2 39 9 13ft 194 181 I B tl Itft 341 IB 4 149 1*6 IA * 36ft -336 A13 ft -21 94 7 04 76 IA 7 104 109 II- 1ft -B* •03 42 IS 4* 14 24 A 39 77 93 B IAB -113 19-13 74 97 06 14 -7ft —46 34 ft I M -119 16 ft 70 *9 34-14 4* 89 36 19 77 -ft* 37 IB 64 94 39 IB •40 16 09-ta -IT 91 •4 14 44 72 a* 11 Iftft •Iftl 14 11 99 ia •1

-12 *9 -IB 21 IT • 1 -47 96 13 -Oft -a 90 13 07 • 1* 39-II Ifl IT 48 13 113 •ai in 19-1 IB 17 3A- 1* 124 - 1*1 10 1 t: IB 14 4B Bl aa 14 Tft -31 04-4 1*4 118 16 10 8ft 80 9* 19 63 •Bft 98-B -9 -tt 6* -14 lift 96 33 14 66 41 33-7 6* -30 94 •13 114 -42 31 1 1: i a-4 Iflft tat 1 1 -19 -tfl 82 64 1 K; is-9 191 -|«A IB -It •7 79 21 -II •3fl •3* 83-ft 434 437 6 ••IB -31 37 48 -13 04 71 SB •IB 169 Bft 39-9 31* -aia 7 -ft 164 11* Ift -12 *7 -39 34 —ft 10ft 17ft IS-a 194 n o IB -fl 138 -129 14 * 11* 119 -3ft 21 *fl 61 -40 9*-i 3*8 “JAB t -7 ■ 7 •411 39 •IB 44 B 30 -T llfl IB* 31• 134 119 IB -4 199 *137 13 -4 IAB -122 3ft -ft 291 -342 Ifti 87ft M l B -8 -ia 14 ft? -t 172 Iftft ia •9 It* 314 13a -32 -61 SA -4 I M - J M 14 -7 IS2 -13* 13 -4 34* •316 ta9 32* ST7 6 -;i 39ft 374 A -4 109 13* 10 • 9 19* -117 194 320 -2/16 6 ♦fl? -460 6 -9 Bfl 49 3* •2 191 JBfl IBfl 4*4 *42 * -T 43ft 494 6 -4 24 A 330 B • 1 IT* -ita 124 32 *47 SB B 60 -a* 33 •3 114 -Iftl 1* B 161 106 137 1*6 ana B 1 1*3 ITA ft •a U S 3*3 IB 1 04 •4 20fl 194 109 12 2 161 AT 13 -i 71 -ftl at a 179 It* IIft 71 -ua 2n 9 3A3 -2*9 7 • 1*9 •01 16 3 9ft 6* OBI* -I* -ni ft* 4 360 380 4 i 1*1 - 3 M 1* 4 26 S S t* *

I K I 9 MB -371

. j M 4 « | 4 - I B T« - 3 * 27 B 119 - M |f t - 4 I W - M 2 >- 1 83 7 * 1 4 - 9 111 T l IT IB 3 1 4 ’’H i T - 9 B06 M O *

* 3 1 4 8 2 0 | . 4 B 2 BT 21 II BS - f l« I? - 2 4 1 0 - 4 1 * B11 3 * 1 -1 2 7 * IB - 9 * 4 S * l« 12 122 0* 14 - * 4 * 3 - 4 « 3 ■2 3 1 4 - 2 7 3 * - 1 2 *9 - 7 3 I* 13 12* -1 4 3 l» 0 117 |« 2 IB□ M 3 - 4 * 4 ■ - I t M l - 2 7 2 0 14 141 U S IS I 4 * 2 - 4 0 7 J4 24 3 - 2 4 3 * - | B 3 4 - 3 9 * 13 1«4 - 1 * 3 l-» 2 * 3 4 4 44 flB * 24 - 4 1 3 ■ - * 171 IB* * 14 ! « W H 2 K S “t t ! %4 4 BA 3 4 3 * * • 4 3 4 4 U 4 17 SB 2 3 3 * 4 0 3 7 B J I TT - 4 0 - 2 3 2 2 - 7 1*4 147 « IB - 7 6 13 31 B 3 4 7 - 3 7 3 IB 411 3 4 4 * - 4 4 3 2 U O I * U * - 1 * 2 74 7 # IB IT - 0 7 * 6 -7 B » 4 I X 4 T 1*2 - 1 * 4 4

IB IB* - 1 * 4 IB - 4 7 3 7 2 13 B 142 - 1 * 4 IB11 2 1 4 - 1 4 3 4 -9 1 4 7 6 - 1 4 3 0 II - I T 231 -I B S 14 4 2 1 2 J J * B13 2 * 7 -2TB B - 2 3 3 3 -3 * 3 4 - I * 4 4 71 4 2 IB IBJ 4 3 I*I t l i t IM t * - I 4 4 3 4 1 4 4 - 1 3 3 2 - I B 4 4 II 2 3 3 2 3 * 014 2 9 - 4 4 4 4 • 3 3 17 2 3 - 1 4 -B - I BB 13 * 1 B »IB 1JB I I I # n 1 7 4 7 7B7 » - I S S IS * « * J 2I I 4 4 -1 * 3 2 4 J 134 IIA ft - 1 3 3 lA - 9 * t O * 231 - 2 2 7 I*IT « > 49 3 3 3 4 03 4 4 * B - I I 14* 14* 12 IS 44 T 35

- 1*4 > 3 * 4 T - I B 341 - 9 * 0 7 I* B3 - J M 2724B -3 7 1 B - 4 ft* -T * 17 IT 7* B 23

. IIB 122 IB - B 2 7 * - 2 7 3 7 IB 121 - f l 2B- I t 133 -4 f t IB 7 32 3 - 3 4 7 4 -T 1*0 - I S l * , „- I T 7* 3 3 27 fl U t i l 11 - i 17 3 3 14 I K *-I* 41 -Ifl 30 4 I S3 -194 IB -I 413 414-II 43 -1* 33 IB 117 14 14 -4 -37 24-14 |43 130 14 II 233 -243 * *1 272 - M l-13 147 -lit Ifl 12 223 221 « -2 3** 334-ia a** a m 7 m *2 a? IB -1 n*a -bat- I I ITB - J 4 4 II 14 Bfl Bft 21 B 2 3 0 - 3 3 4-I B 11* 110 14 J3 ft | -IH 34 I 2 0 * 244

- * 2 1* - 2 1 3 A IB ft* - 3 3 34 3 ft l* An*-f t 8 41 - 3 1 7 * 17 7 4 - 4 2% ft * 4 4 - * 3 2- 7 131 - I M B JA - 7 * - 9 3 21 4 ft l «■- 4 3 14 - * a a B 9 4 3 42-ft 2 2 3 231 • I X 3 * 1*3 -2 4 *- 4 4 * 0 4 4 * ft 7 M l 8 44-3 1 3 7 4 1370 IB - I B 143 143 1* fl 2 *1 *23 3• 2 IBI - m f t I* - 1 7 -ftft 37 3T 4 3 4 3 3 44-1 1 3 2 3 i n i s |B - I * - 3 2 14 34 IB 6 *3 -6 0 S

• 9 4 4 - 1 0 2 3 7 - 1 3 ft* 24 3 3 II 3fl 321 2 * 4 - 2 2 2 ft - 1 4 3 *3 -3 7 1 11 12 143 -1 2 3

2 3 1 7 -3 2 3 3 - | 9 1*0 2 * 2 II 12 111 0 75 421* TltT ft - 1 2 33A -2 2 3 7 |4 1 12 ft*4 4* -121 21 - I I 10* J * * l l IB *2 -HL2ft 3 * | -3 b * 9 - 1 * 3 * 3 - 3 4 4 * I* i f l i U ** .114 !11 a 9 • * 1ST 147 4 | 7 in ? -Tft7 44/1 - 1 1 2 * - f l 9 93 9 1 3 4 IB 2 3 IBft *TO <H>4 4 -T Ift l -1 * 3 A _4 11.1 - 1 7 3 13 - 4 441 4 4 | ft I K 9

IB 24 * STB T - 9 4 *9 - 4 3 * ft11 -T ft a 3 * - 4 4 13 B73 7 - I T 3 2 - 9 312 113 -1 1 3 I* - 9 B74 -A TI 7 - 1 6 37 4413 4* 117 I* - 2 ftft 4 7 14 - 1 3 13* - 1 414 2 * 7 - 2 2 3 11 - I TA* - 7 4 7 7 - 1 4 1*4 134IB 9 2 2 7 34 * 1 2 1 1 -1 2 3 * 4 - 1 9 11 -1 114 ITA - 1 * 4 IB I 130 -14'* * - 1 2 114 IA17 143 III! Ift S *1 S3 12 - I I n i l - 3 1 7IB - 9 4 -4 f t M 3 t i l* 32ft 3 -1 f t J?T »TA

4 9 0 3 -3 1 1 3 • « 1 :<4 40| K J A DM 33ft B -A 1*0 - 1 3 *

* 64 - 7 4 17 - 7 I M - 1 6 2- I B ftft - 7 * 2* 7 ft3 - 4 0 13 - 4 ft** -*H J- I T 92 1 37 11 M l -2*11 7 - 3 2 ^ 1 3 4*

ft 2 2 3 - 2 4 3 I* - B 34 *96 82 *1 f t I K IT - 7 4/1 —4 *T W - B l 3 3 - 4 - 3 3 43■ Ifl* -1 * 1 13 -T IT* - 1 4 * Ift - 9 - 3 4 - 2 74 4 * 03 21 - 4 4 4 0 4 34 - 4 - 3 4 -4 B

I* |3 * - J 2 6 I* -H 14* -Iftft IB - 3 1*4 143t t 4 * t f l 2 2 - 4 4 * B 2 41 - 2 124 -4 f t13 44 - 4 3 04 - 3 A* - 8 7 34 - I l i f t 11213 |*B l« S 19 - 3 - f l* 3* 27 B I M -B 214 07 - 4 3 2 8 - I - 3 * 31 42 . . . .I* - 4 7 3ft 3 4 • - 7 3 IT 2 0 3 X - I T _

I 3* 3 148 II - 1 3 41 - 2 6 2 7I K IB 3 I I* - 7 8 14 - I t 8 8 - 2 2* - 1 4 4 7 BA 23

3 14 2 4 84 - 1 * - 7 * - 7 3 2 - 1 3 Iftft - 8 * 2ft- I * 9 8 * 47 4 2 2 3 -2 3 * 12 - 4 4 4 - 3 3 4* - 1 2 134 122 17

• 4 7 4 - 3 4 3 2 * -2 B -f t 4 * 1 2 | * 3 21 -1 1 173 - 1 4 * tft- f t -ft* 2 4 27 ft 87 - 4 3 3 2 - 7 134 -1 4 * J7 - I * 32 34 43-T 0 * 71 37 7 2 * - I I 4 8 -ft 71 AI 31 - « - I f t - 4 * 32-f t B2 -ftft 29 B 12* 1*4 I* - 3 39 - 1 * 4 9 2 -II - 3 * - I * 3a-B I I I 104 1* * *3 122 3 7 - f t - 2 4 ftft 0 2 - 7 4 4 - 6 24- 4 12* —103 I t I* 1*1 - 3 4 2 4 - 3 76 -3 f t 24 - 4 1ft* -1 7 1 14-f l « * 7 3 9 3 11 S3 - 3 8 4* - 2 74 - 7 3 0* - f l * * 94 2*- 3 IT* -1 7 4 12 12 74 0 0 31 - t 4 * - I t 23 - 4 4 9 9* 34- I - 9 4 48 2* * 113 24 21 - 9 * 2 - 1 7 2T

ft ftft - l i f t 2 * I t 1ft 1 * 4 7 * 2 4 - 2 2 * - 3 * 471 4A - 1 7 2ft 2 - 4 * - 1 2 4 * - I 4 * B l 212 ■* 4ft 2ft - 9 1*ft -B 8 94 2 - 4 * 41 2 7 • 127 -1 * 7 I*8 I* 41 47 - 4 117 * 2ft I 3 7 8 4 44 4 4 S I 2 1 - 3 * 8 t l 2 4 2 K - 1 4 2 7 | - 4 2*t 12* - 4 2 I* - 2 74 4 4 3 * 3 197 -I B S ITft 2 3 2 2* 4 I* - I *3 - 4 3 2 3 - 1 2 127 - 1 * 9 21 4 94 9 9a7 3 * 1 - 2 4 8 4 ft - 4 * 23 4 2 - | l 144 37 IA 9 7 * - 2 2 27B 143 13* 19 t 1*9 - 1 3 * 14 - I * - 0 7 - 9 4 2 0 4 |4 « 184 14* 4 7 - f l* 21 2 16* 133 23 - 4 44 11* 2* 7 7 * - 6 0 92

IB - 7 2 -B B 2 8 3 4ft - 1 * 3 29 - f t * 9 I* 91 fl - 4 9* 7 *II 4 3 - 3 * 34 4 - 4 4 41 31 - 7 4A 49 BAI t - 9 2 - 9 * 9 7 8 87 B7 9 4 - 4 - * 4 - 9 * 31 J K - 1 313 121 * 3 21 * 2ft —7 3 ft* - 8 1*9 - l i f t 2 2(4 7 * * 91 7 11* 7* 2 * - 4 74 44 3 7 - 1 8 * 2 94 9ft

0 24 - 3 0 f l | - 3 148 - 1 3 7 14 - 1 4 - 1 4 * 4 4 B*I I 14 4 3* - I 43 - 2 4 8 BT JA - 1 9 - 7 4 - 1 4 28

(A 7 4 - 4 4 91 - 1 141 -1 3 1 17 - 1 2 - 2 4 9 3 44* 4 14 - 1 4 * 2 ft |* 1 121 IS -1 1 - 4 3 -TA 91-A 93 91 3A I K I* I 129 - 4 4 14 - I f t 148 tBT 13- 7 1*4 -1 9 7 IA 2 12ft ft* 14 - 4 41 * 3 97• 4 ft* I2A U - 9 - t f t 97 2 8 9 Tft 4 4 91 - 8 1*9 - 7 9 IB- I 93 - 4 8 3 4 - 2 I I I - 7 2 3 3 4 7 9 - 1 3 * 92 - 7 14* - | 2 4 M- 4 ftr 2 23 - 1 - 3 8 - 8 9 4ft fl - 4 0 81 34 - 4 33 4 38-f l 4 3 34 34 ft * 3 * 7 2 * - 3 4 4 - 4 3 32- 3 - 3 7 12 4* I 113 - I f t* M 2 K - 1 9 - 4 3 * *1 41- 1 ITI 133 13 3 1*1 131 16 - 3 I I I - 1 3 8 I*

ft 9 99 - 9 2 * I I 8 11* - I f t* 92 - 1 4 1*2 4 4 S 3 - 3 137 - I S * M5 124 132 17 4 44 41 34 - 1 9 4 * - * * 3 4 - | 8* * * 2 *a 2 4 4 - t f l* I* t 7 8 - 1 3 2* - 1 2 - 4 2 - 1 * S 3 ft l i f t —183 198 137 143 14 ft - 1 3 -34 43 - I I 1*1 -ft* 33 I I** 17* 134 l* J -1 3 * Ifl 7 90 | . | A n - | f t 3ft - 3 1 ft* 3 13* - I I * I*■ .44 3 4 9 3 II f t l 6 34 - * I2A 19* 14 S 7* 1*0 2*4 - 1 * - 3 9 DI -fl a i - 7 4 21 4 0 3 - 0 9 297 7* -66 34 I X 2ft - 7 0 7 4 4 21 • • * * - I » •ft 0 9 4 8 3 4 - 4 14ft - i n * 14 * 4* O 31ft . a t - f to 4 7 2 - 0 4 - 1 4 2 8 -It ft l 1*2 2 1 7 37 - 7 * 43

I* 124 MB I* A I f * * 4 0 I* - 4 - 7 1 - 1 3 24 B -7 1 3 31fll ftfl -4 4 3 4 - n on 3ft 41 ft *8 -8 * 9711 193 IST «" 3 K - l R - 3 M l - 9 1 17in - i n - 3 3 fi*» - | 37 - 7 * 97 2 K - 1 2

IB - I f * 0 78 26t -1 6 Tr —4A 910 -1 9 8* -6 7 99ft -1 * 29 - n 470 -1 9 69 -4 3 a t0 -1 2 T2 22 399 - I I 239 -S IT 49 -IB 930 D in 0

14 - t 272 -26* fl12 -A 9*3 9T* A7 -7 167 1ST «ft • 6 i a t - | 4 8 4R - 3 249 239 •ft - f t 701 -7 0 4 77 • 9 *7 ft* 13

91 - 2 137 112 ft12 -1 IBB - |9 3 0IT B 1*3 I t* 6in 1 94* 994 931 2 32* • 349 619 a *6 -74 IS2= 4 943 -91ft 0■ 9 s 974 -374 9

ft 37 •91 917 293 -233 ffl =44 383 7

9* ft 243 -244 a96 I* 3*1 =*7 *|A 1 1 78 IT 2119 12 203 31> ) •20 19 -9 0 a 93I* 14 no •Aft 21n 19 03 67 2*

l i 16 ftft -ftft 9112 17 T7 on 2*II(flft7

Ifl 13*

1 1

• l i *

C 7

22

BB B 173 143 1934, 1 3*2 -1BO 12Bfl 2 147 ft* 16a? 0 T6 - 4 0 2*ft« 4 •ft -2 4 3=IT 0 74 -6 0 2ft2* ft 40 •31 41242*

7 -ft 3

3 1

Ift

: -ia77

291

-19 •IT -3 S3 10 74 -86 29-IA l«T -91 23 -14 ITft 161 14 -16 186 St 22 11 4* -4* 90- 1* -34 -91 44 -19 Tft 89 25 -17 144 IBI 16 13 46 62 21- 1* -ftft -Bl 9ft -13 Bl Tl 30 - 1* 283 -|4fl 14 IS *79 •IS 9*-13 1 tv 1*3 24 •II Tft -44 22 -IS 43 99 21 Ift 129 125 22-12 IBft -1 Aft 12 -IA *a -23 23 -14 189 -1*7 IS-II Tft 42 35 -4 142 - I M I* -19 74 -187 29 9 1E -4-I* 4a •2 at -6 303 • M l 6 -16 4T 49 SI 55-* «n 99 22 -T 3 -31 •ft -II -46 9 29 -Ift 87 -AT-■ 344 2*4 to -A 244 -243 6 -18 27ft 271 A -16 19* 194 Ift-T 143 •1T4 ts -a 7 M 743 a -4 24 34 9* -IT 159 -l»4 18-ft 14 14 46 -4 1 IT -67 14 -a 346 144 * - 1ft 199 IBT 17

Tft •43 23 -3 I M 143 18 -T 226 -227 0 -IS -Tft -41 23-•4 123 121 Ift •a IBft -IftO II •ft 81ft a n ft -tft 192 154 14-9 342 -239 6 -i 42 -43 23 -8 3«7 -244 T -IS 64 -43 28-2 ftft 02 16 • 46 -71 36 -4 76 41 IT -13 at 8 ®!-1 IB -4 49 i 13ft -139 14 -B 926 -954 ft -II 233 23* 8• aa -40 Ift 2 132 12ft 12 •2 191 -128 II - 1* 293 -239 •1 447 414 T a 474 -407 T -1 «a -43 10 -4 324 944 *2 133 -134 19 4 361 376 T ft i 18 93 -D Bftt -941 ft3 131 112 Ift 6 64 -113 28 1 241 314 ft -7 362 941 ft4 144 -169 11 ft ISO 121 Ift 2 42 49 26 •4 143 -ITT 79 43 23 94 T -41 • 21 a 41* 417 A -3 25ft 2*2 74 lift • M 16 • *61 -12 29 4 43 *3 IT -4 441 464 5T 4ft -23 94 4 ion 132 20 3 9lff) 3!ft 7 -S AT -54 IT9 •43 -4 32 to -2ft -22 B9 A 943 -941 7 -3 AI2 433 ft* • 42 142 39 tl 43 3* 43 7 04 -63 20 -1 114 -J8A 1*I* —43 14 49 12 104 -93 29 6 1*1 n o 12 * 363 27* ft

4 234 — 333 It 1 254 -2*4 ft2 1E -11 2 1E -4 tft 293 234 11 a 234 2*1 7

II J93 -143 IS a •T •49 16-IT 41 -na 44 -16 1*4 -112 24 12 64 94 2ft a 3* -23 36-Ift *e 113 35 -17 99 49 90 13 AT -44 32 8 13ft -143 12-13 •<■44 -Ift 3ft *t* -47 34 36 14 44 111 44 ft S3* •234 *-14 Aft 19 33 -13 -BB BB 24 7 124 122 14•13 — tft 42 04 -14 22 16 47 2 1I -T 0 -4* •16 91-ta 121 -III 17 -13 • 74 -III 24 t 333 243 ft-tt ftl 44 8* —12 AT -40 35 •16 to -Aft BT 18 148 -104 tft• ia 144 - 12ft 19 -II 133 -137 IB -17 Mft 100 20 II 3*3 384 *-t 73 ftft 23 -IA 24 r 244 4 -Ift Tl •91 20 12 177 -l*t 14-a 144 -2«»* !<l -ft 13 -ft 46 -15 125 lift Ift 13 63 63 27-T 33 -40 27 -A 243 M 3 T -14 SB 1 90 14 •26 -73 82-ft na 27 -7 12* -113 13 -13 n o 124 19 13 48 -74 27-9 34 •31 2t> •ft *ft -AH 20 •12 314 -20ft 6-ft 123 117 t* -3 64 70 17 -11 -57 •I* 33 a ir -8•3 aft 121 10 -4 4*7 -4ft* ft -18 114 -121 14—2 n i 114 »n -3 33ft 330 ft -♦ 46 04 1ft -It •91 44 41-1 -4 43 52 -2 144 “ 120 I* •6 40 8 2* -18 •SI 47 ftftft 127 111 11 -1 • 44 93 21 -T 215 0 -IT II* -ftft 211 n»*4 -Iftft 6 ft 2*4 357 6 -ft 401 9*4 ft • 1* 74 U S ZT3 ••1 3ft 9ft 1 144 132 11 •S 1*0 - 1*2 6 -13 371 •273 •2 Iftl! • lit) 13 14ft • Ift* 11 • 4 4*4 433 « -14 261 207 *4 I U IT3 II a Tft Tl 24 •a BH» -392 B -IS ISA •1*7 133 44 11.1 Si 4 2«o • 244 4 -2 -27 8* 88 -12 48 64 to4 143 Ifi? 19 9 94 •37 31 -1 4*4 -419 ft -11 -IS •2 ftftT lift ion 17 ft 127 ite 14 0 921 324 ft -19 77 ftl 140 m r -inn 17 7 Iftl — |T p in 1 til •44 12 •ft 173 1*6 4ft 21 To 92 A 122 1*3 17 — 9*»A -374 ft - 0 76 86 ITIft 1*4 - »33 4? (\ 74 -49 2« 5 a n 1107 ft -T iaa 118 4II 71 *4 92 1* -5* 46 40 4 •13 -65 **. -ft 279 -27ft ft

11 •*7 -2 • 01 9 647 314 7 -3 ftl -IBS IS2 1* -to 12 117 1*3 at ft no Aft tt -4 91» -SlO ft

13 6 1 -33 34 T • fl.1 III 1* *3 134 146 4-IT Aft -74 24 n 114 -13* 17 -3 112 •133 18- 1ft TO Aft M 3 1C - 6 4 Tl -BT 24 -tiftt* 1977 4-14 -13 -4 9| 12 -24 -6* 41 0 61 •181 IS - n 13ft lift 14-ta *2 137 14 13 •ft* A 37 t i m ITJ 7 ■-18 ti 4A 17-13 937 -991 T 14 16 15 3* 2 241 9 -ft Iftft ISt 11-II Iftl J 14 14 IB J32 -186 Ift a 4* •1 •• 11 -6 281 -243 7-Ift 112 -14* 12 1ft 1)« 130 14 4 612 1. - 7 •7 1 IS -142 19•ft 112 -1 ia 12 IT 49 -TT 94 8 •33 2* 2* •ft 63 48 IA-a IT2 -IHft a • ITS in* 6 -s 343 •358 ft-7 343 -321 • 2 1 4 7 201 •225 6 -4 324 936 6•ft Oft* *44 • 6 2*7 291 7 -S St* -340 8-1 443 -491 9 -in —44 24 Sft 4 1*0 • 176 to •2 306 a«s •• 4 44ft 4*2 0 -r? 193 -124 3* 18 474 401 T -1 3*7 -364 9-3 41ft •ftia ft -i* 114 n r 31 II 2*3 -273 6 0 184 116 II-2 123 - |0o 1ft -13 |93 -140 14 12 Tft S3 22 1 23| •183 ft•t 733 7*3 ft -14 147 149 14 13 22 •AT 43 2 S3! -BIS 9ft 344 -14* ft -19 134 -107 14 14 132 -141 14 3 46* 449 ■

1 •Tl 7 14 -12 | M -7.3 IT IS 103 1*4 11 4 *4 -14 22a 443 -7A3 ft -II 44 43 14 Ift l«S -121 34 S 42 •*| asa 01 44 14 -!• 191 1*2 11 17 43 1*4 37 A 3*2 •9*4 *4 111 44 13 -ft 1 Ift 121 13 7 1*1 181 18ft 3ft3 544 0 -a 121 140 12 3 1 0 a 167 -Ift* 44 144 -144 4 -7 943 840 4 * IS4 147 117 • ft -35 23 -* 232 -2*3 ft -IT TSA tft 1 14 18 1*6 1*6 tfta I M 1 Aft 4 -B 712 •0.1 ft • 1* 1*4 •184 IS II 144 -IIB IS« 204 144 ft -4 616 •031 T • IS 1ST 191 IA 13 133 184 1*tft 31 92 42 •2 47 - 184 21 -14 48 •70 21 13 33 82 86H 43 -23 IT -3 2A* -312 ft -19 •a 16 25 14 47 •1 flft13 73 4 22 • 1 24* 296 9 •13 -Tt 37 21 13 T 8 -44 2613 147 - I M 14 0 991 837 8 •II —*4 -14 3B Ift- 107 -12 2214 aa Tft 29 1 4tyt -*«7 8 •18 314 2*7 A IT ftft -47 93II 04 -114 2ft 21 143 1143 5 -4 903 ■ M l TIft IIB 114 31 3 347 -337 8 •6 TS -27 IB 2 I •IT -14 -44 42 a 741 703 ft -T 3*9 •246 79 67 • 70 14 -ft -.14 4 28 - 1ft 41 •8 n

a i 9 ft 2A* -311 T -6 43 •99 22 -IS -IT -32 •a141

7 142 -Ift* 0 -4 16ft * m 4 — 14 73 8* 27-l« I M IT n 217 -319 a -3 41 -37 12 -IS •ftl * at-IT 0* - I M 24 4 11 44 -2 137 137 « -13 84 -a* 9|-Ift BA 47 31 in 377 • M 3 6 -1 4*1 838 A -ll 142 1*3 It-19 43 •AT 30 ll 2IT 221 4 8 ST II 24 -J* 368 -378 T-14 IT3 -144 19 ts 24 24 42 1 3 4 1 34ft S -ft 24* 244 6-13 AI 111 21 13 331 241 1ft 3 482 '-036 T -6 III -1*4 18-13 2*7 ■-IHft 4 14 -29 44 45 3 74 -07 IS -7 441 445 ft-II M A 379 T 13 117 an 14 4 ftSO -ftftft ft -A 132 139 12-Ift -33 Sft 24 1* -43 •99 44 6 3*4 2*3 ft •a 147 - I M 6-ft 422 403 4 IT 64 -7* SO ft 56 44 2ft -4 STS 2*3 ft-a 341 -222 0 7 944 913 ft -a • S3 -*♦3 8-7 04 - I M 14 2 K a 6 • IT 829 ft -a 1*3 B20 ft-4 Iftft ■-17* 4 4 137 .-122 IS -i 239 •224 4-i a«a >-901 9 -IT 164 143 20 18 277 363 6 0 337 534 fl-a 31ft • •-14 134 -ft* Ift 11 1ST >-169 Ift i 931 -914 ■•a -II 4 94 -II 78 65 20 13 74 24 32 2 SO* 335 4-2 030 '•337 1 <•14 -69 25 32 19 1*9 ••20* II a rsa 1*7 4-1 Mft 930 6 ■-13 174 •144 12 14 -04 27 34 4 107 214 6* 034 M M T --12 24ft 24* 4 IS -S3 25 44 9 34 7 26

1 ft A 1 AO 1ft ■•II 239 ■-3*0 T tft Sft -Oft 47 ft 144 -18* 182 4*2 440 • ■-IA U t 340 • IT 39 Tt 96 7 48 •4* 36ft 4A| ■-*lfl 6 —* .23* -307 6 a 146 -1*4 ia4 on 77 19 -n -Afl -4 24 2 X T t 222 2*4 4ft -^4 23 91 -7 41 23 24 in 236 -23* 84 Mft ••inn a “ft 2*1 244 a - it -27 44 94 n 114 ftft 18T 13*1 M l it -3 491 404 3 -Ift 72 -IAT 32 12 IA9 -13* 12ft 41ft .-4ft* • >4 373 .•274 a -ii IS 4* IS -77 -3 34ft IAI Hftfl * -1 n»n 62* n •-14 nt -SB S* 14 18* 197 14t4 ftft • 31 52 -2 *47 -on-* ft - i:i 7* • 19 31 IS 94 26 93

*1 173 1*2 7 -1 r.43 Q;tO a -13 -41 16 21 1* DO 87 26

• 4 6 3 o t s a - 1 2 20* -2 6 3 a I* - 4 2 89 8 6 • 8 4 8 4 16I •a ft a a * - 1 ) 125 -IS A 19 18 4 7 - a s 4ft 1 144 148 aa ITT 162 6 - i n M S 1*2 a Ift * 7 14 S3 2 2 6 4 -2 7 7 89 881 - 3 0 6 A -ft 3 67 •4 4 1 * 9 1*2 -1 7 4 •4 3 7 2 2 * 9 8 - a 314 81* • 3 1 - 1 4 9 6 5 - 9 4 9 88 SftT -n * 3 8 - 7 3 7 7 - 9 * 7 • 6 flft 98 I tft 1*9 174 tft •A 171 - 1 4 * T - I * l*ft - 4 7 29 ft 4 2 4 4 17 9T SB* - 3 0 4 T • 8 3 4 6 2 ** a -16 • 7 n t 91 7 4 3 3 -♦ I f t ■0 314 2 17 * - 4 117 - 7 0 l * -IT ID* -1 3 7 14 6 0 9 *4 914 * • 1*4 16 • 9 2 77 -2 * 1 8 * 14 f t - 2 4 a i * 1*2 - 1 9 4 19

I* *4 - 2 9 16 - 2 BIT • ■ I I 9 - 1 9 - 5 * 1* 9 * 18 199 - 1 4 9 18II IIB 14 J 16 -1 42 - I a 2 3 - I * Aft -T a s 11 7 9 4 9 6913 3IT •2 * 8 II A BTft • 5 7 7 8 - 1 9 - 5 9 6 27 12 119 - 7 9 tft19 147 IftA IS 1 3 2 0 394 B - 1 2 13* 14* 14 IS 1*2 2 8 7 12tft 1*7 • 4 4 26 3 0 7 3 •8 3 7 fl • 1 1 7 5 IBS 2* 14 197 * 1 1 6 Ift18 • 4 4 42 na 3 TT 6 * 14 -I f t - 4 9 41 2* IS 147 IBI 14

4 1*0 - I I I 12 • ft 125 141 II 14 ftft • 6 3 9 22 ■ • ft 9 •ftft - 8 1 30 - f l 56* - 8 * 2 ft IT- l i f t 3 * 20

4 104 -2 ft* 6 - 7 ♦ 0 4 4 * t a— 1* 6 3 9* 24 7 > 44 • 4 4 * •ft 0 5 6 -3 * 8 s 2 I *— Ifl 7 7 4 6 2 6 0 144 -1 7 2 12 • 3 9 5 4 831 8

7 4 t l—17 SI 41 44 ft - 2 7 - 9 1 30 • 4 m o -1 3 3 11 - I t ■a— Ift 4 2 - 1 * 4 22 1* • 7 4 —4 21 • 9 7 33 -7 6 4 A - 1 6 flft - 9 * 88— 19 - I B 43 n* IJ 2 * 9 -3 3 1 6 • a A3* * 3 8 0 - I T -f t* 9* 88

IAT -t7 Q 19 12 174 Ift* 13 • i T t 77 14 - 1 4 ftft T t 286 3 -4 * 2 * in ISS - 1 5 4 IS • 640 • T t 7 - I S 9 4 91 Oft

IT9 1*7 II 14 t 2 l tf ll 2 0 i 4 63 - 7 1 7 ft * 1 4 ftft - 1 * 2463 -A I Ifl 19 |B | - 7 7 24 2 47 SS 21 - 1 3 139 - 1 2 6 19

2 7 3 344 7 14 - 4 4 • 4 42 9 OAft - 9 4 6 ■ - 1 2 - 4 2 • 49 892 4 2 -2 3 3 7 4 4T7 4 7 4 8 - 1 1 a r t -flftl 6

- a 74 7 9 |4 a - a > 128 -I f t* 1* -I D 4 2 - l i f t Ift- 7 r u t -9 * ft f ft IH3 142 Ift -ft 179 - |B T ft- * 1*9 127 II •1 * 113 - t * 2 4 T - 3 3 •ft flft -D * 7 4 4 19- 8 13* - 1 2 9 * - i n —44 9 0 3 9 6 173 •IA I ft - 7 357 - 9 3 * 8- 4 - 3 3 - 3 4 9* - 1 7 - io n n 21 ft n o 175 Ift -ft 7 4 3 Tftt 4- 3 124 l l * 4 - tft - 2 * - t o 4 6 18 6 - 2 2 81 - 9 0 6 4 * 2 7 7 8

737 •7 4 1 * - I S *7 6 7 I* II ftl 113 in • 4 3V 1 9 7 6 fl-1 AIM *63 ft •1 4 6* - 4 7 2* 12 4fl - 0 0 93 • 9 2 8 9 - I t a ft

8 t: i3 -'J 13 6 - i n 1 IT 196 IB 19 193 1*4 IB • 2 4 3 42 171 2 *4 201 fl - 1 3 7 * - o n 22 14 142 -1 4 4 17 - 1 t it* - 4 1 * T2 IftA • ISS 12 - I f 147 196 r i 18 31 t 93 8 04ft •6 3 1 7a so t -2 7 ft ft -I f t 211 - I t * o 14* 101 - 9 * 24 t 84 IB I t4 411 401 8 -ft 64 TA 14 IT - 4 4 1 34 2 65ft -6 5 3 7a 103 --Mil a - a m 3 to o fl 9 7*1 718 ft* IS* 1*4 r* • 7 2 7 0 - 2 4 4 fl 3 K ft 4 4 6* • 4 4 9 flT 132 •1 1 3 12 -A R3 • 4 9 19

948 231 241 A

6 84 a s 24 -B 2 * 3 - t f l* * - I * T l 109 ft 12* 128 184 1*3 •17ft 12 •ft - 2 2 21 91 - 1 0 141 -1 3 * I t 7 1*7 - 1 7 6 t

18 1*7 124 17 - 9 82 7 4 1* -1 7 47 93 2 5 6 2*8 2 8 7 7II A t - 3 0 22 - 3 4 4 * Bftl 0 - 1 * - 7 9 14 S3 * 061 -9 4 9 413 43 23 35 -1 901 - 9 7 0 8 -I S •or* *94 39 19 Ift* - 4 9 14|9 123 -fwi 17 • * 7 9 444 * — to 2 07 1*9 fft II 67 - 4 6 I t14 37 24 43 1 * 7 8 - * r n ft -1 1 3 13 •2 2 1 Ift 12 •ftft -ft 26Ift 61 - 3 7 27 3 1*1 144 T •1 2 143 1*6 19 13 • 4 9 - S | 2 7Ift - 4 4 0 43 5 42* 4 9 * 9 • I I 21)1 -2 7 3 7 I t ftT IB a a

ft nan -0 4 3 8 -I f t -9 1 43 9 2 IS *7 - 2 0 a i2 9 - n fl 214 2 2 9 7 -ft *4 113 14 14 ftft 42 24

A 3 0 9 •3 2 2 A - 6 A4 - 4 * 16 17 • 9 6 4* 47• I t - 7 8 an 7 Itri 177 4 - 7 119 - 6 4 in• 1 6 -S 3 - 4 7 117 11 1*1 • 122 II • A 3 54 —944 n a s 2-IT *8 3 7 *1 137 1*0 12 - 9 0 37 6 24 T-1 * 4 | -3H AS 1*4 a* - 4 27S - 2 7 9 3 - | 6 4 4 - 4 * 84- IS 2*4 1*3 M t l a in •2 1 3 1* • 9 3 1 7 - m e B - 1 7 • 8 4 *31 AS- 1# 32 -4 5 4 0 12 03 aft 2 0 - 2 7 * 4 -7 3 1 ft - 1 * •1 9 2 2 84- I S s n 21* 10 in t l -1 9 9 23 * 1 *17 -4 1 3 0 - 1 9 • 4 7 1 64

IT 199 -ftft a t « • 4 5 -f l* 94 T 44 98 a* ft AI •1 4 4119 ftft ft 9 2 6 144 “ 135 15 19 - 6 7 14 23

3 E 9 11 - 4 4 ft 2 * ft 48 • 6 94 II 0 3 - 4 7 2319 •fl* I* 3 * Ift 6 6 — 1 IT 29 12 • 7 4 11 a t

-1ft IB6 178 i t 13 T9 - 3 0 3 5 II •6* -0 1 24 19 * 91 7 7 Ift- I S 114 • 4 8 3 2 14 61 33 3 9 t2 74 77 Sft 14 I 7 | -1 2 * 14- 1 4 44 44 ftft t s -4 1 • 4 4 41 19 44 ftl 2 2-1 3 64 -2 7 a * t * 164 - 1 9 4 Ifl 14 10* Iftl 2 2 a E 19- 1 3 -Tfl 1 25 15 34 - 3 3 a u- I I 118 II* 16 3 E II - 1 8 9 5 24 84- 1 9 - 4 9 4 a s 3 C 19 -ft - 1 -f l 72

- * as 4 8 24 - 1 4 44 - 8 4 3 7 • 6 4 7 34 BA- 0 18* - IBS I t • 1 9 Oft ** 3 7 - 1 9 2ft • 8 4 Bft - 7 I4J • IBB IB- 7 Iftft 130 II - 1 2 t o -7 1 3 * - 1 2 -7 1 a i 9 9 •ft ftft 7 6 2*-ft - 2 7 - 2 * 37 - t l 44 • 7 7 2 * • I I 7 9 - i 2ft -f l Ifll -Iftft IB- 8 173 104 J* - 1 * Tft *9 25 - I f t 43 - m 9 9 - 4 4 4 -fl 2 7- 4 ITA - I h t A “A ItT -2ft« 12 - * 115 183 I t • a - 6 8 47 24-fl IS* 112 12 - f l ISA 174 19 - a 134 -1 4 * 14 - a 14 - B l 4 8- 2 ftft 9 23 - 7 IM - 1 * 2 17 •T a * * ITA 1 t - i 147 J73 IJ- 1 3 4 4 9 42 A •A 131 141 Tft - 4 4* -4 ft 31 9 192 • 183 I t

9 4 9 42 12 - 9 148 -1 8 1 12 -S 19* 12* 14 1 241 874 *1 a t * -3 8 9 4 -f t 8 4 - 4 6 2A • 4 44 - a i 39 a 188 -IT 6 122 89 - 7 9 21 • S a s 21 0 6 - 9 a t • a * 9 7 9 196 1*8 IB9 - 7 * •S 3 10 • 2 -*i • 1 2 2 2 - 2 - i * -3 ft 43 4 119 - 1 9 8 164 4 3 3 431 4 - t 136 184 II - 1 BOO * 3 4 2 6 a a* - 5 4 4J8 6 4 - 1 * 4 IT a 8 0 - 7 4 2 9 ft -5 f t 62 9 9 « - 3 7 I t 4 2• 52 7 332 7 i a* - a t 23 1 9 2 6 -S 3 * 7 7 23 4 - a a t II7 1*9 • 6 6 IS 2 45 7 2 2 8 a 9 1 9 a t e a 6 ISA 147 146 Aft - 2 4 23 9 2 2 7 2 3 * 6 9 54 -4 1 2* ft 143 - I * * 1*4 ITI 148 11 4 i t a M * 2 * 4 - 9 8 -9 3 S* 18 4 6 l l f l 23

18 9ft* -9 2 * 6 ■ 44 - 7 * a * 9 t a • 4 IT II 4 8 a« flft11 1SB lift 19 A 501 • M l T A i t i - I f t l 17 12 194 43 a t12 3 1 9 •2 3 4 II 7 AH * 2 2 3 T AT 9 8 24 19 t a -4 4 as18 3 1 4 14* 11 a an Oft It 6 7 4 1 2 214 7 4 •A t 2 * 4 B t - 4 * 1* ft *9 ft 1* a x it19 1*1 AD 23 t» 134 125 14 19 59 - 7 * SIIft 84 a * 35 II 2 4 3 - 3 1 * I* 1 27 7 8 ft* -ft - I S 9 9 6IT T* -A aa 12 2 3 13* 47 Ifl *4 -M ft 2 3 - 6 M 3 - t a t

IS 122 - 6 7 Ifl 19 12* 6 2 Sft -T 4 6 - * ♦ 2 43 K Ift 14 • 8 3 69 5 * 14 104 - 1 * 7 1* • 4 3 97 2 3 3 13

1fl 142 - 1 * 5 IA 19 4* -1 1 91 - 8 144 -1 * 4 19- 1 8 4 4 S I 3 9 Ift 79 3 7 a* - 4 143 IS* JA- 1 4 • 4 2 81 Sft 3 If 14 • 9 18* - I S l 14- 1 9 4 2 4ft at 2 1C 12 • 2 4 3 -9 * 22- 1 2 134 184 16 - 1 2 126 * • 31 *1 7 6 ftft 2*- I t 114 •4 * IT • I S 132 4 8 i t -1 1 At - 6 7 03 6 6 7 -ft* 23- 1 4 112 i m 17 -1 2 121 * 1 5 0 2 1 - 1 8 7* 7 3 2* 1 ft* 43 8 9

- 8 a t s •2 8 3 * - I I 6 7 611 2 4 -ft 6* as 94 a 71 * 1 9 35- f l a i« 2*4 9 - I * r o t • flft 10 •a - 0 6 *48 S3 9 63 ft* 2 2- 7 2*1 • 3 5 * 0 - 4 5 6 2 7 3 0 - 7 19 9ft 54 4 - 9 9 - 4 8 4 2-ft 71 74 2 3 • 6 18* 6 0 1* • « 147 -I T * 19 8 -88 72 9 2-a 144 179 * - 7 4 9 2ft 2* • 8 MB *6 14 ft 142 -1 8 6 Ifl- ♦ 7 | “A* 14 -A 114 —*4 1* - 4 17* — J46 II 7 189 124 17•a 931 M | 7 - 9 1*2 119 Ift - 9 flft S t 26 a iftft •ftl 28-a 243 —324 7 -ft 194 -1 4 7 14 - 2 199 132 ll ft 46 -18 28- t 3 6 3 n tn A - a 2 0 6 -1*6 8 -1 I S tf t t s |8 191 6 2 2

* 431 -4 3 1 A - a 120 143 in 9 -4 ft 2ft 2* II • 5 5 9 ftfti 173 ITS 4 - i 2 3 1 -2 3 1 6 1 in 14 40 13 Iftfl ft* 2 4

2 tl -1 9 2 IB * t « Iftl i n 3 0 6 -TTT I t 19 •28 12 8 66 42 -1 3 3 Ift i 144 - 1 9 * 13 9 1*3 -I T * ■ 9ft M 7 6 an 2 13 - 4 2 4 6 4 4 6 43 91 a c <7• M l - 1 4 4 A a 2 * 4 2 4 0 6 9 a t * -2 * 4 6A »«!7 111 IS ft - 4 7 3 ? ft 70 HI 3 2 -6 64 - 5 7 3 7T 144 - 1 IT II a 2 2 2 83»l 0 7 01 - M 20 -7 Tft - 0 3 9ft• r i ­ »;vn 14 A n o -7D 2 0 6 I t t 171 1 I •ft 84 a t 39

292

•B >71 *19 ^ ^ S I 41 *4 - 9 T# - I * 31 B 10 >1*7 ; i •; =, = ii 4* M ■ lak IA* i. !■ M M 32 S #37 -139 I# -4 I H 2X1mt *21 42 i2 ‘5 “?* 8 *! it! fl! « a e -* u no - « a* * 231 221 i» -■ a#* i m" 2 5 ? * 2 ! ? ! “ I ?2 “i i 2S I *?! . 21 22 . r . . . 12- u # t * a r t 1*3-134 1* - a c -11 7*-a *2 a i » “! *2? 2? 25 ? 25 '52 » • * 11 - 1* it -ix m an* i t # it -imi u a a“2 ■S.1 “ ' I ! 2? *5 :*f J* JJ 2 2 2 . .2* 55 - i t 44 .* 4a “,T m iaa a a a k -t • mj ua 23 • »* - a a a 4* .52 .5 2 52 ’ 1 !2i .1 5 22 2 2 2 S5* 22 . S I . I i I * S -it t a - 3* i « t* 1*7 - i a a 1* 1 - s r 23 i s1 133 - I M 13 -J 133 -II* 37 3 M II* » 1} <** JJ » -II «0 *4 33 -tt -TB *3 45 11 134 133 3* X S4 -31 B7

2 155 .!• % *? '■! “ 52 2 "22 2 a l l * it* ■* 22 - 1 4 -3 3 3 i« -tr -at -73 37 ia in-las ai iai? tor 43 IM-IIT IT -I ta -a* 31 I J; (J! U . ♦ J2 JJ JJ -|3 -34 —14 II -1* -M ta 43 13 13# tl a* 4 145-121 42'!! 55 25 5 J52 2! ?! 1252.2:1 2? .12 Jl 21 55 -12-71 bi ax-is ia*-is* 2* iv 1*4 -tia a* s im iva 31B a* 4t 34 1 43 33 BB T 111 -II* -4 -12 #T M 47 . (| M I . 175 jg _ (4 .|| |f 43 • 1*1 -173 17* -*t -14 34 . . . . . r .* .12 i u - i m S -I* 133 m 2 IB -13 it M H 8 X -8 ▼ TB 1*4 MT IBI 1*4 IT • B -14 • B -13 *18 133-111 S3 .4 33* > I M l'J-13 11 -7* 14 B -SB -tt Ue as - * a m ^ __ i-m „ ”! iJJ U J J i - a 213 n*a 1 3 - n 32a » i ia - i t i n i t s a t 1 t i * bi4 lit |4t 1? - I 1 « « “ IB 1*5 M Jjl -a 41 -*• 47 ,T 44 ,j* ft3 -I* 3«B -22* 12 -IM -44 -44 Bt It IIS *3 25It 174-131 I* “ It -24 -□ *« “ J It -7* 34 -7 IBT }>* 18 H * 4 |42 9 , ^ 4}4 4 yj It -17 14 M U ll 134 -73 21It -27 * 33 -4 Bl 44 *• - 9 • « « « “* *' *5* J >f M 11 *3 -4 2 3 3 - 2 1 7 1 3 - 1 5 - 4 4 -14 91 13 1B7 117 It. . -0 it; -I” ti "i? “12 “22 25 IS 125 ..52 S -37 » -7337 314 13-is is -a» ** 13 tea -it# ai9 x ib -r * 32 T4 -11 -tt S3 aa -4 jsa -it# * ,u l3, „ -4334-311 t-14 sib it* ib it it -** *t-4 313 -X?A 31 -It —42 • 43 -3 I U |B| IB .s ,M 33 13 -3 3*4 .348 4 -11 -94 40 U IB 13* -7* 3*-4 * it - i n 34 -a iti 53 5; *! * 2 J2 5? '? .21 H 52 -i 13 -71 :* -t it* - 12* at -ta ** -*• a*-3 11 * a 3* - t -43 -3 # « - • a* -ia £i -1 i t t - a t x a 1 m -iti n -a a u -4«i 4 -tt a a* - m i is a e - a- 4 -2 4 -1 4 B l -1 -71 1 41 - 7 114 - t * » 25 * 333 S i t I t j ^ u 3} . 2 337 333 I I - I t IB I t a 34-1 13 47 34 -3 1*7 145 34 *4 235 311 11 I 313 -304 |9 j tOB -164 It -I 334 > M * II *1 3*4 -354 1 -I* lt« -4T S3—2 1*0 5# 31 -I 41 -ft SI *3 IAT -132 »* 2 27* 233 13 a 3 M 3*3 12 • 1*4 351 * -B 421 417 t -IB T4 IB 42-I 13 B 34 t lit tin 31 -4 131 124 23 3 14* - 23 21 4 J4| .,3? ,, | ,n |ru 14 -7 411 -4IB t -IT 123 -7* 27

* * .5 « ' *2! - U T 21 ' 2 ? ! I ? i 25 5 ■ !! 151 25 B *4 * a S3 a t i * i« s i a - * o n - a * i a - i * t a - i * 491 133 -132 11 2 74 » « ? 7 2 ? 7 5 ? 52 i T i Its u 4 40 7» *3 J 71 *0 SB -3 24* 3*5 11-19 IB* 1*3 312 M .?2 25 3 73 -1* 43 -I 154 Ifl* 11 4 TO -71 54 7 IB -4 IT 4 14 -113 24 *4 BT *4 31 -14 341 -|4B IB3 H I -M B 31 . _ ( i * *21 ?2 2 5 1 I J i . S i ? r B 138 191 31 8 1 4 -ftfl 37 *1 7 *1 7 7 7 I t *13 1*4 1*3 395 * 5 2 M? r? a e - i s i i ? . ? ?* ! J* I ! 23 o u n - * x w * i t b - i t t i t - a i * s - i m 12 -12 b i t -532 i t* *!= “1 55 .a .. aa aa 2 *?5 til ai in 11* .*1 52 It 47 44 44 7 - I d -13 34 -1 836 SBT * -II BB 34 132 15 -5 3l r 2 :5? 5i 2 _S? 2?5 2! 10 *” M 2* i i u b - i m m a xt* -iaa ib

3 R 14 -T - i n 3 33 -1 3 77 31 B4 . 7 » .T S■* " . . . . . « * . t 4 - * a t i t i »« ft® »*

37 -1 9 AB -4A 41 9 *4•vS -1 3 201 ts<* 20 4 -71« s - I I - s o * t B 74SI - I f t I IS Qu 21 t 1(1:‘.4 -4 121 -2 3 SS T I t i

•II 11 1 •4 9 ftft 0 44-7 -4 0 9 99- b 72 - t o 4« ft 1

19 -ft inn |*4 24ftft31 - 4 143 -ISO 22 - 1*

- a l i t I t* JT - I S 4135 144 -T i an -1 4 14SI - 1 - a s ft 47 - I S 24SMT «* 41 On S t -1 3 13*4ft i 41 - t a SS - I I 14*24 2 3b - i 411 - I t IU10 a -* 4 - If t 84 4033 4 12S i n no • A -4 748 ft T t - s o 43 •7 •1 4SB - t 31IB a k -T 4 -ft 1 14

- 1 24 6 - " 7 *3 - i l - 5 a -7 4 *4 B 7* 33 S j 1 X —I t ** ” i m —127

1 1 1 W 3 1 - 1 6 H I BW 1 1 * l i t - 3 3 1 2 . . . . B E * B M 16 7 14114 - t * :!4 -4 121 -2 3 29 T ID I* 19 - IT S I 01 I I E S i ' S ^1>. . . t . a . TB t * . 1 1 M . . A BA _ f — . —— B—7 t ” :!S 77 “d S i - « “ 04 41 I s t i l

.» a I i ? » s 22 —IT i a - U 4*-1 3 - T | -4 1 11 :» * 1*1 - I M M t I

• 1 I 14 7* SI —4 1*3 —130 32 —I t 4# 1# *7 —13 B3 34 14 .} 2 —79 —44 Sft —I t —117 31_ .. ... z. ... ... ... _ i a .. _«a ta .ii ma . — in ■ ■* PI ** ?* 11 * * .*••19 ta 74 30 - I f t-12 l IS 117 24 -1 ?• I I 91 VI JO - I t• I t -11 IB AS -1 9-* 124 IS* 20 -1 4•B 13* - 1b2 IB - i n-7 ISS -4 0 JB -1 3- * 124 -1 3 9 IB - I I-9 211 -214 IS - | t- 4 141 142 IT -V-9 14A -1441 IB -B- 3 3«2 401 I t -7-1 44 I I I 23 -1

t l i t 113 11 -51 -01 -* 3 21 -42 l i t -111 i i - na -n * SS 24 -24 234 -22T 12 -1s -4 # 4* r*ft *1 27 n 0 4 3 IS *7 -22 SI t t a

- a 714 TTT IB -19 1*4 1*3- a 118 - I M 12 -12 247 -032-i 828 8BT • -11 BB 2*

t S M -30* t - IB It* 1*3i 13* -194 19 -V ft* OS2 817 -401 4 - t lit 2819 427 — 493 V -T 239 -2244 174 127 19 -1 IBS 729 132 - IBS 14 -B I d -17*1 407 4*3 It •4 111 -1337 44 -oa 41 -01144-1*31B 2B4 20* 12 - a 437 4*74 l i t -117 It • i 44| -493

It*•1*S -91 27 t a t * 3*811 I9U -133 a s i IVB IT*13 -94 -47 SB 2 *B -IB19- IST -24 SB 1 4* 4614 44 a t 39 4 tfta -IBS

- 2 j . l i -1 2 4 22 - 3 111 I t* aT - I S 41 —14 1* - I I l i t -3 1 0 IT . j j * . M . Ift i t<— | -7 2 03 32 - 2 I d —Tl 2A —14 44 4 44 —I t |3 l ISO 23 .1 9 i i a | i y 94 .17 u n . 11#* irn sa 21 -1 -an # 1 7 - 1 3 3 4 3 at* 1* - v 121 -#i it .[? *j, *41 to-!* li? ia*

2 ?2 5 ? ? ! 7 22 2 ? 55 " ! ? ! • ! “ IA2 ?n 7 ? !«5 ! » S ** • m » - n ia * - n * * - - at . » • — «> « rJ 'ii t. SI i i? " I In "li SI i«i i* -I iia 'IJ i! •' • » 1=* » -!• 'I « in i« »• J» 35 * is. - i n 133 j o o a ; 2 a t - i i n - 1 . n* - j j 34 - » -3 2 u j j - a i 3a - l u i . - i a « B - u , a . . * i r .1 9 i .4 133 112 10 3 -4 4 -1 3 94 - » 40 -3T 44 - 3 164 214 t . .7 | j j - 4S j . . IS u I t 3 1 - 4 * 433 -9 4 4 43 44 - ; 3 32 4 123 IJI M - J -4 7 43 44 - 4 -4 3 -41 41 - * 124 -1 3 3 I . - I I 133 -1 4 * 24 T I M 1 3 114 -j>4 3 . 41 3 7* - 5 0 43 - 7 - I * - 4 » H - 3 137 1 .7 IT - , a . a i , l3 44 J a Ofl -1 4 - 3 . -1 4 63 a 214 - I H 147 04 -4 7 26 - J 34 IB 30 -2 274 -3 8 1 2 .4 , 4 , l 4 I , T .4 | ,9 11« 2n - I S a . -4. 37 4 -44 33 23a 1-4 i» i ia a k - t * -a t * -3 8 2 2 -1 20 3 21* 4 - a 140 - 1 4 0 i t - a 143 -ia. 13 - 1 7 a i i t m 1* 11* - l i t 22

_ - * I I I I I* « I S iS I I I i i - 2 342 4 .1 I . - 7 243 2-17 !« -1 6 3 1 2 - 1 4 4 IT >1 .1 - 4 .24 -1 4 -6 3 27 4« - 3 141 -1 2 3 21 I ** l . l I t 44 M | B - * j . n - I I * 24 - I I 136 138 IB 12 44 I I I 34

- 1 3 123 -3 4 2 0 - 2 271 2*3 13 2 114 123 24 4 ,4, , , j „ ,5 ,4, M3 n . ,4 , 0g . |4, ,4 „ -74 -31 M- t t 44 -1 2 07 n III - I 1*1 -1 1 3 37 3 73 44 32 , - n . -41 2* -4 |3 0 -111 14 - I I 231 314 I* 14 73 111 4*

4 4 20 - I I -4 3 -21 13 • -4 3 « H * 3 3 4 213 14 ] 1M ,4 .1 , T , .,41 |* - |2 114 t l 23 13 143 -11 21- 4 0 41 -10 44 - ‘ I * I 1® '*1 ” * I * J? JJ 3 *"* 23 2* -2 432 -* 3 * 4 - I I 64 C* 38

47 31 - 4 122 - 07 27 2 2 2 * 14 4 4 0 -7 1 I t « a i -2 2 7 12 - I 220 -2 3 2 I I -1 6 -4 7 23 i a 3 2 - 29 43 - 0 201 121 17 J 113 -7 1 23 7 I t 11 41 9 .* * 46 *4 o 200 -2 7 6 I t * -------------“ “* 36 - 7 0.7 3* ’ 1 « * * *1 2* S -0 8 -1 4 U - 2T(I -243 13 t -4 7 -3 2 34

*4 111 I " 3.1 8 -1 1 7 I I SS 1 t l - 4 2 34 7 . j 3 5 1 £* 3 |* ......- IT - tl " B 2* 33 * 121 -« # 23 * If J9 TJJ A «A MS ’Ml 11 3* -3 4 47 - * S i t

-* -3 1 *31 3* T 07 39 3* I J B t - IB 43 7 .a * . 11 17 4 #77 “ • -

14 181 -1 2 4 32 4 X t t -1 7 311 - IB 14 *1 t BIB BSP14 157 -12A 24 4 B t -1 6 3

-1 9 1*9 -119 SB 12 1*4 -1 3 4 3V -1 511 a i t t - IB 75 -B 32-1 4 -41 4 44 in 112 IS l a i t 174 •*«9 V -IX -3 9 14 44-1 9 Vt -73 28 14 IBS -144 34 1 1"B 1 IS IS •11 *0 47 30-1 3 114 - l ? 3 2*1 IB 49 4* 84 X 2*4 -IVJ. V - I t l*T -4ft XI- I I 44 ST 49 I t 82 -3A ft* 3 03 tfttl IB -V 1*4 *1 I t- I t IKS -1 * 3 14 4 247 214 4 • a 242 -221 I t

-4 373 3711 I t 8 1c a 9 fttt * 94 - 7 34 -V S t•A 37* -502 V 4 7* 4ft 38 -4 IBT -1 3 3 I*- 7 -S 3 t 41 -1 4 -5 # 74 T t T 211 -IO 0 13 -3 21 21 42-1 34 " -234 V - IB 184 - I M 34 a •Bft 44 24 -4 320 - S t l T-ft 71 • Sft 24 - IT 1*7 47 25 V 203 -2 0 4 19 * s 371 3*3 B-4 J3ft 1*1 12 -I f t BA 3ft 43 I* I l f i t a 21 • 2 325 321 f-ft • 47 I t 2A -1 3 a r —40 31 i i 144 1*0 IB -1 77 • 72 94- 2 OS -0 3 14 -1 4 2AA 5*2 IS IS IAT 14V IT t SST 822 T- r ) * * i - |f t « b IS -1 3 532 -1 4 3 14 19 39 a 49 1 313 •991 T

t t J3 Ifl 3 4 -1 2 ra t 131 JB I t 171 IBI 3* 3 1 IS 112 IBl JUS •fC 4 I* - I I 141 • 1*9 IT 13 i t s - 1 IV a s 3 81A •91 2 r3 074 M S B - i n 1*4 2*1 12 I t 45 ao QU 4 SSI 94# a0 1 I* - | I 2 I* • V SB -4 4 44 B 24 -S3 434 173 -IB I 12 - n 77 BT 25 0 X 3 ft 113 127 I7a 219 2ft* 11 - 7 •1ft U 24 T B97 BM t* 130 •1*7 1* -ft 131 12ft 19 -1 4 -1 1 9 t a* B SIT •IB B IST 141 134 in —3 -A t IA - IB - IT t t 47 V 2*1 a n 14a SMI -279 12 - 4 35* 9311 7 - IT Aft - i i 37 I t 144 -111 14t Iftft T 21 - 3 -ST -3ft 39 -1 1 - a t -5 9 98 11 T t M a i

i t IT* -IS * I t - 2 "T t • t i n V - I S -4 7 a 30 12 Vt - t * a rn -1 # 47 34 -1 772 T?3 I t -1 4 TV -1 * 7 9 a 19 • t l •2 3*12 43 • 24 .17 A 3*1 -947 T -1 9 531 347 13 I t •8 3 - a 03Ift i* a 40 3* 1 nan 84* B -1 2 923 -3SB 11 I t *4 - 4 4114-11* 37 a i 2 227 -2 3 A 9 - I I S3S 313 12 I t Bft - I I S t13 -n s 42 t l 3 424 411 T - I t 219 -2 9 3 13

4 28 -ftft 41 -V m o J74 IS a r tn iE -1 9 IMS - a s IT - a 43 149 31

ft nnv 941 9 -7 910 9*4 B - I I tv •7 4 BB-1 * a I t 04 T 02** -3*7 V - • 974 3 U B -IT - a t - t t 44-IB -1 1 7 -41 09 11 M B 4*4 9 •8 04 - t a IT - I t 141 -0 7 24-1 7 S t -4 0 91 4 74 •B 3 Sft - 4 I t t IS l 13 - I t 121 -9 0 29- I t i t i 77 24 I t a n Iftft l« • a "20 •1 1 2 a -1 4 IBI 1*4 IB-1 9 -3" -9 7 34 11 |T t -1 3 0 IT -2 U -TO IB -IB 3* 13 I t-1 4 S I* 3 "2 13 13 •A3 24 3 | -1 314 IBT V - t a 2*4 XI4 IB-» a 23ft - i iS t 12 n ft 91 a s t 243 201 V - t i IBB -1ST BS-1 2 2*1 244 12 I* IS l -Iftft 33 1 154 192 J3 - i t 433 1*4 I t- i i SUV -24* I I in 07 i r ? 94 3 ri4S a«v T -V 47ft I B S t- i * VI -134 S3 i t 49 -O n BV 9 -V 99 44 - a 09 -4 3 53

-4 I* -IT 33 4 117 533 ta - 7 573 -2 4 3 t•B BSU -8 1 4 V a a; i 9 -3 8 97 S t —* 4*5 - S t l a-7 934 837 B ft 949 -941 V -B 392 044 a-4 4*4 - 4 5 1 T - i t 129 54 7 147 IBV 13 - 4 241 - a t a i-3 142 *44 a - I B 82 12 94 a 304 J 1 • a B t 1 843 a ,- 4 3*7 •n* v a - I T -T3 >4 4" V 224 571 19 - a r t a •144 l i- a 2*4 371 B •1 * -71 - 4 0 SB I t 23B -3 1 7 15 - i 4TJ 411 T ,- 2 144 - I f t l 12 - I S MT ST SO 11 (Aft t 34 a IB4 111 I t- 1 B2 J in IV -1 4 IS* -1 * 1 25 12 114 B 33 i 2*0 -a a a T

* *4 9ft 21 • I S 1*2 12 22 19 -3 9 -8 * BS X 347 321 T1 V* SB IB -1 9 t l -7 7 93 14 I t t n r 51 a 21* -2 8 7 t2 254 319 V -11 IBB 230 IB IS IB •4ft Tft 4 IBI -IB * IB9 194 I t t 14 - I f t - a n 42 24 I t M t IIB a t * 87* •8 0 7 a4 333 542 • -4 2V3 241 I t 1 z a S 129 33* -341 Ift -ft S2T 311 B n K a 7 s t a •101 IX4 -3 3 3B "1 -7 237 •2 4 3 Ift a 441 IBS t7 0* -VT 53 —i Bno 1 3 1 A - I B 194 144 5* V v s 07 29B lif t IT* IT -S 401 -» 1 5 7 - 1 7 - i d -0 3 32 i t i t a IS4 I t4 131 -4 4 IV - 4 90ft 17A T -1 1 40 B t 43 i i —*4 1 a t

I t 41 t 4S - n -41 21 - IS 1 " I t 29 13 -4 2 BB 4711 I U 191 23 -2 403 341 7 -1 4 43 -B4 97 19 IIB at tl

9 K 7 X l t 244 I# - | 214

B - I I tf t an 2 711 -1* 571 -2 3 6 1512 -ft 301 XAft 11V •a s i t • 3 4 * 11a -7 • 4 4 -V 5*a -ft ia i 133 ta

i i -3 01 20 5 4it -4 tv* SBA V• - 3 174 -IV* IXIB 273 2*n V

44 -1 t t r - i t s V44 A - 2 1 24 44lit 1 HAS • 3 d a14 3 3 3 0 -n»4 M14 ft > M -TA 573ft 4 tv 47 IT93 s 2flr* 243 IBftft t 121 131 IT*1 7 3 3 2 2s n I t

fl • t f t It 31V 24 19 34

t t 131 -111 21S3 11-114 - 5 0 2240 13 114 -Vft 2 314 IS D* 31 4 244 14 -B l -5 7 9ft34 I t B t •v n ft#2 534

1* 15S i in s*

-3 1 * V9* 04 -1 * -1 7 - a n 74

- « d a -10 T2 87 432TB V -1 7 73 89 3T

- ( • I I IT - I t 91 -4 a s> -X tT I t - I t •8 3 BB 45: 241 V •V IB* -IT S IV

-3 1 # IX -B 322 857 1335V V - 7 9 (4 -9 2 2 11

-1 s* -* 5*3 278 1243 37 - t Vft -1 3 39

213 t* • 4 111 I t t 21•47T a - 3 I t t B IV

IS 47 -2 912 - a r t I t—4# 1 V -t 47 -B3 X*

2*7 IS t 144 -143 t s-7 4 22 1 IVV IBS 12

46 41 2 82 -1 3 9284 24 a 121 IS2 IB

- 20V 14 4 I t* -V2 22sin 14 B IIB II* 2*-1 * 3 2* 1 a* - e 4B

TV 44 T •3 4 -4 4 481 9 42 a Bfl 17 24

14 27 V 138 -IB 3 IflII 93 i t 2*3 147 13

t l i t s -IS A XfiE t 12 521 ITB 11

19 IB* -1 4 2 IV4* 49 14 77 14 94

-112 IT IS 127 -2 6 3037 a t 1* t t - I t 97

- I 3 t 29-1 9 44 a i ; i i• I t 25

I3B -117 2* I -BT-IB 14* -97 2* I t 219 -314 13 2 3t7-IT 183 ISB 28 1 1-Iti -47 24 8 47t-14 219 -f*3 I* IS -78 1 35 4 -34•19 IT* 174 It |2 IIS - M S* B 413-14 t — 78 *3 14 141 U K 24 4 147- t a T3 It 33 in 73 -41 42 T 149-13 Itt 3*B IB It 141 I d 37 B -37- I I 344 -Sft3 tl 1 13-It 382 341 12 B E T I t M S-1 43 -43 31 11 2:1*•t 413 atr t — IT 49 -IT tt 13 1*1-T 83 t 31 -it Iftn 44 24 19 4ft—4 44 -43 IB -19 44 -4* *4 14 «*-# lit -IIB tt -|4 |*3 137 2t IS ISO-4 IB* -213 || -13 123 74 23 1**142-B I d tl It -12 lit -ISA ~- a a i# 3M-t I M ITIt 1*4 - It#1 479 4*42 213 -3t33 33b 3*44 119 -JB38 113 -1*0t 207 -2*3 t -9 174 -14* 12 -I* 3l7 22* 14 -It 144 -Jit7 121 -191 1ft -S 2T9 240 t -1 |*4 - m 3 14 *|3 VI 03 __- a t -TT 44 - I 441 - t t a t - f t 121 181 14 - 1 2 141 -1 1 9 22

a t - t a 44 O - 2 4 24 44 -T 112 -1 2 4 33 - I I -Bft B t *3S t 3*1 243 19 I !WB - 3 d B - t 11* -6 0 2 | - I t -3 1 I t lf l a i l - 1H* I t 3 330 - n t * M -9 171 171 14 -V - T | ft# 9412 2*1 2 d I t S - M -TA 27 - 4 431 -4 2 f t 4 - • 3 4 * t t19 -M l -9 4 3 t 4 14 47 IT - 3 371 93* I t -T 12 -7 * 9914 -B t -* n 93 9 243 10 - 2 414 -MM 4 - 4 |* 4 |3R I tI I -4 4 !t3 U * 1 2 1 131 IT - I 441 441 ft -B 134 -IB U | tI t t -4 1 4 | T 332 2311 tt ft 531 -231 I t - 4 23* 522 12

“ “ “ “ I «34 170 14 - 9 1*7 -1 3 ? 22a 943 914 1 -2 220 1*0 12

. . . . . . . 3 41 • 94 - 1 -7 3 -8 1 20-1 9 *4 93 11-114 -2 0 23 4 9*4 S13 I t ft 122 -81 Jft

•14 -8 3 - I 40 12 114 -1 4 23 8 41# - a * } 4 | 172 -1 * 8 IS-IB 23 SB 14 13 6* 31 42 t 118 124 2 # 3 - 8 9 -91 04-<14 82 -2 3 44 | 4 -0 * -2 7 94 T 31* -OAl |« ft l i f t - 4 0 21>19 BB SB 34 IB M -VO 4# ft Ifl 03 34 4 314 * |M 13•12 113 -* 4 33 I t 139 l i f t 21 1 111 -2 * 4 M B 23B 3#? 19• II 41 I I 34 Ift-1 IT * 24 4 934 -32* II•Ift Bft - 7 2 24 ft E ft I I 34 13 41 T S72 013 I t- 4 73 94 SB 13 BO TS 9B ft 133 - f tl 3#- f t 44 4M -J7 - I t IT I t n TT IS 24M 143 IT ft | t f t - 3 3 39-T 291 211 I t - IB IB | -1 4 5 2ft 14 -.1* -1 4 4 B* I t S3 H 41*4 543 301 4 -1 4 17*1 1*2 21 13 107 21 .13 | | - 3 4 -4 4 4#- b ai -T 31 -in ia - v an it iin -17 35 12 -tt bv a*-4 Sill flft* 4 -13 <rx -ai no 12 133 -ts 28-0 MR -17* 0 *1! *2 9* S X 11 |« .44 -IS 3?-3 nin A -1* |T1 -144 <7 JB 49 -41 ST- 1 3*S -**•? ft — K.T 177 »7 -IS 1*4 |5T 94• 4«i * -ll -•« i m —(h i n .r4-‘n7 -44 ni ft E 12I 442 -111 7 -? 2-Vt 557 til - Cl •** 37 uaa inn -:*n in it37 -SSft Ift -IJ 1*Ji - i::3 JJJ -14 44 -2 80■ Ttrt r w 1 -f t 114 1 3 J? - 1 1 • • . - I □ | - 13 42 # 4 *

293

- I t - a s -4 47 -ft ft* 34 a a ft M f I8T >7 3 >02 •1 1-11 73 2A 90 - 0 41 •2 4 40 1 Iftl -4 3 8ft a *1 44-1 * -9 4 34 47 - 7 -7 3 -1 4 9ft a -71 34 a a * 24 - 1 2

-0 -3 9 49 99 - 4 11 -SO • 7 a 44 -78 9* 8 • I l f 5*- 8 n n - l i f t 33 - 1 1ft -9 4 4 | 4 •09 -3 1 3.1 4' -2 3•T 77 47 a i - * -41 - a 97 a ftft 2ft 41 T 79 •7 4- 6 i* o -1 4 9 14 - 3 -1 1 i i ftft * 74 -3 4 a * B 111 >47- a 194 140 IT - 2 133 - a a 23 T 07 124 07-4 44 -4 4 99 -1 347 27 S 13 a • a *44 * • 6 J1 6ft- 3 l*A -1 4 * 17 ft 23ft -2 2 « 14 f 123 07 28

-1 9- 3 294 24 a 13 1 43 lif t 37 ia 173 •8 2ft -1 -1 6• 1 3*3 -2 4 3 12 a 334 •3 3 0 14 n -* » aa 44 0 M 63

a 437 414 4 3 ST 34 47 12 78 31 4* 1 Tfl 961 144 -9 9 29 4 1 14 44 23 2 •6 9 •2 4a 147 -1 4 3 IT a ID3 •0 7 17 ft 1C IT 0 •7 64a - T l 24 3fl * 804 a i* 14 ft 3 26 • I f t4 -4 4 -2 4 30 T 103 -B3 34 - a 109 - 4 «1a • 3 73 33 • I f t l 43 a a - 7 -S 3 a 11 4 1E - I T* 113 -4ft 2ft 4 io n -1 * 0 20 -4 117 -4 1 31T 411 110 11 1* 74 44 33 -9 l«S 119 35 -ft I f* • 1• 244 •2 4 * 13 M 134 -1 2 7 » • 4 111 - f t t 384 |T4 103 14 12 91 29 43 - 9 -4 3 49 43 ft 1t -1 1

la 44 •4 3 43 19 • 4 ft? 43 - 9 -TO • 4 37i i I M 120 27 1* •B3 -3 4 42 -1 14ft -TT 33 - I f t - 197 45ta - m 92 94 ft IIA ftft 23 -4 t l f t -2 9t a 44 -1 2 44 9 K IB I ISO -4 2 3* - 6 Sft •4 414 M -4 2 fla 2 130 137 24 - 7 Ift* 44

134 -4 3 20 - I I 19* ftft 27 a 94 -91 45 -ft •4* -4 4-A* -4 4 11 4 120 114 24 -8 47 IM

9 K 19 — 4 13* - l i f t 27 0 -8 9 - a 49 •4 •9 * - 6• n —70 lo 3* 4 l i e •a * 3ft - 3 113 114

-1 3 324 -3 1 4 33 »7 147 -ISO 22 7 Mft -3 9 2* - a 02 11-1 3 123 141 92 -ft 144 140 2 l a 77 13 a a - i -7 3 10- i i -4 4 - I T 43 -3 -2 3 l l 42 * -1 2 IB a t • •98 —22• ia 34 4 34 —ft 2*1 ITI IT 14 - 4 * - I t 37 i 134 -1 9 7

- a 194 194 31 - a -B l •1 ft 34 1 11►lift 37 34- a 144 - IQ4 31 -3 114 74 IT 4 1I - 1 8-T 111 147 34 -1 72 44 33 9 1C 16

46- 4 132 -1 3 2 23 ft 234 -1 * 7 14 -1 2 4 2- a •49 47 ft* 1 179 131 17 -4 -81 -7 9 85 - I I 194 - I I *- 4 114 -1 * 2 £2 2 2*3 •32ft 13 -9 121 i t a 32 - I f t 2* 13- 9 192 -104 1* 0 102 193 2ft -4 I I I - n a 53 - f 149 - I M- 2 177 -1 3 9 34 4 41 -4 0 3ft - a 149 40 33 • a ft* - 4-1 1* -4 3 IT 3 190 42 23 - 2 ftft - • f t 4A -7 93 - i a

• I4» 214 19 A 14 4 *4 -1 Aft a* ftft -ft 144 441 *4 -2 4 31 7 -B3 -4 4 33 ft 42 • Oft 8A -1 ■ 8 1*3 491 931 t l 0 91 83 ftft 1 131 •4 3 29 -4 -71 42a 44 •43 34 4 42 44 34 a - u a 39 31 - a 46 I*4 -3 4 -1 4 »« 14-113 - 0 a* 3 43 -1 * 91 • 9 41 —67a IS l • I M 10 II l if t 41 a* 4 tA | 1*4 £1 -1 •afl 74* ‘ S I 94 41 12 ft •2 0 00 a -4ft • 42 97 ft l*« -1 2 27 111 • a a 33 13 187 -I3 A 20 • 19ft 117 2* 1 71 41■ 44 74 24 T —T* -4 * 44 2 1*4 - T l4 - • 4 -2 3 ft* a ic ia a 43 -3 3 3* 0 113 84

ia ffT 39 91 * 113 -4 3 31l l H I 137 as - f f t to -T 74 l« Iftft - o n a s ft 1C *1413 -r»* •74 9A -4 103 ft 3313 44 *4 3« - 0 47 -4 5 44 a c ift -1 3 -BT ftft14 47 -7 4 3ft -7 41 7 99 -1 3 ft - a i

-A 103 1*. 92 - 4 120 -a * 3ft -11 -4 * iftl9 1E 14 -S SA -7 * 4A • a 11 57 14 • I f t BO 4

-ft -0 2 94 33 • a -* 7 -2ft 9* -4 -5 5 -4-1 3 a t 39 ft* - 3 -ft* •BS 34 - i u a • Ift 12 - 6 133 1*9- I I 34 -4 2 Ml •3 112 4A 27 • -0 7 - IT Of -7 •65 - 4 1-1 4 131 11*4 27 -1 • 4 A3 31 i 118 48 2* -* 43 44

- I T J47 ■7 a* 12 -4 7 Bl S3 a -TO 4 >* - 7 35* -9 4 3-1 4 12* •4 3 37 13 - IB -Ift* 7 4 4 2*3 2*3 II -4 424 421-1 1 47 20 *9 1* 43 31 ftft • 2*4 -341 12 -1 41* -4 * 7-1 4 •fl - f t l 33 • 94 • 7 *2 -4 •1 2 • « a-1 3 44 23 42 4 P: - a 7 a** -21ft 12 •9 3*4 -S 3 *-1 2 244 -3 9 3 13 A 2ft -2 2 IA - 2 172 143- i r 132 • 7 30 - t * ITT -4 * 23 4 132 44 24 -1 3 * t 040• i* 113 T4 31 -1 0 42 77 44 Ift 1*3 147 2ft 0 3*5 •3 * «

-4 241 -2 4 4 14 -IT 10 -1 * 4? 1 1 Iftft 147 I f 1 564 3 M-ft 19* 14ft I* -1 * 3* 13 a i 12 -3 7 -1 2 4* 2 412 •4 1 **7 174 — 14ft 14 - l i 121 130 2* 15 17ft IA* 24 3 314 922- 4 363 373 ia - I * -3 3 47 11 14 ISft -183 37 4 s « a - IB I- a *3 -3 7 37 - | 3 43 -2 * 33 1 *2 41-4 147 -1 * 4 12 -1 3 41 -1 0 w 4 1: - I A a « r 224- a 334 -3 9 4 4 •- t t 42 71 53 7 i i i M- 3 4A4 -4*4 9 •-1 * -1 ft •1 3 BT - I f t m 119 22 a 17 74-1 14 7 Itt I* - 4 42 ftft Sft • IB 42 -*A 1* * 41 - 9 4• 2*4 -2 J 4 12 - 0 3*1 -1 4 3 12 -1 7 39 31 1* IB 41 -1 41 IT* 193 13 •7 102 1B2 13 -1* 54 Ift 31 I I 2*4 -2 3 2a M l -3 9 4 Ift —4 3*4 -3 4 9 4 - I S • U ** 3* 12 i t a ftfta IB4 1*1 1* -S 403 ftftfl A -1 4 44 14 3* 13 • f f l -* *4 I I I 49 22 •4 72 Tft 33 -1 3 2*7 -2 5 3 13 1* MT 117■ 27* 37 S 13 - a *4 -*T IB -1 2 194 160 ta 11 IM -4 9• 130 -114 20 - a 111 • Ift 4 - I I 1*9 -2 1 2 ia? -3 4 90 ftS - i 47 14 IB • I f t 237 253 13 4 1t Sa a* -0 2 99 • 440 404 ■ -ft Tft —12 23* 49 - I f t l 20 i 471 •4 7 4 4 - a 17* 147 IS -1 * -7 * -1 *

ia 129 Bft 35 a 3*7 273 ft - 7 1*0 133 12 •• ID Ift* a ai i 43 -9 0 83 a 144 -1 4 * IB —4 IS l 11* IS -1 7 1*4 -4 0i s 39 a* B3 * *0 4A 24 - a ft* 1*4 IB - I f t 64 1la -3 0 -4 7 41 • fft 17 33 - 4 314 -2 1 3 I f -1 9 43 T l

* 112 -1 0 4 21 • 3 313 -321 O -1 4 183 -1 9 34 I : - 4 7 804 137 Ift - 3 67 -145 2ft -1 3 317 2 40

(I -41 90 44 -1 *41 *33 ft - t a 144 -1 9 3*14 111 -M T 09 4 193 124 22 ft Oftft •204 a - > i 341 639-1 6 -1144 9ft 94 Ift 101 •1 3 20 1 37ft 373 a -ia 237 -241*17 113 • 7 37 I I ftft -3*» ftft 2 391 -941 a -ft 76 -B2-1 4 - 144 -4 2 Oft 12 -1 7 -1 3 44 3 33 114 3* - a 44 a*-1 9 IM 247 1* 19 41 ftft 4 3 3 43 ftft -7 2 66 -2T7*14 149 -1 4 9 If 14 1*7 112 aa 8 234 -2 4 * 11 - 4 33ft 691-1 3 -4 4 1 41 ft 174 101 Ift - 1 214 -2 4 7-1 3 14* - i a * 1* 4 K: - a T 413 -5 * 2 tft - 4 I f 9ft- I I 92 12 OS a 2*0 2*3 to -0 428 -4 3 3-1 4 ia i -1 4 0 IT - I f IT 4ft TT • 214 -1 6 0 11 - 2 2*4 2TB

- 4 144 -1 9 4 22 -1 0 B3 f a a Ift 111 U 23 -1 4 f 96-■ 34 -3 0 4* -1 7 44 •1 4 41 i i M 34 ftl ft ftftft •3 4 3- 7 44 ft* 33 - I f t -1 4 43 44 13 •7 4 -4 2 a« 1 I f -6 7- 4 474 472 l« -1 9 14ft - M f 22 13 39 122 * 8 2 >39 61- a 1*4 113 10 -1 4 04 • 7 20 14 03 -01 41 a 414 *71- 4 3«n 334 f - | 3 >74 -IB S t r >1 >54 4 4 2* 4 141 -1 * 2- a 43 •31 99 -1 3 442 ftoo ! • a 913 210• a 3 T9 *-341 • - I I 123 4 1 a* * I ' ft * 343 •9*9- » 373 -1 7 9 ■ - I f t 07 *3 =3 T 259 2 *2

4 0* -4 7 a a -ft 998 95A fft - I f t fflft 1*7 a a ft* I I I -7 21 3B2 -9*4 « - 0 44ft ‘•447 ft •-IA 03 -3 4 30 ft 2 7 | 2ft*2 141 -1 9 24 - 7 Bar 934 a •-1 7 144 133 2* Ift 12* - 7 *a 040 342 Ift - * 444 ••404 a '-14 -3 3 -1 15 11 -4 * ftft4 -ITT a s -B m £ 23 I* -19 111 ftft 24 ia • 9 0 64a 323 24B i i - 4 4*2 •444 0 ■- t * tia -1 4 2 24 12 i aa -1 * 34 TT - » *Wl 84 - 3 a n 1*7 I* - t a i n l if t 14 1* T l 71T 273 207 10 - 3 43 Iftl IB -13 125 -144 Sft 19 23 ft -M 4■ 2t n >•243 12 -1 a i j air ! • - I I 1(3 -6 4 314 -2T ft 3ft ft 449 444 a '- I f t 14* a* ai ft I 2

14 7a 37 33 1 2T7 •-372 4 -4 2*4 •3*3 1111 319 --13ft ta 9 943 3 7 " ft -a 277 a a i 10 - I f -BO •7 3

U -a i*i -14* 25 -16 -97 94 91 -ia 13* -136 29 -19 64 6 24• 1 -* 23 47 43 -11 *4 -Ifl *fl -11 ftft -2* fft -II 76 196 89•a -3 47 •IT *9 -14 6 74 64 -14 14 49 •3 -If 107 '•tai 14B| -2 •44 ft* *7 -19 191 • (16 2* -4 82 -13 ftft -4 -44 -24 Ofi« -1 6* IH 14 -10 29 ■3 49 -a 4 I M T« •a 579 -274 II41 a -91 —52 *4 -11 111 -Tl ft* •7 80 -40 97 -7 Iflfl -ftft 1424 s 133 Iftft 27 •I* -7* 43 57 •4 -44 ♦3 34 •4 BS -44 6T3 133 -123 SB -4 *1 93 24 -9 IT* --177 19 •9 214 647 113 160 Iftfl 23 -a -48 -** 5* •4 -03 11 47 -a 171 189 114 no ■•119 43 •7 24 12 94 -a 32ft -537 11 -3 101 1 tft ro•9 6- t ** 45 07 -* 44 ‘-IIS 9A -a 137 11* flft •2 46 Tl S3*■ -9 279 36* 14 -1 144 -1*7 15 -1 ft* ftft 0945 ft K •13 -4 8*3 -9*4 It • 141 133 14 0 61 ■4 0411 -a 29* 341 19 1 42 M l 3? 1 64 -ftft 9490 -14 I M •48 ft* -a 184 -17* 24 3 •7B -17 50 s ft* fft 63M -13 -7* ftft ftft -1 132 II* 21 a 251 IBI Ift 6 943 <•flra 10

-12 4* -ia 4* 6 07 9 34 4 £40 •3T4 13 4 -69 i* ta-It 1*4 68 02 1 143 • 146 16 1 131 *9 25 6 14* -44 24-18 a -14 64 2 -83 33 *1 4 -9fl -73 37 4 64 49 1262 -ft 134 1*4 39 3 3*1 -fOl 17 7 S* -93 44 T flfl •29 44-a 7* •ftft 57 4 74 12 54 • 15* 8* S3 6 - M 90 10-7 63 -75 34 9 17 -11* 75 4 ftft -47 47 4 -49 ■7 84-4 1*4 12ft 26 A 2*0 14# ra >9 34 19 *a 10 t*9 '-121 23

24 -1 1*1 '• 134 55 1*9 -44 31 II 232 I M 1*92 -4 233 21* Ift 6 13* 77 27 ft C -0 12 1*2 -149 23Tft -1 14* '•19* 2* 4 oa -14 *9tfl •2 -10 * ft* -IB 69 18 94 ft JC -*80 -1 07 * 94 4 K -1* -IT Tft •14 **87 6 •78 -1ft 30 -14 -34 -1 ft* -to 63 -89 6444 I ftl • tl ‘•IT -41 n 54 •-13- 111 25 5* -IT -78 -44 ftft61 2 t* it* 07 -14 44 '-112 07 -1* 77 •03 34 -1* 40 40 6144 0 44 49 3* -IS 114 «n 24 '-Ifl 31 46 95 -18 t M -a* 2645 * 1*4 6 ni -14 DO -73 44 '-tft 1*5 -146 21 -1* *4 *1 4492 8 ■-44 *3 18 -10 •44 •an ftft ■• M 120 12ft 29 -10 154 -1*9 0965 4 ISA ••124 flu -13 lit Ail 27 -14 -77 -1 3ft -12 *6 •6 43

-11 1*3 '-193 IT *4 ITfl 182 1* -II na -67 274 E -13 -1* 277 373 14 -a 2T4 ■•964 12 -Ift 2S9 274 12-4 •ftft -2A 54 -T Tfl -07 24 -4 49 •ft* 0496 -18 154 •8 2A -a I M tl S* ►* ■•ra 92 SA •a U t — m tf24 • 14 *1 4fl *7 -T I M •ISA ■0 -3 -3* •90 *1 •7 214 -21ft 1949 -19 I M 6A 51 —* 73 -5* ai -4 £12 237 13 —* 14 •48 99

21 -12 1*3 — IOT 51 •B 03 TA M •5 21! -274 12 -• Iftl -127 214* • II -ftt -f 42 -4 -C7 n 27 •2 m * 211 14 •* 914 -t*r 0•2 •14 63 -114 54 -3 44 41 27 -1 a n - m Ifl -9 244 24* 10tfl -4 44 I M 31 -2 1*3 -1T2 IB * *A 40 71 -2 113 -Ifl* It44 •a ■-44 -1 ft* -1 74 21 24 1 47 -T2 ftft -1 4*3 457 444 -7 1*4 137 21 a 144 -43 flft ft 2A4 -275 13 • ftl 13 2242 -ft IS* -Ift 34 1 127 IIB 32 9 Iftft 149 IB 1 1*6 M * 2191 •1 M 3 132 22 ft >23 -On 21 ft *2 •0* 54 2 67 •44 2*87 -* -17 -24 42 a Ifl -37 *3 9 244 230 14 5 174 -144 IT1* - 3 78 •Tfl 39 * 43 ft 9A 4 n a - f t t 23 4 .29ft 224 1245 -a 4* 69 44 9 *2 •33 94 7 44 -fl 45 1 :347 -971 1*a* -i IIA — 132 27 • ■•6* -2ft 54 6 34 —70 *9 4 59 111 41u 4 01 44 8* 7 Bt •BT 00 4 -33 ft 4* 7 84 -lift 441 85 -47 4ft B '-3| 33 43 tn »• -84 40 D IIB 1*4 272 312 147 n 4 1 1A -41 91 11 -no 49 41 4 ■-47 23 443 a* - m 3A 1 A lft!t l*V! 27 IP 47 *4 42

41 4 n o 127 3f ft K -T II 34 ■4 *445 ft AA -7A 57 4 K -4 IS 9ft -44 ft**4 4 1 "0 -IA 119 -Tft ftfl >3 •14 -a 7817 7 41 9* 36 ■•17 IIA *n M -17 IftA *147 334* a 1*3 -12* ;q - ia 17 -70 7* '•IA n a I4S 2* * C -633 -13 TO n> 57 •Ifl 1*7 - n a 2960 4 K -11 -Ift- 1*2 5 2 - 1 4 ITT 13 -•14 69 91 1482 - n 41 A *7 - n -7.1 -4 m -10 7* •43 40a •16 183 *7 94 1* 117 -182 If -1 76 -47 23 -14 I M •104 34a -IT 218 -l*f 10 11 »• 84 ftft * ftfl -94 24 -4 540 61* IIa -I* S3 44 M 13 87 41 44 1 31 47 43 •6 150 -18* 1** -II 134 -1*4 23 19 4 * Bl 40 2 614 • f f t t Ift -T 941 613 1*T -1* 44 •1 42 14 TT -*a ftft a -41 59 39 -4 *6 -96 at

ii -13 164 142 IT 19 43 BS *7 4 411 -4*1 6 -5 44 •74 oaa -12 127 -1*2 21 1* >24 -32 30 1 a** 219 tf •4 42 -64 21a -II 27* 594 12 « m -63 IT -9 21ft •141 11a - i a 52 38 4* 4 1C 4 7 130 14* 14 •2 922 -96* 4a -f 3*5 312 15 a -37 -11 93 -1 •2 -114 046 -« 6* -7ft 31 -16 17* -lift 29 4 •43 -14 92 ft •2a •4 ft*

n -7 83 77 SB -17 149 I2A ft* 14 ftlf 21ft 14 t 2*2 -299 423 -ft 7* -112 23 -14 70 • 1*3 ft* II tfl -IS* 1* 2 813 012 a13 •9 378 3AT 6 -19 1*4 117 23 12 1*4 1*7 14 a 15* 118 t*21 -4 157 -197 12 -14 1*9 183 24 tfl *0 -1*0 3* * 452 ■24 4■9 •3 ASA -042 7 -19 —*H -a* 32 1* 141 -47 aa 8 49 24 60JT -2 141 1A9 14 -12 •37 120 44 18 6 - a AH * *4 19 6387 -1 ft* -94 54 -II 2Afl • 264 19 14 37 -24 *A 7 233 -22* 1217 4 211 31* 4 -I* 131 T* 17 a 142 -117 IT27 I tlf •182 14 -4 503 -371 I* ft 8 ft 4 lift •Tl 9199 a 3 M 2 M 14 -a II -47 5*

I M 10 271 •9*3 ta24 a 344 -;i42 a •T 42 2* 53 -IT ►ft 1 24 11 2ft* I M 1499 4 64 -7* 22 -4 3SO 935 6 -1* 65 •2ft 37 12 47 •60 66

■ 39 -147 4* -9 346 440 6 • to I M -79 31 19 331 243 IB4 225 •3*9 4 -4 ■05 -024 6 -1* •Bl -Ift 54 1* 48 14 95t !♦* I** IB -3 490 *61 • •19 44 -03 OT 19-11* 64 6*

49 a 181 -134 IT -3 0*2 •4*3 6 -Ift -44 -47 5*6* 4 34A 39* tt -I 62 43 14 -II 229 217 I* ft K a8ft i* 126 -14* 22 * 4* -Tt 20 -Ift 143 - I M 16■ft n S* 44 41 1 S 12 •9*3 a -4 l*fl 1*4 14 • 14 40 64 641ft 13 44 •41 a* 2 113 *131 17 -a 9*3 •05ft 11 • tl -44 -IT M|4 19 47 IT 94 3 943 333 II -7 I M -35 14 -14 0* 84 ftft14 14-112 -24 91 4 *1 11 ft* -ft I3« 133 ta -19 104 - I M Ofl|4 (■ -1*4 -SB 95 1 163 3(2 13 •fl 340 -9*1 ft -Ifl 147 144 64|| • 43 54 57 -ft ISO 1*2 19 -11 62 -71 1119 4 1 0 7 •94 -44 9* -5 3*5 •503 • •1* 20 SI ■ 12* 6 41* 994 1* •3 1*1 164 11 -4 II* • Iff Bfl27 •ia II 42 47 4 347 •243 II -1 234 •243 4 -6 65 -43 33f -IT -41 -5A Aft 11 46 4* *2 * ■441 a*2 6 -7 140 149 10a -14 8A 67 *4 11 ftfln -104 I* I 44 6* 14 -4 233 21* 13I* -19 65 •as 33 12 47 -ftft ft* 2 234 flflt I* -1 74 44 24ft* -14'- M T *2 3* 19 -44 4 54 3 41 Tf OS •* 1*3 •1*3 967 -in 1*4 -41 24 14 61 3 07 ft 997 •933 4 -9 139 113 14a -12 Ilf) IAI 17 18 -87 3.1 Oft 9 386 -2*4 11 -2 4Tfl -494 4

26 •II -74 -3* 24 1* *14 -8 T* ft 134 -13* 1* -1 107 214 IflT -16 2*2 213 1* t 147 -42 21 ft 47T -43* 6

29 -4 -3* ** 47 4 K 8 6 41 194 33 1 94 - M 87>1 -6 Bfl 141 29

-Tl4 ft -ft* 70 a -91 14 41

a -7 82 •A ft* •19 TB 44 1ft 197 -117 flft 9 1*2 -196 11ii -ft 4*3 -414 6 -IT 144 IAA 3A II 6* 66 33 4 •24 111 412 - a **4 014 6 -1* 4* -711 42 12 •41 -ft* *A 9 1*1 -144 IB1* -* 487 -5 3 3 6 -11 1*0 10* 24 Ifl -35 -29 *9 4 lift Tf 3#19 • 3 i« fl Aftft 1* -1* • 1 -flft 33 1* S3 2* *3 T 49 a 8223 •a 9*4 *4T T -15 44 •3T 05 IS 114 ft 60 a 4 -*s 7212 -i 270 -234 6 -12 73 • a n 34 14 04 44 19 % -19 16 ft*91 * 12 *2 37 -11 T7 -117 Oft 14 79 1 924* l ftftft 7 •14 -74 •55 34 ft * T II I M tat 9441 * 247 371 4 -4 36 -46 4B IS 103 •194 ft*61 6 414 >311 6 -a J4B -ft*4 Ifl -17 ftfl -Tft 97 19 ft 24 M41 4 131 02* a -7 27 -44 33 -1* Iftft 112 23 1* 4* -23 *3If 9 ruo • I M 4 -♦ an 47 31 -13 >05 - I f l 9* 11 112 IM 2ft

* 217 210 13 -3 314 - n n II •14 -94 76 14T 143 -172 10 -4 9*7 552 a -tfl 64 —411 04 ft K *a 183 -137 JA •n 221 -24* 4 -1 2 175 • IR I 10

43 f 122 - 1 15 21 - 2 223 214 4 - I I 64 44 24 -16 -14 -47 ■ t

294

•1 9 144 IM 29- I * 19* -1 1 4 24 4 K I t• ia 77 46 a*M l 43 -a n 47 -IB -0 4 42- I t a i - 4 41 “ 14 -4 0 -4 2-1 * 327 663 ia - I J -■ a - 7 a

- t 423 -4 2 2 I I -1 3 80 -1• A 233 56* 13 - I I - a s a** r J IB - n i a II -1 0 IBS -IZ 3-* 144 47 23 - 4 74 04>■ a m -314 12 -A 174 - 1 S |- 4 143 144 IS - 7 M l 331- 9 a* -4 3 2ft - 6 in* •12*- J 41 1# ft* •3 IBS 143-1 712 711 4 - 4 a i - 0 6

0 I4 | -1 7 7 13 • a a t* -3 4 ft1 J32 IS* 17 —2 to o 1*2a 4*4 -4 7 6 4 -1 07 -ftfta i i a -4 3 36 O 6ft B44 ITS -1 * 7 Ifl 1 932 - a a oa 33 -7 0 34 3 939 336* -3 4 •B i 44 3 9ft 20T a a 62 24 4 t o r BT■ t i l 112 23 3 174 1314 a a -5 7 24 4 241 •Sftfl

lo 234 2*7 14 7 267 207l i 104 -139 17 a 1 IH • 194ia 14 J 144 17 * IBS 127ia 142 -1 1 2 23 in -4 2 • n r14 - n s 4 311 n 17 o19 i i •*S *3 13 144 0

19 -4 * a *4 1: j s 14 * 7 | 12

-1 9 64 49 4 t 4 R: i a-1 4 ITS -1 7 3 3ft- i a IM 103 23 -1 4 -1 1 4 B4-ra 74 -6 * n r - I J *4 -n o- n 144 144 23 -1 2 BB 104- i a l a a ftft - U - 112 - 2 2

-4 1*7 -1 7 4 Ift - i n -0 4 -41- a 1*4 tft* 17 -4 144 I I I-T mm* -2 4 3 14 -.'1 rz* •1 4 3- 4 • 3:1 4 a s - 7 304 3 in- a i in -ft* i* •A 174 - IBft- 4 -21 •3 6 9* -A 920 643- a rir -M l 44 - 4 1*7 •3*1- a am ana l i -ft -3ft -2(1- i m i -n n 1* -2 3*4 303

• 274 234 II -1 332 -9 3 2i 91 110 n r m 100 I7Ba in i - r o r IS 1 301 -1 0 6a r.M .SH6 i i 3 -9 3 •3 24 ■■•ift -T IT to 9 -4 4 11S nn 4* as 4 314 a n* 214 - i n n 14 A 1.14 - 145T •M2 u r j 13 6 in* lit*a 16* -»*4 24 147 •4 *4 171 146 I* n -Aft •2 *

IO 134 1 16 32 lir .i r -3 4 • nn 44 16 fM -4*i12 1*4 on ftft 1 1 6R • 16in 112 -1 2 3 I'll i:i -4 6 -4T14 124 140 ?in 16 46 Oftin r i2 • 141 40 |i- - IH* -Oft

• IIA -1 * 2 33 - i 108 IB 1i 73 -3 4 34 0 41 «*2 244 246 13 1 42 *1a HIT -3 4 6 1* 2 103 - * t4 234 244 14 a 44 4*a 227 -3 2 4 I* 4 127 -1 3 34 179 164 IB a •4 BlT l l -2 7 49 * 99 -4 3a 76 4ft 40 7 223 3 2*4 114 -4 * 24 a a • 9

la M -4 4 ftft 4 a s 44t i -3 3 42 • a 16 73 1

II -IO • B l9 1C -4 12 *4 ia

- IB 11 t 44 9ft fl 1e -4-IT I t* Tft ftl-1 4 41 49 - I f t 44 41—19 ISfi IT* 34 -1 7 *4 A-1 4 4* - 4 6 SB -1 * -4 2 -9 *- i n 34 - IT 02 -1 2 7ft flft-1 2 36 - 4 Bl -1 4 14ft • 13ft- I I -9 3 -B4 *4 - i n 9* • 7 a- i a 147 t« 2 17 -1 2 44 *3

- 4 174 - H I Ifl - I I 163 49- a 236 23* 19 - m 133 74-7 IM •19* 1* * • 2*3 294-A 174 ITB tfl • a 01 *2-S 04 •9 37 -7 T4 *3- 4 44 *a 22 -A 4 0 - t r n- a 347 934 11 - f l 1*7 • 171-2 113 -3 * 30 - 4 207 -1011-1 3*1 SOU 13 • l l 34* -sir• 363 -n n * 10 -a 237 314

1 43 *7 41 - i SB* -9 4 62 Ml -19* I* 0 922 993a 367 26ft TS i 9IB -26ft4 133 13* I* 3 922 994■ 44 - i n * 34 a 1*4 149a 12* 7* 29 4 *6 247 *3 IB 90 s 47 - 4 3a 73 163 4 0 A 1*4 -1 8 74 4 4 -3 7 93 7 43 10ft

ia 103 4* 69 a 37ft -9 * 7l i 132 -1 0 3 37 0-101 46

to - * * 16t K - I t l 44 an

13 190 181— IB a* t* BO- IT 114 31 34 fl 1C - a-1 4 1ST - f 33 3 4- 19 1 *4 na 3 4 -1 4 •3 1 fl*•1 4 25 -flT 01 - l f t - 1 0 4 Tft•1 3 204 214 Ifl -1 7 1*0 - 7 a-1 2 an -na 4 4 -1 * 70 29- i r 166 4* 2ft -1 3 B* -2 4-1 4 a n 13 39 •1 4 m Aft

- 4 264 - i m r* - I f t 40 • l i l t-B :I21 ftft* 11 -1 2 -41 -0 2-T t a t • 134 17 - l l 1 4 * - t f t*- a 4 ft * 32 - in 4 2 - n o- 9 71 - B * 2ft - 4 9*3 2* I- 4 4 3 6 * 29 - n 72 22- a 37 - 3 a s 94* a if t- a ITfl ITS 14 - * 144 • Sill

“0-lOS -an4 K 19 - 0 149 78

•7 fll -3141 -19 •3 -a* 42 -4 1fl4 2 j*aT -1 2 174 174 S3 •B 1 ia • n aB3 - I I -77 7 41 -4 a* n o43 -1 0 73 a SB - 6 IBS • ta i84 —4 -49 •34 47 —3 44 43Sft • a 44 •24 47 • t ISB -1 14aa -7 33 •23 ■0 0 •43 -4014 -4 4? •32 94 1 -BB a12 •3 TO 80 5* 2 IBB 1341* -4 194 -19* IB a 50 ft*IT -a 243 391 14 4 a* -13128 • 2 113 -4 50 9 189 123II -1 293 323 13 4 4 t •1 2 023 • II* -161 S3 7 -a* II24 1 • Bl -T 30 fl -a* -2793 fl -Bl 14 20 0 -79 1*10 a 140 93 Ifl to 178 -44II 4 -74 —44 90 II TO IT43 9 1*0 • 104 14 12 l«7 7221 4 2*1 370 1313 7 299 -240 IB 4 1: IB19 a 303 330 I t14 4 1»* -74 27 -1 0 -BB -9I* 10 42 -94 4« -4 84 ftlIB 11 29 4 46 -fl 40 -34ai 12 113 -** 9ft -T JO* *4*4 19 137 3* 37 •4 BB 4022 14 71 -43 43 • 8 -03 •a*43 “ 4 3* •1 243 4 R; to -3 14 13

-3 in * BA-If l 44 14 47 - I IAI -IM-11 47 -33 44 A B4 2

a s •10-147 37 03 1 1*4 -MM46 -4 -44 - i a 9» 2 177 I at60 •a *1 4B 91 9 139 -40no -7 1ST -174 21 4 04 *362 • C 1*3 flft* IA 8 42 11SI •8 331 -217 Ift A 144 -9434 -4 -79 30 02 T isa 1841* •a 167 112 34 A *7 -IS17 -3 63 • 30 a* A Tfl 1013 -1 5ftT 566 14 10 136 -14*IT O 364 -247 14 I I - 143 1243 1 -21 44 4*11 2 a io -tA I IS 4 X : i rIO 3 304 211 Ift19 4 -32 •57 97 - a -47 -IS13 ■ *S 62 3ft -7 -7 » 767 0 -74 •14 37 134 -7aan T •31 •49 40 -8 03 03in a 1 13 72 2 * -4 01 -4*16 4 1*1 -14 flft •a 141 t*214 to 134 ft4 31 • 2 53 -43IA tt |*ft -77 21 • 1 *3 -99ftft 12 |6ft IIA SKI a 41 -IftSft 13 121 13 n*» i 91 •4493 131 isn41 4 X IS A 14* -1244ft « 43 4264 - I I 163 72 27 n 113 -15m •IO 16* • 19* 21 ti ra* - n r

S3 • t 933 IftA * •1 2 145 14223 *4 1*9 •514 12 - I I *4 -724 -3 311 -311 • -1 0 14* IB*SI - 2 46 • ISA 39 - 0 142 -18341 -1 419 •410 4 -n 44 -31St A 2*7 2*»ft 1* -T 324 •89097 1 163 - Iftfl IT •ft 323 35440 3 Sift 2*7 12 -3 373 -2031* 3 32* 15 “4 3*4 373B3 4 1*9 -171 1* -3 84 Tflan B •BA • 92 an • 2 04 4464 4 —40 a t 41 •1 4C0 47976 7 IO* -43 3ft 0 MT -36144 a -07 -13 9* 1 347 8*4

4-162 49 21 3 262 - a a oI* I3T -134 S3 9 40 • IB11 44 39 32 4 4*0 >444

34 12 M * -44 a* 8 04 - 9 a43 13 n a 104 34 4 147 4343 7 *4 •033ft fl K -2 a 979 37132 * -33 • 40B4 -I* 142 120 34 10 43 7441 -IB 44 •43 93 11 to s -7024 -17 74 3* 4» 12 -40 n a21 •1* 44 42 40 ta - is* •4411 • IB 47 •M 4* 14 -70 T24 -14 ta * 199 36ST -19 190 -19* 30 9 K 022 -1 2 2*9 SOI 1113 - I I 2*2 -292 13 -14-119 -112 -1 0 -51 0 Bt -1 0 04 a *11 • 4 94 - 4 | Oft -17 •93 -4412 - a 112 •74 2ft -1* -31 *80 -7 *4 -IS* 23 —13 04 -1 0

IA -4 120 -124 in -14 191 “ 13412 •S 122 120 Ift • 13 22* 34510 •4 -29 71 49 • 12 two -834Ifl •3 903 B64 0 • II 201 3*433 —2 -32 13 30 -IA 44 “729 “ 1 flft* SOB 1ft •4 409 971IS 0 444 -4*0 4 - f l TO fll94 1 74 94 24 -T too -78Ifl 2 Id* -174 ta •4 •44 7*Sft 3 -23 14 so -8 3*4 *27494 4 1*4 -512 14 *4 892 89490 B a* - 19 43 -3 2*9 “5 «2 ft * 2*7 91* 12 - a 164 182

7 01 -152 91 - i aa* - f l l *a 24A 321 17 a 47 -1 0 04 •31 • 44 44 > 224 26*

44 10 tS4 no 34 a 42 • 024 t l 104 IS 31 a 30 •4453 12 73 • s o « l 4 111 - n a34 13 • I 47 34 8 134 Oft32 * 252 -24623 « 1C “ 1 7 - 4 4 202* a IT* -1*733 -14 Bl 0* 41 0 44 -47IA - i n UT - IIT 36 i « 06 •T l3ft -IT •14 -41 70 t t 44 4411 - I f t 73 -S I 37 la 44 O*3A • rn -Oft 04 n« m 102 -TS16 -14 13 43 *7 14 0* 7611 -13 94 14ft 4*

S 3 7 133 OB 3 6 -It 4 4 8724 a *30 77 S i - 1 0 114 •Tfl47 * 140 a i 2 4 - f t - 12ft - 13* 10 Tft -4 1 ftfl - a 17 7 42fl - 7 • 7 • 7 184 ft E IB “* 72 34IT -B 7 0 IB57 • 7 1*4 1*0 3 8 -f t 190 -2 1I* -ft 44 -ST 84 “ f l - Iflfl • 449 0 •B • 70 - 4 * 4 3 -a IS* 1942* - 4 7 4 “ 63 ftft -« l i f t - I * *1* -f l ra SJ 4 3 • J l l • 2 483 •a - 7 2 - M « l i 0 3 25tfl - i IM • 7 a« a - o s - f t t14 0 Oft -TT 06• 2 t 1*1 *4 S3 B E -ta8 4 a - 4 4 • 8* 8 9■4 B • T 20 44 • i s - i i * 4AS* « 04 *4 37 - i a Bft - 2 020 ■ to* -TB S | - l i 7* 7A44 * •TO • a ftft - 1 0 10* •fta84 7 6 4 •as ft* -o 192 0 7

a 4 2 -B l 37 - a I7A —J 7 |* 179 “ 150 a* - 7 iaa - 7 0

-ft - 0 4 -I B4 7 ft X 10 - 3 37 - t f lBft - f t - 4 8 a43 - 4 “4 6 9 2 4* • a -5 5 - l *34 • s A* -IO T a * - a - 7 7 444 4 - 2 TO • 13 41 • 1 • 7 * - B ta * “ 1 n a • 7 0 fl* a 203 t l *4 4 a - i s * • 2 0 i 135 -1 2 1* 7 t 2 1 4 172 14 2 IA* |S 22 5 a 41 • 4 3 8» 3 • 7 2 • o r27 9 3 5 5 13* 1* 4 -1 2 1 -Bft* 4 74 • 0 0 4 4IT B - B l -3 f t 4 0 B 1C - 1 2TB 4 a* - I A I 34a * 7 At - 1 7 4 « • 1 4 1*4 49 5 “ 16 - 4 * -6 144 4 1( 2 0 - 1 3 - 0 7 3423 - I I “ 34 -3 12ft - t • 7 -2 f t 81 -1 f t ftft 4 643 a 8 0 *5 97 - 4 2 0 flft94 i -4 4 -« 4 0 o - I i Tft AS3 a -7 2 -4 3 4 0 —4 2 1*3 4 a 3 7 “ 3 0 7 2 - 4 137 •1 * *

*B ISA 8 3B X - I B - 4 25* -2 0 *

• 3 133 i n i47 • 10 - 7 8 M 44 • 2 —40 - 443 - a A 2 6 • 2 - 1 0 4 09ft -A 4 0 ; t Sft 0 114 • 1a* -T (All 24 33 1 - 4 4 3 03* “ft 53 73 03 a 4A a sIft -B 46 * t n 6 4 a J t f t “ 10ft4ft • 4 7 * TO 40 A - i r i •Ml9ft • 8 144 - 1 3 4 3 0 0 164 -* »45 - 2 1 tft • A3 6 3 in 14Aft “ 1 “ 3 0 43 323 0 a IT - - 8H7 ” 4 B K - I IIT34 fl X - 1 4 - 1 9 - 1 6 1 -6 f t57 •1 4 - 0 7 - na* • 1 3 I f tl •1 1 * 3* - M •ft - 1 7 *

IB B 1t 1 a - I T I*S I 0 • I B - 4 0IB - I f t -9 1 - 4 4 04 t o 0 4 • p aIT • IO Aft 83 BS t l 01 28

33 - 1 7 2* - 1 10 04 12 1*0 - 1 2 *ft • 14 4* 03 31 13 a* 43* “ IB 82 - 4 4 44 14 117 • 1 * 2

1* - 1 4 80 -2 f t 8*10 -16 1 M I2S 3 3 B 1C S2 7 - 1 3 3 7 0 -3 3 9 I I14 - I t a r r 2*9 r* - I B M l •1 8 2ft • 1 0 311 -2 * 9 ia - 1 7 51 Bftft -f t a n IT* 13 - l « *4 • 4 5* - a 123 - 1 1 9 10 — |S - 2 2 54

I t - 7 13* 132 17 - 1 * - I S TTa * • 4 a n 70 20 - I S ISA - 1 8 0i* • B - 8 0 - 3 4 37 - 1 2 177 14323 - 4 (4 0 • 1 4 2 12 - M 2 7 * •2 4 *23 - 3 a* 2 4 3* “ JA 301 3 4 03 4 - a 41 • 3 31 4 6 6 - 4 1 *12 -1 flft B -2 0 * 4 • A fl* • 2 54 2 0 133 14* IB - 7 TO -Oftt o 1 8*3 • 2 *0 0 - 0 271 •2 * oa * 2 3 4 2 9 *8 0 “ 8 4 7 7 4 4 33 * 8 192 - J 3 l IB - 4 2 8* • 9 0 38 0 4 1113 2 * 3 14 • a 37A Sft«43 B 10 4 3 04 • 2 180 • a i s

4 Oft - M 34 - 1 IftA -1 7 17 i n i t i n IB a 21* -2 6 10 219 -3 3 3 14 i 3AI 24*

a s * IS 4 2 * 3 a 5 4 3 - 2 4 6a * 10 2 4 0 •3 3 7 IS a 14 •0 3* * I I • 3 0 IPfl 0 4 4 7 0 474 4 12 ftT - 4 3 a a B B IT • a s *fll 19 4 3 19 B« A in * in na i r* 01 - * l 40 T 43 -4 114 0 - 4 0 3 0i a B E 5 A IO* -1 2 314 1ft 13* 1*0fl* • I B 4 40 11 n n - 7 7to - I T n o - 4 * 31 15 501 IBAa s -1 4 TO B 37 IM 103 -flftIB - | S •RT “ 4 0 32 14 I I I • 4 *Bfl • 1 4 139 133 a s

ft - I S 1*0 • 7 * 27 B K 4• - 1 3 - 4 4 0 43ft - I I 87 - 1 5 4 3 0 • I K 84 • 8 2

i a - 1 0 n a 64 97 • 1 7 1*4 14310 • ft 1*3 - 1 * 7 IB - 1 0 IBft - I f *5 0 • a 5 * 2 -5 4 7 I I - I B 191 IftftI I - 7 “ 7* i a 33 - 1 4 - 4 3 34

a i - 4 5 9 7 - 3 7 4 10 - I S Tft - n aB* • B SOI a n * 0 - 1 3 B l - i21 - f t KM *5* 4 a • t t 44 - o nIfl -B 71 0 7 33 • 1 0 - 4 9 nn14 - a MT •2 2 A IA - 0 -ftfl • 3 4t * - i 73 73 23 - 0 3 *6 2 *4IT a f t l 10* in 197 -1 6 *4 4 i 4 ( 3 -AAO 0 n a * 346flft a 3 7 * 391 0 - 3 IM -I f tf t41 B TTA • 7 * 0 I I - 4 - 4 7 - 9 *■ 7 4 4 3 3 4 40 • “ 0 -7A - S tBft « - ( » 2 a » l i t “ XV»0 0 ft ftft IAA 62 • r -1 f t -3 1

t i r o 1*3 Ifl •% -+ 1 U

i* -13 4 t 44 Bt • a a* -B l 2781 - I I -23 •142 04 - a ISB 1*3 I t31 - to ITB 144 I* - i 10* 41 337A • 4 rtaa -IBS IT A *9 47 as33 - a •AI 03 43 1 fl* •30 OT40 -7 144 -m o a* a -80 -TA 43a* • 4 122 n o 20 a 49 a s 4424 • S “07 4ft 41 4 13) •M l 3634 -4 143 -177 Ift B 117 41 54a* -a tST l3 t 54 A 149 • I I I a i91 -a iSft -131 fll 7 40 4* 4095 • i 129 AT 23 a -8* *a 9397 a 12* -41 24 * 37 9 9740 t 14 -43 47

a • 94 -93 44 B E -Bs -*3 97 44ft-133 -43 a* -IT ft* -1ST BS

94 B 104 103 S3 -1* 73 91 43Bfl 4 -0 2 90 40 -IB loa •49 93ftfl 7 “Bft -47 86 -14 l u SI 2792 -IB -99 29 4327 9 1t - |« - tf l -BO 4 942 ft - I t 43 147 90a* •14 ta i •4ft an -1 0 144 “46 ra43 -13 1ft3 97 25 -4 I9 t 13* i*46 -1* 44 -47 Bl • a 037 -3*7 l iSI -19 •33 91 •7 -T IS* too IB44 •13 -33 Ift ■7 •ft 11* -1 2 0 2334 “ IJ 19* -124 2* -3 •SO “fll 4*42 -IB 74 44 as -4 *3 TT 54ta • 4 -44 -47 BA • s At -41 42a* -B -43 10 □7 - 2 143 109 IB33 -7 41 — t 17 flft -1 - 2 0 •4* 9a44 -4 s a t 22* Ift 0 04 *4 309ft -3 I5A - l i f t 26 1 140 -IBS 20

-4 12* 133 an a -TB B4 91-3 SI •71 43 a -SB •2B 30- 2 74 9* 04 4 333 342 14

aft • 1 10T -IIT flft 9 - IIS -Tft 373ft a 1*4 -37 53 A Bl -4* 9444 i 79 ln7 BA 7 -24 32 *337 fl All — 1TB Ift a •BB -7* 3441 a ISS Ifl7 a i 4 -41 ft* ftft41 4 132 -141 flft 10 49 -74 3737 B 14) 144 2 ft41 * (ftft -132 24 3 *: -7a* 7 io r 34 an30 9 lo r *0 39 -IB •91 •9 8314 •IT •4 a 9320 5 E - 4 “ JO 43 114 3447 -IS *74 •42 4103 -17 *3 4 97 - l« 264 536 Ift57 - U -76 -37 43 -13 13* -4* 33as •13 -BA •a* 44 -13 40 -2 0 4940 “ 14 -fl* « 8* - I I 47 -83 4317 “ 13 lif t 73 2 * -1 0 130 -11733 -15 or •42 S3 •4 197 “ 132 7557 -1 1 143 132 as •n 37 43 49-a - 1 0 n o — (A) 3ft -7 3*7 fl*3 13

-4 74 Bft 110 “A IS •70 *1“tl Iftfl -131 1* -n IftA 1*3 1*“7 153 131 51 -4 -IS -a *1

31 -4 —flft 50 5ft -3 94 20 9404 •3 5*.* -fl'lft in -fl 249 -226 1237 “ft '•fl 42 2* - I 191 trrj 14

97 t 441 439 * -7 224 323 ia43 a flA* -300 4 -A 1*0 44 in31 9 • 03 ft IS 4 • 9 -2B 14 4441 4 3T3 -334 4 -4 1*1 1130 B IT* 141 IB •a 342 -244 II37 ft 366 -347 11 - a 73 M l 36a t 7 no •34 01 - i ft* •91 34

a i a i 171 IS 0 ft* u a IB* 2 ft 7 -24* IS i 331 •323 *

10 13* 174 fll a 124 -131 ITa* 11 - 101 -a* a s a 41 “ 42 6783 12 flft i n *4 4 “A* 31 5633 18 153 -39 AT 8 a* -40 234* tft -43 04 47 0 IftT IBM 1*4* IB 04 4 OS 7 334 a s t M33 O 72 “07 32IT 9 E 1 4 l to 113 2 »13 in 261 -344 1410 •IB lift 77 95 11 4ft 73 4410 -IT 140 as s r la 12ft -191 —ft44 -Ift 4 1 57 6A 13*114 -1 0 Oft2 ft “ l« AI 1* 41 14 174 143 351* -I* 106 •Aft IB 19 •AS -14 4*A •13 BA -30 91a •13 1*0 “ 100 29 8 1: ra - I I 101 97 a*

li •1# M -41 a* -IT 19* — 1B7 37n -* 177 1*1 to -1* 117 154 61to -ft 103 -Bl 28 -13 197 -132 344 •7 221 242 13 •14 T* AO 37

1* -4 143 301 tn -13 >07 - t t SI83 -3 4AT -4TB 4 •13 -Bl -•A 3637 -4 424 440 4 - I I aa 94 a*10 -3 453 •390 a -IB -74 23 9114 •a 210 234 i* -4 27 IB 4436 - i 043 -849 a •B 94 -40 41as a 1ST ISl is •T -8ft an 3424 i 127 •1 2 0 19 -ft 301 -946 1039 2 263 “560 10 -8 - 8 4 1ft 913* 3 461 41ft 4 - 4 *2 -a* 21IB 4 • i a 73 93 - a 3|9 flTJi 402 a 174 170 14 • 2 130 -IBS 1935 4 107 S 31 - i 4AS 431 *

7 IS7 139 tft 0 34 4ft 91B 19ft -a if l in t 1J8 - i r a ia4 191 aa IA a IS* m i t«

a a 10 “ OS 31 03 0 -7* 3 2ft30 11 33 as BS 4 DA 9 3*22 Ifl Aft -B 441 3 Iftfl - tf t f ro33 13 —A 1 -74 47 4 •4B 79 343U 14 aa a an 7 244 -2*4 130ft IB -47 IB 37 a 104 •BO 2130 4 94 77 ST24 8 X 4 10 -AH 4 27aa II 21* 2*a IB31 -17 74 - i n s 44 13 •59 7 4.111 -14 AI 4T 47 11 44 04 nn1* -13 Bl 0 8S 14 Bl •on 4 64 - 14 - n i Bft 97

12 -13 MB •Bft 54 B R «03 - i a •14 -IS •a31 - n 967 141 to -IB 104 -4A 6*14 -1 0 flan -246 i s •19 17 a TA44 ITfl 1ST IB -14 32 •BA 4035 -n na* •360 IB - IS -M l - 4 6 fl*

295

"13 lit I4| 24 -14 64 62 98 •14 119 41 A3 -a tl -42 ftfl-ll ftft • I B 42 -13 1*4 IT« 32 — 13 144 -1*2 54 -7 144 -127 21"li tm 77 34 -13 49 -36 SI -13 142 173 37 -4 591 2119 Ift

i m -14ft It - I I 74 ta 34 - I I 9T -44 43 -0 2*6 •flan It-0 333 3*3 II -10 341 •291 1* • I t 132 *4 S3 —4 331 59* Ift•7 143 -197 IB -4 48 -46 a* -* AT C4 aa -3 *3 -42 87-4 IJ2 127 I* -a 41 -4* at -a 31 -A6 8* •5 -3ft 47 81-9 134 -I1 T 14 -T at -It 4ft -T 33 -T fl BA - I Bt -47 42-fl '74 -44* 14 -4 44 -•9 SO -t Ift -93 43 • B l -an ftft- 1 IT • Bl -a 414 494 IO - a M tan 2* a at 81 an- 2 327 -144 14 -4 *6 *7 27 •4 212 — 1*2 I t 5 it* - i t a 23•1 JAM 44A 4 • a 193 lift m -3- U T 9a 23 S ita ita 27

• 49 -92 34 402 6*1 i t •2 I IS -5 4 21 4 124 -a* 221 413 442 4 -l 41* -421 10 -1 •4B 3 31 6 134 140 SIa a* a 38* 4 4 11* 113 so 4 144 -ita 24 ft jat -I T * Ifla-■ iia 22 34 1 ana -314 14 1 24ft 24* t s 7 1ST 121 j nt *3 -*3 91 2 143 44 31 3 •Bft 1 27 a 3 3 •an 40s 344 -132 10 3 fll * 3 97 S *4 -7# 24 t 169 an 2a• - 9 3 in *4 « 139 -1*ft It 4 At III 31 IO •71 -a 43T lit -191 14 a IT4 107 18 • 111 -It* 20 li 34 -34 ftfla £** yn? 13 * 107 -*A 22 4 173 It« 17 J3 149 74 Stft 91 43 7 397 241 13 7 Soft -Iti IKli 2*4 =A4 17 8 tl -113 0* 6 -4.1 41 3ft 8 KL IBli -31 0 *4 4 194 Iftft 39 t tl -At a*13 74 *31 37 Ift tl -74 9* 14 49 29 an -II 134 lift 3213 Sft -14 48 II 41 - a 43 11 OB -7 41 -16 ftfl -34 4414 -44 19 47 12 174 -131 S3 13 37 96 BN • t 63 86 37

11 -93 -Ift 80 n an 06 93 •6 43 -144 438 I 4 14-142 -32 26 -7 ftt 73 4ft

6 t ; 13 -ft *9 fll 4*"li -at -aa 94 1 R; it -3 117 -119 *4-19 u a 134 29 -19 -9ft -34 03 •4 •aa 86 43-14 234 -313 ID -IB 47 - 3 4 34 •12 -39 7 ftt -a -22 -ftl *1-13 132 194 2* -1* 12* 136 2* -ll -49 • * 6 4« •3 -39 a 43-12 130 -124 24 -13 ISl -14* =i -14 •fl* II 99 -1 -Ift -8ft tft-II -34 14 43 -13 41 43 33 -t -on - 4 9 4ft 4 153 inn Ifl

214 337 14 -II 42 •a* *3 -a - 1 9 99 ft* 1 43 •67 4*122 -114 93 - 1* ftft -3ft 3* -7 a* -lift *2 2 IS* in* Sft

• a inn M B 33 -ft 181 taa IB •ft £24 314 I* 3 I M - i m 1*-7 47 -Iftl 24 -n ftft -B7 3* - a -17 -ft* 40 4 97 •£n 81- t 74 3 27 -7 1*6 164 14 -t Ift -9 ftl 3 10ft 3 37-3 -74 •34 24 -4 173 -121 It •3 I M n « ID ft 1*2 -74 14"4 2*3 231 i r - a 46 -71 34 -2 isa -171 in T tfl 102 4 3- 3 34 -107 16 • 4 141 - |: W 16 -1 -*♦ 99 45 fl St -71 47-2 lill 139 31 -a 117 -f t* 3* ft at* -301 12 * ta T* 49•1 73 114 2D -2 aia 337 14 1 2*2 247 13 16 -2ft •22 40a 241 -364 It -1 *3 1=9 2* 2 133 •140 1* II 17ft It* 23i 174 -£J3 14 ft 14ft ISl in 9 2*1 1*4 IS3 22 -Sft ai 1 311 -»*♦. 14 ft 103 • 19* ST 11 I. Ift3 11 -41 ni 3 143 IA* It a -*T 92 3ft4 114 03 1* a 190 -191 It 4 H A 161 It -tt 117 143 83a 292 217 12 4 -3* -♦ft *8 7 113 •IIT St -* at -14 864 -3ft 19 94 9 -ts II 21 a -44 72 45 -6 49 •fla 447 Iftft 213 14 4 at 36 4*1 * 2*1* — Iff? 10 -T 149 189 23a ftft -44 39 T sa an a? it ISA -1*9 27 -ft 223 -2M4 1*4 141 -1*1 ST A 86 *2 94 11 ft -94 a* -» lit 13ft 2*1« 137 12 21 4 -13 in 84 12 IftO 114 3-t -4 TO -IIS ftl11 IfJD '-17* ia in -*2 -i *2 13 144 -41 37 -3 •77 57 9412 121 lift 24 II -42 3* ft* -2 tt -tt 3113 -ft7 -3 43 13 -•.ft • Ift ft* 8 X 14 -1 74 4 9T14 -27 On • * fJ to A 1 ft* 6 •33 83 8ft

14 18*1 -17? 21 -12 lit •147 ST 1- 1*4 •43 BB1 a IO -II 49 2* 37 a 147 164 234 K 12 -in «n • IS 9.1 3 194 -124 21

-ta T4 *? 49 -ft 1*2 3T at 4 *B 136 33

-a 1*4 -13* ft *2 3*8 344 14 -S 14| At 21 -4 *8 -139 23-2 -ftft 4 27 -1 292 •336 13 -2 ita -1*2 22 -9 I6tf • 172 14-I 142 40 ?* ■ Iftl 41 24 -1 it* 197 74 -4 274 23* 12• 147 -It* 1* 1 141 • 133 29 6 9 IS -C*3 l 1 •9 “93 • 4* 321 117 *a 22 2 3*9 1*3 14 1 -37 -24 4* -3 303 862 Ift3 24 — 107 ft* a H -31 42 3 *ft -111 £9 -1 Iti iai 133 l i f t 181 3 3 4 -44 It ftft S a* fl* 34 6 1*7 -223 134 143 -149 17 B 99 -* 81 4 M 3 194 » 1 1*2 •131 14B 41 44 3* 4 4t -142 94 8 1* 41 *9 3 1 13 -III 26• 133 -109 29 7 102 - IB 20 ft 127 133 53 3 969 -834 tl7 -34 49 94 8 -2** -a? *3 7 941 -31* 13 t 63 6* 26D M 3 -77 31 4 87 47 33 O 2a 5* 80 3 *3 1 It 84* -12 83 47 1* 41 77 37 ft 134 -140 33 ft 163 • li* IftIt 79 64 49 II 142 30 33 14 flft 33 39 T sot 523 Ift

It -33 13 ta 6 a t •ftft 834 1C -B 4 1c -a 13 -Aft 38 42 t it* 1*2 21

10 IT6 - n a 5*-IS 44 • 94 -ia -87 80 ft 1C -1 11 •76 113 40-IT 4* -Ift 98 -IT 60 -44 ftt 12 -tt -47 37-li 44 2 S3 -it tft 2ii 92 •IB 74 -IT 44 13 -34 -ftfl 47-13 191 43 39 -19 -149 •78 32 -17 -ft* "IB 44-14 44 -14 92 -14 iaa 127 23 -14 39 -t 87 4 1C 1-13 124 Bft 34 -19 lit -129 at -13 2*1 ITfl It-12 122 -108 33 -12 331 l*T 14 -14 Oft -96 S3 -IB 49 Bfl ifl•II aa 64 3* •II 41 -72 6* -13 I3B III 21 -IT 19* -Ifl* •4-li 43 -124 24 -I* 143 *4 17 -12 20* -331 It -14 23 68 68-4 “64 44 34 -4 3ia 231 ia -»l Ift* -4T 32 •13 U l -16ft tl-6 44 T* 26 •a 29* •241 19 -16 842 -32* 11 -It a* Ift tft•7 143 -134 IT -T *2 49 34 -ft lift •113 34 -13 144 57 SB-4 44 149 39 -ft 1*1 -1*6 It - a 1*3 -IBS 1* - i a 153 112 S3-a T3 *4 96 •a Bl 16 ft* -7 2ft -IT to • 11 191 122 10-4 •43 -34 33 - 4 834 - l l t 16 -4 6 i a 62* 1 1 -16 23fl 637 It-3 143 - 1 * 4 IS -9 19ft 137 IB • a 1*4 •3*6 19 •4 ITB •212 14-2 224 233 ta •3 76 •18 ** * ♦ 914 374 It -a •82 •77 67-1 234 -249 ia -1 29ft 691 13 -3 2fll •313 U -T 124 127 1*• 222 224 |4 4 916 364 11 -2 143 — 1*6 18 -ft tit -IIB It1 149 -164 IT 1 tft 143 34 -1 14* -136 17 •9 111 177 ft2 31 3* aa 3 •9 -lift 33 6 231 -291 19 -ft 46* •812 ta ■ 4 •31 41 9 324 •299 14 1 *2 -4* 41 -3 tfl* l*fl 134 112 -iaa 33 4 144 -121 29 2 193 • 10* It -2 *0 44 St• 3*9 944 13 8 oat -3*2 IS 8 1*4 II* =4 -1 fll fl* S3ft -74 -89 37 4 164 at 36 ft -at 16 43 4 3*6 570 t7 144 IIB 36 T 142 -1*6 21 a 294 333 19 1 64 -tl 43a IftB -182 It • 237 24* 14 t -72 -93 39 3 157 121 It4 a* -S* 37 4 44 74 S3 7 1*4 194 It 3 lift -117 SI14 aa -77 91 14 -41 • 1* ST 0 ft* 81 27 4 223 fll? 13

11 123 30 3* t 41 •21 ft* B 344 •63* It* X -4 14 1*2 •63 31 ft 126 -III 23

6 1C -3 11 *9 -*1 47 T-iia fll f t"IB 41 -49 as 13 144 II 54 a TS —42 64-IT T| — J4 43 •16 Bl •142 76 t 72 76 at"li -73 48 49 -IT T* *3 43 « it 6 16 -42 •8* 81•II 911 B 49 -It -47 • 12 ftft tl *2 64 64-14 47 2* 84 -19 48 -1*3 82 -IB 61 lift 4* 12 *3 •43 64-13 at —43 31 •14 -45 •33 40 -17 77 - It ft 13 tft 12 60-12 1 1* *9 27 -19 ISO -ISA 2* -Ift iai 167 Sft-II 83 12* n* -12 Iftft 117 54 -19 tft 14 6ft 4 X 5-14 142 -49 39 -11 -50 4 81 -1* 134 -144 57-4 17* 144 It -1* 31* 3*» 13 -13 I M 106 5> -IB 44 -12 IB-a 137 0 4 7 ll “ft hi •IIO 20 -12 2*3 •234 It -IT IIT 167 6 6-T -S ft 4* a* -a -32 -73 f l l -11 163 166 39 -Ift IIS -aa SB-4 81 "112 36 tt(l -133 19 -14 *3 * 00 -13 •Tt t aa*■ 172 »"* 1* -4 4ft I U 29 -t 13ft •83 a t -Jt 133 123 29-4 47 •5 7 at - 4 140 -170 14 - n 104 -143 it - 1 3 319 -562 18- 3 -43 -14 32 -4 aa 87 54 -T Aft 64 3* - 1 3 t a l i f t XT

a ftt - l i t 47 - 7 - I t "10 04 3 IBI i t s S3 - f l 8 9 - 6 3 t t■ 31 - 4 - 1 2 * 32 31 t - 3 3 -IT 4B - a 6 4 - 4 4 B l7 - 4 7 - t 42 - a 124 - 4 3 2 * 8 • 4 7 I t 37 -T T0 4* 8 3

• • l i f t - 4 4 38 - 4 31 • 4 3 tf l - 4 07 - 3 4 s at - 4 3 I t 4 7 “ 3 124 -1 8 1 3ft * 1X - 1 6 - 9 ITT l i f t 16

I t flft -T fl * 2 - 2 t t t t 9 43 3

- 4 154 93 » *- 1 - 7 8 • I B 43 - 1 8 BB 8 3 - 3 163 t a 3 8

S 1R IT - t t 12* - 7 4 2 * - 2 * 4 •flft s a• 1E - 1 8 - 1 3 o3 t l 8 6 •1 T l f l l 6 4- a 91 S 3 a a

• 12• 12 - 5 4 -7 1 *4 0 - 6 4 4 0 8 2-?■-1 4 3 •T 5 7 • a a 6 91 • I I in * 7* 2ft 1 87 • t t 41-f t Afl - 0 4 3 7 •1 1 -T fl t 43 - I t “ 44 - 4 7 B l a 161 T i 17

- f l I t* 124 51 - J 6 - t o in 37 - t Ifll 126 27 a 44 -IT t a-f t i7 a - H A I t - * 115 13 3 6 -A -1 4 4 - 1 2* t 131 184 54- f l - f l* 7 7 4 2 - a 124 • 1 4 4 9 6 - 7 11* 111 3 7 B - 1 7 •1 4 1 78• 2 i s t -1 3 9 3 4 - 7 -9 3 13 3 3 -ft 40 6 s a • 136 136 81*1 147 7 31 -ft t * ft 3 2 - 9 *7 - t i t 61 7 t a -7 ft 3 *

6 “ I t i fl 31 - f l 8 7 7 0 a t - t i t a IIT 5A O 4 3 s a ♦ft1 ft - 4 ftfl - 4 74 - 4 3 4 3 - 3 5 24 - f l l * tft6 Iflft 3 3 29 - n t i n 144 5ft - 2 I t* B l S3 6 1t -T6 167 - 4 * 2* - 2 - ISA • 9 4 a t -1 4 3 -1 3 1 4 *ft 1ST MB 3 4 -1 6 4 -I f t an 6 3 7 161 43 -IT -■Ifl? t l 66B<•1 1 7 -I f t n o • - 4 * 13 4 7 1 • a t 36 43 "14 • 8 3 Sft 83ft Iflfl 4 6 23 1 6 3 t l 4 2 a 9 * 6 BS - 1 8 S t 11 ftlT 44 - 3 3 47 5 41 11 t * 3 3ft 113 4 4 -1 4 -• l i f t S t S t• Bfl ftt a* 4 - I B - 1 4 73 - 1 3 - 5 6 - 8 4 Bftt l«fl -I f lf l =2 fl 1I - 1 3 8 6ft 4 6 4 0 - 1 3 • l i 3 6 4 *

- 1 8ft - * t —47 3 * • II * 7 -T fl 91

8 K IB - 4 7 • I f l 8 0 - 1 6 143 IB* 2 3- 1 2 t t tft 9ft « 1C - t -ft 146 - i a i 3 6- r -4 4 - 1 2 S t •1 1 144 - 1 * 4 94 - 6 53* 6 *1 14- 4 - 1 9 2 Ift 3TT — 16 * 3 2 4 33 -1 * 13ft Tft 5 6 - 7 fl* •BT 34

• 8 69 - 3 6 3A • t 3AO - I t t 26 -1 3 143 • a 53 • 4 - 1 2 1 —53 32-ft •31 -6* 4ft -A 1 AO • 2 * 32 - 1 4 • 3 * 4 7 8* “3 1*6 Sft 24• a -2 9 -4 T ft* - 7 2* 2 0 43 • 1 3 - 4 0 • t f l 83 - 4 8 6 - 7 7 64- 2 *4 4* 29 “ft —71 - 2 1 41 - 1 2 - 9 3 • 3 2 if t - 9 13* f l l 2 6- 1 • t a 87 a? •fl 144 114 32 - I I 112 161 2B - a 533 •2 7 7 IB

6 *T - i t 33 • 4 r sa • n o 21 • 1 * 134 - 0 7 2 3 - 1 326 62S Ifll - l l l Aft 3 3 • 3 2 1A 2T0 IA -ft T t T t 31 6 5 83 - 5 3 0 14a 144 - 1 0 7 27 * 2 - 6 7 - I * 44 “(I • 1 4 -1 6 ? 43 1 311 261 I t8 133 A* 34 • 1 172 « 2 fll • 7 SIB 5 1 2 14 2 Tfl S 3 6 3ft • 9 3 • 13 US A - 4 5 —Bfl 4 4 -ft *7 •3 1 =7 a - t a • 1 6 4 38 t t -S 3 :»* 1 in * in n i - 8 - 3 4 - 1 a* 4 • i t 6 8 6i 147 47 5 41 - I I A 4 9 - 4 121 134 33 6 I t i - I t * 2 37 4 * -4 4 44 fl*• n * - * 4 31 *1 37 - * ♦ 8.1 4 I I I l i f t 36• - 9 9 Aft 33 • 2 107 113 £ 7 T •ft* - 7 * a t

4 X - l | • I ft - 3 3 61 D 16T 4 3 3 2a 8r i* A £7 97 Aft ft 184 -Tft 3 *

- I t • 3 - I t 43 1 173 - I t * 1*-ft * 7 7* 94 - 1 3 a t -1 = 9 7 3*>117 43 an 4 ■ - 4- 3 149 -1 5 0 2* • 1 2 *3 IO 43 a M 6 33 £ 7• 5 121 A* 5* -1 1 *1 f ll ftft 4 111 47 f ll - 1 7 • 3 3 4 4 7 6-1 137 •3 1 24 -1 4 ISS 33 3 -1 = 4 a 54 - I t 6 •T l * 5

6 i t r HO 2* • 4 41 >03 33 ft 14 IB Bfl - 1 9 i t a 16* 5 51 A Aft 44 - 6 - t l - f i t fl" 7 -3 7 T i Bfl - I t 134 - 3 6 2 5 62 1211 - M 4 ftft IAI - 3 n 2J! - 1 3 - 118 14 84fl Ai u 43 - 4 84 ' 3 « x - a - I f l • 1 - 1 5 3 3 34 i*r» - i n * 24 -r. 111 •1 5 5 :r* -1 1 27 7* 8 2a A? • f l2 flft - 4 -5A 7.1 AO - 1 4 u t 137 33 • 1 6 147 134 I t♦ 1=1 - 7 3 fll -1 211 fin - 1 3 - 1 7 - I ? 72 -ft l if t •ISA 34

• 2 t o 0 9 4 —14 191 143 24 - a 273 194 8: - i t “ l 7 1 s t **% - 1 * 113 - 3 4 SO - 7 333 -5 4 * 14- 7 3

A it : i 4? M 4ft Tft 3 0 • 4 157 120 2 0- t n o Ofl 1 •n o - 1 • •Tft - 4 3 34 >9 - * 2 11 2*-A ft* 9 in** - f .1 74 -!'*>•MO 13 2 r* - 4 SB • 4 0 JJ

- I I 192 -I ftfl 51 - I t T i - I I I 4 3 A X fl 12 - 7 3 - 4 6 44- I t 339 Sflfl 1* • 1 8 i t a 6 * s a 19 * 3 9 6 97

-ft 149 • i a a 17 • 1 4 - s a • a t « a - I T 122 -1 1 1 B l- f l 149 ITB I t - i s 8* - s a s a - 1 4 134 i t 27 4 K B- 7 5 4 3 yn-f 12 - 1 2 tflfl - 7 4 S 3 - 1 3 t ? - 4 6 Sfl• t 107 - 1 Aft I t • I I 344 3 4 3 14 - 1 4 167 73 20 - 1 4 l l t — 164 9 3- a S in 3 3 6 12 - l i 2 3 3 "272 13 - 1 3 127 - 1 5 4 21 - I S 1*4 136 2 t- 4 3tT • 2 9 3 I t • 4 - * * 21 2 3 - 1 2 11 IAI 4 3 • I t 71 • 7 6 42- 3 * 3 127 51 • fl i t 44 3 0 -1 1 111 M 3 21 - I f l 118 l i t 27- 2 4 IB - 3 6 4 A -T 194 - t i l IT -16 IT* - 1 4 7 17 - t f l Sft 7 4 4 6- 1 ITS 167 13 •ft 171 141 I t - t fftft 3* 9 15 - t l • 3 6 - 1 9 94

ft a t - 4 3 2 3 - 9 ITfl - 1 6 9 13 - a II I -1 6 3 22 - 1 6 • * 7 9 3 431 t a I t 2 6 • 4 2 4 4 ITfl 12 -T 2 16 5 * 6 13 -ft 344 —86 4 I tS v n =63 M • 3 3 3 2 -S t f l t • 4 4 6 • 1 6 31 - a 54ft 3 4 6 I tS 7 4 * 7 30 - 2 8 9 6 93* t - 8 a* a t 4 0 -T a?a • 3 4 6 11t 3 * 2 3 3 8 16 -1 t f l -1 3 1 2 6 - 4 a i t - 1 * 2 13 • 4 2 1 8 2 3 5 198 - t f t a 93 6 2 1 6 214 11 - 3 AO 147 2 4 • 8 t t * • 1 4 3 Iflft IftA -T a 22 1 IT* -I T * I t • 2 ID* - I t t 14 • 4 a * - 7 34T 184 — ISA 16 3 9 4 4 -2 ft7 16 •1 I3T 193 I t - a 1*4 I t t I ta - 4 2 40 t a fl 2 9 4 2 7 4 II • 168 -1 2 2 a t - f l 1 > 4 143 14ft 341 -3 9 4 I t 4 3 36 -9 9 * l i 1 144 •1 3 ft i t - i 3 8 7 3 T | 16

Ift 117 183 51 I 140 II I in 2 9 * 4 9 47 t 6 IA6 " li f t 1611 T t - 2 6 42 4 311 -1 4 1 12 8 i t a - I B 31 1 67 a s I tI f 54 2 3 47 7 100 Tt 24 4 1*7 a i t IS a 63 • 4 3 2 *Ifl 141 t l 24 a *2 4A 87 fl 2 22 • 2 0 2 I t 8 142 - 1 4 4 IB

• 161 1 Ifl 2* * 223 l*A 13 t 4 1 6 - 4 5 7 164 | « 16 77 23 33 T i t - 4 0 a* 6 163 168 18

11 74 33 34 a 31 6 a* 4 t a -S T 44-t f l IB - 4 4 7 7 13 • 2 4 -S t s • - 1 6 - 3 3 41 7 u a 184 Ift-1 7 IBS 143 23 13 4 7 —0 7 04 I* 174 - f t t a t a 3 1 4 1*4 IBM i •T ft - 4 3 44 i i 144 16* 2 3 t - 4 3 - 8 3 81-18 ITT 144 5 6 4 1 • 13 77 - 4 4 40 i i IIB t l 88- I t «7 •M 3 4 7 13 l * i 804 S3 l i I4T - 1 7 6 5 5-IS - 3 4 - 2 4 87 -I T 4 3 -1 * 7 4 4 13 1* i t 78• I f SB 1 3T • I t flft 4 2 aa 4 8; t 13 i t a -1 8 4 2 0•I I IS l - t a 1* -1 0 1*3 - 1 4 * 23>16 46 77 24 - I t 83 - 3 4 4 - t T • 4 9 - 8 1 06 « I «- * S tfl -3 * 7 11 - I f l 41 - 1 3 tft -1 * 79 163 t f l-f l 2 4 2 23* 12 -1 2 Ift 2* S t - i a • t f t - * 4 * - 1 4 44 -8 ft l a- 7 I7» 134 14 - U 296 S3* 13 - i t 3ft 4 4 3 • 1 8 141 l i t 28-ft 41 4* fll • 1 6 27 A - 2 7 4 13 - 1 3 I I I 48 2ft - I t IBI -1 4 1 28- 0 • S I • a 4 3 - 4 3*4 9 3 2 II - i f 71 71 3 4 - 1 3 a a 127 S3•ft - I T - 1 7 81 • f l IT* • 2 *3 14 - ii 134 - i t a 2 4 - 1 2 “5 2 - I T 4 6- 3 57 - t a 49 - 7 67 123 2 7 - i f l 1*1 1*2 17 -1 1 4 4 - I t 9*- S 124 132 Jt - 4 74 -S B flA - 4 134 -IB fl 29 - i i 68 6 4 2 6•1 *3 - t o 21 - a i t a - 1 * 3 Ift - a 173 1*4 17 - t 4 4 4* 84

ft 3 9 2 - □ 1 7 t - 4 1 7 9 0 2 3 “ T tft • 4 6 t l - a f l i t -2 3 4 I t1 231 5 4 7 12 - a - 3 7 - 3 * 3 0 - * t a 81 34 - 7 8 2 - 4 6 B4S t a a “4 7 4 16 - 2 221 3 2 2 12 - a 1 3 t fl* IB - 4 *3 • 0 6 »6 9 * 4 B 4 9 16 - i IBB - 2 * 0 13 - 4 - 3 3 - 4 4 4 2 - a TT • 0 4 S ift t i - * * 40 • 4 2 7 ♦ 2 7 t - 3 3 6 7 BOB IB - t flflfl f a t 128 7 3 -f t A 36 i 1*1 - l * « 13 -2 9 3 4 • S 3 4 l i - 3 17* - 1 4 4 146 n i 16 7 2 0 2 2 9 6 3 * 0 12 - 1 3 1 3 9 * 4 t • 3 339 8= 2 l i7 *4 t l 2 4 0 I t - 2 3 84 fl 3 1 6 - 3 2 7 16 • 1 - 3 3 - i t t afl t t 3 4 2* 4 fl* - 0 3 2 7 1 6 3 - 1 6 5 3 7 • I t* - 1 * 2 i tft - * 3 - S i S I 8 143 -1 3 7 IB 3 2 *7 264 IB 1 4* - I I 5ft

Ift t t t l i t 51 4 121 t t 31 3 - a a • 3 0 88 * “9* B l 41II iru -IB T 21 7 129 4 * 21 4 t a t 1*4 I t 9 “4 8 *7 8112 l i f t IIS an • IM -8 4 2 0 a 2 * 2 - 2 3 7 18 4 • 0 6 •8 3 4616 - 2 7 - 1 4 76 • 12* 123 24 * I t i 141 5 * B S T t 4 4 4 11

Ifl- 114 • i f t 2 0 7 24* -2 * 4 I t i 3 37 “ 333 124 X 4 l l - 7 2 6 6 41 a - 4 5 07 tft 7 2 5 4 a n 19

Ifl T* -TT t l * 121 43 85 B 231 “3 1* I t•16 ftft 11 3 7 19 -9 1 22 39 16 -a * t l 83 t 2* -ft • 9■IT ftft Ifl 44 11 *7* 22 8 * 16 • 1 tfl 99

296

t l n •2 ft 87 - 0 - 4 2 1 4 9 0 147 1121a 2 1 7 341 2* i IC 12 - 7 Tfl 4ft 97 • 154 - 1i t 1 Ifl * 3 7 tf l -f t -I f t# 71 01

- 1 4 - 4 « ftft 89 - 1 144 - 1 0 4 SB ■ E 17ft 1I tf l - I t TT aa 42 • 4 Tft ft 8 3

- 1 2 I I I 4 8 93 - t 03 - 9 9 91 184 l i f t- i s B 3 -T fl ftfl - I I - M 4 * ft* • 2 • 3 1 ft 93 - 7 - Ifl* •■ I

• « o f ll 33 - I f l • 10 0 3 - 1 M l — 193 3 8 - 4 - 1 8 8 4-1 3 Ol - 2 4 37 -ft 142 -1 2 1 2 4 • Iftft 2*9 10 - • Ifll • i t• l l - I M •4 8 tft - 0 t o - l i t 9 3 1 ftl -I f tf l 9 2 -4 * 1 2 3 • 1 8>11 Iftl •4 4 14 - 7 100 -ftfl 9ft 2 120 I I I 2 9 - f l - 3 9 1>11 III -1 1 4 27 -ft - 3 0 9 7 a* 3 53 • a 94 • 2 31 - 1 0t ■ 2 81 41 -B 04 10 74 4 12ft 49 2 2 - 1 183 180-f t ftfl - f l 42 - 4 33 47 Bft 3 7 2 - 3 4 ST • 117 - n *- 7 33ft 324 12 - a 142 123 Ift • 124 • 0 7 29 1 Iftfl 4 7-f t Tft • 4 80 • 2 Oft -4 1 2 0 T * 7 8 - 2 2 2 9 3 - IIT • a s- 8 2 » a 2Sft ta - i —ftfl 44 a t O l i f t - S I 91 • 133 41•ft 241 • 2 3 2 i t • Iftft - i t s 17 4 44 ftft 84 4 IflO • 9 4- a 34« - 2 3 4 la i 21V 2 4 3 14 Ifl Bfl - 0 4 ift fl I * • 1 3- 2 117 3 4 2 4 2 199 -1 * 0 14 I t l i f t * 3 i f l 4 4 9 —4 0

443 -4 0 1 Ifl a 9 2 8 0 7 flft •SO• 13ft 04 t o 4 - 2 7 • 1 ftft 4 E IB 0 - 3 * 84i 174 141 I t 9 123 - I t i 2 33 103 104 Ift ft Iftfl 4 4 a * - I I -7 1 U 4 7 • E IBa - a t 4 32 7 30 - 4 3 * a - I f l 0 3 • 3 4 94ft «T 44 JT • Tfl 7* s a -f t - 1 7 -I T 73 - 4 - 4 4 flftb 40 - 0 3 43 ft • 3 3 24 9 7 -O * • 4 3 07 - 9 4 3 -Tftft 48 -Tft 30 Ifl - a * 8* 8 4 - 7 l i f t 134 37 -ft 114 BTT Tft t3 31 II 4 9 - 4 0 33 - 4 3 3 • 0 1 ftft - a 7 0 - 1 5 *A - 4 4 - 4 2 44 15 134 Ift 91 - 9 -ftfl 73 ftft - s 18* 1114 t f l * 1 4 8 3 - 4 133 -1 3 1 3 4 * i 0 I t

Ift T l - 4 2 3 0 fl 1C I t - a 1 1 1 Iftt IT • MB - 0 81 1 -4 1 24 aa • a 01 • 7 4 9 4 i IIT i f l13 -T i -4T 42 - 1 9 0 3 4 5 94 - i -I f t - 3 • 4 2 - 9 0 • S313 TT 44 43 • 1 2 44 * 1 2 0 3 7 0 4 3 ftft 91 a i s o 1*4

- I I 134 08 t a 1 24ft -S t f l 14 * 154 - 1 3 4« t II • 14 • f t t - 3 3 4 3 9 1 I t IIT 37 i * 9 O0

-ft * 4 4 -I f t 4 0 9 144 - 1 8 3 IS 4 142 - 7 3>14 -a n T2 4 4 - 0 184 134 21 4 ISO IV2 24•Ift 32-1 -2 " « 14 - 7 4 3 - I I * 3 2 i 2 0 - 4 ftft 4 K IV■12 3 7 91 8 0 -f t l«T 14% 2 4 ft U t 4 9 9 3■11 41 -4 4 3 2 - a 3* 7 • 3 2 3 14 T 137 12ft 20 • a IV -9V•Ift Tl 74 39 - 4 -2 ft 11 if t 0 47 -f t ftft - 2 144 12ft•ft 134 191 M - 9 0 3 - 7 4 31 ft 7* - 3 9 4 3 - 1 ID0 -I f l*-f l M3 •1 2 4 2* - 2 114 Iflft S3 Ifl -Tfl - f t l ftfl • • IV Ift- 7 1»H in a IB -1 123 19 31 1 192 -8 4-f t m - a t 31 fl 74 1 94 ft E 1ft 2 - * a 13-f t 31 44 34 1 181 193 2ft 3 - 4 9 -3 7• ft 193 -ift ft Ifl 2 144 •1 * 2 31 -f t 137 -Iftft flfl ft 4 4 • B- 3 144 112 I f a IBfl 2* 7 17 - 0 4 4 T 43- 3 lft.1 04 2 3 4 123 - 1 3 3 23 - 7 1*4 TO 33 T E - 1 3- 1 33 -f t l 4 7 8 *4 -IA 9* • 4 133 - i n s 29

ft flft -ft 3 37 ft 141 • 1 0 7 2 5 - 3 ftT 40 a t -B 43 - 4 81 fll -1 4 8 2 0 7 124 * 4 3 24 - 4 - 3 4 - 2 0 98 - 7 7 0 172 TT - 4 4 Ot 0 • a - 2 3 47 • 9 144 43 3 * - 4 -4 1 • 0 0a 13 - l i f t ftl « -AO - 2 ftft • 2 I I* -ft* Sft - 3 137 1234 331 24.1 14 in • 3 4 3:i 4V -1 24 4 3 4 3 -ft - 4 3 - I f lft I t - f t t Bfl i i * i « i flft 37 fl -NT - 4 0 a * - a 1*4 141ft 2 * 4 r o i 14 1 Iftt -1 7 9 *? - 3 7 -4 ft 41 4 PC t* 2 73 .M3 an T E - 1 3a 43 nn 40 n Aft na 414 124 -1 2 4 2 0 - I S 121 -1 9 2 9 2 4 -Aft • a i 42 • l i IBI - |9 A

i« 144 - 4 f t 3* - i i ftft 117 4 2 9 I t* - 7 8 23 -IO 4 9 Ai t - t t f t - 2 1 9A - i n <.9 • f t t ftft A • t f l 1 3 ftft - 4 131 - 4 *1= -1 * -2 4 TUI ->i -flft IO 37 7 7? - 7 AA ■ 0 2 4 2 3 2 1

- 4 M t 373 19 -f t 0 0 134 ST • 9 09 * 4 4 34 - 4 7 3 19- 3 •3ft Iftft Bft - f l 4 2 4 31 • 4 fl* IT 24 •fl B3 ftft- 2 34 - 2 ftft - 2 Iflfl - 1 9 7 54 *9 51 4 2 2 2 13 - 4 3 3 7 2 * 3- I -4 2 - a t * 4 - I 117 •1 1 0 53 - 5 4ft - 4 3 9 7 • a 31 9 ' 2 7 7

ft 243 -2 f l* 13 • l i t - 4 3 51 -1 (104 947 Ifl • a Iftft Sflfl1 104 Ttft 19 I 2 » 4 • 3 * 4 13 • 47 31 2 9 - i 311 -3 4 3a 2 4 3 -2 1 4 12 2 4 8 2 4 0 0 11 t 147 101 14 • 4 2 21a 1*1 321 13 a Iflfl - 0 * 2 3 2 • 3 4 • 3 * 9 7 i 2 49 -2 * 44 124 - I t t 2 4 4 2 34 5*1 14 t 7 4 - 4 3 2 n 2 43 0 8s - • 1 Ift fl a0 8 ftft 0 3 4 9 4 2 7 4 -5 T 4 i a a * 33 33

-4 1 2ft a t ft 00 V 4 0 9 * 4 4 « 4 3 4 -TV 43T tftft -flft aa T Tft 03 a * ft ISO -ft* 31 a ftft Tfta - i i t 42 54 0 i in - 1 * 4 t o T 37 - 4 3 41 A 193 I II4 *2 • * 1 34 • - a * 0 3* 0 - 4 2 « • 9 4 7 B3 3ft

ia Iftft 4* 33 in 9 7 - 8 2 ftt ft l i f t - J t * 2ft Q 130 -1 3 7i i n a T7 31 Ifl 21? 2 2 4 1* 4 U T 44

T E -1 1 1 -1 1 7 a i 9 9 10 130 -Vft7 X 1 12 ftt 17 8« 1 1 -1 4 3 Ifl

' t 0 • fl ■ 1 3 2 12 - 3 4 - s s• |T Iftft -3 1 34 - ia 0 0 - 9 0 42 7 I: s-1ft -3 f t rrr ftfl - I T 44 - 1 1 2 tft T E A•1ft Ift l |IM» n i • Ift - I T fl 7 3 - 1 7 i f l 4 1 9 9•14 -ftfl - 3 4 41 —1 3 - IIT 7 s n -I f t 0 3 - S 3 4 * - I T TB4 •Iflft• 13 74 4 4 3 7 - 1 4 193 1*3 3 4 - I t 0 4 44 39 * 1 4 179 19*•ta 274 - 2 7 3 14 - I t 41 4 2 a* - 1 4 9 4 - 9 5 aa • 1 3 VI * 7 3• i i 141 Iftl 21 - 1 2 0 7 TO 3 1 - I t 8 4 1 9V - 1 4 ♦ 7 Vft•ift 131 -1 7 0 2 3 - M tft - T t 8ft - 1 2 0 94 on - 1 3 9 4 -2V- 4 3*4 M l ta - i n 0 - 7 0 Tft - I I 31 71 tf t - 1 2 Bfl 91•A IT4 I ftt IB •*i 2 7 4 -5 7 ft t l - t f l 3 9 ftft 4 9 - I I 114 • a- 7 • M I I I 2 3 - n * 4 0 31 01 - 4 Iftft U t 3 3 - 1 * IBS • s v t-ft 214 M 9 13 * - Iflfl 0A 22 - 0 143 137 14 - 4 Ifl? i w• a 231 •I:** I t - f l 4 4 - 0 3 24 - 7 41 *■48 ft* - 0 142 - 1 * 3- 4 (Sft - m s 17 - a 4 4 0 4 3 3 Ifl -ft - 7 3 18 34 - 7 • 4 8 * 7- a i t * - in? 14 • 4 101 - 1 4 3 14 - 9 2 7 * - 3 3 0 11 -A Iflft - 1- 2 2 +4 - 2 * 4 Ift * 3 Iftft Iftft Ift - 4 144 IT - 8 2 2 8 2 5 7* i 34 MT a t • 3 103 Tft 51 - 3 n i* —3 0 2 Ifl -ft 77 -ft 1

ft 542 a n 12 - 1 170 -I f lf t IB * 3 170 100 14 *3 1*3 187i Iftft i n 2 3 0 nn ftft 44 - 1 fit - O l 5* • a Vft -1 * 12 IflT 104 IB 1 2 3 0 • a i * 13 • 144 110 »* - l 9 3 3a Iftft 122 23 2 ftO 5 7 01 1 3*4 344 11 « t t * -1 1 14 137 - 1 3 7 IT a 121 - 1 2 7 22 2 - 4 4 - 1 1 s a i 4 0 - 4 4• t f t •ftfl 41 « ftfl 7 3 37 a Sft* S 3 | ta 2 - n a 3 04 Ift7 - 1 4 4 3 4 B Ot - 1 5 7 32 4 5 * 0 - 2 0 3 13 a 2 3 J - 5 * 7T 147 121 2 3 ft 131 1*4 2 4 » Iftl - 4 3 2 9 4 i»ft • 3■ • 3 3 - 4 4 3 0 T Ifll 44 s a ft 01 - 4 4 a a 8 a* - 2 0ft ftft A t 47 0 • t v • 7 3 7 T 102 144 17 ft 2 1 3 M *

Ift 124 • ft* 3 4 ft Iftft —Aft flft 0 *7 - f t f l 81 7 • 4 2 - 8 111 - 7 3 ftT 47 tfl 41 - 7 87 ft 11* 4 2 4 B * 44 - 3 0

| | 4 3 - a a n Ifl 140 M l 2 9 4 04 4 4f |[ « II TV -T l ftfl Ifl 13fl • 143

T E 2 t l 8 2 4 0 9 2 M 113 • 9• Ifl 5 4 a 10* 1ft 13 123 -I f lft•IT 84 • M 44 • 1 0 1 » - 1 1 9 99 T E A-1ft 4 0 • 3 t t - 1 7 117 140 04 T E A- I t -3A - 0 9 4 7 - 1 * Ifl* -ftft a t - I T 8 7 - • T • 1•14 14 •1 1 7 ftfl - 1 8 TA 1*3 37 -I f t - 0 2 9 4 40 - I T 4 4 • 9 4*13 - f t t - 4 3 t t - 1 4 aft 2 7 ftft - I t 81 * 2 2 i f l - 1 4 4 7 4•1 2 4 3 - 1 1 7 24 - I t 1*4 • 1 0 0 20 - 1 4 43 4 3 ftfl - 1 8 •2 ft IV*11 74 3 3 a a - 1 3 lift 4 2 2ft • 1 3 « - T t 0 3 -I f t Ifll II•Ift 114 Iflfl IT - 1 1 14 • 3 7 4 3 - 1 3 T i - 3 7 85 • ia 41 • I f l l-ft Iftl 122 a s • i n Pflft IftA Ift - I I I I* 149 3 4 • 1 2 I S l IXI- f l 4 7 33 81 - ♦ 7 0 - a n 2A - I f l 2 1 7 •2 3 9 Ift - I I ftft -If lft-T 2*ri 3 0 3 12 -0 03 114 2 9 -ft 3 7 3 an a 13 - I f l 123 t iB-ft 3 1 ft - i n a H 3 *4 -2 9 7 12 -a 13* - 1 4 2 14 - 4 -5 f l • 2-ft an a * tft - « l»ft -1 7 * 1* *7 131 Ifl3 21 -B - 7 3 - 9 0

M - 7 - 1 9 43 7 8 - i •4 1 BS 4 4 - i a 149 1*3 28 - r I U ■30 M91 - 4 48 103 a r 9 I? • 8 8 Of - 1 3 4 4 -0 1 40 - 4 143 •14V 10

• 8 -A * 4 41 1 4 0 • 1 4 3 3 - i i • f l* 4 8 44 • 9 t2 7 131 2 *- « * M 4 - I I 3 3 2 u a 173 28 - M 0 2 3 4 8 8 —4 1*2 -I f tf l 14

■ 1- a l i f t - 2 0 2V fl 01 - 8 0 30 -V - 1 9 •flfl 4 0 - a 9 3 84 27- 9 - U 7 - 9 5 8 4 ft 1 IV B t 34 - 0 * 3 - 7 3 80 • 3 •ftfl - 2 0 439 9 *1 -T 2 -ftfl 43 i i * i -V 3 fl* -T -ftft - 1 0 9 4 • 1 91 • 3 * 9 7flft • Iflft -IV a s - 4 49 J 94 • 0 0 14 93

0 4 T 1 : - o - a B? -O * SO V l i t a s 2 3Bfl 7 1C -1 1 - 4 0 2 Bfl 91 3 131 197 394V - 1 9 • 8 3 - 1 4 4 8 - a 1*7 •3 0 4 14 9 t o • 2 4 9 04 0 - I I •ft* -ftft 41 • I f t -4A - 2 3 07 • 2 2 1 4 31ft IT 4 *0 4 9 912 4 - I I ft l ft* 37 - 1 3 4 3 - 4 7 44 - i 180 - 1 3 8 tv 8 ftft • 1 4 4 9S2 9 - t f l • 0 4 - I f l ftft - I S - 8 4 - 2 0 40 0 - 1 Ifl TO 3 8 0 “ 0 2 • 8 SO94 -V * 4 0 ft 4 3 •1 1 01 • 0 1 3 0 I TO - 9 7 if t 7 -1 1 • 4 4 8 15V - 0 • 33 0 0 -I f t 44 8 0 90 5*‘ 141 - a s 2 8 0 7 0 IB i *5 7 - 7 4V • 4 3 8 2 -ft - 7 0 8 AT 9 4 9 -flfl 44 0 - T l 7 9 4ft9 2 -f l 74 07 43 - 0 V? 1*3 9 | ♦ -1 3 * —AO 274 7 • 8 3 0 -O 44 -T - 4 0 • 9 4 47 8 Vfl 41 flfl 7 X - 943 -f t IBS Iftft 21 - 4 u a 71 29 * • 4 4 •9 1 4 t91 - a - a * -ft 84 - t - t v 4 4 97 T 102 141 22 - 1 7 - 1 1 4 I? 334 3 - 2 • « * 3 3 flft • 4 •1 4 7 24 B U 7 - 8 3 3 4 - 1 * a s • 3 3 9*

• 1 *7 •Tft 34 - 3 - 4 8 82 91 -1 3 - 1 4 1 I* f ll• -ftft • * flft • a 3 3 0 - 2 1 7 13 T E - a - 1 4 l i t 183 27t V* - 4 | 33 - i ISA 120 2 3 - l i 1 ta • 113 3 *ft* 2 140 • 9 a 24 o Ifl] -7 1 2 0 ••1 7 74 - 4 2 4 2 - 1 3 I49 103 I t

94 i T7 17 9 3 - t f t *4 - I S SS -1 1 S4A -3 4 4 19M T E - I f l a I I I f t l 3 0 - I S *4 • 0 4 flft -IO T t 1 4 fllflft a Iftl - 7 3 23 ‘•1 4 103 9 91 -V 14 - 7 4 442ft - 1 4 9 3 88 41 4 82 1* 82 - I f l |2 « - 3 0 23 • 0 - 4 0 • t l 94*1 • 1 9 • 3 | 92 ftft 8 8? —4G Bl -1 3 Tfl 31 93 - 7 144 — I2S 108 2 • 1 1 ISA ftfl 37 A 140 112 37 -1 1 4 3 7 4 49 - 0 84 83 a rflfl - I I - 3 * ift 8 0 -IO 3 8 - 1 0 0 40 • i 9 4 “05 *4• 2 - 1 * l i f t -V* 3ft 7 R: - 7 • V 1 14 1*3 SS - 4 - 7 3 • t o 912 4 -V 34 1*0 fl* • 0 Ift* - 1 2 2 2 0 - f l 2 4* 347 198 3 • a vn •Aft 34 - 1 4 141 H I 27 •T Aft 8 0 2 0 - 3 TO ftl IV8 0 -7 * 1 1 1 Ift 3fl • 1 3 Ift* *1 32 • 4 139 -1 3 * 17 - 1 133 124 IV88 - 4 Mft - r * s 2 3 -1 ft ItT •1 2 1 23 • 3 1*3 139 IT 0 Ifll - I t f l IB

- 8 - 3 7 - 9 7 BA - 1 3 0 0 4.1 33 • 4 tSA -1 3 4 SO I 134 I I t Ift- 4 I I* 83 2* - 1 3 *n - 2 3 4 3 • 3 70 • 3 4 32 2 3 29 - S i * 12

7 4fl 3 3 -1 1 TV - 2 7 3* • 2 10* 171 17 3 01 - 3 3 2*

-3 - ' l i f t M 24 - 1 9 10* 3 2 24 • 1 2 * 3 • 5 0 3 14 4 7 # 91 s o2 0 - 1 • 3 * Sft 41 -ft *« •ftfl 3 3 0 in ? 14V 23 3 - 4 1 2 « rSft • SA 4 9 44 -A 0J *n 31 1 m s • t l * 22 0 1*1 3 *8 2 *73 1 87 - 3 * no - 7 U * -1 7 4 I? 2 in * UT 2 3 7 130 24 3 4Sft 2 9 2 34 43 -V 14* 134 I t fl * 2 - * 2 fll 0 1*3 i* n 214 7 fl - 0 7 M 4 2 -fl 4 7 - 0 3 3 0 4 • 7 0 A0 ift * • 4 * t * a*97 « 07 — 1 17 4 2 -ft IM 73 2 7 fl - 2 4 3 4 4 2 10 3 0 *07 4 14 0 - 3 U 9 4 3 23 4 4* “fl* 4 3

7 E -ft - 3 -v v • 2 0 a n 7 * 3 -7 1 SA 7 1t - 2• 3 7 • l l

• 1 143 ISS 2 0 0*'104 - 0 8 MAt o

- 1 9 4 3 ft 3 1* -2 3 n 17 * 31 • 3 3 8 4 - 1 9 * 4 - 4 3 a *• I f t 3A 37 44 1 114 Iftfl 2 7 • IT 0 1 a s 99

4 3 - i a 14* -0 1 2ft 2 • 3 4 - t 2 97 7 K - 4 - 1 4 • 4 1 - 2 0 4Aflfl - r * V* flft 34 3 « r •* n flft - 1 9 -S * 24 4fta i - i i 15* s a 54 ft ISA -v n 2ft -IT 119 10 fll • 1 4 • t o • o n 43t o • 1 0 ftt - 1 7 rt2 3 - a ? *•« AO <-1 4 -7 a 4 3 4 3 • 1 3 1*0 313 1*37 -V 0 2 *1 33 4 aa - m Aft <-I S 0 4 -4 4 s a • t a • 0 1 • 37 S3

- a • 3 • 1 5 4 | IflM u . i As •1 * Tft IA? 41 —u Afl *3 fl*- 7 m a 4 7 23 •1 3 in * -1 7 1 24 - 1 0 0 7 8 7 27

5*1- 4 n n - I I 1 S3 7 K • « - 1 3 a* 44 41 - * - 3 3 4 II• 8 MA -f l 23 -1 » n i - 4 3 84 -B •VO 2 0 54

0* -ft • 79 • 7 9 :»* ■- l A - i n i -Aft Sft •■1* - 7 * 0 33 - 7 l i f t - 1ST ITIIS - a 2n - 7 7 8* - i n -A il ;ft f l l • 4 Sft 3* ift -A 2*0 2 3 4 12l«* - 2 - ? * Aft - i n »»:: -fl*. m - n »:*■ -=■1 in • fl ««1 -2 f C ISSA - 7 2 *4 - 5 5 4 13 - 4 9 *3 1*2 14 - 9 - 1 3 4 • Sft ■ 9 4 • Ift 801ft •ft 27 81 4T - 8 *3 - a * 3 2 • 2 u i IS3 IT ft “ 1 4 BO ftS12 • 3 - 3 0 - 3 * 43 - 4 41 01 33 - 1 4 0 • v a 9ft 7 73 -C 30Ifl -f t IU4 -IT fl 18 -f l 7 4 - 1 0 3 2* 0 142 1*0 IT n - 1 9 • to t v14 - f l 8*1 3 * 4 11 - 2 I t 107 9 7 1 140 • i * 34 V *0 • 1 0 3 M11 - a 211 - 3 3 3 Ifl • 1 9 *4 -Zflft 14 2 V* 102 SO 10 • 0 4 4 2 4 *S t - j 5 *3 f l i t 11 0 0 4 BO 27 fl 142 - 1 3 3 IV 11 - 3 0 -0 1 ft?13 • 341 -2 * 9 14 1 111 - 1 2 3 21 4 0 4 *1 9 0Sft i 140 147 IB 2 100 -1 2 3 2 3 9 IBI -1 7 4 10 T E Ifl83 2 * 23 33 81 a ft I I I Ta 4 - 3 8 34 4 32 0 a M l -1 * 5 1* 4 t t * -2 0 4 tfl 7 U 4 - 3 2 2 9 - 1 3 I I I t f l S341 * 0 7 78 2A 8 2 0 7 2* ft Ifl 0 13* 4 7 2ft - I I 144 130 342fl 9 124 - u a 2 3 4 134 - * 7 2 2 O fll i f l ftl - 1 * 143 -1 3 4 3 *31 ft 120 * 4 SI 7 l l * 133 28 10 l i t n* 2 8 -V -S 4 14 4 02 8 7 124 •1 9 1 2 4 B ISA - * * 2 2 J l 112 vfl 31 • 0 - 4 3 TV 4 2tf l 0 - a n 3 0 91 * Vft - 1 1 1 34 - 7 ISO • |0 2 375 * V 0 4 • 1 9 33 10 140 - 3 3 30 7 X II • 4 11* 03 2 i2 0 tfl • 9 8 • a 37 11 41 - 4 3 ftfl • 8 181 -1 8 7 294 2 M • 7 * 41 ftl 12 4* 8 0 if l •1 4 - f t l 41 87 - 4 110 131 23

13 - 4 8 a* a* • I f l 141 •1 7 0 2* - a • 4 3 41 4*T X ♦ - 1 3 1 to 03 SO - a IS* U I 3 3

2 4 7 E T - t t 4 8 ft* 4 2 - i 49 - 3 1 84- t i - 4 7 4 3 4 7 -1 * ftft 0* 41 0 77 2 2 8 3aa - 1 4 0* - 4 4 2 0 ■- 1 4 - 7 0 14 ftft -V - 3 3 • 8 43 i 170 • 1 4 * to3ft - 1 9 7 2 TV * 2 - i a - 4 9 -A 83 -A-■Iftft 33 2 8 2 • 7 7 ft 98Bfl - I f t 1ft* •1 4 3 33 - 1 2 * 4 - 7 3 fll - 7 90 - 3 0 4 * i - * # 29 33■2 • 1 9 101 134 31 - l l 73 1* 38 • 4 4 0 - 4 0 9 4 4 74 - 7 1 9332 • 1 2 - 4 0 II ftft - I * 04 - 7 4 fll - 8 9 * -3 9 43 8 0 IT 042 3 - I I 1*7 - 1 7 4 IT • V BV 8 * 89 • 4 501 •2 4 7 14 ft Bft - 3 3 ftftIT - I f l UAT 301 Ift • B 291 - 2 8 4 14 - 3 34 0 4 fl* T IO* IB? 2 02ft •ft 3JT •2 3 fl IB - 7 2 3 3 2 4 4 18 - 2 -O l - 3 2 flft 9 154 - 2 7 3 *Ift -O ISA I t * f t - 4 117 ••1 3 3 34 -1 103 10* 24 V - * * Bfl 9 7a a - 7 1*1 - i « a 24 - 8 I M 2 0 * 14 0 121 - 0 7 2 2 1 0-t*V T 9 42 0 -ft l i f t i n 31 - 4 I U 174 IS 1 1*3 142 IS13 - 8 14* • u s 10 - 3 ITO ■-1 9 1 18 2 i t s - 1 8 * IB T 1: i tSft -f t • * * • 4 3 flft - a 132 170 in 3 137 101 2 214 • a •3 1 ft 4 4 - i 30 3 - 8 4 3 12 4 I ta 139 31 - 1 1 71 89 433 3 - S IBT •IB T 14 A 131 01 2 0 8 74 • f t fl* - M • V i - 4 0 842ft - i 1*3 10* 19 1 2 0 J •-2 1 1 Ifl 4 - 3 3 2 4 3 •V • 9 21 4 7Ift o 133 - 1 3 7 IT 2 ta o 1*3 1* 7 174 •1 0 3 sn • 9 U S - 0 9 9 32a i 2 3* 243 ta a 0 3 -1 3 7 9 0 a - ♦ 0 2 2 9 3 - 7 - 8 4 7 0 4727 2 l if t -I f l* 31 4 * 7 1 10 37 * 174 -Iflft S 3 - 4 U 3 - 1 1 0 i t19 a -2ft - a i 4 0 fl 104 * 2 24 10 Aft ftl 4 7 •S - 7 0 SA 3422 ft -7 9 - 7 3 na 4 112 - l i f t 2* M —4 0 0? 4 7 • 4 4 7 - 2 7 4037 8 -f t* 27 33 7 133 0 3 2 2 • 3 Tft •fl iftIT 4 - 4 7 - l i flft 0 1*3 - 0 2 2 3 7 I : i a • 3 4 7 0 *73ft T IS* — Jfl3 Sft V 73 Ift* 41 - 1 49 Bft 4*48 fl­ 112 4 4 flft to 7 8 —13 f 44 - 1 9 0 0 10 4 4 0 IB* 172 1*a t ft 113 - 7 4 2 4 II -Vfl • 0 3 8 - 1 2 33 - 9 * 01 1 144 • 178 flt2 0 14 ITT Iftft SI 13 ft* — Iftft 4 0 -1 1 *3 1* 34 2 1*3 111 ITi t 11 133 -Bft 27 • 1 0 • 7 4 • 1 7 3 0 fl 89 -1 1 3 47fll 12 5 0 2 IftO 2 3 ? R 10 —4 l i f t •1 3 B IV ft 104 - 1 1 * 80

- 0 113 123 21 8 104 - 4 0 fllT R 9 • 10 0 4 - l i f t vn - 7 120 - * * 2 3 ft- 132 • 0 34

- t f t • 1 4• Ift 143 103 31 - 4 2 13 2 3 r IB T Iftfl 4 7 35flfl 1*9 flfl - 1 3 l i t - | A 1 flf - 9 Iftfl •1 4 0 t* 0 - 4 2 Ifl >844 - 1 8 143 15« S i - 1 3 - a n 8 0 S t - 4 157 V i S3 ft 174 140 2*ft* - 1 4 174 -1 3 * 31 - I I -2 f l - a n 8* - 3 - 1 9 2 * 032ft - 1 3 IftT l i f t 31 * 1 0 s s n ft# • 3 333 -3 4 9 Ifl 7 X IBaa - 1 3 317 • in n 17 - f t 94 I* ftfl - 1 03 74 I *2ft • I I 97 inn 3 2 - f t 4 7 - 3 7 flft * * 3 - U T M • 10 .117 2 9 8 39V - 1 0 -ft 3 - M SO 25* an 14 1 3 13 214 Ift -V •91 10 449 4 - f t 1*4 - i n n M -A Ift* - 1 * 0 I t 3 174 •IT 4 IT - 0 ftfl |4 888 8 - a 3* 97 • 9 tf l 2ft 23 fl 2 4* 5 1 3 10 -T • 03 90 3 0

41 - 7 4* is fla - 4 » * * 2 2 3 ta 4 • 7 0 •flv 34 - 0 • 9 3 tft 8*

297

- 8 60 TS 94 a f t - u •S IBS 119 a i- 4 70 -7 4 84 a c -T -2 49 11 41- 8 113 189 88 -1 78 44 40 -1 -9 2 -7 4 14- 2 i i • IT 27 - a IB -1 0 48 -IB 14 12 74 8 44 *■ I j-1 48 04 41 - 7 •4 2 8 07 •1 4 143 -4 4 2 0 1 7 0 -7 U

B 124 - t a ? 24 -4 44 - 4 46 -1 3 t a t 81 2 *76 T 48| 94 • 16 - a -8 7 - 4 12 -1 3 43 -3 1 14 ■ -1 1 14 BOs 4* 81 43 - 4 *1 14 34 -1 1 -1 4 6 41 9% 4 • 7 0 14 468 i t a -4 4 26 -3 • 2 •143 41 - I t -7 1 -1 1 t l S -4 0 -3* 144 -7 2 0* 42 - 2 1*2 83 67 - 4 41 -4 6 44 8 27 SI 444 -1 6 I t 46 - a 133 IT 044-149 31 94 a s - i » -T 27 -2 7 SB a k - 4T -71 -1 4 42 • 4 *00 a* 846 -8 6 -0 9 81 - t t 46 -2 7 13 -B 01 -64 43 -1 4 IB 19 TB

- I t 1*2 -1 2 8 20 - 4 -T* 48 •7 -1 1 18* •1 4 64T ft 14 -4 -7 7 01 *3 -3 44 •S 3 98 -1 4 IBS 123 23

- a 127 *83 24 - 2 l l t 71 24 •1 9 137 -6 4 18-1 184 -6 3 84 -T 72 78 84 -1 144 -0T 14 -1 2 I I* oa M-6 -3 2 t l 4B —4 49 61 67 8 44 -6 4 37 - I I 29 • 41- 7 7 ? 81 41 - O - t l t -4 4 S3 1 -4 * -14 43 -1 * 113 t o 27- 4 31 I* *1 -4 -4 8 -1 4 43 2 111 40 93 -4 23 -7 9 42-1 -1 1 4 89 98 - 9 -4 3 -2 4 IT a 123 14 34 - 0 83 43 16-4 -4 7 I I Bl - 2 48 • I S 04 4 -1 1 -23 73 - 7 • 36 21 16-S 77 -7 a r - I 174 -4 4 21 a 40 134 42 *4 -1 4 -91 41-2 12* - t t i 2? a 27 •8 72 • 1 11 -1 8 12-1 46 -4 BB a k -4 - 4 l i t -4 2 22

4 l i -IH 33 a k -4 • 0 1*7 117 211 *M SI 37 - i t -8 4 4 12 - 3 *7 -3 7 273 I I ? 46 3? -1 3 TT -8 8 43 •1 4 64 8 90 *1 I I I I U 27A 03 ItB 40 -1 2 Tl 74 49 -1 3 07 81 I t 8 41 -IB 144 -1 1 3 - I t 31 - I I - r a -1 3 73 -1 8 -7 4 -TB 4 | 1 44 76 166 4 ? s 34 - I t 08 07 48 - I I -2 1 *48 81 a - i i r -4 1 244 129 I t 31 -4 23 -1 1 3 n - t t -37 •3 4 •3 9 1*4 74 66T 71 -43 44 -Q 127 •IB 30 -1 74 -« 34 4 64 -7 4 33

-7 114 O 38 - 6 * t t -V t 34 0 137 - |4 4 377 ft 17 -4 -33 -4 * 41 -7 £27 22* 14 4 111 0* 93

-3 *4 13 a* •4 44 7 31 T 124 •7 7 11- 7 77 *23 42 -4 -74 a 41 • a 31 41 43—4 131 8 34 -3 -73 23 41 • 4 49 -IB 9* a x - 1-B 97 •84 43 -a 74 14 4 t - 3 *41 -T 8 40- 4 IIS 184 03 - i 147 14* 23 - 2 143 132 91 -1 4 -7 4 *02 ♦4- 3 -2 4 -7 1 71 8 4* •121 4* -1 147 -1 * 1 IB - I S i t s *0 93- 2 141 MB 24 l>- l i t - 2 34 8 113 7* 20 -1 4 0 - a t 07-1 63 4 94 3-121 84 31 1 n o - i n 21 -1 3 - T i -4 4 48

4 72 -44 43 2 -7 4 8 40 -1 3 -4 * I t 46I a t 48 s a a ic - a 3 44 a 93 -11 97 1* 443 -3 4 -44 89 4 >19 139 94 • I t -14 - T l 443 -2 7 -2 9 4 ? -1 4 h i -8 3 32 0 47 24 IS -1 IB a *44 77 -*T 42 - I S -7 4 04 41 4 -1 3 4 14 31 - a I I I IB? 241 129 43 98 - I S IM 29 39 -7 IB* •-103 174-123 -1 83 - I I -63 -2 4 6* a x - s -4 3TB 293 14

-1 8 1*4 132 24 - • |7 3 -1 4 0 10T 1C IB - 4 1*4 • 136 ra -14 *37 33 >3 *4 ITO 14* 10

- 6 194 o r 24 -IB l i t -4* 92 *3 *21 14 t t-8 42 -9 94 *7 140 -1 3 4 23 -1 4 01 42 41 - 2 *4 •4 4 M-4 12* 104 91 -4 84 -1 3 *3 -1 3 ISS -S3 £7 -1 10 84 43- 9 140 —132 9* -S - T t -4 * 42 -1 2 *3 63 93 8 1*4 —111 36- 2 I t* 108 S3 -4 ISA -1 4 * 26 -11 *1 31 93 1 *0 06 M-1 132 -4 4 =6 -9 14 74 33 -1 8 0 7 “ 32 84 3 44 •4 0 48

• •14 44 T& - 2 1? -1 4 93 - 1 122 •5 1 24 3 140 121 221 27 t *7 -1 184 1ST 23 -6 -13 -4 8 31 4 -T2 U 468 -01 92 41 t IIS -S HA *7 113 1 I t 27 1 IBI 14 239 - a s -91 14 I I t* 42 13 -4 174 -147 ro 4 111 4* 334 i t -61 n2 2 IT* -1 4 3 23 -3 1*4 171 23 T 11* -4 2 U

9 t a 8 37 - 4 l i t -M 3 91 • 111 *2 33

- 2 a t —46 38 4 181 -7 0 69 a ft I I • M l •B 24-1 94 14 44 a I t# 48 26 1 77 -4 0 97

t 141 -1 4 6 14 4 284 •2 8 0 11 -1 3 - r o * 71 2 107 144 1*1 T2 - I I I S3 7 119 177 34 -1 2 - s * 3* 40 9 *2 -IB 442 -93 7 fit a 24 -6 4 46 -11 -6 * 4’ 90 4 134 47 249 I I I 44 29 4 188 40 3 r -1 4 -3 0 •7 90 B 29 -4 *44 43 44 20 18 02 - 4 na -4 113 -4 4 24 4 *1 • M 44B I t -B 21 - 6 74 141 30 7 133 04 244 1 I t I t 2T a ft 0 - 7 147 -1 4 2 29 0 180 -1 1 4 647 42 -8 2 32 - 8 -3 4 12 f ta 82 72 B t • IB 14 -1 2 2 BB • a *4 - I t * 41 a x 144 14 -6 ? 37 -1 4 IM i t s 24 - 4 £7 4T i n

I t 17 - 1 33 -1 9 210 -IT S 28 - 3 44 9* 14 •1 6 TO 22 41-1 2 44 67 44 - 3 -T l 4 14 •4 I2« •2 4 2B

a k T - I I -3 3 -4 7 46 -1 328 214 13 •B 44 -2 7 4*• I t 184 2* 27 8 1*3 -1 * 7 IT *7 113 4* 23

-1 4 IB* -1 4 24 -4 74 64 23 t 293 28? 14 *4 84 -0 * IS- I t 183 11 14 • a 29 -9 7 04 2 144 -12* 31 -1 111 IB? 23-1 4 -1 7 -1 1 3 T4 271 272 14 9 -7 7 -1 94 - 4 144 -7 2 23-1 3 221 318 28 -* 214 -22A 14 4 143 -184 21 - 3 191 19? 24-1 2 14 -41 71 - s TB 74 64 1 ft* —44 33 • 2 04 -4 4 14-11 « 6 88 - 4 -4 1 -7 8 9T 8 44 as 44 -1 114 -1 4 27- I t T4 -41 34 • 9 ■9 -B 37 7 74 3* 81 6 o a 64 19

-1 168 -1 W 16 - 2 -IB -48 88 a -7 2 122 43 1 107 -1 1 2 26- a 184 41 s a • 1 -a a -3 4 04 4 41 -2 1 97 2 t l 30 13- r -3 6 -4 4 08 8 -63 48 08 0 111 -8 6 24-4 -8 * 7* 48 I - I S -7 2 41 a k 12 4 •7 13 B4-B 133 - |9 2 28 2 IBS 144 IB 1 4* 41 13-4 IB6 141 18 8 41 -B2 a t -1 2 n o -1 ? 92 8 >41 14* 2 0-a -41 - I ? a t 4 IBB 184 28 - I I 128 T t 24 T >11 - 1 01- a i t s IBS 14 0 114 -4 1 29 - i t 184 -3 2 98- i 41 -3 3 94 4 *67 a a 93 - 8 11 24 44 a k IB

* 8 -2 8 79 7 14 -0 4 47 - 6 •0 6 IT 64i l i t - * 34 a •4 1 4T - 7 140 -1 4 9 21 - 4 121 -8 4 a t3 184 -B l 24 4 i t a •0 4 33 *4 -4 4 11 11 •B 43 08 ITa -4 6 46 49 I t -1 4 -4 8 31 • 0 IBS --291 31 *7 -4 8 8 • 64 I t t - U t IB - 4 142 1*1 1* - 4 ■T -7 2 168 171 146 80 a f t is - 3 74 -11 17 -B 174 64 364 134 -1 1 4 84 - 2 111 l i t £3 - 8 T* 4 i aT -1 6 07 71 -1 4 61 a s 43 -1 S3 -7 4 43 • 3 47 40 49a 78 47 41 -1 9 • IB -0 4 TO a 41 92 48 - 2 r t - I T 414 -41 84 44 -1 3 114 123 22 i 40 44 14 -1 •4 0 T 49

18 -4 4 14 a ? • l l 148 -8 4 23 0-117 “ 0 27 8 131 -111 20-1 8 46 -2 4 21 3 47 44 4* 1 74 04 46

B ft • —4 *77 a 34 4 - 7 8 -1*1 43 2 64 24 97- 0 -1 4 23 49 B 111 - I t 20 2 71 •01 44

- t o 74 - 9 4 42 - 7 a i 4 i s o 4 134 -•111 20 4 -4 3 23 B?-1 4 -3 4 -4 2 44 - 4 ■4 -8 4 41 7 IB 7* 7 2 B -7 2 -2 0 46- ia * '144 - I t 32 - a -1 2 - 0 43 a 8 -1 1 2 41 8 119 71 24—12—144 -34 31 - 4 78 • 27 64 4 71 41 49- I I l i s 41 - a 144 107 18 a k IB• I t 71 •68 31 - 3 104 -1 9 3 14 a ft IB

- 1 13* 181 S3 -1 184 46 24 • 0 19* T4 11- a 64 -?B 38 • 111 -1 * 4 14 -1 2 i t* *44 84 • 7 -4 3 -8 1 ■2-7 1*0 138 IT 1 194 I t t 24 - I I 41 41 4 8 *4 IB 09 74- 4 -8 * -1 4 94 3 47 I t 84 - I t I l f *14 9* - B - I I I -0 4 12- a IS t -1 4 17 a 97 B3 B2 - 4 183 44 02 - 4 8 -1 2 99- 4 I t t •B4 64 4 -4 7 41 48 • a -7 4 -11 1* - 1 42 •8 8 84• 6 76 13 31 8 148 *40 2* - 7 21 41 48 •2 00 >4 14- 2 131 111 22 • 211 194 17 - 8 74 -4 2 94 -1 *71 - a t 41- I SIB -•988 14 7 -T l • BT 42 - • -B* IS 44 • 44 43 11• 101 228 14 a 1 1B IM 96 - 4 -4.1 12 44 1 111 127 241 123 *•197 S3 4 ia* -131 26 • a -S I •3 3 4* 2 -2 7 -4 2 4*2 B t 189 84 I t 44 T i 37 - 2 nr 04 34 0 181 l l t IS3 12 err SB -1 1 •*;* -1 ? 3 14 4 IM *127 27

-1 8 -1 1 9 -1 4 26 -1 6 -1 1 7 I I H * -T T6 40 01a iC - 2 -1 3 *7 -1 * M -4 I I I •4 1 33 46 •0 * 44

•1 2 330 133 14 • a «* I t 29 -1 *4 •2 9 92- I ? ■4 -B 4* - I I -0 1 -1 6 32 - 7 4 4 - I t | M -4 07 -BT 27-1 6 T t 41 42 -1 8 310 264 I t - 6 1*0 129 24 - 9 -2 6 16 B4-IB 14 04 46 -6 -TO - 4 09 —8—184 26 39 *2 184 70 01-1 4 t t i •14 * 94 -B 123 -1 0 » - 4 187 IBS 11 -1 -1 2 -6 »•1 1 101 147 I* - 7 43 72 IB - 3 69 -4 4 39 6 * » 46 8*- t * 3 U -2 2 6 14 •4 337 -2 3 4 r t - 3 07 44 34 1 IB -1 6 46- I t IS 111 a t •B 33 -9 1 13 • 1 66 -7 1 36 2 72 -9 4 02- I t 143 -1 9 9 36 •8*114 -4 4 29 6 246 •241 19 3 -7 6 • f 04

- 4 9 0 6 44 • a 141 13? Ift 1 l t d 44 33 4 204 083 14- 0 49 27 49 - 9 l i t -1 8 6 29 2 229 -3 1 6 19 • 18* •114 »-T 188 TO 24 - i 349 21* 11 a 64 I t t 26 4 71 41 IT•4 114 982 1* 6 04 24 20 4 • 0 - I I T 43 T 129 -0 1 Of- t 112 - M6 23 1 t o -4 3 94 • 143 IS* 23 0 66 -0 3 14• 4 |4« t t i 22 2 232 U I 14 4 i i *76 36 6 119 74 21*9 ITS “ Iff* ia a 149 -1 4 0 14 T -2 3 - a *3 I t 191 -4 3 21- 2 74 fl* 92 4 an 71 *6 a 116 44 2 0-1 187 - l i * 21 ■ 194 -8 4 23 4 18 •1 4 14 B f t f

♦ •1 1 2 -4 aa 4 -0 7 -2 7 39 16 T t 11 441481 09 -8 96 7 74 -1 4 41 • I t l l t 27

2 -4 8 BB Bl A 74 •2 0 41 a ic a •IB •3 3 -4 0 T20 73 89 34 6-13* -99 96 -1 4 -4 2 IT 444 44 - 7 9* - IT -IB -4 0 14 -1 3 71 -1 6 Uf 124 44 24 a x i - I t 04 99 94 -1 3 -4 2 -34 a i4 17 •4 8 9* -IB -9 6 -2 6 49 - I I 27 -1 4 ■T7 144 103 97 - IT • a s 91 4 3 -1 4 41 - 1 0 44 -1 0 •1 4 •4 13a 141 -1 3 3 23 -1 * -1 0 -IB 72 •1 9 IBT 112 28 -4 46 - t t * Bl

-IB 94 4A 40 -13 -1 4 -3 2 * 0 - 0 286 160 IBa x - I -1 4 -0 3 u 94 - I I IS* 14* 20 - 7 146 141 21

- i ?-1 9 13 -7 4 4 0 -1 1 217 •3 3 6 I t - 4 71 26 32

*2 - 4 | 4* •1 2 64 148 93 -1 -4 3 -* 44 •B 111 t t 29- t * “ 01 79 42 - I I 197 -1 1 1 32 - 0 216 -264 rs - 4 2T9 -2T 0 12-13 01 -2 4 3* -1 6 103 1*2 10 -7 “ 07 8 20 *3 *79 6 26-1 4 -SB S3 4T - 4 213 -1 * 2 19 -4 06 4* 27 • 2 2*3 -2 1 6 19- i a 43 -4 2 81 - a 117 132 24 •1 1R7 -1 3 0 IB -1 77 U 26-1 3 •3 3 -47 B4 • 7 13* 137 26 - 4 331 223 IS 6 BT -B l 27• I t -7 1 IM 30 “8 191 -164 14 -3 137 — 137 26 1 I t ? 71 22-1 8 40 •4 4 41 -B 113 t l* IS • 2 446 47* I I 2 1*3 178 17

-4 179 I t s IB -4 921 -214 12 “ I 121 -166 21 8 JB II 42- a -9 1 -2 4 12 -3 44 *sn 99 6 SO 47 27 4 49 43 47- 7 •34 I t 48 •2 101 - I T t 14 1 119 •161 29 • 1*4 -1 2 7 1*-4 03 -1 8 21 -1 131 173 2* 2 114 -2 8 7 17 * m 117 24“ 1 24 -1 0 44 t l i t * 1*0 IT 9 73 “ 01 • 4 T -71 •IB * 41-4 23 -«* 83 1 22S 268 t t 4 IS* -1 1 0 28 a 24 6 49- 1 84 B4 43 2 73 3 39 1 126 49 29 * 99 3 *9• a 112 Bl 34 a a* 62 B t 4 17 - t a 49 18 a t -6 4 46• i -7 4 -41 14 4 -0 9 27 91 7 136 l i t 3?

* 313 203 12 1 *21 -4 4 41 0 43 91 44 a iI t1 344 *234 14 * 24 01 44 6 03 44 a*2 a* 123 93 7 1*7 -1 3 2 24 18 182 -9 4 91 •1 4 44 -1 4 4*3 l i t -IBS 14 a •4 9 16 B3 -1 8 68 89 644 -8 8 “ 40 41 * 07 -7 2 96 0 f t 4 -1 * -4 * •41 • af 17 -7 4.7 i t 71 44 -1 3 41 •3 6 13* TS -4 * n o - I T 196 •79 26 •1 2 07 9? •47 130 i m =0 a f t 2 •1 4 * 4 42 34 - I I 116 -4 4 240 4b • TA 94 •1 9 i n -0 3 33 -1 6 47 01 4S4 l i t 122 34 • i ? 143 ta i l 21 -1 * -4 0 4 43 -6 147 -1 3 * 21

-1 4 191 -41 £6 •1 3 -0 1 ft 34 - 0 149 163 26n k o -1 1 121 tv . 24 • 1 2 —6 t I t 33 - 7 IT3 •IT S 10

-1 4 74 -6 8 48 - I I 117 121 21 - 4 1*4 16* 10*17 -9 2 •4 2 B4 *19 01 - i t 99 - 14 u a •14 6 29 • 8 •4 0 -4 7 36-1 4 3* - 19 41 - 1 3 - ln i 14 26 - 6 1S9 134 34 -4 IIT -61 31-1 9 BO - t n 44 - I I *1 -01 90 “ 6 ITS -214 1? •3 964 287 19

• 12 IT - 4 I I I *«7 14 f l H U 4 IM *2 2+•a - m ta aa -a ‘Bt * 3 2 r iu ‘it saa ft i t • « i n - m a t • ? a s - i t a 33-a n -tt t* *4 131 ita aa 6 X •

• I IM - | t ? a t -2 -1 3 4 • 2* *3 t i ? - t i l a t- 6 W Bt 43 - I - T t ■ 43 - 4 132 133 33 - I * 73 *68 44- 3 - l t a -3 7 37 • 149 122 22 - 2 42 - 3 ? 3« -1 9 -4 4 37 4T- 2 A IT flft 34 t -0 * 22 42 - 2 -3 4 -1 3 94 - I 4 - I 4 T - 4 92- 1 78 -4 6 43 2 193 I t i 37 - I 199 T l 14 -1 3 - i t -9 3 47

• -2 7 - 4 T t 2 -2 7 -Bfl T9 t -T 3 t 44 -1 2 l« 3 133 22I -4 6 41 98 I 93 47 47 - I t 173 - I 2 t 14■ 77 -4 3 44 * X - 9 a -iM -7 7 44 - I t H i 47 34■ 72 47 47 3 -4 4 B 43 - 4 47 - l i t 44

• 14 -9 4 19 14 4 t t i - t3 T 34 - 6 44 I 89t ft - 4 - 1 3 146 - I4 T 24 % l i f t 34 31 - 7 93 t 42

-1 2 ia 64 77 - 4 l l t - I t a 29- 4 -3 7 -4 3 49 - t f -«M -3 4 41 * ft - 3 - 9 119 44 29•6 -1 4 4 M 34 - I t 0 0 S3 44 - 4 II* - U S 24- 7 -4 4 24 40 - 4 -4 1 T t 3T -1 9 -4 4 -9 1 44 -3 331 |« « 14-4 -6 3 4 41 - 6 6 t -4 4 90 *14 I t -1 4 74 - 2 40 -3 7 49- f 40 13 19 - 7 1211 4 0 29 “ 13 12 33 39 - I B i 49 43- 4 -0 2 0 43 - 4 117 -3 3 27 -1 2 122 -4 4 27 4 113 - 7 t 3*- 8 -0 2 Bl 71 - 9 -T 4 31 36 - l l 120 144 24 I 04 - I f 14

• 4 4B 23 44 - I t -4 9 I B l 9 -SB -4 7 40* ft - 0 - 3 97 24 41 - 4 4* ? l 04 9 *44 -4 4 93

- 3 121 -7 4 24 -6 -1 1 3 -1 * 21 4 4 t 87 98- | l -4 8 -3 3 46 - I -4 4 -1 7 44 - 7 144 I«S 24 0 74 - 7 42• I t -4 4 - 4 41 t -6 4 -BS 44 - 4 194 - I IS * t 4 6* 80 44

• 4 47 -6 4 97 I 134 7* 20 -8 -1 1 3 34 27 7 -4 3 *24 17-O 164 44 64 2 43 91 49 - 4 72 -9 4 37-T 1*4 -1 4 4 27 O 64 4 «1 - 9 141 -1 4 1 21 4 ft I• 4 74 74 49 4 24 63 41 - 3 97 T7 44- 9 144 8 69 - I 39 -3 4- 4 194 (82 24 4 f t - 4 4 64 I t- 9 69 47 44 I 47 13- 2 114 94 02 - I S M 43 84 2 143 *4- I *33 -3 6 44 -1 4 46 13 43 9 174 -0 3

• * 8 6 -2 4 42 -1 3 t 19 t t 4 92-1 3 44 -2 4 63 S 03

t ft - 7 - I I f t t -S 3 42 t -8 7 -4 3• I t 43 94 44

• I t 44 —t t 6 6 —4 t t t -1 2 3 23 4 ft - I•11 144 61 M - 6 63 73 39- I t 38 -T* T l - 7 S t -4 4 B t -1 4 1i_

-1 -1 1 3 I* 93 - 4 194 l i t 2 4 -1 8 -1 4 -7 0-6 -1 4 3 - I t 3S -■ -4 7 - I ? 4 6 - 1 4 -4 3 4]- 7 71 -3 7 .............................- 4 71 4- 1 07 -4- 4 187 121• 8 -7 1 »-S -4 6 74-1 142 -1 9 4

t - t * 42I 12 -4 4

6 ft -4 ’ -s 757 Tti6 ft - 2 * 2 111 -1 4 7 2 4

- 1 8 * - T l * 3 - t 128 - 1 4 23 « ft 2• 12 2 4 3 47 - 1 3 01 6 0 41 * 6 1 Ot 92- I I 4 2 - | 4 4 0 - 1 4 0 4 - i t 4 4 I 7 7 - 4 4 3 6 - 1 4 - 6 4 - 2 7- I t - 0 1 B 41 - | 3 B l 4 7 87 2 #ff1 I t t M - I S 11* 84

- 1 173 |4T 2 9 - 1 3 - 1 4 - 4 3 31 a | -T 4 t t - | 4 4 7 - 4 4- 6 1 4 - 1 4 6 4 - I I 193 64 24 4 4 2 123 SO - 1 9 73 14-T 61 134 41 - I t H Q - 3 4 2 7 3 I t - 1 1 6 8 1 - 1 2 • * - 7 4

92 -1 6 IB 43 04 244 -1 4 80 19 49 942 • 19 6 11 * t 4

-1 2 64 -3 4 69 B- I I 98 -S 3 43 6• I t 43 98 46

11 - 4 t i t -1 2 9 33a s - a a s 78 39Tl -7 i t -4 * B6 - I t39 - 4 196 l i t 34 -1 133 -■ -4 7 - 1 ? 4A -1 441 - 4 91 04 47 *11a* -9 06 - a 09 “ 13M - 3 *6 - 0 34 - t t29 -1 4* l a 4* - I t49 0 16* •44 36 - 417 1 43 73 44 - 0a s 2 06ft •1 1 3 16 “ 7s i ■ 04 33 06 - 442 4 •2 9 •3 3 ft* -B

B 43 -4 3 U • 4

49 •1 4 -9 3 •7 7 41S* -IB II* •2 M48 -1 4 70 -7 4223 - I S 91 40 1626 -1 3 64 IS 829 2 - I I 46 - s 4190 -1 6 • 26 74 •044 -6 394 - a n 14

-B *3 •9 30-7 183 -1 7 3?- 4 -2 7 ** ■ 4

9 9 -8 139 -TT 31■ 1 “ 4 123 *1 23ST - 3 •9 3 -7 ■647 - 3 74 43 2994 -1 -1 4 47 4827 a 6 1 a t23 t-131 49 27t o a 164 -1 7 2 iaI t 9 3*4 |T | i?30 4 361 -1 * 2 i*33 1 72 82 4214 6 -* • -41 u10 7 41 -O 44

31 0 1*9 31 M

298

• I I 114 4 3 3 8 - 1 4 4 — 17 IT 4 K t - 4 - 4 9 I f 1 3• 1* 134 • 133 33 • IB I -1 1 3 2 7 * 3 3 3 89 4B

- 9 173 149 14 1 104 - 2 4 2 4 - t l 4 3 72 B l • a 4 2 - 7 a r- 0 133 4 4 23 a l l « 4 * 34 — 14 48 - 4 4 8 0 - I •S B 7 39- 7 74 - M 0 4 9 10* -1 4 2 22 - 1 3 B 04 ♦ t B -T 9 - 0 30- 4 n a 7 4 01 4 U T IBB 14 • 1 2 2 9 • 4 0 44 1 143 9 4 a t• 1 i u -3 4 4 IS 8 94 * 8 4 44 - I I - I T -IA 71 0 79 - 7 8 04- 4 147 i s a 14 4 BB 4 0 33 - I B 144 - 7 4 22 3 3* - 4 4 84- 3 3 73 - 2 * a 14 7 i n -1 93 - 4 ISO 14 2 0 4 - 4 2 47 34- 2 IDT 170 IT s 74 • 9 9 43 * 9 79 t l 3 2 B 144 - 4 4 20■ 1 1*3 - | 4 4 24 * 7 104 149 2 d 4 184 *9 2 3

• 4 3 74 01 0 1C 1 • 4 4 7 - 1 4 43 7 143 • 4 4 2111 s a Til 3 2 -B 127 B l 2 2 a 133 83 3 7a • - 3 2 Ad - 1 9 - a a - 9 4 49 —4 TT T4 3 4a 9 4 41 99 - 1 4 • 4 7 *4 43 - 3 199 - 1 4 9 2 2 9 K IB4 139 - 1 8 7 2 4 - Id 4 3 n 84 - 2 - 4 4 04 44

- l aD 47 4 4 4 2 - 1 2 Bfl i a OS - 1 149 - 1 4 7 19 *78 4 44* 149 - s a 24 - l l 2 8 • 4 9 43 B - 2 0 4 4 87 - t o - M *3 ■ 9T - 7 4 4 3 43 -I O 147 139 2fl 1 41 a * 4 0 - i i - 9 4 0 87• I I I —4 31 - 4 |2 8 - I S T a s a - 0 7 44 4 2 • I B 3 4 BB 41

-D «« 133 31 a IB I a * 2 0 - 9 S3 —8B BTfl K 0 - 7 120 - 4 0 a s 4 124 • 1 * 4 2 4 - S 43 • 4 13

• 4 44 - 3 4 34 3 1*4 139 2 0 - 7 1*7 • 9 4 2S-1 4 147 I I S 94 *9 124 •1 3 4 2 3 4 • 1 4 -.1* 74 • 4 t a r 9 * 3 2•1 9 M * -|lk A 2* - 4 -DO - 3 4 3 2 7 -1 4 3 44 39 *8 l e t - 1 3 * 10•1 4 47 44 49 - a 1*4 134 17 a 12B - 9 3 33 • 4 *0S - 7 34• 1 3 • 3 3 - 1 4 47 - 2 IBB - 1 2 8 SB - 3 1*7 - I B 33• 1 3 142 • 4 9 a i - i 1*9 2 2 7 19 4 K B - 3 71 - I B I 34- J 1 3 4 S 7 44 8 14 37 43 • 1 2 4 77 43• I * 341 -1 4 7 10 1 IB* 127 29 -1 4 -4 4 44 8 8 * 8* - 3 4 43

• 4 i a a J47 2 0 2 7 | 4B 37 - 1 3 144 - 1 1 3 3 4 1 104 194 29- 0 3 7 - 7 7 81 a 117 - 7 4 24 - 1 2 123 87 2 3 2 a s •B 7 19- T 32 4 ro a 14 4 180 * 4 7 2 4 • I I 104 1 2* 0 a s 1 14 BB>• -I IJ 14 31 a • S I - 4 7 4 9 - I B 03 - 4 1 33 4 s i —4 0 a n- 9 m 20 24 o - 4 7 on 44 * 9 113 141 2* a * i - 8 4 34- 4 » » 40 04 7 - f t l • 4 40 - S 291 - 1 7 0 IA 4 -2 4 - 4 7 9• a *37 -0 1 39 B 12* 74 2 0 *7 S2 07 34 91 - 7 4 84- a 34 11 Bfl - 4 14* -1 3 7 01 B 130 - 3 7 0 9• i 114 -1 7 4 39 o r 4 - a 1*9 139 21

4 4 3 - 3 6 47 - 4 6 3 - 3 2 9 9 1; t tI 141 • 143 21 - 1 3 i t a err 32 - 3 7 a 40 3 4a 131 144 • 1 4 4 0 - i n 81 - 2 124 140 2 4 - 1 3 107 - 4 2 3*9 J2 n - 9 2 21 - t a -7 1 13 42 -1 2*4 - 1 9 2 13 - I I tfl 9 # 7 74 *7 0 3 41 -ia-i a a 14 a a B 137 IM an - I B 71 • 4 4 33 -A 3 4 4 09 - i i ' *114 33 34 1 99 - 1 1 4 29 - 4 4 0 • I B 03* 44 4 4 34 • 1 0 134 129 2 4 2 3B 44 B l - 0 9 0 79 347 - 9 4 n a n s - 4 a s -3 3 43 3 2 9 4 - 2 0 * IB - 7 148 -1 2 * 2 3a 18 •4 1 30 - n 204 132 17 4 -411 42 82 - 4 ISO 141 23

- 7 174 - I f l l IA a - 7 2 1* 4 2 - 3 - 2 4 • I M 4 34 K 4 - 4 io a l*> 34 4 130 93 2 0 - 4 140 IBT 3 0

•B 4 ? *14 7 29 7 1 U t i l 34 * 3 4 4 - 8 2 SB• 1 9 IS •441 TT * ♦ 7 4 - 1 31 a 3 0 04 7 * - 2 • 4 3 19 41• 1 * i r - n a a s - 9 - 1 9 7 9 8 a s - I * 4 0 SB 49- 1 3 7 4 -TO 94 - 3 - s * - 4 7 41 4 K 4 4 • IB 14 34• 1 3 4 3 *2 94 •1 IBS 4 8 2 7 1 -A 3 • 1 9 34• t l 4 2 - 4 4 30 o 44 - a n 4 7 • 1 4 0 1 7 4 40 3 134 • I I I 22- 1 * Ta • M il a n 1 1*8 u n 14 - I f l 4 9 - 3 7 3 3 a 120 « 3 23

- 4 7 0 34 :»S 3 -2 4 - 1 7 4 3 • 1 2 IB 0 4 T4 4 114 - 8 4 29- a 1*3 -TJ on 3 197 i m 21 - I I 74 - 3 2 41 0 137 ITB 2 7- 7 :i4 a n <4 4 1 to -4 7 2 0 - I B 4* 70 R* * •BT 2 0 07>4 fll 2 4 mi 3 •9 1 IA 97 - 4 a t 12 4 0 7 - 4 3 2 3 37- 3 3 3 3 Ifl* 14 4 138 -fl* 24 -B -7 3 -T B 3 4*4 124 - n o 31 0* - a n 81 *7 B 1 4 1 * 1; t a• a Iflfl 144 IO n •* :i - 4 ? 84 - 4 123 -4 3 a a- a 147 • 1 * 3 31 * 8 - IBI AS 2 3 •1 1 - 4 9 TB ■7

8 T 4 - 9 44 - l *84 S 49 • 8 120 74 0 4 - 1 - 4 8 -4 1 130 IIB -TB 2 7 * 4 172 - 1 1 0 19 B 9S IBB 87

I • X 3 i 144 B l 24 - 0 •*84 03 43 t 7* -0 8 4 4a 4 4 • 2 2 94 - a 7 7 -TO 3 * a SB BB *1

• 1 4 43 11 44 3 - 113 B 0 2 - i 44 -2 7 39 3 *49 4 « 84• 1 3 32 • 2 9 44 « 44 -4 1 34 B 34 -3 1 8 4 4 1 13 • 3 3 0 2• i a t l " BA n i 8 192 4 0 a s 1 '*44 -2 4 4 3 8 7* - 1 3 4 3• I I 4 2 14 30 4 74 13 4 4 a '*90 47 4 7

13• 14 IB -1 4 9 a a* T 34 IB K• 4 194 70 24 IB X 4 4 104 97 2 3• 8 4 4 - 0 7 33 0 194 - 2 2 3 2 *4 ■-9 4 49 4*- 7 44 4 4 31 -• ia 13* 134 a s 4 4 3 44 39 • 0 8 7 - 1 4 82- 4 4 9 *14 3 92 - 1 3 123 -0 1 8 4 - 7 144 143 30• 9 113 44 29 • l i ­ tofl 34 a a IB K 9 -A 12# - 7 3 2 9- 4 74 *44 n o — 10 Bft a 33

TB- 9 94 IB 84

• a 83 7 * 47 - 4 110 • 1 4 2 7 - 1 2 •*27 04 - 4 03 IB 0 7• a 1*0 -4 9 92 •B 130 - 4 4 2 4 -1 1 8 4 - 4 4 BB - 3 '- 4 2 9 08• i -1 7 44 71 - 7 8 4 - 4 3 3 2 - I B 4 0 • 3 0 37 - a 144 -1 3 9 24

4 ■-9 3 -4 3 ■ 4 —9 '-4 1 -1 1 41 - 9 '-BB - 1 4 4B - i ■ 4 * 49I 4 7 - 1 4 • 1 - 3 -ta - 4 2 4 4 • a 4 4 43 a* B IB I a 03a 193 194 29 - 4 I M 134 14 *7 09 - a a 84 1 119 - 1 * 4 84a a * - 9 2 4 2 • 3 7* - 3 0 SS - 4 131 Ta 2 4 3 ;2 98 3 4 3 IB4 ■-9 4 49 91 *3 :290 2 0 0 IB - 8 B7 2 9 02 0 4 7 • 3 4 84• ■*14 *74 7A * r - 7 * - 9 2 04 - 4 •* 4 t - 4 9 4 2 4 1-BB 9 404 199 99 27 « 7 4 31 3T - 0 114 123 3 4

IBi 43 - 2 3 9 0 • 2 I M - 1 3 2 29 IB K14 K 4 3 192 -1 4 4 2 2 - 1 74 19 34

8 38 192 -2 4 2 3 4 101 - 1 3 4 » -S - 1 3 4 4 4• 1 4 4 4 - 3 3 4 8 4 « r - 7 7 09 1 t a 74 70 - 7 *1 79 89- 1 3 • a -3 4 4 7 9 103 42 37 a 139 - 9 1 24 - 4 142 - 1 1 0 01• 1 3 -4 4 47 as * ISA -1 3 7 4 4 a 4 4 4 4 40 • 8 71 7 4 48-1 1 128 - I M 9 * 4 2 7 4 4 TB - 4 84 - 8 3 89- 1 4 4 113 4 4 IB X » a 0 4 B 44 • 3 *80 t a • 9

- 4 114 -2 4 2 8 - a --4 7 u 94• a 137 177 14 - 1 9 - l t T I I 02 IB K IB - i - 191 BB 0*- 7 -411 -3 4 OS —19 41 • t o 49 B •-8 4 - 1 3 * 48• 4 IB a r 44 *■ n 4 9 71 4 8 - l i ­ IB t 2 4 8 7 I - 140 31 00•B ■-1 4 2 3 4 t -19-1211 •BA a r - I B - 4 7 - 0 7 4 7 a 4 3 —4 4S—4 194 -1 3 1 24 - 4 98 aa 4 7 •*4 134 - 4 9 2 7 a '-3 4 - 4 7 4 0- 3 37 - 1 4 99 -B 44 - 4 2 a a -B 124 3* 2 0

I*• 3 191 -1 9 4 M - 7 130 t« 3 3 4 - 7 04 - 4 8 37 IB I- 1 iara 44 27 • 4 147 - 1 4 2 2 4 * 4 <-0 9 7 3 37

1* - 1 8 7 44 4 7 - 1 1 4 09 -B ■*19 2 3 49 * 8 ( « a - 1 4 7 19 —41 174 140 2 0 • 4 49 • 1 9 2 0 - 4 0 0 4 7 aa IB* 14 a s3 134 a s 2* • 3 7 2 • 9 0 3 3 • 3 4 3 8 8 40 - 4 '*44 8 3 413 - 132 *33 fl# - a :294 I9B IB -a 24 - 4 43 - 0 1- 7 4 3 4 44 141 74 24 - I ITT *171 21 - 1 IB I 4 3 94 - 2 1*3 1* 048 - 1441 -3 3 34 B 144 2 1 9 22 B - 4 1 - 1 0 41 - 1 - l*a - I B 044 42 07 OS I - 9 | • 3 4 84 1 •-at 14 an B - 127 - 4 9 04

a ■-0 7 9 8 9 2 44 • 4 7 03 1 9 4 49 001 * K f s 129 - 2 0 a a a '-3 7 18 49

t f4 79 -as 4 3 4 123 - 4 4 39 IB E— 14 144 - I M 34 B '- a * - I D 4 4 8 '- 7 7 - 2 4 43- 1 3 114 44 a s 4 79 • 8 3 4 4 • 0 ISS - 7 1 8 4- 1 3 - 193 - 1 7 9 | IB K 11 - 3 189 TB 3 7- I I • i a *9 4 M IB X B- 1 4 144 117 2ft • IB 9 4 - 7 7 4B 1 1 X • 8

- 4 144 - 1 2 3 3 9 - I B IBB - 1 9 4 2 0 - 4 4 0 01 84I f• a 4B 111 81 - 1 2 141 88 24 *0* 113 9 93 - 9 09 SB

- 7 71 - 4 0 a n - I I -0 3 fl 411 - 7 47 - 0 7 84 - B -- I B - 2 9 7 0* 4 139 102 2 4 - I O -4 1 - Id 83 - 4 - 9 4 3 2 08 -T -2 3 84 4 8- 3 '-7 4 -4 2 9 4 • 4 4A 2 d 92 -3 4 4 - 1 1 4 B7 • 4 IB* - 7 4 0 4- • 14 14 *9 - f l *02 4 09 - 4 110 TB 29 • 0 -- 4 3 » 4 3- a 2fl 4 4 87 - 7 lo « flfl 2 9 • 3 43 - 4 44 -4 '- 0 7 * 4 2-a 93 - 3 7 44 —4 ■- I T -44 4 7 •a *01 2 4 as - 8 3 7 - 0 7 1

-IB 191 -134 a -1 44 39 44 4 -43 -BS St-4 78 IB 4* B 114 -110 aa I 1*9 79 SO -19 ra •14 47• 0 43 -IB# 49 1 144 •4 80 -13 i* -87 70-T -7# 4 44 a 79 •84 42 IB K -• -1 2 -IB 99 7*-0* 81 as 8 170 04 83 •II S3 -as as• 8 IT 40 TO 4 -97 12 aa -1 1 -St as IT -IB 47 a 40-4 III 182 0 0 - 1 2 ISS -92 89 -« *3 •07 94- 8 aa -II 82 * X 1* • 11 139 90 84 •a IBS 1*9 04• 2 S3 8* 30 -J* 142 -117 07 -T -17 -44 48-1 n a -125 29 -s -71 -40 4A -9 -a* 04 83 -4 flt •84 BlB 45 a* 49 —4 9B 47 39 •S as -03 42 -8 44 -24 4*» 14* -I2B 23 -3 70 —03 42 •7 —34 9 40 -4 40 -A as2 130 Bl 37 -a 70 119 43 -4 112 40 32 - 0 72 01 440 123 — 00 25 -1-109 -1 Zft •a 40 -01 8* - 8 -a* S3 •34 1*6 1 3| B -79 - 0 0 43 -4 -47 72 84 -1 04 BB 4S0 78 SB 41 1 —43 9* ■a •3 •89 04 47 * 190 -141 194 -40 -40 80 a 14* -92 23 • 2 -33 31 AT 1 IBS 78 037 -44 B« 09 -I tBI - I M 07 2 A* -4* 4*

IB X -T B 04 a* 47 a 1B9 97 099 E 19 1 174 — 141 24 4 -40 -32 88-IB 41 -7 IBA iaa 89 2 -44 •44 *1a 44 -* B - 1 2 94 IB X 1-9 -78 -14 44 -a -74 IB 40 IB X - 8-0 III •29 ai •14 —43 1 84-7 143 100 33 IB K -4 -IS aa 24 42 -13 -74 92 44•4 1*0 - 121 a* - 12-1*9 9* 34 -12 -0* - 2 2 0*-8 184 12* 24 - 1* 44 as • 9 •II 74 32 43 -II 1*0 •a* Bl-4 218 -•194 19 -9-IIB -4 34 -19- IIB -43 S3 •-IB 140 -127 aa•a IBI 70 00 -a 03 -47 42 -9 138 -■It* 04 -9 109 •7 a*•1-’114 - 8 29 -7 114 43 89 •a *1 - 1 0 44 - 0 *7 -34 a*• 1 82 84 44 •A •4 -03 04 -7 144 74 24 -T 07 7 83B 43 74 00 -8 a? 30 aa —4 I2S •44 27 •4 199 ISB 1*1 S3 -43 OS -4 a* -i»* 82 -a •74 8S 41 -8 04 -II 48a IA 4* 72 -a 1*9 97 04 -4 -49 19 81 -4 IB* 141 SOa 147 - 1ST 24 -a -92 83 42 -a 44 38 83 •8 -14 -TB 7*4 43 79 44 -3 -33 09 80 - 2 -94 4 848 |2 B •■It4 01 IB K -■ -1 87 -34 49 -1 133 - 12* 044 27 T0 49

-tl* 49 9 44 B 4* a 44•II - 2 2 BI 1 127 - 14* SO 1 -80 14 489 K 14 -IB 47 72 47 2 1*4 127 34 2 •89 -*4 1*

-40-9 14 -44 TS a IBS -07 a* a *B 134 13—9 82 49 - 0 IB 1 •as 34 4 SA -78 41-a IB 09 7* -7 14* •79 8 * 1B X -1 8 •42 T 8 *-7 49 -IB 43 -4 -31 4 43-4 4* -32 84 *3 142 •09 27 -14 83 43 89 a* x 3•8 1 0 44 34 -4 as -29 a* -13 84 •SS 82-4 144 -128 2 2 -3 -74 70 43 - 1 2 133 74 aa - I* -88 S 49• 8 182 III 38 -a -93 - 1 0 39 -11 SI -3* 41 -19 19 •29 74-a 193 - 142 29 -i BT 7 1 *3 •IB -IA 83 74 -13 •43 *49 49-i -73 4* 44 B -43 -IT 41 -4 131 -SI 04-11 -37 83 4B* -87 13 49 -a S3 98 49 -IB ra* -■149 aai 74 -24 4B IB K -4 -7 ISO -23 2 0 -9 283 1*9 143 l«4 24 04 • 4 44 -04 33 -B 93 -SI 82a 123 47 29 •-IS 1*1 -tl* 29 •a si 14 47 -7 04 91 as4- IBS 94 34 <-II 44 14 37 •4 134 -134 a* -4 8* -07 44B •IB IB 83 -1* 4A 12 34 •3 91 0* 04 -8 81 -43 44

18-9 IOA -79 33 -2 -24 •43 44 •4 7* IBI 979 K -s 144 III 24 • 1 43 *3 34 •3 -aa -31 34

4B 09-7 as 2 « 42 4 fll 4| 44 -a 73 133 44-T 40 -4 An 40 37 I 72 24 43 • i -17 -82 *0-4- IBA 87 34 -3 M W - 111 23 a nn 34 3T B ias 74 23-0 -47 -as •7 -4 tfl -an 73 a *4 1* 49 1 119 -9* 09-4 123 Dl 29 • 3 101 -A* 84 4- Ifll •07 97 a 121 80 27-3 42 -TB BB • 2 43 a ■ 1 a 37 •BT *3*3 111 •84 31 -1 10 24 7* IB X B * '•15 -1 a*

-It 94 14 04 -1 72 -83 41 •a 10 -SS 7011 K • 8 -IB -Bl - 2 2 42 B 1*7 •9 33 -4 S3 49 37

•9 III 133 04 1 SB 81 84 -a •*B -45 43-IB 117 01 81 -a 04 -4* an 2 44 39 Bl -a -7* -S0 4*-9 48 •02 49 -?■-IBS 2 B 31 a 44 27 37 -i 104 24 as•a -32 32 *» -4 41 -4 SB * -19 -a* Tfl-7 111 122 24 •B>-10* 33 34 It K 4 i taa IBS 24*4 91 •SO 39 —4 138 -54 04 3 72 •21 43-8 1ST J44 34 -3 -31 a* 44 - ii * 13 92-4 IS -4B 37 • 2 -9# -3* 37 -i* t*6 -S3 34 II X ta• 8 •80 -B as -1 114 -43 33 -9 *3 *9 49-a 98 -123 43 B 13* 4A 29 -a 147 -IIB as -4 Bl IB 88— 1- IB* 0 34 1 *3 -2 * 40 -T 147 119 as -0 -37 41 IS

2*- IM •3 29 -4 na -44 36 -7 •43 •05 1 011 X •I -a 40 -23 84 -4 122 t*B 32

II K a -4 4* 78 90 -8 109 - 1*2 as-II *4 -47 40 -a-ii* -34 91 -4 181 IBS 24-IB 74 84 42 -to 04 74 AS - 2 •23 77 AS -a -flfl •94 IB-9 82 -8B 41 • 11 -S3 •49 as -i 19* -79 38 -a 94 2 BA- 0 -48 87 87 -IB--1*1 83 as B 04 IB *9 -i IIS •XT 09*7 -4t -44 *9 -9 123 -ea 89 1 134 -IIS 91 B Bfl -14 41-4 94 -00 34 -*■-149 -21 33 -114 -9 91 1 •S3 4 42-8 110 90 04 -7 B •14 0 0 3 IIB •4* 30-4 ta IB TT -4 112 an 31 II X II-3 82 41 44 -8 7* •a 41 II X 7-3 -BB •18 41 -4 IBB •34 04 -T 70 -4 44-1 47 *B 87 -a 13* 113 29 -11 -98 -30 99 -4 149 •1* X*B 40 -40 as -a 122 -144 ai •IB 118 -73 03 - 0 181 1*3 89-t 11* 1*3 32 -9 49 -3* 47 -4 141 •B 84II K a * 1*4 -49 0 2 -a sa -TA 4* -a -81 19 88

41i 19 -I* 74 -7 173 143 33 - 2 182 42 24

-II -BS SB 09 4 30 -4 72 -1*2 44 -I B4 -9* 89- 1* •Tl -i# 44 •a 234 101 U 0 183 SI 89-9 87 -at 42 II K 4 -4 1* 1 72 1 III -49 00-*■'144 27 a* -3-123 SB 0*1-7 180 -97 29 • 12 -ra -a 43 -2 -14 -34 8 * II X 12-4 -4a 34 04 •II a# •2a 7* •1 •83 -1*3 34- 8 04 B 01 -IB tBI u s AT • 04 •7 36 • # • 1 1 0 -S* as-4 1*4 08 83 -9 142 •43 04 1 -33 -42 44 - 8 •93 82 89- 8 -94 •AI 30 -a 143 ai 24 2 -92 1* 99 -4 -4B -49 4|— 2 123 1*9 29 *7 01 -ai 4# 8 117 •BS 34 -S *4 98 89-1 78 -11 48 *« M 4 a* -3 134 -92 as* 183 -OA 28 -3 1*3 -TS 32 II E a -I aa TT 441 1*9 SB 24 -4 -oa IB 47•3 -73 IS 44 -IB -43 89 1 * 12 X 0II K 1 - 2 B9 -14 37 •4 I U -24 34

-13 99-I IIB Sfl a* -a 48 BS 47 -4 IBS 72 04-IB as • -7* *4 43 -7 •43 T 37 •8 177 -187 an-II-IIS 40 34 1 -40 41 40 • 4 124 -71 04 •4 -49 -1 87-IB Id* •97 as 9 27 -40 49 •a SS -at 37-4 119 n a 34 »■'IU • IB 38 -4 -9* -47 89 ia x 4• 0 -29 -13 40 •a 1*3 41 94•7 44 -17 49 tl K a -2 54 -72 37 -r 103 41 04-4 -41 •3 01

- I S-1 133 til 87 -4 IIB —4 83• 0 BO -IB 87 IBS -41 U B 19 -IB as -B 98 •41 89-4 98 -T 04 -ll 40 74 83 1 -48 8* 40 -4 1*1 113 87- 0 t l * -143 87 - r « - ‘112 -4 33 2 123 -40 03 •0 94 - IB 87

- 8 til 98 32 • 4 SB •2 * 44-1 40 -1*3 a a •A 73 33 42 It X fl t a x t

B -44 1*9 M -7-IBS -31 321 40 Bl as •4 121 tl 27 -1 * 114 -34 80 -7-IBS 08 84

II X- a 104 -49 97 -4 47 9 as -4 IBB -194 OS

1 3 -4 77 -4 a a •B 144 t34 07 •a •TB -4 43-14

• 3 31 •47 43 - r 184 -111 00 - 4 •IS 91 7*-18-tBT 04 • r -4S 29 44 -4 9B 44 34 - 0 148 •89 a s

IS E- 4 1 IB - i l l as • 8 -94 -a 89

4 -*■-IB* 44 *4 -8 TB 09 43- 4 IBS 4 0 83 12 K 7 -#-142 -8* 87

lFe{(lt5-Fent(NHEthi) )Me2 Fl6]tetraeneN.}(PY)(CO)1(PFr)~ T~ " ---- - v

X Y

FE 117781 ' 9 ) 2 5 0 0 0 ) r* 1PI 569011 111 436 3 1 1 8 1F l 677651 3 9 ) 3748 41 24 )F 2 - -. , 6 L 7 2 2 L 3 9 L ——3 7 4 7 9 L 2 2 . 1 .F 3 414391 3 1 ) 3 9 5 7 ) 1 77 )F 4 721471 2 9 ) 4 8 0 I 5 I I B )F 5 514421 3 5 ) 449361 24 1

6^2- C H j O H .

. F t .018!.N2_N3N4Ct

-C2-C3CtC 5Cfi

1 7 0 ) ] ( 7 )741 .931 1 Cl6 7 7 * . ‘it ■)*.I

. . . t t 1601 2 El6 9 6 3 61 ?fc>9 0 2 9 3 1 2 4 )

- . ___ _ . 877C11 3 6 ). .52.16L1—3.9 i ___ 493621__ 2.7 1_6 3 6 5 2 1 . 3 1 )—177B01 42 ) 2500G1 0 ) 3*0

19594J R9) 276301 7 7 ) -7P76&1 66)191S5( 301 1 64CJ8 ( 19 1 29674 ( 24)

J 7671—3 0 1 ____I 6 l7 .a t _ l .8 1______ 5 0061 . 2 5 1-- 1 7 3 0 5 1 3B) 441.391 22 ) 3049t.( 3 ? )

2>>015( 4 7 ) 250001 0 ) 127241 3 0 )113441 411 396411 2 4 ) 307(141 3 1 )

-^0-9324-421------416331—2 2 4 ____ 201141 3 2 ) .4 00421 ? 4 | 7 9 6 9 1 3 6 )-3 C 1 1 1 4 ? )

1781 4 6 ) 3 2 7 7 1 ( 2 5 ) - 7 4 8 4 1 7 7 )- --- 1 42)-60661 t a ) 3 5 3 2 3 1 —7 2 3

11 4 ? ) f l . 5 3 ) >( 4 2 )

338471 161671

-1 3 9 0 8 1 s2 4 . l6 7 i J 4 . L - 1 2 8 4 3 7 4 6 ) - 2 5 7 0 0 1 5 0 ) - 2 2 354 .=5987.

3 4 4 8 8 4 4 4 9 0 4 9 4 8 6 15 505

240(101 .2 .500 fat_3 76641 27 4 5 5 7 9 3n 442601 22

_5X47.7.(—30- 3 7 2 8 7 ( 2 8 3789 7 1 3 2 )

IzI

1 2 9 7 3 1 A617X.C . 5 6 1 - 3 8 9 7 4 1 3 5 ) 4 0 9 1 7 ) 4 3 ) 2 1 3 1 2 1 3 4 )

1 6 7 7 1 - 3 9 6 9 C I 3 P. 4 0 7 7 3 1 4P

7 4 ) 2 5 0 0 0 1 0 ) 4 7 7 5 2 1 5 6 ). 6 3 ) -------2 . 5 0 0 0 1------0-)----1 8 0 3 5 1 —4 6 1

4 3 ) 3 1 9 5 2 1 2 5 ) 1 0 4 4 0 1 3 4 )4 4 ) 3 2 2 4 0 ) 2 7 ) 5 3 2 2 |6 6 ) 2 5 0 0 b ) 6 1 7 4 8 9 1li?) '313361 75 1 -333091

3 7 ) 5 siaiJ_

u n u?27111 4139 4 1 7 )

12541 33). 9391 7 7 )

11311 79) 7 4 c l 71)

17341 3'5> 13691. 3 5 1

4591 ? “ ) 2 C 6 9 1 1 4 c )

3011 19)2 3 7 I - - 1 7 ) -------- 2 1 9 1 - 1 7 ) .

‘ 3441 7 0 )

u:i?2 4 3 )3 3 4 1

1 0 8 3 ) 2 9 ) .11791 3 0 ) .

5 7 1 1 7 9 ) 4 0 1 ) 1 4 ) 5 7 9 1 ? ? )

. 2 4 3 1 7 7 ) 264 1 ? 5 )

11721 6 9 ) 1961 171

?4SI 4)6)1?7<>1 3 0 )“ ■(-11j--77.8-1-

751 1 ?1 )

3981 2 ? ) 756 1 7 7 ) 273 1 7 3 ) 2 3 3 1 - 23.) — 231 1 221 3 ? 3 | J 3 )3 4 f , l 3 7 )

.-3-151—3 6 )____

4 1 7 1 1 9 ) 1 6 6 3 1 3 4 ) . . 9 1 S 4 _ J 6 1 „

6 4 5 1 2 9 )e e a i 4C) 7"*9 I 1 6 )

2 3 9 1 - 1 4 1? 9 1 1 1 4 ) 2 9 5 1 2 « )

1112

-:?f 2!-99(

•3661-25-1__- 4 5 4 1 71 ) - 1 7 7 1 1 4 ) - | 7 9 ( 7 4 )

0 1 1) -4 7 4 1 97)

71 15) -94—l-'M-

1113 U2)£ 1’5)K-Cl

c 74| ?*) 1.311-;ii_ 1771 1 7 )169( )4)5 “ 31 2 4 ) 47-4.1-2 ).. 1931 2 3 ) 5 5 1 J 4 4 )

5 4 |

SI77)

- 2 7 ) ---------- 32JU—2425) 391T26

734 3 4 7 2 9 3

3 3 9 _3 7 8 1 771

J25IJ5131 5 1 2 3 ) 3 1 ? ) 7 4 ) 2^51. 35) . 4 7 0 1 6 4 )

2611 2 4 )2 8 9 1 2 2 ) 2 5 9 1 1 9 )77G1—2C.I----------306 t _ 2 t l2291 20)3111 723 9 9 | 3 5

- 4 3 3 1 - 3 0 .

9 6 1 1 3 | Cl 31

- 3 7 1 1 9 ) 64—I f t l

3 3 3 1 21) 737 1 19 2 ? 9 t ?7 2351-31-1

261 1 9 )

375 1 7?) 6171 3 0 )

33 28R61 721 e o i 25)4 5 3 2 ?

313 1 ? 3 ( 20)3 051 24 3 3 5 ) 25 6401 46

M31H41H42H 5l

H 5 i .H61H62H71

H72_HBlH92H53

- H l a L

BK?

- 4 7 1 14?)

-18? fill• m m -

43 5 2 162)

-6 4 7 6 175 )

4077-3693L23921994 ( 4 1 )

932 (4 3) 2 0 4 2 - 14 7 )

H I02 - 3 2 7 6 145)mi nn- 6 7 6 -1 3 e L 3 2 1 6 139) 307 9 141) 2 745 ( 6 0 )

42^ 4 7 4 0 14?) 5 50 5 )591 ■2384 ( 4 3 )

H121H122H 1 3 1

H151W161H 1 7 1H N l

3767 3771 250 0 26

& m t752500 . .

ini____k&iiij__ \(4 5 ) 4 8 7 1 ( 2 7 ) *

2 6 )I0 I04

1 7 ? 1 3 4 )- 1 1 9 0 1 34) - 8 4 0 ) 3 7 )

-2 1 5 2 1 5 1 )

487142494 8 9 9_52¥J_4754549339 0 0

-3 3 1 Z .316836632500

0 I 1 0) 741 23.5 3 4 6 ISO)

s m3 7 2 974004647

1 2 6 )

m( 2 6 ) 1 0

3481 ( 3 3 )4 4 4 3 1.3 4 L4 0 5 4 13 4) 4 9 7 7 4C6 6 552

710 13 5) 1464 (3 6)4796 (3r j

3 7 3 3 —133)_ 3 7 0 4 ( 3 5 ) 4 3 5 1 ( 3 4 ) 5 3 0 9 ( 5 0 )

4 , o o I n . n )4 . Op 4 . 0 0 4 . CP

O.C )8:Jt I.4.00 ;.g.g.)

4 . 0 a i o . o i4 . 0 0 1 0 . 0 I4 . 0 0 ( 0 . 0 1_4*rx.LL.aJ-4 . OP i o . o .

1Z51 • f'*7 I3M ^•cn I o*o II?B I 4C6 6 ( 3 4 ) 4 . 0 9 I P .O I1 2 4 I_______ 5 5 2 - U 5 J ______4 . n n < n . n )

4 . OP ( 0 . 0 )4 . 0 9 ( 6 . 0 j4 . 09 1 0.0 I AJ1Q-I X.O-I4 . 0 3 I 0 . 0 )4 . 0 3 ( 0 . 0 )4 . 0 9 ( 0 . 0 ) 4 . C 9 ( n . n [4 . 0 9 I 0 . 0 I

76 )125-\

■fiiEHUh134) ( 4 9 ) ( 3 6 )

358- 1 1 331 4 4

4 . 0 9 ) O.C4 . 0 0 0 . 04 . 0 0 ( 0 . 0

UIJ HAS BEEN MULTIPLIED BY 1.0**4. THE CONVERSION OP 8IJ TO UIJ FOR I . N F . J INCLUDES HULTIPLICAT ION BY 1 / 2 .

r oVOvo

300

B H I 84 a a- IB -B L a 87 - I f t a*

4 a a - 4 • aa -4 4 -2 * 42 8 44 B* 04ft 104 •1 3 3 a a

19 - a LIB 1 L

i -4 3 4 8 ■ a4 44 4B 39 0 u a IS l B l

1 tBI 129 20-1I t - 1 L 2 119 104 3T

3 Bl -9 1 334 41 -S 3 9* 0 • 1 - f t 43a 24 39 *4 B *1 •23 SB4 34 4 94 ft I I* ftft 33

IS * L *11 -4 L

4 I I I •« S 98 a IB* 1*2 17B • 1 -T 0 44 a -1 3 4 4*4 -4 4 31 a*

-in - a l13 1 L

t *9 *0 BT4 37 93 43 3 -TB -1 2 B l1 44 -3 9 47 9 232 -2 2 3 IS4 73 - 4 37 4 lif t -1 2 4 23

13 "■4 L I I -B L

a 133 1*1 29 0 I2 t -TB 343 -TT 83 99 1 2*9 -1 * 2 144 134 -1 * 4 24 a ftT -3 8 94

a IBft ISS Ift13 - 3 L 4 IBS Iftft 2«

■ 49 23 41t 84 98 333 - • 4 -3 * 43 11 - 1 L9 40 -8 * 914 84 -4 9 a t « 1*4 ♦ 134 a tB 3* -81 Bl 1 TB -4 * 93

2 127 t t i 31-113 - 3 L 3 73 32 91

4 -B l -2 * 91• 147 84 28 B lif t -B l 2 31 14 -3 * *73 124 -1 0 0 24 -1II 8 L4 (41 - 1 4 4 144 84 4* 30 8 8* 47 80I 44 71 34 1 142 1*0 I*

a -4 * ■ft 44-111 *1 I a *8 -2ft 31

4 04 -3 * 244 133 -1 3 1 IB a 941 -3 5 * 131 194 -1 3 9 34a M -1 * 4 31 t l 1 L3 -4 2 51 304 -9 3 * 41 0 142 IS* 2 2B -T 2 39 34 i 43 4* 974 -4 4 -4 * 3* a 198 -111 IB

3 120 -3 2 31-113 • L 4 -9 7 2ft 4T

B 40 BI 2ft4 134 9* 341 144 184 23 “ I* - 3 L

- J 343 -3 0 * B 8 Tft* r i s IB-1 377 384 8 4 911 -4 4 7 IB

• 440 49* 4 a *0 48 191 383 38* 8 * 418 -44T 4a 341 -2 9 * 8 T 2*3 •2 8 8 0S U lft-lftftft 39 B •3 0 8 4*4 131 -141 II * •8 3 T a *0 744 r* 7 13 tft 1*7 148 IB4 949 847 1* t l *7 -1 * 3 247 49 •3 8 3* 12 1*1 —1*7 IB8 34 38 39 13 •ST -2T SI4 103 -0 4 IB

14 (33 -121 I* * T LII 292 211 1913 199 «* IT - I S s i b - IB * I I13 77 •8 8 24 -1 2 IIB • f f t IT14 13* —*4 14 - l l 1*4 IB* 11

- 1 0 395 931 II3 a l —4 *7 - a 87

- 8 8* —4 30-1 3 • 4 64 33 - 7 247 -M B IB-1 3 -2 2 83 49 - 4 11* - • f t IB-11 -91 -41 3* - 9 I I* 120 14-1 4 73 - * * 2ft - 4 * 4 0 4 84 13

- 4 352 -2 1 * t t - 3 162 1*1 ft- 6 73 -3 7 23 - 3 783 -7 8 3 14-T 4 1 0 473 ta -1 ■8 -7 7 21- • 195 -1*1 i i 1 79 77 IT- • 440 -4 4 7 t> 2 784 762 14- 4 489 -4*0 • 3 1*9 -1*1 ft- a l i t -103 12 4 «74 -ft 84 t a- 3 940 •01 10 B 1*4 • 1 2 * 18-1 231 224 8 ft *5 ftft IB

1 337 -2 2 4 8 T 23* a s * 103 997 -9*1 10 8 44 * 89a 114 1*3 13 * 13 2 834 4*3 4 *4 IB 10 340 -S S I I t• 4 i t 44T II II 181 -1 8 * I I• IBS 1*1 12 12 ftft ftft 3 87 447 -4 7 9 13 13 1*7 IB* 154 4# 37 IB4 231 23* 12 0 B L

14 103 * f 2*I I -8 7 41 34 - I S 84 t l a s13 -0 0 •99 23 -1 2 41 -11 9413 12* -8* t* -1 1 134 t i s 14

-1 0 •9 2 • 8 94• * L -ft 194 -1 * 3 19

- a 147 -1 * 4 15-1 3 44 -3 7 26 - r 248 343 tft-1 2 IB* -1 * 7 11 - 4 7*3 7ft* 14- I I 1*4 -1*3 31 -B 121 IBT 18-1 4 144 148 Ift - 4 9*4 -4 0 3 II

—4 -0 3 7 23 - 3 T«9 -T T I 0- 4 43 8 2* • 2 10 -41 22- 7 2*4 -2 6 9 ft -1 203 208 4- 4 449 • 4 0 7 10 0 439 • 30 I I- 0 -2 3 4* 38 1 21ft 208 a- 4 941 -4 * 7 10 2 ftl -4 1 a*-3 73* 7IS 13 3 T8T -TTI 14- a 443 424 II 4 B4* -4 0 3 11- i -4 7 19 IB 9 170 197 10• 130 -1 4 4 II 4 7*3 Tft* 14

i -45 10 31 T 294 243 I ta 41* *24 II B 1-1 -1 3 4 IT

8 290 a t t IB1 44 47 43 1 t a •4 4 Bft2 237 -2 2 3 IS a -* * -■9 229 244 -2 * T IS 3 •4 4 88 a*4 14 BT 01 4 13* l i t 16

-1i* - a l - f t 1 L

* i a t -1 1 8 a t 8 r r • c 421 397 -2 2 * IB 1 -TB -4 0 24a 01 •* 2 24 3 93 IB 93a 49 -1 4 3* 9 110 -IS S SB4 248 354 t a 4 I t * 142 18

IB - 1 L ■6 *•8 t

8 IS l • I I B 1* 3 141 ♦IBS 101 39 -S 3 81a ft2 73 24 ■8 - 2 L9 Tft - t s a SB4 63 74 2ft 1 ITT 170 14B 1*0 -IT * 14 a 128 l if t 18

a 37 a* ♦4-IB 8 L

4 *1 LB 91 - a BS1 144 144 1* • 311 234 11a 103 -1 3 7 34 i I f * 163 IBa a u -1 * 2 13 a 12ft -1 1 8 JT4 ft3 88 93 a 3 (3 -3 4 0 II1 84 7 a a 4 823 -9 4 0 10

-11* 1 L >8 • t

a 141 I t * IB 8 131 19ft 1*i -8 7 s a 34 1 232 •3 1 8 II2 47 -7 3 33 2 196 1S4 149 140 193 Ift 9 814 -3 1 3 IB4 1*9 -7 4 23 4 348 -S t* JB8 IB2 IT* 13

-B 1 t■ft - 3 L

8 234 -284 n1 1*8 -4 7 24 1 (88 •1 8 3 142 -3 4 •1 0 31 9 134 116 IT3 T* - I t 27 9 338 240 13

4 330 344 I*•ft - 3 L

- r - a l0 SIS -207 191 191 - i t s 17 i 14* 180 142 132 -1 3 1 IT a SB 14 a*3 238 341 114 184 IM 14 -T - 1 L

•ft - 1 L 8 • 4 4 t t a t1 7 2 T9 34

B 83 1 34 3 U 0 -1 4 8 IS1 -9 2 4* 90 S 288 •5 8 8 fta —48 - I B 339 112 159 1* - 7 0 L4 188 -143 14

8 3*8 4*8 IB■ft * L 1 3* -16 9*

2 49ft -4TS 12

0 Iftt •1 4 2 IT - I * ♦ft *2 IT10 -7 8 - 6 27 -ft ftt 102 3411 IIS 113 Ift - 8 14ft - 1 f t I I12 •2 0 - I I 47 -T ♦ftft -4 * 4 II13 -2 4 11 44 -4 - I B -5 4 4*

- s 42ft 43ft 10* * L - 4 234 39* 11

-9 312 -21* 10-1 2 28 IS 43 - 3 377 -2 0 4 0- I I u a -1 4 0 19 - I 483 -9 1 9 10-1 0 142 — 19t IB 1 44ft 019 I*

-ft i * r *8 20 a 389 284 «- 8 171 Iftl 14 9 220 31* to- I 142 199 19 4 337 -2 5 0 10- 4 2* 40 3* 8 498 -43* IB- I •Tft -2 3 31 ft -3 * 94 a a- 4 904 -a * * ft t 3*3 4*4 i i- 9 91 -4 4 39 8 1*9 1*4 19-2 •2 0 17 SB ft 104 -1 0 2 a a•1 24* a n ft to 89 —*2 21

1 a i e • a n 8 t t 6 8 *0 222 9* - I T 28 13 48 IT 2ftS 4* *4 2*4 285 a** ft t ia l8 4 5 2a 944 8* •4 * 91 - I I 128 194 14T 147 -1 5 8 18 -IB 34 -9 3 4 3• 184 -141 IS -ft 1*8 -1 * 2 11ft 93 •*B 93 *0 132 —14T 2 0

10 141 IS* 14 • 7 T2 -ST 34I I 179 1ft* 13 -4 ITS 144 1412 99 - ia 2* -S -1 2 10 89

• 4 197 -141 188 IB L - 8 2*4 ♦3*4 10

- 2 SB *95 3 0• 1 2 107 -1 0 3 1* -1 334 3*7 10-1 1 39 9 S t • 65* B07 T- I * IS* 132 13 1 373 347 ft

-ft 220 293 t s a 31 -9 9 97- a -41 43 88 9 264 -34* IB- 7 184 •2* 9 13 4 142 -141 14• 4 *4 -8 4 2* 8 7 6 IB 23*8 271 -1 3 * ft ft 1*3 U 4 19- 4 234 -3 1 * IB T -TT -9 7 29-3 945 3 )0 * B 149 -1 4 7 IB- a 154 174 12 * 313 -1 * 2 to- i -4 9 -7 7 3* 10 •4 9 -S 3 34

a SftB -873 II I I 1*3 134 14i 38 -7 7 S ta 179 174 t t 6 13 L9 979 938 ft4 217 -2 1 * 10 •11 83 - B | 28S 2*0 -3 3 * * •IB U I -IBB 14ft SB -0 4 33 -ft - IB 43 487 1*9 *243 13 - 8 163 183 186 84 43 34 -7 • 7 IIB a *ft 227 333 IS -4 34 8 47

10 II* 133 19 -S 44 B* 38II 17 5 47 -4 83 -7 * 5912 149 -1 0 3 13 -3 4T - S * 34

• a 294 344 108 11 L - i 4*1 447 1*i4*2 -44T IB

-1 3 -4 4 - I T at 2 343 •2 4 6 IB-1 1 93 - a t 9 5* 30 58

8 8T4 647 16 • 4 6 t•T 1 L 8 580 -34* 71 4*3 453 IB

ft -79 -11 34 a iai BB* 71 1*7 -79 IT3 173 1*8 ta - 4 1 LS 37* 248 ib 0 47 45 1*-4 -a L 1 297 23B 62 254 23* 61 248 -52* 02 289 2*9 ■ -4 S L-0 -1 L 0 ftSO 4*3 43 1*31-I**4 ♦8 3*4 371 ft1 II* BIT IB •4 B U8 1*0 -IBB IB 2 877 -601 r-4 0 t

- 8 -1 L8 TB BT 231 4*8 •444 10 1 23ft •8SI •B 398 -340 ftB 448 43* ft -8 6 L-4 1 L 0 877 -111 B

11**3 13*4 120 244 - m ft 51227 1184 1*i sat -917 t*a ita IB* II -a 1 L9 4*7 444 ftb air 816 0-8 -1 L 1 334 291 6

0 349 S34 ■ -a a l1 T|0 — 7*3 192 340 -23 T a * 1*4 - 1 * 7 8

-■ 8 L -a - 1 l

0 41 81 tl 1 858 •132 01 SO -B 929 -44 S3 37 -a ft L•B 1 L •I2B1T 1*42 18B 873 ita 6

* 93* •934 6 1 1 6 -07 IB1 T3I 7«2 198 233 357 8 - a 1 L-4 -8 L 1 8 8 8 833 8

2 BBS 881 T - 1 • 1.

-4 -2 L ft ITS -IIT 48 448 445 4 8 6 LB1424-100* ft •14 116 -174 18•4 -1 L -13 07 6* 22•13 78 82 241 31* •336 B -II -7* •SB 2ft-IB 14* 142 IB4 88 Tft 23 •5 2ft 1 -1*8 IB8 80 -89 2* -1 -14 50 174 IB •8 33 0 443 441 11r iaa -118 1* 1 42 44 9*0 1*9 -1 8 9 17 2 1*1 -1*4 14ft 94 -ft2 2* 9 277 -397 1110 ITT 160 ta 4 61 •78 29H 118 81 it S 44 84 Sft4 IIT 1*2 140 1IB L r it? 116 IS6 1*6 IBI Ift18 II -** 33 ft -37 -S3 82-ft 19* IBB 13-8 1*9 1*7 II ft ;IT L•7 -01 ' -56 34-4 141 -15ft 16 -B TT SB 34-8 1* -at 50 -7 1ST 128 10-4 271 3*1 II -4 -71 0 54-B ItS 144 14 -8 IB* -IB* II-2 02 •129 24 -4 336 •221 18•1 ITS -171 19 •a «r 45 328 124 -844 II •2 14* 147 IB1 IBT •171 14 -1 *31 -44 453 124 -133 17 i -ra 4 0 3*8 161 144 18 2 IBT -147 IT4 28* 3*1 II 9 IB* -43 228 24 -3J 4 4 4 215 25| 10• 174 -194 14 6 111 IB* IIT -44 -36 Sft ft -48 6 33B 1*1 IftT 11 T *8 •1S6 22ft 1ST 158 IB 0 - 4 * -28 30IB TT -*0 25

ft 18 L0 18 L -7 ST -31 SB•IB 78 TB 27 •B ai* •234 12-ft -43 It 3ft •8 172 -tft* ia-B 141 -125 ta •4 «4 69 i*•T 148 -123 12 •8 304 912 «-4 84 -9* 24 •2 84 2B as•9 111 143 21 -1 81 -»* 90-4 397 347 11 b as ■3 33•3 197 -124 17 1 -29 -4* 43•3 128 • 12ft IT 9 IS ao 25-I 372 -at* 11 9 904 902 ft1 248 24* 12 4 59 BS tft3 10* 124 a* 8 141 -It* 149 114 124 ib 4 90* -254 ts4 2TB -24T it T 47 -91 S38 144 -145 IT4 42 9ft 40 ft 1* Lt ta* 129 14B 119 129 17 -4 -41 -4 SBft 43 •45 90 -1 8* 82 30IB 17 -TB 94 H 170 ITT IS-3 T4 04 240 It L -2 243 -23* 10-1 25* •555 11-ft 84 ♦S3 29 1 25* 553 Ift

-a iaa til 17 2 356 234 11•7 lit IIB II 5 75 •BB 54-ft 8* 142 22 4 168 -ITT II-• -96 54 95 8 28 -25 44-4 153 -79 14 4 85 * 29-a att •287 12

- f t 911 —3 39 10 —4 5ft M ft a-6 2 * 4 •3 1 4 * - 2 300 81 9 6-T 85 l i f t 10 —2 1 4 2 1 —|0 S * IT- 4 1*3 t* l 0 •1 4 9 3 -4 4 4 6• 9 124 - t i l 12 0 181 u a 0- 4 7 3 9 - 7 3 5 12 1 43ft - 4 4 4 ■- 3 137 -I f tT II 2 1 * 3 1 -1 0 3 * IT-2 1 * * 1 -•1920 2 4 8 2*1 3 1 9 8

2 1 5 * 4 -1 9 2 * a t ft 241 2 4 4 Ta 139 •1 * 7 u ■ 241 391 84 7 3 2 -T J J 4 4 3T8 -3 6 3 *5 154 -1 1 1 11 7 278 -2 * 9 Bft 164 1*1 ft a I t * 2 04 I IT 113 l i f t 13 * 35* S« 9 IBa 5 * 0 •3 1 4 IB IB 4 8 72 a ** 3*9 •3 3 3 IB 11 143 -1 1 8 17

IB 151 143 IB 15 3* ♦ 42 6 81 1 SB - 3 0 8* IS 49 -9 f t 3312 a t 1 2 I* 14 2 7 79 47IS u a 84 1714 1*2 •1 7 4 13 6 8 L

ft 1 L • 1 4 - 1 0 - f t ) < *- 1 3 240 •2 3 4 IB

- 1 4 I I I 58 Ift - 1 2 12* -1 1 7 19- I S a a *3 2ft -1 1 5 4 7 299 12• 1 2 4 2 - 3 4 2ft - I B 2 4 8 21* IS•1 1 121 121 17 - • 440 -4 0 0 10- I B 23B •2 1 8 i a • a 2 *9 - 3 4 8 4

- * 1*4 -2 0 3 12 -T Iftft • 1 4 8 13-6 S2T 331 ft • 4 Iftft 19* 11• 7 4 * 4 4 44 ft - 8 a t a 374 6- 4 403 4 0 5 ft - 4 44 4 * 9 6 •- 8 ft •3 1 43 - 3 a * s 2 * 4 a• 4 S49 •5** IB - 2 7 7 2 -7 8 3 IS- 3 4 2 6 * 0 3 14 - 1 8 4 7 -616 t a- 2 241 2 4 2 6 1 BBS 6 1 6 l a-1 831 •2 1 IS 2 Tftft 7 8 3 14

1 64 4 • 4 5 1 13 3 297 -2 * 4 a2 2 0 0 - 2 * 2 7 4 441 -4 3 6 *9 *27 - * 0 3 IS 8 819 - 3 7 4 •4 99* 844 1* ft 1*7 • I S * IB8 - t l S I 2ft T 141 146 13ft 4 IB -4 0 9 * 6 244 2 4 8 *7 431 -4 4 4 1* ft 4*4 4 0 0 IB6 331 •3 3 1 * IB 211 -2 1 * 12* 201 2 *9 11 11 2* 9 -3 9 3 12

IB 3ftT 2 IB IB 13 I t * 117 IBI I 1=3 -1 2 1 10 IS 237 23ft 1*ta 7* 3* 2ft 14 -T * 43 2 313 ft* - * 9 3ft14 77 - 3 * 29 B 4 L

0 a t* - 1 4 IS* - f t tft- I S ftft - 8 8 5*

- 1 4 1*9 79 2 * - i a 15ft *4 IS- 1 3 * 4 -3 f t 1* * i i 2 4 * 2 1 1 12• 1 2 32 • 1 2 27 - I B 0* -1 3 1 2*- I I IB* - 118 2 5 - • 100 • 4 4 1*- 1 * n a 72 IT - 8 —*B 6 8 2*

-ft 323 3 4 5 t* - 7 ■9 - 3 8 2 3- 8 534 204 IB •ft B3ft 8 47 IB- 7 271 -2 * 3 ft •a 7 4 3 T t r 19♦ft 33ft •3 6 3 6 - * 148 -1 4 1 ft*1 3 43 291 7 -2 1 S f f t* l4 0 4 53

b :IB L • 8 1*2 111 II- 2 2 4 3 2T4 a

• 5 4 5 1 99 -1 4 3 4 -4 3 8 a- 4 7* - t t 24 0 1 1 1 2 -1 0 6 0 IT-S 132 •1 9 ft IS 1 64 •9 ft Ift- J *4 - 8 8 21 5 |4 * 9 1484 5 0-1 38 73 S* a 74* T i t 12

B 139 14* IT 4 611 811 •1 41 73 28 8 941 -3 6 ft a2 ftl • 6 8 2 2 ft 9 18 -8 1 8 IB9 143 -1 3 * Ift 7 Sft IBft 334 50 • I t 43 a 8 3 14 208 - 4 9 1 a * ft 2 1 3 2 1 * IS

JB I f t 20* 14I I I L I I ♦3 - 8 2 23

13 161 - 1 0 7 I t- a • 6 2 7 7 34 13 * 6 - 2 2 34- i - 8 3 33 33

i - 4 0 - 3 3 S* J - t La - 6 0 - 7 7 Sft

- I f t 7 * -T T 6 31 - S L -1 3 4* - 4 3 ft*

— J3 7ft - 2 2*• 14 t s s 12* a s - 1 1 23 0 a * s I I- t a TB 3 4 32 - I B 5 1 * 1*8 13-1 8 104 3 3 21 •ft 49 - 3 3 30- i i 134 -1 4 1 1ft - a 4 4 2 •4 ft* IB- I B 1*0 -1 3 0 2 2 -T 317 - I * * ♦

-f t 44 -3 B 3 3 •ft 4 2 8* 21• 6 l i f t 121 Ift •B 18 - 2 2 41- 7 a « 2 344 B - 4 2 43 24ft 7• 4 t i * 5 21 - 3 839 655 14• 8 I U -5 4 f t IB - 2 17* -1 3 * a- 4 88* •3 * 0 IB - 1 6 8 4 —8 3 7 14- a 217 540 6 0 4 2 7 3 *3 a• 2 1 0 2 9 4*9 IT J 1373 12** Sft• l lT S f t- •170) 27 a 7 9 - 8 3 17

0 1 045 -* 7 3 17 s 4 38 -f t I t 0I10T3 1038 10 4 932 •3 * 9 aa I t * IT* 6 8 443 •ftTft •s 113 *4 12 • 135 l i f t IS4 433 4 * 8 11 T 4 1 7 42ft *■ 303 3 3 3 6 6 rr 100 a i4 1*0 -2 0 7 10 * 1*3 - l* f t 127 311 - S 2 I ft IB IS l - I B I 148 I3S - 1 2 7 i a 11 -BT - 2 3 23ft 134 8ft 14 12 -4 1 -S 3 41

to 279 2*1 i i 13 8 7 I I I 3011 2ft 34 4712 144 - 1 9 3 Ift I B LIS Bl -7 1 3 5

- 1 4 110 11* IB1 - 2 L - I S 114 12ft t t

• 12 *2 tf t 39-1 4 - 1 4 0 IS 28 -1 1 • 3 * - 2 0 4 2- I B 8 0 55 SB - 1 * t t * ITT 12- 1 2 ITT -1 * 7 1* - * 141 - I f t l 14- I I 2 IB •2 0 4 13 - 6 4 4 0 • O l IB-1 * 1*1 25* IS - 7 7 6 -Tft I t

- 0 2 8 0 2 4 4 Ift - 4 99 4 7 s *• a - 4 3 -4 8 SB -S - 2 * - t * 30- 7 14* •1 3 7 II -ft • 49 -9 * 3 IB- 4 SB Sft 51 - 3 4 72 -4 6 4 ft• 9 144 137 ft • 3 *87 ♦44 8- 4 0* -1 Ift 19 - 1 1543 I5B S I f

301

4 1 3 - Tiii i< m a m i i;s:i§ sill l u j I jsii hi s: i ! *« i; ii 'K ™ is • r t s t« h • « !« i* • »*«.* !« '!• !• *T? 81! - T .. n » i in *T fttlft Bit tftII 9 940 -SB* 014 4 931 -910 14II T 79 144 240 0 *3 Ift 1014 ft 3ft* 014 ia19 tft 1*3 04* 14IS It 191 -«a 10II 12 174 -1 4 7 ISII332*49

Ift 001

-33 0 L

2 3

li Sim S3 ii " ■ * * " - I S « — - ' * iii I « ” iii? i*i >i- > •i » - i s i ■ * *■ i ? : : ni :ii: i isi : s « ii .ti}? ? « *22 11 « u u u u - i * i « i i t i -a 3 *7 s * b t ■ in 2 i « it - t • « - ts? I I , . l -iSsji ?if |? y :i ,ii ss n s s ?s ii -i s >. i i -!i 'it -JS i! :ii iiiii 3 «l ‘IS '« * «> -i” 'i J -.3 oT ” S -tt1 1 L Z \ l S :S S 5 ? - * *23 8 « 3 S I ! a t * II a 13* * 1 * 3 n i* i a a - t o i * - a - j ; i s

Eil .If ?t &3JS I& if H iii-iii :i iiifii j: I i i "/VI :? s|i" ! * ? « " ? ! » 13 - f i l l "a** li - 1 J 1» ' ” * * 5 " i U i i t i * t a s o - a s a t i - « l * « t a* a s a i b t*• i * l S5 “ »*■ 4 2 - I ; J i 5! * 5 i ! * SS I t t i t i t t a o 222 - a t o i i - i i * 3 • « a i a a s * m i

*1 ” J J “ ' J J J r ! ? ?1 . ! J t . 7 ! a* a va . | » s u 4 I3 » i t t ia - t v i a a - i a i r t « u - a s• » J J ! J S3! S f t S ! ? , S i t s i ?! a - a a - a * a * ia » »* « • • - « h > * i « * > ■ a i * - » 3i i * 4 2 ■ : ! , 1 r t s i t . u s ■? I I ? ! 5? a m a u ■ * ♦ ? ♦- * a a - a t a a - a a t * - a t * t • 271 a n>1 - u a a a t - s i t i s ■ ; » i t i i j i -a a *

a a- 1 9 4 7 - 0 4- 1 2 * 7 • 4- I I 19* 14V

2 9 - 1 4 1*1 Iftln -* 334 a * aSB - a 143 - I t s13 -7 3 1 4 - 2 2 9I t -ft 341 2 3 334 - a 941 9 441* • 4 I S l 17*• - a 424 -4 2 4

IS - a 7 * 4 - 7 * 70 - i • 42 - 9 7 4

ftft • - 7 4 I t39 i 4 4 1 41*94 a *8 -1 9 9t t a - 9 2 - 2 *7 4 94 * 323

14 9 111 - 1 1 1IS ft 194 194ft 7 3 3 4 2 4*

I t a IM * 1 4 0ft * 3 9 9 -2 4 4t 1* 3 3 * - 2 4 0

19 n 3 7 - 1 42 3 12 a s 4*I t IS 189 11012 11 19 IS

1 • L

- I S - 2a - 9 2-1 3 197 189- 1 1 - 4 9 3ft

12 4* -ia a r - ? 121 11a ia r i a a*

:iis:iii :iiiSi s s t? I S =8* i 1 1 . » * 3 ’S Si ii •§:i s . s l s I; ; Is? :lli : ii li :ii s: a-u-sa is . .. l■ a* «»»?;**• '* i'fi'"! ii ii » 'it " « ?* ” » " • » * » ! i!-ts-sr itids i s I? Hi ■: >is§ ii? : !S,S •" “ s ’i? is ii i ~ - “ i? sra-tssi i i l J t ! ! ■ ? « H i l l i i i i s i i i i i I S L -r « iJ J J g ']■* ** ^ - JI ' 2

iiiiiiii :i ;iiii-Hi ii ” !" :|” 15 z\i is m is =i ss -«i ’i n a -.1? a - *sj 3? il 1 'il H ’ * L :u iS-il iiH’S iii i? lai-ili ii -I I .I H ?! i! . . L -ii a h ii? ‘i!s ii -iiii:iii i .1 Ji-R S ‘i !I "SI13 *3 M a * I ♦ L 19 i 2 9 a t u a w j j ; l f „ u i t ^ „ a ,3 M J

l* 4 37T an * I II L 9 932 -24214 4 331 287 14 • 941 -331* a a a* - 2a r i i - n i* t a 1 3 » M - I *

3ft ft *15 -4 3 4 M *14 141 -1 4 7 t t ft -4 7 4ft 7 92 - t t t a - 4 42 -SB 24 T * 4 Iftt

aft S 240 3*3 \9 - a 47 t l * 22 4 7 4 33ft ft 1*4 101 19 -T 174 174 14 9 B2 -4 7O 14 44 -9 0 34 - 4 - 7 4 “ I* #4 44 .

Ift h -4 9 -7 9 ft* - 9 12ft -If tf t 14 1 14 L• i a - b i a a a s - ♦ i« a - i m i t i t

tft -9 -93 -aa t» -t u ITi s i i i l - a t a t 373 I* - b a a - t tS i * t 43 -4 1 20 - 7 103 B t2 3 * 1 3 *1 -4 4 72 4 427 -4 4 9 Ift - 4 217 2242 1*11 2*9 317 ia 1 -1 7 -4 4 44 - 8 44 * •31 -14 30 47 94 2 BS 43 2 | - 4 271 -2 * 421 -ft 142 —194 10 t DT -4 2 30 - 9 177 -1 4 412 -B 21* -2 1 4 12 4 199 ITO 19 - 3 130 IB*

- 7 *7 - u t a i a a n s t a 10 - i - a * i t

i s l i f t - t i l 1* • 12 - 3 1 • 9 4- 1 4 IIT - 7 3 17 - I I 4 t 8 3

1 a i • IS BS t t S i - 1 * I t * • IB S- 1 3 126 I* * IS - * 7 3 - 1 *

- 1 4 t* 19 4 6 - I I Tft - 8 2 S9 -f l IB I 2 04- 1 3 47 2 2 a i - 1 4 l*T • 140 12 - 7 IBft ITB- 1 3 1*2 -1 * 7 19 -f t ISB - 1 * 9 14 - t 3 * 4 —4 14- I I 3 1 4 •2 * 4 IS - f l - 4 3 84 a a - 8 24B - 2 * 8• 1 4 2 9 0 22* 12 - 7 S 8 I t l f t * - 4 774 7 0*

- 4 201 24* 19 - 4 4 77 4 * 4 12 *9 4 7 9 ♦4*• ft 4 4 - 4 0 9 4 - 9 127 - n o n • 2 i t a 12** 7 199 - 1 3 7 I I - 4 0 44 - 0 4 0 T - 1 - 4 4 - 1 9• f t 3 0 9* 2* *2 3 74 » ?0 9 O fl 4*4 - t o o- 9 1*4 127 ft - 2 9 1* • 8 3 7 14 1 244 - 2 9 0• f t * | - I I * 14 - 1 80 • I S a i a 4H3 8 *2- 9 114 191 IS 4 44 - 2 4 24 a 033 0 3 4- 2 201 2T4 T 1 44 44 3« 4 213 2 3 4• i 3 44 - 4 3 9 fl S 4 43 -4 5 1 ft s «CT • 4 7 9

41114 '- I f tM IB 4 4 *4 • 40* 14 4 84* -9 1 3I ■ ft - 9 4 I* 4 4 74 tftft ft T 21 • 8 02 1 9 4 2 1404 2 4 9 43 -3 1 Sft 0 M 3 2033 72 4 714 13 ft -2 B IB 39 ft 3 0 4 207

fl 99 - 1 7 2 0 - f t 4 3 * • 4 2 * 14 - 4 IBS -1 * 7ft 123 *9 Ifl - f l Sftft S S I ft - a 112 * 2

- 7 U 40 94 - 4 0 2 1 a s*1 1Ift L - 4 9 4 9 -S 9 0 0 - 3 7 4 0 727

• a - s i - I f t 9* -2 1 1 4 4 - 1 * 4 3- a • 4 0 •SO 94 - 4 37 2 379 7 -1 1 3 0 7 - 1 3 4 7- t tftft - * * 24 - 9 12ft 124 U 4 3 5 0 0 31- 3 I I I • 8 * IB - 3 *4 - 4 4 IB 1 113 • f f t- 3 Iftft - 7 4 Sft 11*78 1*32 39 2 1 1B 112- 1 T l 69 3 7 2 114 I I * 12 S 4 0 7 -4 * 7

ft IT i ITT i a B 4 9 7 49 4 ft 4 S IT - 3 0 31 Iftfl t s IB 4 3 9 4 23 2 B a ITA - 1 7 3a • t l -4 * 3 3 ■ 2 *9 » * * 0 4 7 4 t ta 04 - 0 4 24 4 4* f t t 3ft T I tf t 1894 • s a 4 4 T 7 43 -T 3ft IS B S t l 9 1 8

0 S32 -3 9 9 14 ft • 3 1 411 11 L ft -S 3 *9 t f l 19 120 •1 2 *

14 102 - I t * 1ft I I 139 • l* f t- S t a t s Sfl I I 110 12ft I t 12 - 9 9 43- a 47 i t t 13 12 123 f t t 19 IS 19* BS- i 74 120 9 0 IS - S f 0 Sfl

4 -* T - 3 4 2* a B L1 IB* - I t * 1* a a l3 0 3 - 4 4 SO • 14 TT - 4 0

- I B | I 4 1*8 fl* • I S Tft - f t t2 - 1 L - 1 4 ft* - 1 3 39 - t a 04 41

- I T 77 - T l 31 • 11 9 19 3 M• 1 9 12* - 1 9 9 13 • 1 2 180 - 1 2 * 18 • 1 4 131 120• 1 4 - 4 3 IS 4 4 - 1 1 127 - 1 3 3 IB -ft 3 2 * -9 2 1- U - 9 1 71 93 - 1 4 7 4 141 27 - a *71 • t i t- 1 2 133 124 l« - * 3 9 4 3 33 14 - 7 -7 1 ftft-1 1 l i f t ISS IT - 0 2 4 * 299 ft - t 478 4 04- I * ■ 94 -1 4 1 Ift • 7 184 I I S Ifl - s I t 7 149

- * 344 - 2 2 2 I I - 4 137 144 11 - 4 3 0 * -2 4 4- a 249 -2 9 3 ft - 8 2 47 2 4 3 • - a 4 * 2 409-T l i f t - 1 1 1 14 - 4 - S 3 - 4 0 0 4 - 3 4 IS ftlfl- 4 *3 -I f tf t 19 - 3 343 -1 0 3 4 • 1 197 -I f tf l- a S99 -2 * 3 T •2 1 3 3 * 122* 2 4 « 3 47 -2 6 3- 4 01 4 0 IB - J 9 3 3 • 9 3 2 14 1 3 *4 2*7- a 2 *4 IBS B 4 104 - 1 3 7 ft fl * 3 3 - 4 9 2-2 1 244-122* 2 4 1 214 2 21 fl S 20* - 2 * 2•1 s a * 9 12 ft 3 8 9 0 3 *7 • 4 12ft 113

ft 173 137 9 0 1 4 • 9 Sft S » * • 3*9) 2*2 - 2 2 3 ft 4 17ft —173 Ifl 4 2 59 ATSa 3 * 4 - 2 * 7 B 4 71 - 1 4 3 31 T 149 -1 3 1B 14* - f l l to 4 4 9 * - 4 9 2 12 B 183 -1 4 94 147 ITS 1* 7 4 7 9 -4 7 1 14 • 1*1 • 4 *a 73 1*3 2 4 • * 7 124 37 14 117 1214 429 4 9 3 IS • i t s 1*0 18 I I T9 • 1 37 4 84 471 14 14 144 117 14 13 80 T3a *8 - 1 2 4 S | I I - 1 0 - f t t t IS 199 13ft* i t s - 1 * 4 19 IS 1*1 - » * * 12

t« i s a -1 3 7 IT IS - 9 4 • 99 1 4 l»i i a * 4 39t s 1*4 Sftft I t a a l - I t r a • 1 2i a a a - a S 3 — IS 1ST I 7 |

- I B 0* S I 33 - 1 2 - 1 4 4 4 4a • L - 1 4 *2 - 7 * 30 -1 1 13ft - 1 2 0

— IS - 4 0 - 4 3 M -S B 14* •1 8 4- l l 0 4 • 9 39 - I S 23 - 4 4* -ft -7 1 I t- 1 4 44 *4 z a • 1 1 3 4 2 814 IS - 0 399 0 3 3- 1 1 4 3 - 1 8 29 • 1 4 4ft SS 92 -T IB t f- I S 1*4 178 14 - 4 14* - 7 * IT —* I M S SI-1 1 37 84 4 3 - 0 1*0 3 4 * 1* -9 •ftft •ftft- ! • 4*7 -4 0 3 M - T IS * - I S l 12 - * 939 • 4 4 3

ftt - f t 3*3 •3 * 3I t -fl IBI ItOSO -7 Sftft 8*4Sfl - t Sftft -39114 -9 2*9 •2413ft - 4 Tft •flfl12 -S ftftl -4 9 3II - 2 42 -1ftft *1 t l f t 431ft 9 31 13

14 1 2*5 -10*B 2 2*4 -2*7* a IBI • 10*

10 t SIB 23711 s ftftl 47ft7 • 199 •19 9

11 7 2 t l •34 314 • 07 194* • lif t -1 4 3

10 14 132 -1 2 211 11 • 3 *441 IS IV* 17711 II 1 • L

ft •B SS* ■3312 - 3 1*2 1*1• • 1 100 -1 0 4

19 • 402 -ft Oft1* 1 *71 -4 3 329 3 41* -431

0 1 Sftft -Sftft13 ft 340 231IS a 979 8*4ft • 47 S3B T i t s 19*

14 • ftft -VSa i • 133 -0 912 14 73 tftI t 11 1*2 17139 12 - 4 2 U1ft13SII t

a B L

- I f t 844 291

• 9 0 ' i a -If tf l 9*II 1 12V - i t s Ifl04 0 Iftl -1 T 4 ITII fl 147 - i a t I tI B t 4 4 - t f l ftflB m n t Ifl

ft 3 2 3 3 4 4 10T 94 ■1 Bfl

IS f l 143 -T fl 2 ft3 113S 3

fl I I B - 1 4 4

1 IT L

1*

a s • f l flB - 7 2fta* - f l tft t s 2 031 - 7 4 3 4 0 3435 • f l 2 2 - 2 1 4 414 * 8 17ft • 1 7 4 12II - 4 143 - 1 4 0 1214 - a 7 9 •ft aSft - 2 41 a s a*Ifl • 1 9 8 - 3 1 43I t • 39 IS 4 *£ 3 1 0 4 4 -IB T 14IS a n a -BT 2 91* a s «t a t fl4* t 2 1 ) 2 OB *I t B ifl ft* 44Ift ft • a * •BT 8 7tft T • t v 11 3 0

t f l

fl IIA -ftfl

1 Ifl L

17

flft - f l 00 • 4 3 49Ift -T TS -Aft 2ft0 4 -ft « t - 0 3 2 00 8 •S 72 - t f t 34II - 4 184 194 140 7 • a 19* 192 12flft - a TB a t 31a s • i Vfl •Oft 17flB 0 12* - 1 1 7 Ifl8 2 1 89 4 3 2ft12 2 2 0 3 a a flflft 8 U t A l t 19IS t •S I - 9 7 4119 8 2 4 4 - 2 1 0 123* ft 1*3 - t a 2ft243 22323

T 49

1

i i

1* L

a s

•T 143 •flft 31-ft SI - a * 4 3- a 143 IB

Bft - 4 43 t a S t3 3 - a 10* - 1 8 * 11IT - 3 I** -3 * 1 1119 -1 flft —4 0 IV4 3 4 44 • 4 aaIS 1 ftft •4 3«13 a ■ 1 74 44flfl a ftft 44 2*Sft t tftft •4 V IV

-13 -1 2 IBS -1*4

- 3 3 49 13 -23*

144 3*4ia a i t * a* - a s144 04

134 -IftftS3 - 1 4

n a -493 4 9 3 2 42 4 3 3 2 02 23 - 3 1 9 1*4 174* S - I t *145 -137 014 4*1130 140

17 - 1 3 -ft* * 4 0 - I S - 3 0 -9 1• I t SS - t a * 14 - 4 0 - 4 2

a t - * a a a a11 - 0 ITft *374

3 3 -T 9 0 0 -4 4 3 17 - f t 04 *919 - 9 92 4 0 4 434 - f t 7 9 00

4 - 3 113 - 1 * 04 2 - a 37 * a t l

• - 1 21 7 -2 2 4 3 0 4 3 * 4 - 3 * 314 I 3 0 4 394

•1 10 3 • I *21 - *2 t -B12 • 717 -ft14 - 813 - 4IV - a14 • 2fl - 17 ftfl 1fl a

IS sa 4a a

n t7 T

13 0■ fl

14 1913 II14 12Ifl0 *392* • 1 *

I * 9 t i t * 2 7 11 t 4 3 B3 04 - 1 3 88 a t ■3 •1 141 ISS I tfl 0 338 9*0 B B 177 •1 9 4 14 - I S 18ft 143 IB 0 7 2 - 2 4 a t0 4 297 - 2 * 2 fl fl 2 4 - 8 9 89 - I I 1*5 1 *8 IT 1 S lf l • 1 * 2 I Ifl 9 927 •9 3 ft I I 19 143 IT S 18 -1 4 144 - I f l 2 IB 9 3 0 - 1 * *1

IS ft I f t t 178 19 I I l i f t flft 17 •V 2 3 ft -2 1 1 13 8 254 3 2 * 12V T • 4 97 1* 18 - 4 1 •S 3 9 * • B 13ft • 1 2 7 I t « V ft? * 7fl 0 B2 7 0 23 - T 04 • 1 9 5 2 3 S 2 3 8 -S 4 0 120 * 247 • I T t IS a 0 L - t 245 • 3 4 7 11 ft 841 • S ft* I I

11 1* 33 ft •2 4 1 14 • 9 321 2 4 4 11 T 123 -1 2 4 198 4 I I • 1 2 •4 5 02 - I t 4 0 I S 39 - 4 194 2 1 4 11 0 17ft 101 IS(2 12 f t t - f t 27 - 1 2 a i - 9 8 9 * - 3 S3S -2 4 3 fl f l 1 4 * 04 IB2 7 - I I t i * • I S * I t - 2 331 —2 3 | • 10 7 4 -T S 24I f t 3 T L • 1 9 199 -2 7 Sfl -1 3 * 4 ST4 192 0 - f l IT * 107 14 9 121 44 1 * 2 14 L11 14 178 • i t s 1ft - A 2 *7 S ftfl I I 1 221 - IT S 1999 JS * 2 - f t f t 24 - 7 7 2 - 8 0 2 3 2 |T ft • 1 9 ft 12 -1 1 AB 0 4 3 3

12 02 47 2 ft - f t 17V • I f t * 12 3 - 4 7 19 S3 • I f l - 1 0 « * 4411 48 f t * 2 0 • a • ■ 4 • I S 0 * 4 153 IT * 13 - f l f t l 97 3 ft

I I 14 I I B I I B 10 • 4 3 55 2 4 0 « ■ -4 1 I f l 5 * • A * 7 -O S 2 5- ft t9 3 t s t 14 • 3 193 • 4 * IS 4 *1 6 7 t f l - T ■7 -8 2 S IB l - f l 19* —178 13 • 2 «T 139 19 7 IB * M 9 14 - f t 07 42 a s

I f t •7 2 3 4 213 I t -1 184 - I f t * I I 8 8 * 44 33 - 0 10ft IV * 1394IS

-4 9 3 * 9 *4 4 4 271 •2 0 4 0 fl 140 - 143 14 - 4 154 ISO 17•9 - 3 * I f l a * 1 3 2 * •2 0 7 B 14 BV -1 4 1 2 2 - S I t f l 1V0 12Aft *4 SAT • 9 3 0 • 0 44 4 * SO 11 04 0 7 23 - 2 143 - 1 8 5 1419

19 -a 274 •2 0 0 0 a B t * 3 0 0 fl - 1 454 - 4 5 0 11•2 * 9 37 I f l 4 244 2 * 7 I I 0 IA L 9 f t * 2V 2 4

IS2 3

•1 * 2 ISS l l a 191 -1 9 1 IS 1 14* 4 3 10* 118 I I * IA • 8 49 • 2 9 * 11 • 1 2 * 4 12 SA S f l * -1 2 0 8 51 82V 4 * 3 14 T 9 - 1 * * 7 • I I *1 - I S 20 a 249 - 3 * 7 1319 2 SOI -S TS 0 B 174 I4S I t - I * 1 *4 - 1 4 * IT 4 ♦ t -V 1*2 9 a 7 3 - V * I * fl 141 ia r IV - f l I I S • H I S I 0 0 2 47 2812 4 I f l f l - I t f l f l 19 -9 1 -S ft 60 • a • ftft -S f l 2 0 ft • 4 2 - 7 4 8511 8 07 193 21 I I T fl - 8 S3 - T 78 11 2 4 7 1 t s * 8 172 * ft 3 43 3 9 3 14 • f t ■ 4 - 1 * 89 0 207 2 *1 f l

19 7 177 -1 6 2 IS 0 14 L •S • 7 4 - 4 2 24 f l f t f l • 2 *f l 0 - V I - 8 f t S3 • 4 - t a • 3 * 27■ fl s i r -2 1 4 IS - 1 0 • f t * • SB •S 7 4 -1 2 4 2 * 2 IS Lf l 14 7 7 -B T 22 - 1 2 IS * • I f t IT • 2 111 140 IS

11 11 2 | 44 49 • I I 119 144 17 -1 0 4 * f l f l * I I - 1 4 TA - 4 7 2501 IS • 2 4 f t l 47 - 1 4 2 99 S4« (3 • 195 S ft* t« - f l 1 *4 -1 2 4 I f tIS - f l 12 ftf l 92 1 * 9 —23 a * • B 144 -1 4 9 1411 a A I - 8 2 4 7 •2 3 4 I I 2 14* - I S l IS • 7 13 23 f t f lS fl - 7 123 -1 1 4 IT a 123 118 i t • f t 1*1 159 IBI f t I t 193 1*3 IS - f t 4 4 t 0 2 4 117 ISA 17 • 8 8 4 I I * 3 ftf l ta t7 f l I f t l 10 • 9 221 2 2 2 19 S 9 1 4 M t I I - 4 1 4 * • 0 4 24

i s -3 1 17 a * - f t 12ft f l * I t ft 4 0 Sfl Sft - a 119 -04 IVn Tft - 1 1 * a * * 3 M f - a s s V T 3 2 0 - 3 3 3 I t - a 84 - 4 1 S I

3 4 i t -73 Sfl 27 - a SO* - 3 f t * V A 2 *1 -2 3 V 4 • i IBS I t t 19-V 89 - 3 2 34 - i 189 • i t * t l fl t f l -V a* 4 • 8ft - 1 2 3 *

83 - ■ 49 —0 3 34 9 18* IBJ I* 14 T3 - I B 23 1 M l - I f t f t IT84 -7 47 197 24 1 84* •234 fl a I f l f l - i t s 174 0 - f t a t t a s * f l S 292 2 58 fl 2 IS L a t a - f l l 3304 -9 3 M 2 2 * fl a 0 3 5 337 fl 4 - t o T 3113 • 4 i t a -2 3 3 1* 4 S S I • 3 IA 14 - I S • 1 0 3 5 03 a S3 07 M14 • a i n - I I I 13 ■ M 2 - 3 * 7 10 -1 1 123 -flfl 17 « 122 143 144 • 2 t v * 107 fl ft 104 IfcT IS - I * • f t • t o 31 T 89 127 Sft

1* • 1 177 174 ♦ 7 43 7 4 2 * - 4 131 I I I 13 ■ - 4 * 4 5 4B « • 3 3 11 31 B 14 I f l a * • B 2 1 2 1*9 13 fl - 0 - 9 9 • 9

IB 1 T ftft -ftft* 13 V 3 - I B 8 8 • 7 30 0 3 49IS 3 2 4 2 -2 5 f t 0 10 33 * 3 * •ft 13* - I M I t a t t l0 8 8 9 * ■44 1 1 11 Ift f t -B T 2 0 • 3 04 4 0 Sfl0 4 3 * 7 - 2 3 7 * - 4 0 3 I f t f l 21 - 1 4 1*4 -1 4 3 1*7 8 f t * 2 7 2 2 2 I t L - 3 130 — 143 I f t - f l f l3 -B t 310 ft 184 S ftfl 13 - 3 S t * 3 « 8 I I - B - 9 2 T9 27

302

li 'ii S3 :lS i:S Ii ! i l i i U? i 8 S £ j - ig - ig j j i i i i i r i H li :i 'v, •*? n il -Tl? il J? V* i i« :i« il » » , T i :S*iT *« « *53 “9 1 I M 3 4 I » « * 3 4 T 0 B * 7 - M IS ■ “ 2 ? " 1 * * 1 * T L I ? 5 1 2 ft 4 3 3 I I I * 1 4 3 14

* - *■ i? Hi ii sH I -H T: -\t r:i m n ss is4 i - h h ■ i>< - i »t i i * i s * - i « i a l l « i 1 1 ; [ * j g ' J J [J : J 4J a « i i i f i a i - i a * a ’

' i s ‘ t * S t ! ! i : i » * i s JT ' a s * ' « i l » • L - t * « - * » » ; * „ « . I 3 » « ■ ' * • ‘ i ” J ?

iii H H it V ." -il m jj Us! iii 2H:'sH W i “'s2 $ S !i ”:!si«-in If :lj iii :il: ii :! ?!2 Hi isHrlis i: -\1, .53 -'M itv\.i .=*.« -it «EB3i^ II M J 3 4 I H 1 1 * J n

4 0 > U 4 7 - 1 3 1 4 0 - 1 1 3 1 3 - 4 I f t l - T 4 1 0 - ■ « 4 4 ■ “ ■ ; * * * f , 5 ^ZZ . 3 j j 4 2 9 4 - 3 3 7 II

a . . m -'*4 **:!? ?i n S 2 ’ i ! 531 *1 3 g ? & j i f g r - g * * R * -*' » r l i l i - . K KS .U -JiS £ 1 -* 1 '!? -*13 «5? » 3 It? |15 5 -> jj* ii 1 ii? ?S ii • 1 -I S!i £T U

* 3 ISO fftO I * - ! • Tft - S 7 Sft - f t 1*4 17ft I I - 4 3 0 3 * 3 0 3 » • | > 3 ■* J ! * * J ! ! ! . « | j m - | * 4 1* - I Iftft 17ft 13- I « « - 4 3 3 3 * 1 4 ftft 4 1 3 4 - 7 3 3 3 - 3 3 3 ft - 3 93ft - 8 3 4 10 I * 1 ? „ , 5 I U i All 1 3 - 1 2 1*0 IftO 1 3 0 * 4 ftft IB

ft IftT - 7 4 3 * - 1 3 tftft 1 1 3 IT - 4 1 * 3 - 2 0 3 ft * 3 ftftl f t lT I I * • * _ J J * { J § § * „ | i j j . | j , a ) 0 1ft 1 2 2 3 - 3 3 0 II1 II* -137 02 -J2 77 23 34 -8 *7 7ft 14 -1 03 -5* * J *JJ * J ™ **» ift-|ft2« 2*3 13 3 OS ft 332 Ift* 17ft II -1 1 3 9 O 41 - 4 4 7 M 10 ft 73ft Tftl 19 4 « « « J ! *21 „ f l - * |» J - 7 1 IB B 7 4 - 9 9 339 2ft® 3 * 3 Ift - I * 109 -B 2 IT - 9 2 4* 2 * 4 ■ I SJO 9 * 0 O ■ ; * J * i 11 19 - a 2 24 - 3 9 4 2 4 144 l i f t 184 M 4ft 2ft - 4 42 9 - 4 0 7 tft - 2 4ftI - 3 * 4 0 2 4 0 3 - 4 0 7 13 * 0 J* - - . - * 2 2 ' M 47 0 *7 41 01

: -s: n - t z i -iss ■! : s i* sa ,s ; i i : : i *» > _l t j „ )4j :i-»s -]t s i w ^ w1 « ■ » Tii ss ,s 'i s a s - s s ’? ,*j . « £ jj . « «u « ? i; ss

-T Iftft i t s U i—4 1*7 7 7 I t S- 8 —43 - 4 * 4 4 9- 4 Oft - 5 4 ■3 4- 3 - 3 0 84 4* 0- 3 -2M 34 47- 1 1*1 • 1 0 3 14

ft 9 3 - 4 321 0* Ol 2 3 - 1

a 3 * B - 3 1 3 II - 4a - 3 * - 2 4 94 —3« 2 * 3 271 ft - 20 1 11 2 34 ft - 1• 91 -I f t 41 07 4 4 - 7 2 5 7 10 - a t T 2 3 2

aS I T L

-f t - 7 0 - 9 9 24- 0 3 0 4 3 4 3 • a- 7 7* 0 7 2 3 - i•ft - 1 * - 4 0 Ol •- 5 I t * - 1 * 2 1ft- f t • 1 - 1 1 8 a r

i tt« - t o l*ft - I M 1*19 - 1 2 190 IftB 12IS - I I 213 2 1 0 1ft3* -1 ft 2 1 3 2 * 3 12I f -ft IBI -7 1 IB

- 0 224 -23ft 12* 7 a a - 5 2 47- 4 0 - 3 4 44

IS - 8 - 8 3 - 1 8 a *41 - 4 2*1 1 1 4 i*2 * - a BS 15 a t2 4 - a 91* •81ft *a a - i 2 3 3 - 8 1 7 *14 0 5 8 2 0 24 *31 1 3 14 Oftft *Ift a M - 7 7 9*ft » 8 3 3 - a t * 1ft

IB 4 * 2 - I M 2320 5 117 143 Ift

ft 4 4* 5ft 9 2ft 7 131 Iftft Ift

12 0 9 0 24 23ft ft 37 IB 41

Ift«

1* 4 0 - 3 3 24

43 -ft 99 -2 40ft 3*0 4 4 300 -20* 4 * 244 -143 10 . . . it ll? iai 1ft *£} t}| ft I It L. 73 -44 29 t 374 -309 7 7 894 24ft Ift 10 -13 -J7 47 3 0 1. ; * <«> *3 > » • 7 014 Oftft 4-ft 134 -114 13 2 142 47 19 0 430 423 10 11 2£7 214 II M .,** 5 J! m%Z ?! 3 04 -77 3* -13 148 -174 19-S -78 12 23 3 332 |T0 O ft 44 TT •* 12 122 109 IT *»♦*•* *»JJ || ll til All ft 0 299-3*4 W -11 *1 43 31—4 13ft |40 19 4 44 31 37 Ift 79 -44 90 , ! 2 ? ? ?? ll Zt STi *070 IS 4 42 -IM 22 -Ift 1*3 107:s .ti ?i :s?: i«* t i i ‘i! r, a „ • * L -■ a » j: : T: *s : • « ’tt i; 3 ‘ss ‘ti-i-fa -”i ii iiiSliSS ii a 9 L : J ;T| « f; jj jjj ii I? !S - IH ia I '11 ‘St il 3 t« "flii 172 Ut 13 it -04 *4 St -13 111 -1*3 2« -13 Bft -*ft 29 -7 -« -« 3ft * jJJ ;IT* 4 J JT IB 4J -■ IM -jj*

9 3 7 -ft 4 2 II 193 * 3 2ft - 1 4 -Ift -18 « « -88 IM “ >*■ ? * “ ± !? 2 ,J? J • • * * ft -0 24 1 249

i suns £ ta 47 73 45 ‘-!i ;t “?s «*^5 SSS - ta S 'I ii j |j s j « r. * » l2i «• M 8 23 ■ # L :!ii« .« ?i m !i :f 5 -0 i; t i “£ Ii !t UU'Hl ii2 14 L - J . - 5 J - I . » I J z i l i z l l l I - i j f ? j S n j j i i i T S i - l S » l i

:l ti s: a :8 iS !-JK K : l 4i t wiS *t :Ji?S | | i S i j t j « ; !«$; »j j; : ; » ! '! « ii ”- 9 2 4 41 4 4 -1 1 8 * 7 - 2 1 0 I I - 9 102 141 4 - 3 2 1 8 2 2 8 B ® 552 ’! 17 i M . i a s IT - 7 I U J M 14 ft 21 -4 1 ft*- 4 110 - 1 * 7 14 - 1 0 82 - 4 7 33 - 4 M 3 0 21 14 - J | 3 * - 1 1 9 ft J " 3 2 ! ,1 11 11 l J [ S I M Ift T I K 4 7 17- 9 2 3 3 4 2 - f t 4 7 7 4 3 0 13 - 3 3 1 0 - 3 2 0 0 * I » W * |I M IB * . « JJ * • L * 3 *2 0 10 B I H 109 IB- 9 4 3 8 2 9* -O 30 2 0T 7 4 - 2 4 « » - 4 2 4 4 I 9 0 0 - 5 » 0 I I * 1JJ * J « *J * * *• * 2 32 * - 0 9 2 Ift * I»1 13* 17-1 77 - 1 1 2 24 - 7 4 04 -4 4 4 Ift - I 174 |4 4 4 9 83 Oft 8 3 J J T 113 2 2 - 3 2 * 7 - I B S 11

ft - 2 4 Ift *3 - 1 . 4 0 3 - 4 7 0 12 ft 0 1 2 - 0 0 7 4 * 14 7 2 4 4 • 4 2 7 0 3 9 - 1 0 144 - 1 1 4 14 3 **T • »

ft 14 L T 40 41 M -4 911 14* tl *S Jfl "!2!-91*44-1*44 9 -0 919 -0*4 J ** JJJ JJJr— (— A- » -I Is ”- (i —— ■— f *5 .m41 - 0 4 3 3 - 4 -ftft ft 8 9 - 8 0 * *S 2 3 i **S *1 1

- 0 9 8 7 - 2 8 * ft - 0 4 4 Ift 3 4 - 1 1 - 1 * 4 - 4 1 2 5 - 4 * 32 ft*0 11• 7 123 -1 2 3 91 * 7 -3 1 - 4 0 41 - 1 4 4* 9 9 8* - 9 4 13 * 2 4 O- 4 l*ft |4 2 tft - 4 2 3 2 - S 3 1 II - 1 9 3 1 * 103 13 - 9 2*1 - 2 0 * B-S 981 0 3 2 II - 0 ft* -3 f t 1 0 - 1 3 143 13* IT O S3 - 4 9- 4 2 2* 2 J I 13 * 4 4 7 49 2 4 -|l 4 7 - 4 | 98 I 4 9 7

>11 87 - 9 2 40 0 IT L - 7 41-1 4 7 * 7 2 23 ft - I L - 4 78

-8 340 -2 9 4 11 - 3 41 40 IB - I * 410 -4 1 4 l l a 111 1*0 |9- 2 M O -1 4 7 19 - 2 47 -Oft 9* -ft 100 -Iftft 13 9 01* 9*0 O-1 -4 2 1 99 - I a a - 2 * 24 - a 923 954 ft 4 29ft -23*

2 t f t -2 7 0 144 - |T 04 t s i - t a *s a a* 23 34 2 1 2 3 * 0T 140 -1 7 ft 0 2 3 * - I * * ft -0 1 - 1 4■»* * —i o a —a * « « - a a —— s n — — A*— — -*3T * >A m a m >

0* - I T 2 2 ft 4 4 - 3 2 9 - 7 3 8 * 9 * 0 3 2 3 -9 * 4 * ! % i T a i1*3 19 10 I 18 - 4 4 4ft - 4 - f t l 2* 2 9 4 -ft* ftft 9 7 11 IT* ,W

2 -7 1 - 4 3 27 3 Oft ftl 2 * - 9 32 - 4 3 91 7 - S 3 4 * 9 9 - a t9 *4 7 3 2ft 9 ITS 107 U - 4 4 4 0 - 4 4 0 12 fl I I I - 0 3 Ift 4 4 1.4 - t f t - 3 9 2ft 4 - * 4 ft 21 - 9 4 3 4 - 4 2 4 ft ft 143 - « 29 -1 3 0 - I f t |0 0 0 4 -B ft 3 9 I 2 4 - 7 04 I* ftft -f t* 71i p - —a— aa w • * A— I A— ■ f * ■ w —— »»■ iv a Tz a ■ mit* mb ta 4 a* -2ft tft a *3-1*0 is 11 it -to » ’ J JJ .if7 217 331 10 9 Sfl - 9 0 0 0 J* .}* *++o - * 4 - I 31 0 1 1 t 4 2 3 3 3 3* * 4 f t ! ? j l J l j H■ SIS 044 • II I-* I--9 IB L -a 9ft -23 30 4 so -4* a* - 1 8 -M -si 83 I"

-T 14* - | 9 3 13 7 07 - 4 * 21 - 1 4 0 3 - 4 9 2 3 * ! ® J ? ”• 4 ftft 2 3 01 O 4 4 0 2 34 - 1 9 Ut - 1 4 4 U '! ia J“!•9 I t i 183 13 ft 7 0 * 3 2 * - 1 2 * 2 T* 2 2 *+* SP*- 4 - 4 * - S 24 IB ftt ftft 94 - I I 00ft 9 * I M *3 I i ? JZZ- a - 8 4 - 2 2 3 0 II - 9 3 9 0 9 9 - 1 0 2 0 4 0 4 9 “* » *-2 03 BB Sft -ft 43* -43* 10 ? JJ* *J*'- I 8* * 3 27 ft 0 L -0 230 * 2 4 9 tft - * 8 3 0 8 27

• ft* - 1 2 5 3 - 7 3 1 1 1*T ft *■ <80 14*1 BO 4 3 2 2 - I B 04 1 *0 9 4 * 4 1 3 ft 8 M I I ++ 1112 14* 143 14 -14 228 IT# I* -S 3l7 911 I * JJJ .JJJ9 -84 -34 91 -19 108 -2*4 II -4 t* 0 -2*0 ft i JJJ “JJJ4 Itft -144 13 -12 10* -ITT |* -9 **5-1*44 O J JJ* "*”?8 Tl -53 27 -|| 272 »7T II -3 474 -4*3 12 * “JJ *'J•Ift 44 49 82 -I 144 -144 II J , i i0 Ift L -ft 144 -49 II ft t45 449 ft J ‘J* 13I_ -0 T* 41 21 I 9 0 S 4*4 II J JJ JJ-T 73 ft* 27 -7 44 *132 |4 2 27ft *242 O J ijf I*!

-f t 1*3 ftft 2ft -4 430 -439 12 0 3BS -3*3 ft ? f J J * i 3-8 -44 -27 39 -8 S44 -335 O 4 83ft -830 II .J JJj *!-4 47 -73 27 -4 102 ITT ft 0 2*0 914 I I • ' i i ' i !- 3 28 - 0 3 44 -3 * -I* 84 ft 271 9*4 10 11 T* *"-2 144 -||9 14 ) OS* 344 O T 2ft* -1*1 12 a ■ ■-I -IT 20 4* 3 3tft 031 O O 14 -21 88 4 ft L

ft 7 2 ) | 3 2 9 3 124 - |4 C 13 ft l i f t * 3 2 *

• I I -4 2 87 3*•Ift 12 - M 84-ft 3 H — J07 II-O 24 -4 2 42-7 i t a 172 12-ft 9 2 5 234 13-8 *2 - 0 3ft-4 n * -M ft 2ft- a 74 -> * 29- a 114 191 1*- i 174 IT * I*

• «1 *9 22i n a -127 2ft9 n o —*2 2B3 ia s -7 3 174 -4 9 90 930 34 40 3 74 IB 4 277 - I * - 7 * 330 145 - 1 3 0 19

-1ft -4 3 -7 27 1 -4 4 - 4 0 27 4 a n-ft 1*4 ISft 14 2 II* -1 2 0 17 5 3*3• 0 TT 113 29 3 07 - t l 3 2 ft ft-T 43 ftl 33 4 132 137 17 T 843• 4 IM - f t l 17 0 fl*- 9 ft* -1 1 3 24 9 a t L * 1*0- 4 47 - i a i 2 2 Ift 34- a Tl -4 7 25 - 0 113 - I I S 19 11 134- a 835 229 13 -f t 9 3 -81 ftfl- i 174 Iftl 19 - 3 24 83 47 4

• 177 -2 * 4 14 - 3 130 133 17i 39 4 -3 9 9 11 -1 5 0 ftft 33 - 1 8 - I *t 119 - 1 13 23 ft l i t -183 a * -1 4 2 *8 123 i t a M 1 7* •Tft 2* -1 3 3034 • a 41 30 2 43 2 5 a r -1 2 IftO8 74 - 7 * 24 - I I 504 -ftft - 9 37 4 - 2 L -1 0 430

v i i * n ..a i a a «■1ft t l f l - 4 7 19 * | ! j J J ? JJ l - 2 4 BT 44 . | 3 | U - | i t

- 0 7 43844 I I ft • Ir

3 5 3 3-1 2 - 2 * -7 4.J| *0 1*4

170 | 4 - 1 8 I M - 8 4 I* ’ * • } * J ? J J“ 5 0 - 1 4 123 124 Ift J S oB * M I

■ * - ! ? I? ? * i* !« I ? f t J i - f t l i• 1 2 - 4 9 7 8• t t 1 7 4 - 1 7 9 14 Zi I ? i i u• I * 7 5 - 5 f t 3 4 ” ! ! i ? *H

I T -f t f ll - 0 8 3 3 j j ? i 5 ?1! -? ??i u IS a i r 3 5*1ft -T 28* 21417 -ft 1*3 3843* - 9 193 -1 9 f t I* * i i i i g .10 - 4 4 43 - 4 2 4 * I 8 1 5 f t f l

1 43ft -4 1 * B 44* -ftft*

ft 2 4 7 0 4 5 4 12 • 9 4 - 0 7 * 0 -ft 1*9 - 1 0 3 1419 a 120 -T O i a 19 4 4 • 1 M • 0 o a -T 2 2 3« 4 831 - I S O i i -T 9 * 4 - 2 3 * 11

93 5 - 7 2 0 3ft 4 fl L - 4 * 2 53 20fl 4 01 8 0 2 8 • 8 0 8 * 4 * 7 11

2 8 7 IT* I t o 14 - 1 4 4* 3 ftft • f t 7 3 -4 1 2311 0 Ift* IftO a * - 1 8 T t • 4 9 2 3 - 9 8 * 0 • 7 Ifl 19t a * 47 - 1 1 a* - 1 2 134 - 1 2 4 Ift - a 5 14 - 8 * 0 l l11 Jft - 9 9 21 42 -1 1 ISO • 1 * 0 14 - i 172 1*4 1212 I I n a - * * 2ft - I * 87 14 2 * 0 aTfl 994 1414 —4 4 i a 4 4 7 I t i 07 l i f t 2112 * 8 L -B 3*8 M ft 1* 2 •8 1 4 9235 - 7 2 7 4 -2 7 4 * 0 14* -1 4 * I t

* • 1 4 194 - 1 2 5 18 - 4 a r t - 2 * 3 Ifl « 1*8 • IT S IS13 • 1 2 193 142 18 - 8 10* 190 IS 8 7 3 Tft 28

- 1 2 3 1* I t * 14 - 4 2* 7 3 7 4 1*0 ISO 2 2• 1 1 4 2 - 4 * 3* - a Ofl - 7 1 94 7 «3 *2 10- 1 0 4* -ft* 34 - a a a * 2 3 2 4 f l ftft - 5 2 2fl

10 - 4 13* -1 8 4 14 - i ♦ 4 7 87* • ft • 2 0 -4 9 ftft34 - 0 4 32 -4 1 2 Ift 0 5 4 - I I T 1* to -ft* - 4 3 9721 - 7 3*4 - 5 1 9 * i 4 8 9 -ftflB ft18 - 4 871 9 7* I I a 112 -1 1 8 18 ft l l L1* • 5 40* 4 * 0 Ifl 5 9 * 7 5 47 I*

134 100 10a * - f t 954 - 4 * 2 * 4 2 9 1 514 Ifl - 1 9i i - a 2 1 7 - 2 7 * • 9 2 39 -2 * 1 12 - 1 2 150 1*0 14l i * 3 IBS -1 7 4 t « 114 - 7 7 IB -11 18* • 1 4 5 13* -1 87 03 o a T 92 - 4 9 89 - 1 9 2 *7 - 2 3 5 13

4 1 • 0 3 3 5 34 18 • 91 fla 2ft - f t 184 - * a 21* I 23* 3 38 * « * 2 7 3 1ft - 0 f t t 43 a** 2 o r* - S * t • 10 7* 9 3 2 8 - 7 0* IM a sa a 197 - J 3 T 19 -ft 10* - 1 * 4 14

I* 4 - 9 * - 8 8 5 a 4 * L - 0 2 23 -2 1 7 i ia * 0 I t * - I B * 14

- 8 2- f t 09 4 2 a*

i* ft 9* - 2 5 88 • 14 98 ftfl - 9 0* • *4 27* 7 9 1 0 012 11 - 1 3 7 * - I f l* 33 • 2 2 4 - 1 5 42

j* f l T* - 4 0 37 - 1 2 -9 f t - 2 8 2* - 1 149 143 IS* * I f * -1 0 0 11 • I t 47 B2 M 0 4 2 4 4*4 I*

3 4 Ift 122 - M IS •1 0 » 1 22* IS 1 ft* - 2 2 414 II n o fla IB -f l 2 J 0 100 12 9 9 23 - 0 * 4 1*3 0 - f l - 3 2 2 | 44 S 44 • 4 2 0*3 0 « T L - 7 110 - 7 7 17 4 IM 201 1413 - 8 4 22 •4 3 ft 1* 9 1*8 1419 • 1 4 44 * 4 2* - I 189 12* 10 • 75 - 4 7 2 4IT - I S 0* fl* 31 - 4 8 * 0 9 4 2 I I 7 144 •IS O IS97 - t a 5 4 - 1 * M • a 1*7 SSS t a 0 » 7 8* 04

• n i t s -1 4 2 IS - 2 2 5 7 -2 * 1 * * •4 T • 1 * 08- I * 1*8 • |B 8 IS • 1 4 1 7 —* 2 3 ♦

—4 t l • 7 2 a s • Ofl - 3 7 t a ft 12 L91 - 0 0 1* 2 1 8 i i 1 237 2 5 3 *

- 1 2 125 -1 2 7 t725 - 7 5 37 M « ift 2 - 3 4 0 M14 - 4 2 * 2 3 8 2 t * 5 - f t l 2 3 2 3 - I I IM - 1 7 9 1348 -■ 47 7 2 o a 4 2 * 0 • 3 4 7 I I - I f l 11* 124 1891 - 4 a t * - 9 5 9 5 5 158 -I f tf t 14 - f t 10* 1*2 14t a • 9 3 14 -S 3 T fl 4 S* 1* SB - 0 4 0 74 3*Ift - 2 5 4 - * * 04 T 197 I t * 17 - T 180 - 1 4 * 1*|f t - I 114 - n o 14 • 1*2 14* 13 —ft I t * -2 1 0 1911 fl ftfl 8 0 4 * - t f t - a s ftfl - 8 199 - 4 4 1419 1 77 * 7 Ofl I* 11* - * t 1* •ft IT I -1 7 3 to1ft a 187 140 12 - 3 0 2 3 348 102 3 a M T 44 4 18 L - a IM 1*4 1823 4 188 Iftt i a

2ft- i 05 8 94

0 8 19* 134 17 -13 7* o a • a « s 994 11* 4 M S IT2 IB - u 148 140 13 i •S ft ft 9*|0 T 190 -1 4 1 3ft - n BB I I I 2 * 2 *4 a s 88Ift 0 0 * 7 -at* 13 - i f l - B t 4 3 S3 9 • • 2 2 47

303

4 IS l I9T ITa 4 * B t 3 3* 14* • i t s 1*T -fl® -7 4 2 58 8 8 -3® 39t 91 1* 21

4 IB L

-12 -« T - 3 4 29-11 0* 4® 2 #•1* 179 Iftft 13- t 19 4® 51• 0 3* - 1 * 3 43- 7 174 -IT S 18- 4 I t - 0 3 B9- 9 197 1*9 3 9- 4 3ft® Sftft 19- a I t t 142 13- 2 419 “ 441 11-1 114 -I 2 S 19

9 ITS I** t s1 1*8 I l f t*a 4 4 “24 20a • 4 0 7 0 094 S4 74 35ft 2 22 -2 3 * 194 182 -IB ft 127 8 0 49 28B 2 3 47 ft®

4 1* L

“ t l BO 78 2*-1 9 -I T 41 89- t tfl® “ 141 19- 0 0 7 - S t 29- 7 UT 137 17- * 29® 27® 13• 5 IIS 47 2 9- 4 T9 - 3 4 T t- a 5 5 “ ftl 2 3• a 23 J - 2 * 7 12-1 174 - 1 4 0 1*9 U I 3*3 19\ 34 2 217 122 U fl - I I I ai5 344 - 2 7 0 i t4 01® - 3 1 3 148 44 8® a tft 121 114 197 ft 14 *4B -4 1 “ft® 89

4 1ft L

• t 41 H I » 4 I t L t IM I t j . l r r B2 ,» ^ |* 3 - j | T 11 I l » *474 11 I I t L« t 344 1 4 4 11 I I l f H 1 4 11 ■ • i m * 4 13 * 7 4 2 3 4 2 79 * 1 2 9 19■ |49 144 19 *4 M l >92 H J ' U J *| |) - |B |g 49 >4 |21 - 12# 13 1 ftt 3(3 12 >11 * M I t t tI 1*4 *194 14 *9 It *47 ftt 7 24 -|B 47 13 m-r 394 |ft •] «|| |9 47 4 193 -124 tl *12 121 I M |43 391 -234 14 -4 183 *184 ll • *24 7 41 | |) J3 4 173 391 It 1 277 372 11 -11 89 19 Sfl3 44 -44 IT -3 U a - I M I* * JJ -194 29 {ft -2tX |8 • ) |3] U 2 12 4 ft -79 29 -19 143-141 I t4 >93 f i t 14 * 1 * 9 3 74 S 3 I t H *19 1 2 4 . f t 177 - | f t7 if t - 3 3 9 2 * 9 9 4 8 7 10® - 1 3 4 2 4 * 4 7 4 * 9 4 27■ 99 31 0* - I 4 4 f t 21 „ J 9 1 7 3 1 8 9 - I 7 9 - 7 * I t 1 7 2 *9® 2 3 -0 111 144 19ft - I f t * 9 3 9 9 t 4 3 * 8 4 2 J t i t . .7 2 41 2 9 3 I t 9 4 7 9 4 4 4 I t 9 4 2 1 1 U * 7 2 9 7 2 * 2 19T VI - T l 3 * I 4 1 - 4 4 27 4 143 - 1 4 9 9 1 9 4 7 2 4 2 9 19 Iftft IM 21 - 9 I M IB2 12

1 4 ® I t 93 -1 f t 98 9 f t t „■ I . ; „ | 4 | j | 3 113 137 |f t -f t 27 - f t l 394 1ft L 9 - 2 4 14 ft® “ W U “ ft 1*4 -1 9 1 !■ » 3 1 4 - 9 3 3 4 • • L - 4 4® 2 “4TT | |

* 1 9 183 * 1 9 7 12 «« | 4 | i f l 4 | |4 142 |f t - f t 190 * 1 0 9 12- I t 7 2 2 2 2 7 ♦ 2 9 L - 1 2 9 7 9 2 3 - J i J i 3 7 9 ft 9 11® 117 14 -1 f t « 9 « 2 8 4 - 2 M - t f t 3 9- f t 0 2 - f t 2 2 - I * *® l 2 4 9 I I - | u 7 0 Ift ft 4 4 - 4 2 3 * “ 13 192 - 9 3 I® “ I “ 21 9® tf t- 0 19* 9* 1® - ♦ * 4 - M 2ft * 1 9 1*7 2 1 9 13 4 |4 * .,« 34 T 12* 17* I* - 1 2 7 2 -9 f t * * # 1 4 ftft 1*-7 7 1 1ft 2 4 * 3 - 1 4 4 4 *1 “ 9 "Tfl 4 | 4 , m 44 jj ® 137 13® 1 4 - 1 1 ftft f it » » *J® ®3T I#•f t 171 - I f t l 12 - 3 183 14* 1* “ • 71 - 0 2 2 ® 444 - 4 9 4 ft ft 4 7 - 4 7 8 2 - 1 9 Hi 9ft 2 9 2 133 192 14- a 209 - 2®* ft -1 * 1 3 3 9 3 10 * 7 >3 21 23 4 >4 .44 1«* 4 - 3 3 4 3 9 0 t 1 *7 - I M 2 1 “* “J® - W 3ft 4 4 | 3 414 l 9- 9 2 1 7 I M l l _ , | “ ■ J * 7 9 5 3 ft s ) f a 1M j j- 2 199 II® * 2 ® - 1 L - f t - 3 1 - 1 4 I I 4 444 . 3 i B |9

aft * 1 8 39 9 484 0 “ W 21® - 2 9 3 11

- 1 3 l i f t - 1 * 7 12- i a 91 7 0 3 3- i t 291 2 * 0 I I

2* - 1 9 1*7 3 1 9 ISB l - t -Tft ft a *1* - • T l - a i 2210 -7 B3 a i a s21 -4 -S® “2* 3 4

-■ 9*7 0 0 3 «•4 • 31 - I t 17- 3 01* “ S I2 a

84 1 2 32 24ft 91* a 9 as s aI# 0 172 -IT S 133 5 * i t s -2 9 1 1113 « 4B “ 173 9 9ia 8 92 -Sft a i2* T 88 flft 3 018 B 14ft I f t 1*Bl * • t o -9 a s99 1# 27 “ 1® t aB

2®B9 - I S

8t f i

a l- 9 7 aa

94 ft*1 S3® 937 1ft2 133 122 ' 'o o i t - a i f tft - f ® 13 229 239 224 12

__ __ ft l i f t 194 1ft- J 'f t* >Sft 8V . —3 31* -9 1 3 « T 223 .331 ,3 - | « | | » | ] 33 -fl 3*9 “ 8*8 I* 7 199 - 9 0 Ift

« 227 -23® I* -1® 47 * 4} I 22a 24* * 4 l » 0 1 3 3 - I S - I f t 9 47 “ 4 302 - 21ft I I ■ ! I " ? 2 ”1 04 “ 97 2ft -1 ft 911 393 I* 1 # I J 98 * i n 14* |* -,3 * t | 3* S3 “ 3 99ft 937 I I ft “ 82 -|82 IT 22 2* -1 3 Iftl 1*7 I# » 173 -IT S » , B . » 44 a« - I I S3 - 9 2 44 - 2 Iftft 1*7 12 . .3 -® 4 H 2 ft - 1 2 7 3 - 7 3 2 ® 4 I M - 2 * 1 I I « | « » i -O ta 1® “ 1 *9* - 4 * 7 I f t I 11 I

4 4 9 1 3 1 “ U 2 0 1 - 2 4 0 I® 9 I I - 1 7 3 Oft 9 4 L —ft 3 M - 3 2 9 1 9 9 ftOft —f t t * 1 294 Sft 39 -1 9 2*4 -2 1 9 12 9 42 - t f t 21 * * L I® | u - M l 13 1 1 7 1 144 12 - I S 143 172 12

ft -2 2 4® 43 - 4 93 - 4 2* T f tt 99 20 .19 *7 tftft 23 *7 703 707 Ift 2 ftftft 341 19 - 1 2 -7® 3 24ft 32 4 0 M 9 ) | t j 4 j | f 9 19 j I * ] g ' * , 9 } 3 i . |4 A , y M .J J J «4 IT L - T - 4 I -® l »1 4 - M - * » *5 flft -B 2 21 “ 9 Iftft -1 9 * 12 ft 13ft 11® 17 “ 19 12ft -1 3 4

-ft 49 2ft 99 19 27 -1® 43 J j 4S ,79 -4 , 4® - 1®* 12 8 -ft* 43 9® - 4 48 47- 0 27 8* -1 882 -303 * .{t -■# -ft? 3ft -3 M E - .........* “ -- ”

- » 113 - I I * l» - « « l .[* 3 * I I U ,t. |Ti !,« |1 .14*4 M l*7 Iftft “ 129 12 - 3 324 312 ® «* *43 a 32 -1 392 **3 ® O 9 1 3 0 24 - f t a r r la- I i a i I u t >11 - 3- * - I * ,* » » - • 1ST u i “ i " IT * I I I IT I I I - I «1 - l * J 13-9 IIT 12* I* 3 “ 34 -2 3 33 *14 1*1 >*3 10 “ 30 30 i f ] ® |2 323 4 - 4 341 -3 8 7 tft- 4 43 72 83 3 1*1 179 13 -1 3 t l * 13* I* . J * ?o -4 8 3 4 2 ? l i 12 S i 8 9 L - 1 8 * 72 93- 3 122 -4 * 19 4 219 2*1 11 - 1 2 317 1*9 12 - | s a l -2 4 3 B 3 I f tt -1 9 1 13 _ - 2 *ZB 433 19- 2 7 9 -8 4 2 3 9 *4 122 2 2 - I I 2 7 - J * * 4 -4 a E 3 43 O 4 - 1 2 H I 84 - t f t 99 -B T 2 2 —I 3 M 391 12- I 24 - 2 9 41 * •* 3ft 24 -1 9 277 -301 19 4 ? * * 184 12 8 24 “ 8* 43 -1 9 -1 8 -4 8 91 ® 3 l « ~ l * 3 J J

9 119 - |9 S 17 7 34 *39 41 “ * a * ‘ M 94 . 2 337 343 ® ft -9 28 -1 2 Oft -3 7 24 t *4 2* 30T 93 Oft 10 0 179 -1 8 4 19 -® -BS TS 21 * | « • * |£ 24 7 2 l t - I t® 14 -1 1 04 41 I t 3 93 -7 * 232 1*4 184 IS 9 01 * 24 - 7 333 27* ft | >012 1* 8 12* -111 14 -1 9 *7 T U I I I# 13® I*3 43 119 3* 19 47 18 2 8 - * 194 183 I I t ft}« “ 043 12 4 -3 3 - 9 2 9® - 9 IS "13 94 4 101 IT* IB4 199 -7 0 I t „ _ . -S 79 - 0 * ^ ftftQ 313 4 19 03 TT “ “ “ " ■ - » - » * * «• *2 - I I 33 1 * 1 - 4 8J 1 -8 * 3 I* a 932 384 *

- 3 4*4 -4 4 3 * 4 47 37 23 S T L4 11 L - I I I I • « I - a I I* 1; I H -11 I I

- I I - I I 11 I T - I 4 , 1 *31 I I I I I *234 I I - 1 4 IT U- I IIT - » IT - I I I I - S I I J • I I I I I* U t T l I I IT - I I I I I I-T « IT I I - I I TT - T I I * I M l - I I I I a | 4T |T I 11 - I I - I I I I » - « it — . . . . . .- 4 | 4T U T I I - I I I I I - H i I I I - « I H 4 i3 3 | a 3 | 4 - | | -T l - I I I - I I I I - I I I I I - I I 111 - I I * I IH - I i ‘^ i M - i i ^ i i . « a a a « , « i t ' g " J 31 - U i j j j j a ia * i l l - i n ! J - i i m t - i s t 11

• 14 43 •3 09•13 143 “9 3 1®•13 73 -flft 2*>11 99 Bl SO•19 ftl 84 2fl- 9 - S t BS 82-B ITS 171 13- 7 219 -2 4 2 II- 4 48 ftS 28•8 Otft •a* 8 14-4 292 -21ft 11- a •flft 537 II-2 184 187 12-1 B98 -4 5 7 1*9 40* “f t l* 121 171 I t t 122 4*9 O tl 1ft3 128 -1 * 8 17t 134 IIB 175 -4 4 43 0 54 Iftft •IS® MT -a ® 01 B ta SI 3B 2*9 i t t )T2 12

11

84 - t f t 9 9 - 8 7 2 3 - J 384 34140 • i a - 1 * -ft* Bl 9 a i s - 1 * 32 4 - 1 2 04 - 0 7 2 9 t 8ft 2ft14 -1 1 Bft t l I t a aa - 7 9I t - 1 9 47 7 2® a ii® ia a0® “ 9 IS - 1 0 8 4 * 101 IT*SO 32* “ 20T II B 4 2 - 2*

- 7 189 - U S 19 ft ftft “7*- 8 123 12ft 17 7 - 8 3 •O S“ 8 3*8 3 t 2 1ft a 192 -1 9 ®

81 -f t 1*1 1*1 Ua t - a ITB - 1 7 7 12 1 13 k08 - 3 47 - 1 3 7 29

IBI -189a® - 1 13* •14® Ift -1213 ft 109 “ II® 13 - i i 147 “ IBT2 2 1 - 1 2 7 0 83 - 1 4 173 1*312 a 3*7 a®* 19 -9 IB*11 3 *B -to 2 7 -a 4* flfl9 « 183 -1 3 * 10 -7 40 - 1 9 3

1* B 4* - 7 7 flft - * 2S 3 •S ftfl14 ft ITB 1*8 I t - 8 137 - • *IS T 1ST 13* 10 •ft 9 * a 9*11ft a 04 •fl 91 - a i« * i t s12 t IIT -®7 IB -2 8ft 4 21® -1 100 - 1 * 0

a u t ; * » « %h i® i * ■“ - ■" ’ k - 5 * » i t i i i• " 2 S i " I ? 5 * Ift - U -33 SI a 13 2 * S3 S S L -B *34 *87 ------------------ ---------------------• I I 3 2 2 1 * 2 - 8 * * * * 8 S ; ! I J . » |4 • * 9 7 0 91 - T 8 37 8 3 7- 1 4 - 3 2 - 9 3 42 - 1 « * * *1 . . K ” 3 7 7 114 1*2 2 1 ,1 8 l i f t 44 I* -4 ® IS -3 2 *

. 4 * 7 - l i t 21 “ 1 0 * * " 1 -5 = . Bn | 9 B S3 T l 8 9 . 4 (7 3 - | f t 3 | 9 - 8 3 *1 “ M *-O 74 81 23 9 134 t t 14 - 9 903 937 , .44 S f t . U j a a . t a o 14 -4 399 -227' I ! ! 5 I ] ! i j 2 ' I l M 9 * - 3 H D 13* I* 1* M *l a * • 12 -ftft 3* « " J J”■3 - * 1 - 3 3 4 * j 1 *3 J J * J J J * »” " ! 2 J ^ S O L ‘. | * ! ” - I S * 10 - 1 1 *4 149- * - j * 2 i 4 M “ 111 1 s 0 0 2 0 17 14 - 4 2*4 - 3 1 9 10 9 t t • *

" T H S - 3 5 9 1 - 1 1 4 9 9 3 87 • 194 - I T 4 18 - 1 0 - I I * - 1 4 * 139 4 4 - 4 8 2 9 - 2 199 197 I* - 9 3 3 “ 19 4 0 -T • * -S S 21 ® ** .97 38 • ) * 2 ft | -3 f t* I® I 1*3 133 3 * - 4 - * * - I * 241 t f t 47 ai -I 3 2 4 2 81 11 - 3 04 “ 3 3 21 -8 9 * 2 ST® 9 • 131 u j 17 “ft a Bft - 2 7 9 M 3 212 291 12 - 0 0 3 01 432 TT 4 3 2 7 9 9 ) - 8 4 2 * - I - 3 4 - 1 3 2® - S 1 32 194 19 * 131 M a ,T - ® * 9 3 8 * 7 14 9 131 119 I t - 7 4 8 0 4 2 2: tU f l T 3 4 3 - 1 4 f t 14 9 “ 84 “ 2® 3 2 - 4 4 2 -1 1 9 14 4 * L -T 3 * 3 14® 12 * l° ® 8 2 » - * 1 8 * - 1 7 4 15ft ftl - 1 4 3 2 2 244 - 1 4 2 10 I 4 2 - U 33 - 8 4 4 * -4 4 4 4 * - 9 174 - 17 12 8 137 - 1 2 8 10 - f l * 2 3 “ 4 3 * I Ift 199 - I f t t I f t 9 9 8 9 7 Bft I “ 7 4 33 2 2 _ t l f t * *S 3 2 - I 1 *9 - I f t * 10 * f l * -O * 2® - 4 • * ■ 7® 3 0f : i . « f t 179 1ST 13 9 - I L 2 7 3 - t t 2 3 . 4 » 39 91 - f t f t | «® 89 T 117 117 17 - 0 8 * 4 4 4 4 I IT 4 ? - i a i 8 9 91 0 9 31 9 2 3 7 - 2 * 9 I I - J t T - l t f l I * - 3 T4 - 4 9 31 0 181 13 * 19 - 2 139 184 17® ' f l * - 4 ® 4 * ft 7 3 - 4 2 2 7 - 1 9 0 4 119 ®8 4 2 * * - U 8 1 * - 1 2 - a t - f t * 4 4 - 3 * 7 - 1*1 » - I 17 0 - 1 7 4 14* f “ | 4 TO * * 3 9 S - 3 3 - 9 * 4 4 . t | ftft - 2 f t 33 - I 8 1 9 4 8 * I * 9 9 L • 4 T - f t l I *

ft 1ft L 8 19 L - 1 3 8* 3 * 3* ft 2 * 9 341 I I .19 11® 127 IB 9 491 * 4* 19 I 41 9 * 801 ” L O i t L M7 - | M JB 7 |4T j a j |T j t j ^ t l | j 3J • m279 | a mJS t s - g a 23 % 4* - 7* 81- 1 3 190 - 4 9 3 9 “ 19 - 7 T 9 2 - | t 3 3 0 -3 2 7 14 B 7 9 - 4 0 23 * 0 9* 9 -2 7 4 19 2 3 7 7 - 9 8 4 I* - 1 2 119 11® IB 0 U T 182 18- I I 9 9 7 3 S - 4 1*4 1ST 18 - 1 9 4 3 - 1 0 4 31 4 119 - l l t 1® .? 10ft “ 103 12 3 4 9 4 * 22 - I I 179 I4 S I I 4 3 3 3 2 * 9 I#• ift a ll 38* 19 -8 190 191 14 - 4 44 34 3 8 - 9 9® 19 3* 4 * 8# “2* 2* - 1 9 4® “ * 37 I 88 -S 3 38.4 *9 *1 U - T |S 4 - S a * IB -O 1*7 3 0 3 12 9 3 L » | «3| 431 4 8 93 -49 94 -4 49 “ 11* 2a 9 144 - 10® 13mm i t * . i f t f t I* —4 4 4 >73 19 - 7 88 83 3* • * 471 4 * 3 19 ft 0 4 94 29 - 0 41 39 3 7 T 7® —4 2 2*

I r t a a I 28 2 4 « 9 - 3 7 ft 94 - * 8 79 - 3 7 0 4 - I S “ *1 IP 24 r j 145 174 I 7 0 3 - M 2 3 - 7 2 3 9 2 3 2 13 . . . v• f t 2 2 3 3 9 * 12 “4 391 1 1 4 I I - B U T - 1 3 4 12 - U 9 9 09 2 3 .3 f t j a - 3 1 7 4 I I I I “74 IB -f t 2 19 2TJ IJ « 12 LI p « 4 2* 3 12 - 5 4 7 ft 2 4 - 4 11* IIB 1 4 - 1 3 113 OB I* TB* - M l 14 4 - 9 4 “ 92 41 -B - 4 4 M M %<1 _ _. 1 i s f t “ i f t l i s —a 14® —131 t ) I 9 3 - 1 3 2 9 —12 7 7 3 3 1 8 a - 4 2 —13 S 3 * 4 * ® “ 3 4 2 * “ 12 ®3 - f t * 2 *zt iiftliii ia -I Jo -it 27 a 84 B9 a* - u ia® -lit it * » a 91s it * T l -a 110 -*t j t - u Ita *« 39 ll 89 : Sa 24 9 142 -183 14 3 3*3 t«9 19 -19 -79 -83 8* £ (*, |5J |« -2 291 -30* 12 -19 44 14* IB.? L .{a, 21 I 14ft “178 II 9 333 238 11 “4 *3 -*4 21 ft 271 37J 19 -14 74 *9 at -I 71 -44 34 -9 87 *4 34

1 ift? a i f t 13 2 *0 04 0* ® 4 9 *« 9 4 * 0 *8 “ Ol 29 4 Ift* “ J44 1 3 - 1 9 i t S I 37 9 119 t l I® - 0 199 - f t* 2 2t f t l - 4 3 4 1 U * l® 3 »9 * * M *2 4 1 I I - 7 2 * 5 J®3 11 1 2 * 3 - 2 3 4 13 - 1 3 4 3 - 4 4 33 1 124 199 I * - T 3 * 2 - » B 12

a a s 42 4 3 4 7 * 3 4 2 7 7 134 - 1 3 3 14 * * * H 2 * 7 4 ft .ftft 3* - 1) 44 -|t H 3 3 1 - 4 2 ** “ ft *1 “ 7 * ®1a *2 - a a a 8 i t s - i t s i s fl i a t to 31 -• -is t t * 7 7 m n * i r -it 4* - T t 2 3 a s a t - a s * t 2 -® i t® 191 ITft 2 * 9 - 1 4 4 U 9 139 I I S 2 3 “ 9 4 4 7 -4 8 3 t a g t ,* f t « i f t - 3 2 Sft 47 4 114 * 1 1 * 2 2 - 4 3 1 4 O lB 12 128 I l i a IB O IT L *8 1 9 9 - 1 3 * IS J £ ? *0 33* 22ft I I 8 -84 -39 37 -5 128 19* 172 83 ftft a i 9 • L • 91 - 9 3 IS - 7 “ 49 - 3 4 ST 8 13* 120 IB - 8 1 * 7 - 1 0 3 13! ! l U U H - S t * 9 H I “ * T 4 S * 4 f L - 9 3 0 1 - 2 3 8 I I 7 l i t t l I® “ I 3 * B - a * 3 I I7 7 8 9 0 U - f t a t j b 1 2 T 9 2 3 t 3 1 * - 2 3 3 I I - B * 4 - S 3 B l 0 - B l 3 7 3 4 9 8 4 - I I 3 1

■ *8 L - 7 14® - 1 * 4 14 - 1 4 4 0 8* 2 4 8 I** - I f ® 19 . | | ftft - 4 * 91 - 4 -S T - 2 2 9 * I 0 #* 3 4 0 13S I * L 7 fft# 1*4 £ « o ^ jft 44 Sft . | « 197 - 1 2 4 I* “ S l* « I** 13 • 10 L 3 2 2 0 21* IS. < i 44 - m u »■ tftft BT j? - 1 3 3 3 9 -3 9 2 13 9 0 * 7 S i t JJ . t ) . | f t gj) 59 -9 0 3 4 32® 19 S i l l 01 3 #* 1 9 143 - I I B IS * 4 131 103 IT —11 13® I I I IB * IJJ 1*4 14 . j 3 .41 |ft 99 - 1 11 —47 S 3 “ IS 109 182 13 4 I tS " 1*3 12ift 7* -TO 3 9 - 0 43 - 07 3 * 1 9 0 29 B23 |1 T * 7 - 1 4 ® S* . J , - j i 'ft 49 ft ftfl* -*®8 10 - » S 3 9 0 3 1 0 11 » 1*3 “ 11* 13

-1 » »* « -1 il* -IS* ia -« - i» Tl 4* a t « - m 11 a « a 1? ia 1 m i -am ia - t i 11 - ia ai a -ar a* «. ! » 4? » -1 !a -a , ai -a u a - a n • a »a -«* aa xa - iaa ta i a*i h i ii - ia 3«* >aai ia T -Ta I aa- f t 4 7 0® 91 # 7 ® Tft 2 3 -7 * 09 -4-4* 1# . . . -8 3 9 2 - 2 5 * 19 S 31T 3 2 * I I - 9 0® 01 2 4 ,Zt I J , l i f t I f t 179 I t® 13 - 9 9 4 - 1 1 9 0 3 0 S L - 7 - « 9 - 4 3 B* ft 1*7 I t * 13 -0 2 1 * 9ft* 19 9 18 L-ft 73 - 0 3 3* 3 M 2 3 2 3 - 9 18® IB* I I . . . . . « , - 9 0 8 5 O il 4 S -S T 19 * 3 - 7 O - 4 4 0 5I f t 111 - 1 3 4 I t 3 04 “ 8 3 22 * 9 ISO 104 I I “ IS 80 J » . | 344 ftft3 |® ft Jftft >134 13 - 9 - S I * 9 0 00 * 1 3 147 If® IT: * i l l I i i ? \ l 4 J S ftft 2 7 1 4 4 0 9 4 3 1 9 - 1 4 I 4 J I M U - f t 2 7 2 - 0 * 7 19 7 i*B » t 3 7 -8 8* - S I 2® - U B IT » l 11I ? 931 S f t 13 9 * 3 3 * 24 13 “ 19 U S 153 12 .3 a a « - 57* % ft -flT 2 2 99 “ 4 3 2 2 “ 21 3 13 - 1 9 “ 9 3 I* Ol

1 ; ? 1 T S 19 ft | | l 9 4 7 3* 3 3 “ 12 2 4 T -1 7 4 IS . * 7B ft® 2 2 9 19J 194 2 3 - 9 2 3 0 *231 13 - 9 8 7 *91 297 lift - 34 39 4 8* 1 - 9 * 4 I* -II 397 - 1 4 4 I® •» aa" 937 1* -2 -42 19 22 -Oil* -9* JJ4 M I t ! » - 7 194 1*9 19 S *4 ' * 3 2 3 - 1 9 I® 8 * 81 ® ,ftft ,43 |ft ft 9 L “ I 142 I t S Ifl - T *29 >27 4*m I i i “ 7 m 1? - I 9 1 9 2 u ft “ * a 4 3 3 9 “ 4 144 | 3 ) 15 ] ,79 . 3 4 2 lS ft - T l - « 2 7 - f t 14 2 7 5®? l i ? —? i t i | IB I t 4 9 7 0 3 “ JO 4 9 * ■ 7 9 - 9 1 2 * % (ft® I I T ( 4 * 1 4 11ft - t t I * I - 0 3 I t 9 * - t * 4 H »8 43 97 34 - 4 |* S -Oft 17 0 *8 -0 1 23 * 7 I* - t t 4® ft » 4 7 - 1 3 9 9 “9 9 SO 3 3 9 2 “ ft«3 14 -4 4 0 99 37I 112 195 I® - 3 187 “ 1*7 I t 4 “4 * 17 91 • * *® * 0 * 2 0 « 28ft - 1 4 * 13 * 1 2 7 4 - 1 4 2 3 3 113 “ 108 1* - ■ 197 - 4 0 2 *T I S l 134 IT -2 8 0 a s 39 19 “ 3 9 OS 1 9 “ 9 280 -2 8 9 9 | | |® . |3 2 3 t *11 7 4 -0 SO 4 1*0 2 8 7 IS “2 T i -44 2 5T I S l J»4 IT a m -4 * 3 1 - M 02 ft ,47 t 9B Ift - I ® 8 7 - 4 8 0 2 8 2 1 3 35ft II - J * 2 - 2 9 33

S IS L • 177 |7 4 13 ft I L “ J I I * 19® 14 7 11} 1®2 13 - 4 41 T2 3* 9 OS 32 2 7 9 3 9 7 221 I** * * i ftft 1 4 2 2 - 2 1 8 4 1 0 4 I I ® ? | 3 S - • 1 4 3 1 1 2 I S T 4 7 “ 4® I t I | U t t * Ift

• 14 f t - 1 1 2 4 2 * 7 - 1 9 9 2® - I B 10® - I IB I * - I 4 5 3 4 4 0 14 ft |® | - |® f t ,3 - 7 0 1 8 - 0 1 7 I * ® - S | - 3 1 ®« ® 12* - l i t 31j ! J > i aa f 4 2 45 f l l - I * 122 “ * 4 1ft 9 2 1 * “ O lB 9 - 4 U I - 2 1 4 IB 0 231 - 2 2 0 .9: I " 1 ? l i t i - I S 04 - 2 4 Sft I * 3 1 “ 4 2 3 13 ft ft L “8 4 3 4 4 * 2 10 ft I I L 4 - * - 3 * 3 *- T 4 1 9 3 M 8 19 L - 1 2 171 I o s IS I 1 *7 17ft I t - f t 1 3 1 5 95 I I 9 l l t 11 * J #- 9 * 4 I U 10 - I I 2 2 2 22 7 13 B 1 3 * 9 1 4 l l - M 31 9 4® - 3 74 04 3 3 - | 3 « 0 l S 3 3 * 4 * 1 0® O lZl f l - T l a t • « 194 - 9 B 3 9 - 1 9 1 *7 144 I® * “J® S I 9 9 - t 3 1T2 174 13 - 2 8 1 * “ 3 3 0 I “ 13 SO - 3 * 31 _ ,-4 4ft -S fl S3 - 9 91 - 0 2 33 “ 9 - * 3 “ 34 27 J M * - 2 0 9 I I . j 3 43 ft* 2 4 - 1 2 3 1 -2 3 4 1 3 - 1 1 1 0 0 - 1 3 2 I t 8 14 L•® 41 ftt 23 - 9 - 4 3 13 2 2 “0 21* “2*0 11 * J>* "I I* 10

304

7 | ft VS “4 Vft-4 194 tvs as•ft ISB Tfl a«-T TS -93 S3•V 544 “ |Afl IT“ B BA Sfl 94-4 AS ar SB- 0 tftfl ISS 34-fl ISS ISS 94*1 01 -T9 BS

ft flf •07 Bfl1 -44 •49 SA3 TV 0B BB0 ftl 49 as

« 1*1 I t f l IV - t M l • » * * 1 * - 1 M l - M l I t - 4 M l - M T I I - t i l l IV * I *• i i i i - ? i ■* i i i i i i i r I L * * * * * * s i „ u | ] , l3 41 • ?» o -a* i i i - i i* - i s 13 - i i t •* a s: ' ll ,.U 22 2 - 5 4 - 4 2 0 2 * • » ■* « *11 -BA 49 »A I I * * IT S IT - 4 193 13* I* S * 4 2 • M

I t i t t . S a l i * a t * - t i 2 * * i - m s s a * b ia o b v . J i i * a 3 4 3 2 3 4 12 - a ia a m s i * i t v # - 1*3 1*I t ? S i l * i l - 1 4 131 - I M S I S S 3 * a a * I I ? J m - 1 4 24 S - 1 4 3 1 11 * 3 * 4 * 1 2 2 a S i * - 1 * 3 IT- ? 2 3 4 2 1 8 I# 0 IS L - 1 1 - * 3 - 4 1 2 T 4 14* IV 4 IT a { ( . f 3 a ( y 14 4 9 3 3 < M 4 I I - I * 3 7 I * *• * - I T 9 * * 1I l 91 4 2 4 * IS - 1 2 1 *1 147 17 1 113 • ] » » * u - 4 4 19 S - 1 4 - 4 * M V 4 * - 4 * 2 2 4 I M 1ST S |It . J j . j ! 33 - v m i i t i f -1 1 ta a i« « i i 4 ? !2 " ? ! 2 i ! - a - a a * a a * * i f l l *«• s i < 13 a - m i it # ,- 4 12® - * 5 1* -» ** -*» » | - 1* ,52 « 51 I *2 5 2 - * » • * 4 4 »» 7 144 ' * • * » 5 iit 2 2 S t * lf L-a -34 3S 94 -* IT* -13* I* - • IJ* - I J J IT ■ U W M -4 I I I IM I I f * J | 24* I*.1 u ia * >3 i s «0 S 3 -8 BT —IT S I a . ■ i a s —ITS 12 T A I * 4 - 9 1 * B l 'I | *4 4 3 2 4 - 2 A ft 1 9 3 2 2 - 7 1*1 A# 14 f 4 L ^ ■ * ; J? V 2 4 * - 2 4 9 IS

9 *.|4 .44 9T - 1 1 33 H I I * - * * 3 1 * * 7 I * | M _ . u *3 2 * 7 2 3 2 IS - 1 9 - 4 1 S * • • * 1 2 2 - 1 1 4 2 37 ft? -B B 21 * - * 3 3 3 9 * - ■ IJ » - T l !4 “ J! * 1? 7 H - 9 * 1 3 * 4 * 1 2 - 1 9 14 9 9 VS . . . .x iTa-iti i* 1 itt *« ta -4 11* -ia* !! "!t .tl .Ti! « -i in in 12-11 im « JJ t ta t* i u —1*4 IT I I * * n O 19 —19 9 1 * I I * * • m a3 * -2 1 1 19 —1 * 1 *2 —S * 2 94 * 3 I f aa V IS L a AST - 9 3 3 I I - 1 2 IB - 9 »T J J f J A i l I I “ A 122 “ AS 24 - 9 2 * S I SS8 M 124 2 9 9 9 3 2 - 3 2 4 1# - 1 1 * « 1*3 04 X * J ? *44 U - 9 4 4 * 3 9 1 - 1 1 1** »»■ 2 *V # 4 » « • . 3 4i s | | 4 4 B 49 04 - | » IT S 9 * 3 IB j . J , . 1 it • * 1*4 - I 4 S IT - l » -T S 2 1 39

* IS L - 2 7 9 VS 39 S 1 *4 173 I f - * 147 4 * I t - , i j 44 04 - 4 4 4 SS 94 - 4 1 *2 * 2 2 94 M 3 I 3 B I S - * M J - M * J* | 1S 1 | 2S I * ' I * ♦ I I 21 - S 1 2 4 - 1 * 7 2*

• i s «■ - 1* s f f -1 1* 7 »* -a 27 - t n a - im is 4 ' I i 4 a t .4 m -* r i t - t ia* * im i*I ! 4 4 s * 3 • « f 0 * ' * *1 ? ~*t 7 144 - 1*9 21 - 9 |T 9 - I T * I * - * 121 - 4 S I *-■ | I * AS 1 4 - 1 * 1 1 7 l « t * * » 13* I* 5 } * • - i s l 29 - 3 * 1 _ I 2 * - 1 13* 74 IS- T - « * 2 4 2 9 - 1 9 I * 1 9 I J 7 2 L * 4 2 2 * 2 1 4 I I - | 391 2 3 9 19 - 4 2 7 1 2 9 * 19-4 1 4 4 - I I I I S - 1 2 IB * - 1 * 7 1 * . . “ J * * I * ? 22 T f l . I t t « } I t ■ ! M 4 # 1 1 T IV L* » - 4A - I S 3 # - I I 1 7 9 - | 4 4 1 1 - i » - 9 * IT * S - 2 3 4 * - 2 3 9 I * T 1 4* -34 2 9 - 2 * * - I I S 3 3 _ ^. a A 41 S4 • | • —44 -48 24 >14 —4 4 —I* 94 —I 12* -1 1 9 IB _ 14. g a i I f 2* 2 TT —1 2 9 4 —I 1* ST SS —9 IS S - 4 4-a a s a t is -* 1«2 u a is - i s u s m is • i ia • w ! S - i* 23 -aa v* * 211 - 2*t i* • vv - t s s i - t ioa - is*- a 192 IS* 12 - a *4 BT 21 -12 4 4 T * 2 3 I I * * I M | » . } a g2« - 1ST 23 4 t U -111 91 I 2 1 3 1*4 l« • * -AJ - * *mi m — i l l - 7 I S - 4 S 3 3 - I I 1*4 - I T * 1* 2 - * I A M . . . PH .34 B) % | 2fl |4 9 39 S 134 142 IB - I 13* I I *

1 143 . 142 | 2 - 4 42 4 - 4 4 7 IS - I * VS -O S 24 S 1 *4 “ IM I* , . 3 .33 .44 44 4 ( f tf 144 IT 9 131 - 4 7 21 - 4 172 |B |1 142 - 1 1 3 13 -S 1 *3 f l IS - 4 1 *8 133 13 4 194 - J M 14 ^ 3 4 2 3 3 4 IS T 194 14* I * 4 9 1 3 - 1 * 4 IS - ■ “ 42 41i J iT 2J . 4 42 134 19 - B 9 3 | 9 3 * I I S - * 4 - 2 9 * > I l M l 1 7 3 I 1 1ST -1 1 1 2 3 - 3 134 - 1 4 ta a ! a a » I l i t - i * a « M I M I M * M , * • I ? " A T m l i t u t . . . . - i ‘ J l - > l ia 191 41 IB 2 a s * 9 3 2 I I - 4 1 *4 - 1 * 3 12 T IB * 141 j * . 4 * 7 . u 2 4 T IB L S 4 4 4 30 i t s 47 37 9 9 3 3 8 34 I I - ■ 2 * * - 3 9 3 IS S I T * IB * 1 * . } . f j ll ........ ............... ... “ ................................................... ........................

4 - 9 3 -*V 2 4 - 4 T 4 - T * 2 3 _ , - * *3 4 3 2 3 - 1 2 TT - *4 14 L S 1TB - 1 7 9 IB - 3 1 *1 - I I I IS T B I . - f l |4 4 1 9 * 11 - I I BS - 4 9* 1 A IB I - IB S IB S 3 33 f l f l f l I I M - a *1? * 3 7 - I * 9 9 - 3 *

• 4 BB 9 31 T 9 2 f t 2 9 • 1 2 8 * - 2 4 4 I * - I * T * - J * * * - | 3 7 * - M S I * - * M IS- a 17* - i *4 ra s 1*7 i s * 9 * a ar* - 3 T * i s - i s b t - * * i f * a , B . 4 f 3 h * a a- T a a - T fl 9 S 2 * - 2 1 43 - 2 3 4 * 3 * J | * ♦ J * 31 - 7 1 *7 1 *4- 4 49 4 * 2 7 7 9 L 4 4 3 * 43V 11 - I t 143 137 IS j j 3 . 4 102 48* 4 41 —4 29 S 3 * 9 3 4 9 13 “ I J "V T 3# 94 0 * j | A 3 BT - 8 0 7 4 —377- 4 4 2 a ! 55 - 1 3 43 » * T * 137 -B » 14 - • B « - M l I I , U j . J 1 4 -3 1 9- 3 I W I I P I I - 1 4 14 3 - 1 7 3 IB 7 31 - 4 3 3 1 - 3 - 3 9 - 3 * 4 11 | | | | - | M 17 - 3 4 3 4- 3 4 4 -3 4 39 - 1 3 71 - 7 3 3 3 3 - 4 4 - 1 4 43 - 7 134 123 I I , |2 3 - 1 4 2 31 - 3 34 3 391

- i I S l I i ‘- I l » S S i t . l i l T. - S 1 » “ - i i i . , 1 ?

1 . s ; i S : s "S s ! « s ..t .3 3 . . : s ■ ? : : s s * ■ «• j * ? ; - ma - 4 S 4 37 -fl - 4 * “ 93 2 7 - I * SS * 3 9 2 - 2 ISB “ }S 7 I * . | 4 . | f —43 * T S IS * * 44 —4 0 - 9 3 « l - 7 * 9 4 - * 2 l 12 - 1 9 *2 T 2 4 - 1 T i 12* 9 3 . | 3 s 3 . y ( 4 4 4 | i t |B 7

-A 2 32 -2 1 2 I I - 1 2 3 2 4 - 2 I A IB S B9T 8 9 * ! ! * J 3 T * - 7 # S I 1 1 *9 M 2A |7 L - 9 331 9 2 4 11 - 1 1 * 3 97 23 I IV fl IB * J * * n |B 7 1 *9 IB * 9 0 1 *3

- * * 4 4 4 *1 I * - I S 1 *4 IB B 14 2 221 2 IT I I | ]«.■ its -1 5 9 I* 1 2 lS 2 2 9 12 • * 9 9 S 12 9 2 *4 “ JO * 12 . f . g f T V * f I I L - I * M l - t * 1 3 9 f t - I L. « B - 8 A AS 9 T* —IS 3 9 -B 1** —SB I* 4 TB —117 2 7 s . w . M | g | —4 42 9# 3 4-A IS * 124 2S 9 2 3k - 2 4 4 M • » 132 I I * I* * 2 9 8 2 44 13 , J % , f J B 37 . | 3 | ( g * 1*7 5* - S 19* 173 3 * —IB 19* IS* M.1 *■ 121 33 4 - 4 4 3 9 9 -V 137 —13* I* * 13* 194 9 1 » * y g g g j j ^ 11 J4f * 1 4 0 2S —T 174 143 14 —14 - 3 2 4 2 0 3- * f8r ll t .4 * 2 2 : ! ! 2? - t : ? St I Itt . 2 ! 11 ^ n ? ! I ! - • ‘ I ? 15* : i J?t : ! ' • ? t : i t ? i t : ? t ! 4‘

77 i TS Bfl S304 - I I EA “ 14 01 a - f t l -7 9 B444 “ IS “II 1 BSa s -ft SA Vft flft T IT L44 - 9 Aft •35 a*04 *T -Afl -flfl 31 •T -AT M BS14 -V tflS 194 22 -4 Bfl ftfl B421 -B 190 137 IT -V 9 0 10 01II -4 “ 41 -Bft 49 - 4 AS -9 4 4019 “ 9 SBA -5 1 1 Ifl -a 74 “ 40 ft422 -2 44 -BS 91 •a AT -SA 3711 -1 07 AA 37 - I 07 fll Vfl30 S ISA AT 29 ft 114 104 flftflfl 1 AT Vfl 09 1 IT VT 07IB a 144 -I4V tfOS 0 A “ TA TA T 16 L39 4 -Sfl -4 * SflIT B-ISfl as as - 4 150 -4A 5301 - 3 -BB 40 0903 T IV L - 3 Iflft lift 34

.3 t i l . U ] I I a 182 -2 S B a * -4 149 141 IB B 1** -•* -4 TT -0 S 2 4 - 4 194 ISO I* -V 1*2 - 1 * 7 17 - 1 9 12* - 1 2 4 21-a Si -72 3 * 7 171 1*1 IT - S 4 4 * vna 19 . . . -9 1*3 - 9 2 l« -B 7 4 87 3* - 4 - 8 7 9 89 -11 142 - 1 1 4 17- I -AS 71 34 fl -TB -B S 4 - 2 S* -8 * B* 7 • >» - 3 9 0 - 7 2 34 - 7 1 0 7 - 1 9 3 I* - 3 *S - 4 4 2* - I S TS -8 3 2*

97 * * L

• 4 -S T - 1 B9 - * 19* t i t IS - 1 2 1*3 TV 2 9 * 2 2 B* BB I T *l - I B * IB - 1 S - I I 4 - 3 2 2 fl - I * - f l -TV SB - 4 IB * 14* t*• S -4 1 -B 3 3T -B 9 8 - 1 * 2 2 3 - 1 1 I3A - 4 8 t* B 12* - * l S3 fl 139 IS l 34 • « - A t 9 VS - 1 3 T* Bfl BB - S M - 9 4 |- 7 “ 34 23 4 * - 4 >39 -9 4 4 I* - I S 1*2 -2 * 2 IB 4 T l -B 3 3 9 * 13* J t * 24 - f l 9 9 4 4 32 - 1 3 191 183 2 2 - 4 - S 3 - 1 3 2 4-V 7 * - 4 2 2 3 * BA -T * 2 3 - * Tfl 4 8 8 4 S - f l l - 2 * 2 2 - 7 - * 4 * 2 8 -1 1 - 3 3 t t 4 1 I I I S 122 2 4- 9 IIB - 1 4 3 I* I 142 - 1 2 5 IV - B S*« - f l l * 13 S * L fcJ » • “ M *1 - I S tAS - 1 4 3 2* I 191 |7 f l IS

1 43 BS 2 3 2 T | - 8 7 2B - 7 131 - 8 * 17 S I I L - 8 9 3 - 3 * 2 9 -A U S - 1 7 2 18 fl *7 TT 232 43 1*3 24 3 -TB - 1 2 7 -V 193 1*2 18 - I B ** * 9 7 9 0 - 4 *9 -BB 2 7 - B 14* IV* IT fl 0* - * 4 373 * 3 83 22 4 13* * 4 IB - 8 S IS 2 3 2 t* - 1 2 T * 91 * 3 - I S 141 -1 S T 2 3 - 0 B l 4 7 91 - T 3 53 2 7 3 13 4 143 - J 5 2 IS4 131 - I S T 2 4 B 9 3 - * 3 0 - 4 2 0 4 1*1 11 - 1 1 IV* I k l IT - I I - B l 4 * BB - 2 10* }■» IT -V 158 - I T S IS V - 7 * « 98B IV • * * 27 * —4 0 14 39 -f l 3 4 * - 9 3 4 IS - | 4 * 4 ft BB - J * - 4 3 29 2B - I I4B 148 2 4 -B IS* - 1 9 2 tfl 4 - 4 9 S3 4*A 13 3 0 33 T 4 4 - 2 * 4 0 - 2 f l - I f l 37 - 4 2 * 3 - I T T 14 - * I I * - 1 2 3 * 3 V IM -1 2 f t 23 I 2 1 2 W t "f TA I f 3 * - 1 4 71 4 5 * I t -ft 1*8 - 1 2 * 2 2 -ft 7 * - 8 * 2 9 I 1 1 4 - 1 3 8 » | ‘ J J - *

• 8 L 4 IftA l* S 13 -T 1* f l l *3 - 7 99 - 2 3 2* 2 - l S * « 2 8 3 1*4 - I T * IBft * L I 137 - 1 3 7 I f - 4 - 4 3 13 9 9 - 4 12fl - 1 * 0 I* , * I ! * * f 01 * 4 1

- 1 4 -V S % Sft 9 3 3 8 - S I T *1 -B -V ft 14 31 - f t »»* - 1 » * & ft IB L B - 3 * 43 3 * - 1 3 T*• I B 0 3 • » fl* - 1 3 - 1 * 4 - 2 8 2 * 0 SS 4 4 2 7 - 4 183 1*2 IB - * 21* 241 IB * - 4 8 - 7 4 4 * - 1 2 IIB- 1 4 I I * -1 8 5 2 * - 1 2 103 - 1 2 0 23 4 Tfl f*fl fl* - 3 - 8 * BS *1 - 9 * 7 * 3 • ! " 4- I f l 4T 1 41 - t l U S —7 4 I * S - 4 4 - 9 7 4 4 -fl 1*3 -2 * 7 14 “ 2 - 7 4 - 9 9*- 1 2 *8 4 4 24 - 1 9 I IB I I S 2 4 4 * 4 9 2 2* - 1 - 4 0 - 3 9 1 3 - I ** I « " J - I T - j * 4 4 - J IB* - M l IT- 1 1 - 4 1 -B 41 - 4 2 1k 2 0 3 12 T TV - 4 1 M ft 3 2 7 8*1 12 ft *3 - * f 2 4 - * -T S - I T 04 - 1 4 143 IBS 2 3 - f t 9 3 J J J *• IS BV| 2 * 9 I I -B 4 4 - 2 9 3 1 I *Vk 47 8 4 1 141 144 IT -B - 5 4 3 2 BS - I f l I S l * 0 97 -T Tfl TS 9B

- * IB* 2 1 2 Ifl - 7 4 5 4 - 4 4 * I I ft ft t ft I f t l -* V 2 3 • 2*1 2 3* 14 - 4 122 IJ f l 2 2 - I f t - * B - 3 * 3 * -A 2 31 2 1 4 Ifl- f l 3 95 -2 5 4 I I - 4 - f l - 4 3 2 7 S - 1 9 - * 8 4 2 2 f ll - 9 1 2 * - f l 4* B* 18 *11 - * T I 25 * 8 -T S -B S 24-T XT3 - 3 ? ; I I l i . l » J 1 . - 1 4 3 4 T 1 3 S - 1 3 - 1 3 S . « IT * “ I* * l « - 3 - T l 3 3 3 - t l I M 1* 3 3 - < 1*8 - t * T I*- * 3*4 3*T I t - « I t . I l l 13 - 1 3 - T l - 4 * 3 3 1 - « • I t * 8 1 T t -« T 81 - I 13* - 1 1 3 2 3 - » - 3 3 - « * 3 * - 3 13* - I M I J- 5 1 33 M l I I - 3 IT I - I M 13 - 1 3 t* T T l 3 3 * 1 3 3 4 2 . . . .

1 3 3* 3 38 I* - t I t * I M I* - I I * 1 - * 4 31 I I t l<2 14* 111 IT 1 IM *1 1 3 - 1 8 111 - I M 3 * • * L . .3 l*T - 1 2 2 31 I . 1 - 4 1 3 * - 4 13* - 4 2 I . - I t I t * I t * 1 4 . . .4 2 33 - 2 1 2 11 3 48 13 2 3 - 1 221 2*1 12 - I I • * 3 - I * 8* * 1 8 1 I 18# -1 * 1 I* 2 J J 48 3 88 - * * - 2 3 * 3 I T I ITT l l - T 34 1 3 81 I I - 1 1 - 4 * *1 *1 - 8 *1 *8 *3 - T - I 8 4 - 1 8 2* 2 111 - 1 * I* 8 18* - 1 3 * I J* 82 123 3* 4 -1* I* 44 -* 148 -181 13 -11 181 8* 2T - 8 1*4 -IIT I* -J 13 *4 M J -IJ -11 3* * “T» J* JtT 4* 11 3f 8 231 -23* I* -1 38 -T8 13 -It M -4. 82 -T -T2 - M 33 *8 113 181 2T 4 -13 Tl *1 l-tll -33 24

* I I S - I M 2* - 4 -3 T - * 1 *1 - 4 8 ] - i l 2 8 - 4 • 24 T« “8 1 L T - I * * 4 . 3 - 3 8 2 - 8 3 3 4 - 3 *1 - 4 * * 8 - 3 IT ! 1 83 I *

- 2 14* IT* I I - T 143 144 11 - 4 1*8 T 8 2 2- t l 14 - 1 * 4 4 3 8 4 L - I 111 114 I . - 4 3 4 7 1 * 4 13 - 1 114 - 1 4 3 IS . . . . . . .- 1 4 - 1 3 - 4 3 4 3 * 4 3 38 2 8 - 1 I * 1* 1 8 - 1 - T 2 I I 34 * I I * I » „ _ - 1 3 1 2 -1 1 * 1- 1 3 33T 2 * 4 11 - I * 7 8 -T # 84 I I I B - I I T 3 * - 4 - 8 1 - 3 33 - I I4T - 1 * 2 2 . . . . " ! * Tl ! T H " 1 '* * " * ! i !- 1 2 124 134 31 - 1 3 144 * 1 * 2 3 2 3 IT - 1 * 3 13 - 3 2T M *3 8 I I # 4 4 21 8 IT L - 1 1 * 1 - 4 * I T - I I * 4 - 1 1 3 7- I I I I * I I * 2 * -13 - T 2 -3 23 3 M 1 4 2 4 - 2 | 8 ! - T # 2 4 I I I T IT * 3* . . . . . '!? '•?? ?? “ I* 1*2 - 2 * 8 18- I * 1 4 11 1 3 - I I 2 8 7 2 4* 13 * T 8 3 7 3 * - I *2 4 8 8 4 2 2 8 8 * 8 7 - 4 - 4 2 - J T 11 - I I - 1 4 -4 1 24 - 4 - 3 3 - 2 3 47

- 4 -8 3 I 3 4 - I * IS l - 8 2 3 1 - 4 8 - 3 8 42 * - 1 3 - 2 8 M 8 -1 * 4 - 4 3 2T - 2 24 - 1 1 8 8 - I J I I * - 1 3 2 4 - 8 141 -1 4 1 IT- 8 84 1 3 3 2 - 4 I S l - I T * 14 4 188 - I M 18 I 24 - 2 7 M * I M - 1 8 * ** . * • 83 I M 3T - T 4 * 4* I I-T 4 8 - 2 1 27 - 8 ITT - 1 * 4 I* 3 * 1 - 1 1 8 2 8 . . * - I L - J M B 3 41 I I - 4 3 * 14 *4- 4 * 4 * 2 14 -T 111 - I I T I t 8 T L 1 111 - 1 * 4 18 8 11 L . . . . . . l l i l ! i ! J }’ * • ‘* ? - t i l 22- 3 144 141 I* - 4 4 8 *4 83 4 34 44 4 7 - I * 117 - I M 3T - 4 2 3 3 - 3 1 7 12 - 4 24T - 3 4 * 13

1 - 1 8 - 8 4 81 - 8 142 184 14 - I * 13* - 4 3 2 4 1 * 4 183 M - I t 1*3 183 14 - 1 2 118 - 4 J 21 - 1 2 0 3 - 3 * 4 I I - 8 4 * - 1 3 1*2 M - 1 * 3 3* - 4 144 l*T 13 - I I - 1 1 - 4 4 1 1 - I * 138 8 4 21 - 1 1 - 1 2 84 *1 I - 7 * J * 3 4 - 2 3 7 8 2 8 3 I I3 T4 - 3 3 24 - 1 144 -1 8 4 14 - 1 2 1*3 - T l 2 7 8 18 L - 4 I * -1 2 3 4 3 - I I - 1 * - I 8 3 J J 1*4 24 - 1 1 2 *1 84* 133 1*7 3 * - 2 144 - 1 8 1 11 - I I 1*4 - 4 7 23 - 8 4 * - 2 3 83 - I J - 2 3 - 1 * J l 3 * 1 74 3 2 * 111 - I I * IB* 4* 4* 14 - I 23 1*1 4 8 - 1 * 2 4 4 2 * 3 11 - 1 2 14 - 1 1 * 3 - T 3 *4 182 l l - * " 4 * « M J - 3 3 4 4 J l | I I * 1*4 IT* - 7 2 - 3 8 I I * * 8 I I * 21 - 8 1 * 4 3* 2 13 -1 1 * 8 - 4 8 I T - J - J T - 1 3 J l - J - J ] J j * * * J -J* J * J J 3 3* - J * J lT 4 * - I T I T I - 3 0 7 2 4 * - 8 - 3 8 I 1 2 - I # - 8 * IT * 7 - 1 *T - J 3 8 * - 7 2 3 4 - 2 I J 12 * I M - 3 8 2 4 * - 1 1 3 - 3 1 2 3

2 “ BA IB Bfl “ 7 2AA - 9 9 * Ifl -A “ Aft Iftfl 4 ) “ 4 1 99 * 1 1 3 IV “V V t “ 2 9 k 4 If l# Vfl 25ft 2 I. I 7 ) “ t l H 4 " . 1 7 9 1 » I I H I U I I Tft -Tfl flft * • IM I f * ■« * ft L • 191 IS S 94

4 M -VA 2 0 -fl * 44 - 5 5 9A -T IB I IOA Ift * 0 44 J 41 1 104 1*1 14 . . .- 1 4 1*4 143 21 3 41 - 4 0 3* - 4 4 * - 4 * 31 - 4 l i t - I I * 31 - I *1 , ‘ J * J J 112 M 21 - * - M * g t * 4 * L- 1 1 43 4 * 4 4 * 74 12* 2 1 - 3 4 3 -* T 2 * - 1 111 - 1 1 * I I • J * • I J I 34 8 - 2 7 13 8* - 1 2 1T3 - I 3 J I J- 1 2 1*4 —1*7 14 T 4 0 103 4 8 - 3 I I T - 1 1 1 14 - 4 1*3 - 1 * 4 IT I ! J I * 3 2 J 4 I J * -7 1 2T - 1 2 31 - 8 * 23 - I J - 8 1 - J 3 J l• I I ISB • I B S flfl • | 2 3 | • 2 * tf l *-0 T 4 2 4 1 7 ft SS “ I I 94 B BA “ Sfl 44 “ I I 195 ISA Ik “ If l Tfl > 9 9 09“ tft AT V f 2 2 ■ i L ft fT “ 54 9 4 - f l -A T - 4 S 97 S IS ft “ I I # ft* V 0 4 f t l I 5 “ l k f l » 5 9 5 * I J - l l f tM “ ITA l i

-A l i 113 flfl I 71 TT f l l “ I “ VI “ 4 4 Bfl “ * *9 4 “ kfl B l “ IS “ 4 0 4 4 OS. 9 04 TO 31 “ 14 101 9 4 2 3 fl - 9 3 S Ok ft 113 9 3 91 ft IS L f t f t l * - B 2 3 k . f l l f If l - 4 2 4 4 f l |4 IB• f - 4 4 “ AI 04 “ 13 “ 4 0 BB Bft a 120 1ST 3 1 I 114 - 4 1 3 0 * T -T T IS - f t OS - I f t 44

-4 S 3 Bl VS - I I 131 54“ft - t v - I f v v V 1 I • IS SV4 “ 3TA- 7 •BT -IA 40 -A IBS “ 141-V •TS - IT 04 -1 4 149 IBS 23 • 0 93 54-B “ 54 Sfl BS -1 9 IS l Aft o r -T Tfl TS-4 153 IVfl 23 -1 2 —40 -9A 04 -4 331 314“ 0 4* 54 BV - I I -AT 1 25 -B -T S •BS-fl -TB fl 00 “ IS IS# 04 22 • 4 140 -1 4 7-1 ISA -1 9 2 72 -A -9 3 “ 4V 34 - 0 124 “ JM

0 IS4 -TA 37 •f t • OS TS - 2 93 -4 #1 54 44 Vfl *7 flflA fll* 12 - I Vf 94

•V -Tft fl 2k • 31 -5 4ft IV L -B IAI -IAA 10 1 TT - 3 #1 IBS “ IAI 14 a 90 AS1 •A 1 3 - I S 3A fl 190 •AA IV • 194 •1 0 4

-A V3 4A 44 3 -V* “ IB BA 4 “TS 94•B 119 ISB 97 4 •IB n V | B - I I I -Sfl- 4 90 •TB 91 ■ BB Afl fll- 0 T l - I I T BA V -B l “ fll V4 A S L• 3 v s IV BA• 1 ISA -0 4 BB S a l -14 IBS IflV

0 I I * fl 39 “ 10 Bfl -01“ 14 TT 4 7 04 -12 1*9 - 4 4

305

- 7 124 * 1 3 9 M - M I t 0 10 L 1* 1 tZ \ ‘ 5 5 -* 4 a ? H n S - l l ! » - I IT - M H - 1 9 I M 9 9 9 7_ J , J J - J 5 3 j j . ) i | 7 *19 U -■ t l 79 99 -1 9 AS » 94. 2 33* i a i 13 - 3 « 1 4 IT - 7 IIA 1J3 2 3 -1 1 - 1 1 - 9 7 99-a 434 « t II -I H U li *1 IM -J* M - I t s a - ••

7 4 •tftft3 * • 1 1431 - 4 17514 - 3 - 8 713 - 3 aiI I - 1 4 521 * ■3f t * t I f tl2T 2 114ftl 3 * 32ft 4 42ftl24 * :

- I IIA 113 3 • 99 • 39 *9 I t s -T* 33 - f I** 17*• I ) •* « 31 * 191 -A t 93 - 4 - 3 9 -4 27 - • 3T2 2 t*3 123 7 4 31 I « '* 1 1 » ' l ' ! 5 -4 3 33 U 2*9 -3 4 9 13 -It 133 — IT* 34 *1 -4 4 14 43 - I 134 IIII1!? i;i s 4 “ n* 11 'J"z « ii i W ' - s n sis is i.!! i« s - -f » « *

— 143

r l

, _ - 4 3 11 9 4 9 9 1 4 4 3 112 -3 1S 131 - 1 4 3 3* * 19 t 1 * 9 9 - 1 9 9 I* 9 1*1 I J * „ . . . _ j 5 j - - ^

• 19 179 >144 21 f |4 L -9 91 -93 34 9-193 -39 99 -7 194 T9 3* * 119I I I i»J ! ! m i i t t * L -4 4 9 134 33 -4 -4 3 -I * 41 I 144 114

-13 77 -0 7 33 - i t 149 S ! 34 -A |44 199 33 -3 2*4 319 II 19 9 L *J 21* - » } ]■ 3-1*4 41

:|f -if 0 ii rss i! S :!*«-* il I » W fi=UiB-B i! 3.8 £ S ’* 4 «•-12 191 *9l i lit 113 24 -r 4 -1 3 73 -■ -4 2 - 4 3* - I I 91 - 9 32 • *1i * -4 2 *3 33 - 4 |4 4 - |3 3 t9 - 4 44 49 29 -1 3 137 ,144 19 I 111

44 -9 2 32 -9 “

- 2 4 40 - I I * 2 - 5 0 00- 4 4 4ft - I * | 4 i • t t i 21 —ft

1 3 9 - 4 108 - 1 4 * IB • a• 0 • 14 7 4 -7

■ L - 7 2 2 4 2 * 0 14 - •—4 4T 41 5 8 - i

8 4 4 3 - 9 - * * - 7 3 3 -4• 0 2 4 - 4 145 - M f t IT - a

-1 9 4 I t —0 1*4 - 0 3 2 4 - a- I T * 3 4 - 2 - 4 4 14 4 2 -1

133 19 - 1 4 0 -8 * 24 •ftft* Ift • t * l 149 10

•1 4 3 IB 1 14* ia a 22 i- 1 7 4 14 3 173 - 1 3 * 3ft

- 8 3 84 f t - l i f t -2 f t 20 —713* 23 - 48 1 9 IB Ift 9 L - 81*4 18 • 444 3 « - l l 178 -1 9 f t 14 - f t84 58 - I * - 1 4 2 1 48 • 2

- 1 8 4 as -4 49 4 9 48• 0 4 33 • a 17* 135 10 1

7 as -7 -1ft 84 4 3184 23 -4 1*4 • 9 4 23 - 1 2

-4 I i i -2 f t ftft51 1 114 *1 2*ftt 2XT

l i f t • 4 3410 t l ft L

2 3 - 1 2 00 85 Sft3 2 - I I 184 111 1*2 2 - I* 49 41 5*2* -4 9 0 -0 4 M2 7 - f t I I* •Iftft 21

mZ . S . J ; * a . 3 44 —14 44 - 9 t a -4 1 94 9 -9 9 7 23 - 7 -1 3 3* 43 - I t T t - | » 4 34- 3 34 1 4 3 4 - I 77 -9 7 34 - 7 244 -3 7 9 12 4 139 194 39 *-4 I t* -9 * 23 -1 2 41 44 31 - 4 I I - 7 4 33

■ i m ,Am m . 9 . i f • ■ 34 i 43 -4 * 31 - 4 223 -2 9 9 14 - 9 I 4 | -1 9 9 29 - I I -T S 1* 99 - • 47 21 43' ■ « " ; ? * i i s ' ” " 11 3 “ S til it it * t -• « it » » -i» « - » « -• -•» » • j i* . I i . I I J J * I l *TS 27 ■ | | L | 19 23 41 - 9 314 2 3 1 |4 - 4 91 -1 1 7 93 - 4 41 41 34

:? J * ’ » ; « g i s S .T . „ {IT ! ! : ! ? . « :U “ : ? ’!! S i i i : ? ! » ■ ' * S I . S !it t i £ s 3,4 31 -• j: a « 4 44 " ,T ■* _-s «:s ts i t 3? -t ai? rs 2 -i'S ' S it

Ii 4 ** L - s tt 14 • 1 -? sn - i s it • * • • * - • « » i i s n i s zl i l i u « - I I - « » I t M -2 t t - I I 32 M l J J - I J M ‘ J J : « “ I t I t L I I • L« - J t 4 t t - J t I t s - I t 24 L J S ' j t I t - 4 24B ST* I I - I I IZJ T t 2 » - U TT - t

• • ■ I I i r H i t 1 1* ■; ■” ^ . i m a r t i t - i t i t i i t t i t - 11-44 t t* m ^ - t IM . * 3 ? 41 • 1 3 - 1 1 9 - 3 5 24 - 4 4 9 - 4 3 31 >2 M - 4 3 34 - 4 87 44 4 4 - I * * 4 4 - 4

l 4 l 4 t * * 3 4 I I J l 2 i l * 4 - 1 2 - 1 1 3 - 3 3 ! * . | - 3 4 - 3 7 4 3 - 1 2 7 1 - 2 3 4 12 - 9 4 7 - 9 4 2 4 - 4 T 9 - 1 4 *

" I ? - i i a ? il! I” ? S :!i i S - S » -I Sis -Sri IS 7 « ” lB » - I ! I * - ! E T i : ? -*?? *SSi s : s - i £ i i i -& is -s s s s s k s s - u i s : : , s . h ]■ -t s

- a 13* - 1 4 4 19 - I 121 I** 2 2 - 7 192 - 4 9 2 3 I 11* 193 2 9 . . . t f * • t 1 ! ! * J 3 l , a IM- 7 2 1 2 2 1 5 I* • 131 12* 2 3 - 4 344 2 * 4 13 9 9 4 - 4 2 4* l i 7 L 3 197 ITT 14 . . , ,- 4 2 3 4 2 1 4 13 I - 4 9 13 9 3 I 1 9 4 1 4 3 1 0 9 4 4 - I * * 3 * * > * f * a J ! 11 I I*- 9 1 2 7 4 2 14 3 4 7 4 4 4 3 2 - 4 * 2 3 9 4 4 9 9 * 4 7 3 1 J * I * * 14* 2 2 • I * 14 4 8Z. ! X . i i . . ■ . _ t t t . . m t . I ■■ u —I I 9 7 4 4 3 * I —4 3 2 3 4 * —12 4 7 —4 *" S £1 " U 5 Ji * * 1 2 9 - 1 2 2 2 3 1 4 4 L - 1 9 - T 9 - ■ 2 8 - 1 1 - 1 2 4 - 1 4- 3 3 3 3 - 2 1 7 1 2 * 1 2 3 1 2 2 2 3 - 4 -44 4 7 4 4 l i U L - I * 4 9 0 9

? ' 1 2 t * 2 2 ’ 1 4 9 L - 1 8 - 2 4 7 4 9 4 * 9 1*1 - 1 8 3 2 9 - 4 I I T 117• i . i l S u I t t t _ I J J J > - T t . I , a 34 - I t - M M 14 - t l « J IJ1

• I t i 82 2ft I I 19 L1 ftft - 1 8 4

- 4 94 4 1II 7 L - 9 - 9 0 -2 f t

- 7 244 - 2 3 2• I I • 4 4 74 91 • 4 14 - 0 *• l i 73 33 37 -■ l i f t IT*

- 0 4* • 4 7 4 4 - 4 112 4 4- 0 * 2 43 ftT —3 - 4 3 - 4 1- 7 75 77 33 - 2 113 - 4 8- • 118 1*1 17 - 1 51 - 4 2- 8 IB a r 84- 4 - 4 3 - » * 3 0 I I 11 L- 3 • 42 • 5 4 40• 2 7* - 0 3 34 -T 7 9 14- 1 4 9 14 37 - 4 44 2ft

ft 124 9 7 24 - 8 41 8 41 125 • 3 29 - 4

- a9 *4 0

4- I B

- I S -2 4 74 58-1 2 144 1*4 30

IT - I I 78 •84 343* - L* 231 -1 * 4 1423 -4 ft i« - a i * 1444 -1ft 74 U3ft - 7 47 48 3221 -4 14* ■0 2224 - 3 34 72 3311 -4 47 - l « a 24ftft -ft Mft -1 4 3 1724 • 2 89 32 548* -1 IT* 144 17ft* ft 44 tft 2*

1 *4 2S 54

27 - 9 - Iftft 14 H3* - f t - 3 4 90 I t

- - t t - S J 3 3 - I t T t - 4 1 M ....I J J J - M t 13 —4 T t -4 1 3 4 - I S I I T I t J3 - 9 4 4 * 4* - 9 91 - 4 * 9 2 - | 2 09 ITa 117 124 33 - 7 - 0 3 47 9 * - I I t l * - 1 1 04 4 7 - 2 3 37 *4 1*1 1*3 2 * - l i 3* - 4 3

- 3 * 0 82 3 3 - 4 *9 94* 9 L - 4 124 * 4 4 2 * * 9 - 4 1 4

- 3 |3 7 - 0 3 IB - 7 134 133- 1 2 7 9 * 2 9 - 2 *S * 9 *9 - * 2 4 2 2 0 4- | 1 14* -1 4 1 I t - I 9 * - 2 4 * J - 7 2 II- I * 14* -1 S T 21 • ITI t » I * 2 H I *111

- 4 2T 21 9 5 I 4 4 01 4 4 2 - 2 0 4 7• 9 12* 184 2 * 2 129 1 3 4 4 *9 - 9•T 141 131 19

- I * 1*4 *7- * *4 4

I * - 9 9 9 - « 7 393 2 - 7 114 - 4 7 2 4 12 T L19 - * a a a* i a* 4 - 4 4 9 - 1*4 8 |23 12 • t -I I H 8) 2127 -7 -57 1* 8442 -11 u t 40 21 -4 t i i ft* a a2 * - I * * 4 7 - 8 * 9 4 - S -J T - 4 7 394 0 - 4 141 - 0 4 21 - 4 129 -B 9 23

- 0 4 7 * 2 7 - 9 1*2 - 5 4 24- 7 48 87 2 9 - 2 1*7 - l i l 91- 4 4 4 - 4 1 2*04 • 2)4 178 10 13 * L

3 99 2 12 4 t - 7 I I *9 *39 2 - 4 4 5 9 2 44 * -1 f t 4 4 - 4 3 9 0 - 9 127 - 1 4 7 2 9

- 4 —1*2 • 24 - 4 17 —49 *412 - I t . - 0 - 9 2 - 4 2 ft3 -ft 11* * 3 27

-T 144 84 2 0- t t - 4 2 —4 0 2 0 - 4 14 -f t* * 4 Ift - 1 L- t * 1*3 -Tft 2 7 - 8 tft* -BT 33

- 4 1*9 - 1 2 7 14 - | 1*4 8 0 3 7 - 9 134 1*4 2 4- 9 4 9 - 0 * 9 * - 7 1*1 9 3 28-T Tft 41 94 12 I L

II • L -I* 49 ftl 47 * **- 4 88 -Tft 4 3 - 9 142 tft* 2 3

- I I 7 0 - f t t ftft - 9 9ft 3 4 49 -T 123 - 8 7 28- 1 * - 4 4 - 2 4 9 0 - t 7 * 4 4 97

- 4 114 191 2 * - 4 141 - 1 2 3 2 2 Ift I L- 0 107 1*4 17 - 9 * 7 - I I 4 *

„ . . -7 124 • * 21 - 4 2 * 4 1*7 17 - 9 * 2 - 1 * 4 9 2-it tt ’tl Si „ , t : 3 ? f l Hi S *T » — ":? « 'ti S .,1 « tt -- -* '•» -J' * <• * *■- * 211 - 1 7 * | 7 - J * - 0 3 7 *- 8 *9 - 9 4 3T - 4 1*3 ITT• 4 1*4 (ftft ft* . 0 i i * 94- 3 IT8 149 19 - 7 7 4 - 4 1- 2 - 4 7 *3 49- I 2 1 3 - 1 9 4 IT 12 2 L

9 192 -1 2 ft 24- t t - 4 4 ft

-1 9 140 1*4 22 • - I f t -1 4 48- I I BT 44 ft* 1 -8 3 28 44 -1 9 57- 1 4 -T 9 - 8 52 —11—124

- 4 -4 4 47 44 I t I t L - I f t 43• 0 (ftl -125 28 -4 117- 7 *4 119 34 • t i -8 0 94 Bft - a 143-4 -1 * 4 35 22 - 4 150 -14ft 21 *T 7ft•* 49 42 2T • 0 252 -2 4 3 15 •4 214- 4 72 184 31 - 7 Bft - f t t 92 1 12*-f t 22* •2 1 9 15 - 4 121 1*4 24 a 110- 2 f t l t -3 3 2 Ift - 8 U S 124 22-1 147 •137 14 - 4 22 -1 4 4 42 11

* -4 4 25 44 - f t • 8 7 44 311 -7 4 tft 34 - 2 47 9 0 Sft -12 • I Sa -T ft •4* 30 -1 44 -1 1 24 -11 IS l

ft 112 4 24 - 1* 1*4i i 0 L 1 IS* 194 2ft •4 • 9

-0 104- t a 184 193 2ft l i I t L - 7 04

-70

T«tl*

9 544

11

- 1 9 154

0 L

-1 4 1 3 934 -1 1 Iftft - 1 5 4 14ftft - I f t - 7 5 42 aft*1 - 4 - 4 0 ft* 4912 - 0 • 8 4 - 3 4 0 024 -T • 1 8 • M ftft4 * -ft 114 -1 4 8 2 297 • 5 4 2 • 5 4 2 9

-f t 23 2 9 8 4- 3 2* * IB* IS• 2 MB l*T 2*

41 - 1 34 * w t 8323 ft 19* -1 7 f t 1424 1 -0 1 - 8 4 9ft21 t 19ft 149 2 3I*3 8 t l « It142 4 - I I - i a 9ft 4 22ft • t * l i * IIS 27

—4 • 7 8 Ift 32• 0 5 7 -1 9 1 42- 7 ia a -1 * 4 18

ftft - 4 BT -ftft 242 2 • 8 190 ISS 172 7 - 4 144 137 3 4ftft • 3 ftft 9 ftft1* - 3 89 -f t* 44a * - 1 44 44 05

- i i 182 •19ft 21-4 -4 7 *4 40-0 MB t* 23-7 74 ft 12- 4 01 53 3 2-8 40 11 43-ft 1*4 •4 3 24- 3 Iftft •1 * 4 22- 2 94 t i 11-1 243 248 IT

• *1 -4 3 41

I I * L

- t 1*8 -31 24 1884 12 * L •T 712*24

•►T

-1*1 97 1098 - 9 *4 -ftl 34

- 7 ftt -3 ft 8* -7 90-4 *4 37 24 -4 130

41-5 72 - 4 82

aa*

3443

APPENDIX C

Derivation of Chloride Equilibrium Constant Expression

306

The observed equilibrium constant is defined as:

= [FeL(CO)]OBS [FeL]pCO

where

[FeL] - [FeL(CH3CN)]2+ + [FeL(Cl)]+

[FeL(CO)] = [FeL(CH3CN)(CO)]2+ + [FeL(Cl)(CO)]+

The individual equilibrium constants are defined as:

K1[FeLCCHgCN)] + CO [FeL(CH3CN) (CO) ]

[FeL(CH3CN)(C0)]*4. = [FeL(CH3CN)]pC0

[FeL(CH3CN) (CO) ] = ^ [ F e K C ^ C N ) ] pCO

K2[FeL(Cl) ] + CO ^ [FeL(Cl) (CO) ]

= [FeL(Cl)(CO)]2 [FeL(Cl)]pCO

[FeL(Cl)(CO)] = K2 [FeL(Cl)]pCO

- K 3[FeL(CH3CN)] + Cl FeL (Cl)

K- 0 [FeL(Cl) 3 3 [FeL(CH3CN)][Cl"]

[FeL(Cl)] = K3 [FeL(CH3CN)][Cl"]

Rearrange equation (48)

KOBS[FeL ]pC ° = t F e L <C0>]

307

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

308

and substitute for [FeL(CO)]

K0BS[FeLlpC0 = K!tFeL(CH3CN)]pC0 + K2 [FeL(Cl)(CO)]pCO

Cancel pCO

KQBS[FeL] *= K^[FeL(CH3CN) ] + K2 [FeL(Cl)]

K0BS[FeL] = ^ e L - F e L (Cl )] + K2 [FeL(Cl)]

substitute for [FeL(CH3CN)] in equation 58

[FeL(Cl)]3 [FeL- FeL (Cl)] [Cl“ ]

[FeLCl] = K3 [FeL-FeL(Cl)][Cl"]

[FeL(Cl)](l+K3)[Cl]) = K3 [FeL][cr]

K [FeL][Cl"][FeL(cl) 3 - l+iqiciT"

Substitute for [FeL(Cl)] in equation 63

1CK [FeL[Cl"] K K [FeL][Cl"] K0BS[FeL] " Kx[FeLl 1 + K3 [C1] + 1 + K3 [C1]

Cancelling [FeL] yields:

K.K.tCl"] K K [Cl"]K „ „ = K, + , . „ r nt 1 +OBS 1 1 + K3 [C1] 1 + K3 [C1]

and collect terms to obtain

K„(K - K )[Cl"]K = K, +OBS 1 1 + K-[Cl“ ]

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

309

When and are known, this rearranges to a linear form.

l°SS I ^ - K-IOl-]2 " OBS 3

from which is determined by the slope.

By propagation of errors, the standard deviation for each

y-value was determined from:

2 = 2 / 1 (KOBS " V ^K0 B S V K2 “ K0BS (K2 - K obs)2

+ °*1 ( K2 -^ O B s )

2 / ~^K0BS " Kl^

K2 V K2 “ K0BS>2j

(71)

(72)

BIBLIOGRAPHY

1. J. P. Collman, Accounts Chem. Res., 10, 265 (1977).

2. J. L. Hoard, "Porphyrins and Metalloproteins," K. M. Smith, ed.,Elsevier, Amsterdam, 1975, Chap. 8.

3. M. F. Perutz, Brit. Med. Bull., 32, 193 (1976).

4. M. F. Perutz, Ann. Rev. Biochem., 48, 327 (1979).

5. J. P. Collman, J. L. Hoard, N. Kim, G. Lang, and C. A. Reed,J. Am. Chem. Soc., 97, 2676 (1975).

6. L. Pauling, Nature (London), 203, 182 (1964).

7. J. S. Griffith, Proc. Roy. Soc., A235, 23 (1956).

8. R. S. Gall, J. F. Rogers, W. P. Schaefer, and G. G. Christoph,J. Am. Chem. Soc., 98, 5135 (1976); A. Avdeef and W. P.Schaefer, J. Am. Chem. Soc., 98, 5133 (1976); R. S. Gall and W. P. Schaefer, Inorg. Chem., 15_, 2758 (1976).

9. J. P. Collman, R. R. Gagne, C. H. Reed, W. T. Robinson, andG. A. Rodley, Proc. Natl. Acad. Sci. U.S.A., 71, 1326 (1974);G. B, Jameson, G. A. Rodley, W. T. Robinson, R. R. Gagne,C. A. Reed, and J. P. Collman, Inorg. Chem., 17_, 850 (1978).

10. E. Weber, W. Steigermann, T. A. Jones, and R. Huber, J. Mol. Biol.,120, 327 (1978).

11. S.E.V. Phillips, Nature (London), 273, 247 (1978).

12. E. J. Heldner, R. C. Ladner, and M. F. Perutz, J. Mol. Biol.,104, 707 (1976).

13. J. C. Norvell, A. C. Nunes, and B. P. Schoenborn, Science, 190,568 (1975).

14. J. F. Deatherage, R. S. Loe, C. M. Anderson, and J. K. Moffat,J. Mol. Biol., 104, 687 (1976).

15. J. P. Collman, J. I. Brauman, T. R. Halbert, and K. S. Suslick,Proc. Natl. Acad. Sci. U.S.A., 73, 3333 (1976).

310

311

16. D. L. Anderson, C. J. Weschler, and F. Basolo, J. Am. Chem. Soc.,96, 5599 (1974).

17. G. C. Wagner and R. J. Kassner, J. Am. Chem. Soc., 96, 5593(1974).

18. W. S. Brinigar and C. K. Chang, J. Am. Chem. Soc., 96, 5595 (1974).

19. J. Almog, J. E, Baldwin, R. L. Dyer, J. Huff, and C. J. Wllkerson,J. Am. Chem. Soc., 96, 5600 (1974).

20. C. J. Weschler, D. L. Anderson and F. Basolo, J. Am. Chem. Soc.,97, 6707 (1975).

21. J. 0. Alben, W. H. Fuchsman, C. A. Beaudreau, and W. S. Caughey,Biochemistry, _7, 624 (1968).

22. K. S. Murray, Coord. Chem. Rev., 12, 1 (1974).

23. J. H. Wang, Accounts Chem. Res., £, 91 (1970).

24. D. Brault and M. Rougee, Biochemistry, 13, 4591 (1974).

25. J. P. Collman and C. A. Reed, J. Am. Chem. Soc., £5, 2048 (1973).

26. D. Brault and M. Rougee, Biochem. Blophys. Res. Comm., J59, 654(1974).

27. G. C. Wagner and R. J. Kassner, Biochim. Biophys. Acta, 392, 319(1975).

28. J. L. Hoard, C. A. Reed, and J. P. Collman, as reported in ref. 1.

29. J. P. Collman, J. I. Brauman, K. M. Doxsee, T. R. Halbert, S. E.Hayes, and K. S. Suslick, J. Am. Chem. Soc., 100, 2761 (1978).

30. C. K. Chang and T. G. Traylor, Proc. Natl. Acad. Sci. U.S.A., 70,2647 (1973).

31. C. K. Chang and T. G. Traylor, J. Am. Chem. Soc., 95, 5810 (1973).

32. C. K. Chang and T. G. Traylor, J. Am. Chem. Soc., ££, 8475, 9477(1973); C. K. Chang and T. G. Traylor, J. Am. Chem. Soc., 98, 6765 (1976).

33. J. E. Baldwin and J. Huff, J. Am. Chem. Soc., £5, 5757 (1973).

34. J. P. Collman, R. R. Gagne , T. R. Halbert, J. C. Marchon, andC. A. Reed, J. Am. Chem. Soc., 95, 7868 (1973).

312

35. J. P. Collman, J. I. Brauman, and K. S. Susllck, J. Am. Chem.Soc., 97, 7155 (1975).

36. J. P. Collman, R. R, Gagne, C. A. Reed, T. R. Halbert, G. Lang,and W. T. Robinson, J. Am. Chem. Soc., 97, 1427 (1975).

37. G. B. Jameson, F. S. Molinaro, J. A. Ibers, J. P. Collman, J. I.Brauman, E. Rose, and K. S. Susllck, J. Am. Chem. Soc., 100,6769 (1978).

38. J. Almog, J. E. Baldwin, and J. Huff, J. Am. Chem. Soc., 97,227 (1975).

39. J. Almog, J. E. Baldwin, R. L. Dyer, and M. Peters, J. Am. Chem.Soc., 97, 226 (1975).

40. J. R. Bridge, P. E. Ellis, R. D. Jones, J. E. Linard, F. Basolo,J. E. Baldwin, and R. L. Dyer, J. Am. Chem. Soc., 101, 4760 (1979).

41. J. R. Bridge, P. E. Ellis, R. D. Jones, J. E. Linard, T. Szymanski,F. Basolo, J. E. Baldwin, and R. L. Dyer, J. Am. Chem. Soc.,101. 4762 (1979).

42. J. H. Wang, J. Am. Chem. Soc., 80, 3168 (1958).

43. E. Tsuchida, E. Hasegawa, and K. Houda, Biochim. Biophys. Acta,427, 520 (1976).

44. E. Boyer and G. Holzbach, Angew. Chem. Int. Ed., Eng., 16, 117(1977).

45. D. V. Stynes and B. R. James, J. Chem. Soc. Chem. Commun., 325(1973).

46. B. R. James, R. J. Reimer, and T.C.T. Wong, J. Am. Chem. Soc.,9 9 , 4815 (1977).

47. D. V. Stynes and B. R. James, J. Am. Chem. Soc., 96, 2733 (1974).

48. I. W. Pang and D. V. Stynes, Inorg. Chem., 3 6, 2192 (1977).

49. M, Rouges and D. Brault, Biochemistry, 14, 4100 (1975).

50. C. K. Chang and T. G. Traylor, Proc. Natl. Acad. Sci. U.S.A., 72,1166 (1975).

51. Q. H. Gibson, J. Biol. Chem., 245, 3285 (1970).

52. C. K. Chang and T. G. Traylor, Biochem. Biophys. Res. Comm., 62,729 (1975).

313

53. T. G. Traylor, D. Campbell, and S. Tsuchuja, J. Am. Chem. Soc.,101. 4748 (1979).

54. M. Rougee and D. Brault, Blochem. Biophys. Res. Comm., 55, 1364(1973).

55. B. B. Wayland, L. F. Mehne, and J. Swartz, J. Am. Chem. Soc., 100,2379 (1978).

56. S. M. Peng and J. A. Ibers, J. Am. Chem. Soc., 98, 8032 (1976).

57. J. P. Collman, R. R. Gagne, T. R. Halbert, J. L. Hoard, C, A. Reed,and A. A. Sayler, unpublished results as reported in ref. 53.

58. V. L. Goedkin, S. M. Peng, J. Molin-Norris, and Y. Park, J. Am.Chem. Soc., 98, 8391 (1976).

59. V. L. Goedkin and S. M. Peng, J. Am. Chem. Soc., 96, 7826 (1974).

60. D. H. O'Keefe, R. E. Ebel, J. A. Peterson, J. C. Maxwell, andW. S. Caughey, Biochemistry,

61. J. 0. Alben and W. S. Caughey, Biochemistry, 7_, 175 (1968).

62. J. C. Maxwell and W. S. Caughey, Biochemistry 15, 388 (1976).

63. W. S. Caughey, J. 0. Alben, S. McCoy, S. Boyer, S. Charache, andP. Hathaway, Biochemistry, Ji, 59 (1969).

64. D. V. Stynes, H. C. Stynes, J. A. Ibers, and B. R. James, J. Am.Chem. Soc., 95, 1142 (1973).

65. J. C. Stevens, P.J.R. Jackson, G. G. Christoph and D. H. Busch,submitted for publication.

66. J. C. Stevens, Ph.D. Thesis, The Ohio State University, 1979.

67. R. D. Jones, D. A. Summerville, and F. Basolo, Chem. Rev., J79, 139(179).

68. B. B. Wayland, J. V. Minkiewicz, and M. E. Abd-Elmageed, J. Am.Chem. Soc., 96, 2795 (1974).

69. P.W.R. Corfield, J. D. Mokren, C. J. Hipp, and D. H. Busch, J. Am.Chem. Soc., 95 , 4465 (1973).

70. Wayne P. Schammel, Ph.D. Thesis, The Ohio State University, 1976.

71. W. P. Schammel, L. L. Zimmer, and D. H. Busch, submitted for pub­lication.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88. 89.

314

W. P. Schammel, K.S.B. Mertes, G. G. Christoph and D. H. Busch,J. Am. Chem. Soc., 101, 1622 (1979).

D. H. Busch and J. C. Stevens, submitted for publication.

W. L. Jolly, "The Synthesis and Characterization of Inorganic Com­pounds," Prentice-Hall, Englewood Cliffs, N. J., 1970, pp. 114- 121; A. J. Gordon and R. A. Ford, "The Chemist's Companion," Wiley, New York, 1972, pp. 429-436.

P. W. Selwood, "Magnetochemistry," 2nd ed., Interscience, New York, 1956.

Inorganic Syntheses, Volume 22, D. H. Busch, ed., in press.

D. J. Olszanski and D. H. Busch, unpublished results.

R. W. Callahan and D. H. Busch, unpublished results.

R. A. Wilkins and D. H. Busch, unpublished results.

B. J. Hathaway and D. G. Holah, J. Chem. Soc., 2408 (1964).

G. G. Christoph and M. A. Beno, J. Am. Chem. Soc., 100, 3156(1976).

D. J. DuChamp, Paper B14 "Program and Abstracts," AmericanCrystallographlc Association Meeting, Bozeman, Mont., 1964 as modified by Dr. G. G, Christoph at The Ohio State University.

Supplied by Drs. S.D.A. Iske and V. Day of University of Nebraska, Lincoln, Nebraska.

"International Tables for X-ray Crystallography," Vol. Ill,Kynoch Press, Birmingham, England, 1962, pp. 202-203.

R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 42, 3175 (1965).

G. H. Stout and L. H. Jenson, "X-Ray Structure Determination, a Practical Guide," Macmillan, New York, 1968, pp. 245-246.

M. A. Beno and G. G. Christoph, manuscript in preparation.

J. J. Grzybowski and D. H. Busch, unpublished results.

W. J. Geary, Coord. Chem. Rev., 7.* 81 (1971).

315

90. D. H. Busch, D. G. Phllsbury, F. V. Lovecchlo, A. M. Tait,Y. Hung, S. Jackals, M. C. Rakowski, W. P. Schammel, and L. Y. Martin, A.C.S. Symposium Series, No. 38, "Electrochemi­cal Studies of Biological Systems, D. T. Sawyer, ed., 1977, p. 32.

91. S. C. Jackels, W. A. Schammel, R. W. Callahan, J. C. Stevens,J. J. Grzybowski, D. J. Olszanski, L. L. Zimmer, and D. H. Busch, manuscript in preparation.

92. S. C. Jackels and I). H. Busch, unpublished results.

93. R. D. Feltham and R. G. Hayter, J. Chem. Soc., A, 4587 (1964).

94. N. Herron and D. H. Busch, unpublished results.

95. D. A. Baldwin, R. M. Pfeiffer, D. W. Reichgott, and N. J. Rose,J. Am. Chem. Soc., 95, 5152 (1973).

96. V. L. Goedkin, P. H. Merrell, and D. H. Busch, J. Am. Chem. Soc.,94, 3397 (1972).

97. T. Takano, J. Mol. Biol., 110, 659 (1977).

98. M. Brunori, J. Bonaventura, C. Bonaventura, E. Antonlni, andJ. Wyman, Proc. Nat. Acad. Sci. U.S.A., 69, 868 (1972).

99. M. H. Chisholm and S. Godleski, Progress in Inorganic Chemistry,Vol. 20, S. J. Lippard, ed., Wiley, New York, 1975, p. 299.

100. K. Bowman, D. P. Riley, D. H. Busch, and P.W.R. Corfield, J. Am.Chem. Soc., 97, 5036 (1975).

101. D. P. Riley, J. A. Stone, and D. H. Busch, J. Am. Chem. Soc.,98, 1752 (1976).

102. D. P. Riley, J. A. Stone, and D. H. Busch, J. Am. Chem. Soc.,.99, 767 (1977).

103. M. C. Rakowski, Ph.D. Thesis, The Ohio State University, 1974.