123

Geotechnical Engineering for the Preservation of Monuments

Embed Size (px)

Citation preview

GEOTECHNICAL ENGINEERING FOR THE PRESERVATION OF MONUMENTSAND HISTORIC SITES III

The conservation of monuments and historic sites is one of the most challenging problems facingmodern civilization. It involves, in inextricable patterns, factors belonging to different fields (cul-tural, humanistic, social, technical, economical, administrative) and the requirements of safety anduse appear to be (or often are) in conflict with the respect of the integrity of the monuments. Thecomplexity of the subject is such that a shared frame of reference is still lacking among art histo-rians, architects, architectural and geotechnical engineers. And while there are exemplary cases ofan integral approach to each building element with its static and architectural function, as a mate-rial witness to the culture and construction techniques of the original historical period, there arestill examples of uncritical reliance on modern technology leading to the substitution from earlierstructures to new ones, preserving only the iconic look of the original monument. GeotechnicalEngineering for the Preservation of Monuments and Historic Sites III collects the contributions tothe eponymous 3rd International ISSMGE TC301 Symposium (Naples, Italy, 22–24 June 2022).The papers cover a wide range of topics, which include:

- Principles of conservation, maintenance strategies, case histories- The knowledge: investigation, monitoring and performance- Seismic risk, site effects, soil structure interaction- Effects of urban development and tunnelling on built heritage- Preservation of diffuse heritage: soil instability, subsidence, environmental damages

The present volume aims at geotechnical engineers and academics involved in the preservation ofmonuments and historic sites worldwide.

PROCEEDINGS OF THE THIRD INTERNATIONAL ISSMGE TC301SYMPOSIUM, NAPOLI, ITALY, 22–24 JUNE 2022

Geotechnical Engineering for thePreservation of Monuments andHistoric Sites III

Edited by

Renato LancellottaDepartment of Structural, Geotechnical and Building EngineeringPolitecnico di Torino, Turin, Italy

Carlo Viggiani, Alessandro Flora, Filomena de Silva &Lucia MeleDepartment of Civil, Architectural and Environmental EngineeringUniversity of Naples Federico II, Naples, Italy

CRC Press/Balkema is an imprint of the Taylor & Francis Group, an informa business

© 2022 selection and editorial matter, Renato Lancellotta, Carlo Viggiani, Alessandro Flora, Filomenade Silva & Lucia Mele; individual chapters, the contributors

Typeset in Times New Roman by MPS Limited, Chennai, India

The right of Renato Lancellotta, Carlo Viggiani, Alessandro Flora, Filomena de Silva & Lucia Mele tobe identified as the authors of the editorial material, and of the authors for their individual chapters, hasbeen asserted in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

The Open Access version of this book, available at www.taylorfrancis.com, has been made availableunder a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.

Although all care is taken to ensure integrity and the quality of this publication and the informationherein, no responsibility is assumed by the publishers nor the author for any damage to the propertyor persons as a result of operation or use of this publication and/or the information contained herein.

Library of Congress Cataloging-in-Publication Data

A catalog record has been requested for this book

First published 2022

Published by: CRC Press/BalkemaSchipholweg 107C, 2316 XC Leiden, The Netherlandse-mail: [email protected] – www.taylorandfrancis.com

ISBN: 978-1-032-31262-0 (Hbk)ISBN: 978-1-032-31265-1 (Pbk)ISBN: 978-1-003-30886-7 (ebk)DOI: 10.1201/9781003308867

Geotechnical Engineering for the Preservation of Monuments andHistoric Sites III – Lancellotta, Viggiani, Flora, de Silva & Mele (Eds)

© 2022 Copyright the Editor(s), ISBN 978-1-003-30886-7Open Access: www.taylorfrancis.com, CC BY-NC-ND 4.0 license

Table of contents

Preface xiiiSymposium Organizers xvCommittees xviiSponsors xix

Opening Address

Welcome address 3C. Viggiani

Kerisel Lecture

Taking care of heritage, a challenge for geotechnical engineers 19A. Flora

Keynote Lectures

The historical underpinning of Winchester Cathedral – Heroic or horrific? 57J.B. Burland, J. Standing & J. Yu

Rethinking preventive conservation: Recent examples 70P.B. Lourenco, A. Barontini, D.V. Oliveira & J. Ortega

Protecting the Sagrada Familia temple from railway tunnel construction 87E.E. Alonso & A. Ledesma

Tunnelling under the San Francisco church in Guadalajara, Mexico 116E. Ovando-Shelley, E. Botero & M.A. Díaz

Panel Lectures

Under the skin 137P. Smars

Form and construction. The domes of the Baptistery and Santa Maria del Fiore in Florence 155P. Matracchi

Understanding the mechanical history of the burial monument of the Kasta tumulus atAmphipolis, Greece: A tool for documentation and design of restoration strategy 171D. Egglezos

Structural health monitoring of historic masonry towers: The Case of theGhirlandina Tower, Modena 191D. Sabia, G.V. Demarie & A. Quattrone

Shake table testing of pillared historical stone constructions (mandapam) of South India 202A. Menon, T. Bhowmik, S. Samson & J. George

Site effects and intervention criteria for seismic risk mitigation in the ancient city ofPompeii: The case of the Insula dei Casti Amanti 214L. de Sanctis, M. Iovino, R.M.S. Maiorano & S. Aversa

v

Long term strategies for monuments care: The importance of monitoring and of aproper diagnosis 234G. Russo

The Grand Canal at Versailles: Geotechnical investigation, II 254J.D. Vernhes, P. Saulet & A. Heitzmann

Geotechnical studies to optimize the protection measures against flooding ofSt. Mark square (Venice, IT) 269P. Simonini & F. Ceccato

Observed interaction between Line C of Roma underground and the Cloaca Maxima 280G.M.B. Viggiani, N. Losacco, E. Romani & A. Sonnessa

Safeguarding of the Aurelian Walls at Porta Asinaria from conventional tunnelling 292S. Rampello & L. Masini

SESSION 1: Principles of conservation, maintenance strategies,case histories

Principles and practices for conservation of historical buildings: The case history ofthe Saint John Baptistery at Florence, Italy 313M. Coli, A.L. Ciuffreda, S. Caciagli & B. Agostini

The authenticity and the integrity of the soil and the foundation of heritage structurein Angkor 325Y. Iwasaki, M. Fukuda, M. Ishizuka, R. McCarthy, Y. Akazawa, T. Nakagawa & V. Ly

Digital transformation in the visual inspection of heritage railways tunnels: Technology,artificial intelligence and methodology 337F. Foria, G. Miceli, M. Calicchio, G.M. Catigbac & G. Loprencipe

Sans-Soucis Site, Haiti Republic – A case study for a project of preservation, interpretationand highlighting of a worldwide heritage patrimony 349J. Palisse

The characteristics of “Artificial Stone Construction” used in civil engineeringstructure – A case of Doudo lumberyard 360K. Takeuchi & Y. Fujii

Subsoil characterization and stability analysis for the Bourbon del Monte Palace inPiancastagnaio (Siena, Italy) 369G. Ciardi, G. Bartoli & C. Madiai

Experimental study on the influencing factors of repairing white marble beam by MICP 379J. Qiao, J. He, X. Xu, H. Guo & X. Cheng

Shake-table tests for the dynamic characterisation of an innovative isolator for seismicprotection of statues 389F. Castelli, V. Lentini, F. Lo Iacono & G. Navarra

Parametric simulations on the stability conditions of the masonry wall of Chandakas,Heraklion City, Crete, Greece 401C. Loupasakis, N. Antoniadis, E. Grigorakou, I. Parcharidis, A.M. Tompolidi,M. Fragiadakis, V. Sithiakaki, E. Kanaki, P. Soupios, G.V. Kalousi, P. Eleftheriou & P. Elias

Low-impact mitigation measures to contrast the instability processes affecting theEtruscan necropolis of Norchia 413D. Spizzichino, G. Leoni, D. Boldini, S. Loreti & C. Margottini

vi

Geotechnical investigation and stabilization of the foundations of a National Heritagesite in Portugal, the Penedono Castle 423P. Chitas, S. Rosa, A. Viana da Fonseca, A. Fonseca & W. Malvar

Lateral disconnection of foundations: A respectful seismic isolation of historic building 435F. Somma, E. Bilotta, A. Flora & G.M.B. Viggiani

Restoration and renovation works for the Catacombs of San Gennaro in Napoli, Italy 447A. Flora, F. de Silva, M. Ramondini & N. Flora

Geomorphological processes and rock slope instabilities affecting the AlUlaarchaeological region 456J.I. Gallego, C. Margottini, D. Spizzichino, D. Boldini & J.K. Abul

SESSION 2: The knowledge: Investigation, monitoring and performanceMonitoring of the rock mass deformation under the Pont du Gard pier VII foundation 469J.F. Serratrice

Seismic wave dispersion in high-rise historical building by interferometric analysis:The case history of Giotto’s Bell Tower 481G. Lacanna, R. Lancellotta & M. Ripepe

Progress in digital documentation for historical sites by photogrammetry andrecent technology 491Y. Fujii & K. Takeuchi

The characterization of slope damage at the Civita di Bagnoregio plateau using aremote sensing approach 497D. Donati, L. Borgatti, D. Stead, M. Francioni, M. Ghirotti & C. Margottini

The geotechnical setting of the forts of the Saxon Shore in SE England: A recordlasting nearly 2 millennia 509E.N. Bromhead & M.L. Ibsen

Static behaviour of in scale masonry vaults under imposed settlement of the supports 521F. Roselli, M. Alforno, F. Venuti & A.M. Bertetto

Long term geodetic measurements in the Piazza del Duomo (Pisa, Italy) and itsrelevance for monitoring of Leaning Tower 530G. Caroti, A. Piemonte & N. Squeglia

Satellite and on-site monitoring of subsidence for heritage preservation: A criticalcomparison from Piazza del Duomo in Pisa, Italy 548A. De Falco, C. Resta & N. Squeglia

Cultural Heritage sites conservation and management: The case of the CircusMaximus in Rome 560L.M. Puzzilli, G. Delmonaco, F. Traversa, V. Ruscito, F. Ferri, E. Mariani, C. Quadrozzi,P. Clemente, G. Bongiovanni, V. Verrubbi, M. Buonfiglio & F.M. Rossi

Ground motion InSAR monitoring for the protection of Baia Roman Thermae(Naples, Italy) 572G. Leoni, F. Ferrigno, P.M. Guarino, L. Guerrieri, F. Menniti, D. Spizzichino,P. De Martino, M. Di Vito, E. Gallocchio, F. Pagano & M. Salvatori

Geotechnical-structural engineering for the preservation of Ninfeo Ponari inRoman Casinum 583G. Modoni, M. Imbimbo, M. Serpe, E. Polito, M. Saccucci, R.L. Spacagna,E. Grande, M. Caponero, M.L. Mongelli & M. Valenti

vii

Aubeterre-sur-Dronne Monolithic Church: Geotechnical and hydrogeological diagnosis 595N. Carpentier, E. Antoinet & O. Vigoureux

Effect of slow-moving landslides on a vaulted masonry building: The case of San CarloBorromeo church in Cassingheno (Genova) 607G.L.S. Sacco, C. Ferrero, C. Calderini, C. Battini & R. Vecchiattini

Assessing the causes of damages to the Osservanza Church in Bologna (Italy) 619G. Marchi, C. Cremonini, A. Mastrangelo, M. Marchi, I. Bertolini & R. Lancellotta

A geotechnical insight into the soil-foundation system of the Two Towers of Bologna, Italy 631M. Marchi, I. Bertolini & G. Gottardi

Geotechnical and structural investigation and monitoring techniques to determine theorigin of ongoing damage processes in historical buildings: The Saint Francis of PaolaChurch in Rome case history 643P. Zimmaro & E. Ausilio

Monitoring and 3D surveys for the safety fruition of a hypogeum site 655A. Scotto di Santolo, G. Bausilio, M. Danzi, U. Del Vecchio, D. Di Martire,D. Infante & M. Ramondini

An update on the Tower of Pisa 667N. Squeglia & C. Viggiani

SESSION 3: Seismic risk, site effects, soil structure interaction

Dynamic centrifuge model tests on Tumulus Mounds on cut slopes 679M. Sawada, M. Mimura & T. Udo

Effects of 2012 Earthquake on the behavior of Ghirlandina tower in Modena 690R.M. Cosentini, S. Foti, R. Lancellotta & D. Sabia

Development of a liquefaction damage assessment system based only on seismic records 702M. Kazama, K. Toyabe, T. Otsuka, A. Kamura, S. Nakamura, S. Sato & K. Matsushita

How safe is Acropolis of Athens and its monuments to low probability earthquakes? 713K. Pitilakis, S. Karafagka, A. Karatzetzou, E. Riga, M. Manakou & V. Eleftheriou

On the seismic protection of free-standing art objects by base isolation technique:A case study 725D. Pellecchia, N. Vaiana, S. Sessa & L. Rosati

Analysis of the seismic safety condition of the defensive walls of Cittadella 735E. Grande, S. Lirer, G. Conte, D. Nostrali & G. Milani

The Bordeaux “Pont de Pierre” – A study case of micropiles reinforcement andbenefits of HST method and Interaction Soil Structure design 744G. Valdeyron, S. Bonelli, P. Losset & M. Mariko

Effect of the presence of a historical underground quarry on site seismic response 756G. Biondi, O. Fiandaca, D. Aliberti & E. Cascone

Evaluation of site effects by means of 3D numerical modeling of the Palatine Hill,Roman Forum, and Coliseum archaeological area 768R. Razzano, M. Moscatelli, M. Mancini, F. Stigliano, A. Pagliaroli & G. Lanzo

Influence of soil deposit heterogeneity on the dynamic behaviour of masonry towers 780A.F. D’Oria, G. Elia, A. di Lernia & G. Uva

viii

An influence of the water supply in improved soil against liquefaction 792N. Özbakan & B. Evirgen

Site characterization and preliminary ground response analysis for the monumentalComplex of SS. Annunziata in Sulmona, Italy 800C. Madiai, G. Ciardi, M. Manuel, F. Galadini & S. Amoroso

A simplified method for the estimation of earthquake-induced pore pressures 812G. Boccieri, D. Gaudio & R. Conti

Evaluation of DSSI for the preservation of the Catania University Central Palace 823G. Abate, S. Corsico, A. Fiamingo, S. Grasso & M.R. Massimino

Vulnerability assessment of historical cities including SSI and site-effects 836C. Amendola & D. Pitilakis

Effects of local soil conditions on the seismic response of the historical area inSan Giuliano di Puglia (Italy) 847T. Fierro, M. Castiglia, F. Santucci de Magistris & M.G. Durante

Simulation of damage observed on buildings in aggregate after the 2016–2017 CentralItaly earthquake accounting for site effects and soil-structure interaction 859A. Brunelli, G.A. Alleanza, S. Cattari, F. de Silva & A. d’Onofrio

A large-scale evaluation of the seismic demand for historic towers laying on soft soil 871F. de Silva & F. Silvestri

Dynamic impedance functions for neighbouring shallow footings 883E. Zeolla, S. Sica & F. de Silva

A Geotechnical Study for the Historical Heritage Preservation of the City of Noto (Italy) 893A. Cavallaro

Soil contribution on the structural identification of a historical masonry bell-tower:Simplified vs advanced numerical models 904A. De Angelis, A. Ambrosino, S. Sica & P.B. Lourenco

The geotechnical seismic isolation of historical buildings through polyurethane injections:A numerical study 917M.P.A. Gatto & L. Montrasio

Conservation of ancient Zrug church after landslide 930I. Strelbitsky

SESSION 4: Effects of urban development and tunnelling on thebuilt heritage

Municipio Station Metro Line 6 in Naples: A case of urban tunnelling adopting groundfreezing and grouting techniques to underpass archaeological findings 937G. Russo, F. Cavuoto, A. Corbo & V. Manassero

The design of Venezia station of Rome Line C underground 951E. Romani, M. D’Angelo, L. Sidera & A. Sciotti

Improvement of foundation soil behavior for Gründerzeit buildings in Austria usingpolyurethane resin injections 964A. Dominijanni, M. Gabassi, F.F. Kopf, A. Minardi & A. Pasquetto

ix

Florence High-Speed railway underpass – Preservation of the Italian Renaissancepre-existing structures and historical sites 977R. Zurlo & R. Sorbello

Late XIX century protection: The CampiFlegrei and Velia railway tunnels 989D. De Simone & G.W. Ferrari

The use of the GIBV method for monitoring the effects of urban excavations onbuilt heritage 1000L. Piciullo, S. Ritter, A.O.K. Lysdahl, L. von der Tann, J. Langford & F. Nadim

A critical evaluation of proxy measures used to quantify excavation-induced damagein masonry buildings 1015Y. Liu, D.B. Gulen, S. Acikgoz, H.J. Burd, B. Gilson, A. Ilki & K.D. Dalgic

A macro-element model for the assessment of tunnelling-induced damage tomasonry buildings 1026D.B. Gulen, S. Acikgoz & H.J. Burd

Impact assessment study of a 150-year-old government building in Chennai, India 1039D. Nair, S. Banerjee, A. Boominathanc & A. Menon

Tunnelling effects on the Basilica di Massenzio: Computed and observed displacementfields 1043E. Romani, M. D’Angelo, L. Sidera, A. Sciotti, C. Ottaviani & S. Rampello

SESSION 5: Preservation of diffused heritage

Application of Ultrasonic Computed Tomography (UCT) technology to detect defects instone 1059Z. Li, J. Wang, K. Li, P. Zhao & F. Qi

Flood vulnerability and damage assessment of earthen architectural heritage of theIberian Peninsula 1067F. Trizio, F.J. Torrijo Echarri, C. Mileto & F. Vegas López-Manzanares

Climate change impacts on cultural heritage building foundations in Western Andalusia 1079A. Jaramillo Morilla, E.J. Mascort-Albea, R. Romero-Hernández & C. Soriano-Cuesta

The Garisenda Tower in Bologna: Effects of degradation of selenite basement on itsstatic behaviour 1088G. Dallavalle, A. Di Tommaso, G. Gottardi, T. Trombetti, R. Lancellotta & S. Lugli

A simplified approach to assess the stability of tuff cavities accounting for the spatialvariability of the shear strength and the presence of joints 1101F. de Silva, T. Lusi, M. Ruotolo, A. Flora, M. Ramondini & G. Urciuoli

Comparison of two machine learning algorithms for anthropogenic sinkhole susceptibilityassessment in the city of Naples (Italy) 1112G. Bausilio, M. Annibali Corona, D. Di Martire, L. Guerriero, R. Tufano, D. Calcaterra,M. Di Napoli & M. Francioni

Crack development in an old church building due to clay shrink-swell 1124M.A. Beroya-Eitner, M.A. Loreth, H. Zachert, M. Schneider & H. Tenbreul

The study of the geological conditions of the territory is the key to the strategy ofpreserving the underground caves of the Holy Dormition Pskovo-Pechersky (Pskov-Caves)Monastery 1135E.N. Samarin, I.V. Averin, O.V. Zerkal, I.A. Rodkina, M.S. Chernov & E.V. Shchepetova

x

FEM simulation of differential settlement of Wat Krasai, a leaning brick made pagodaon soft ground, in Ayutthaya, Thailand 1143H. Ito & Y. Ishida

Bentonite based barriers for protecting offshore monuments from saltwater intrusion 1152H. Yadav & T.V. Bharat

Historic masonry churches exposed to slow-moving landslides: A critical damageassessment 1161C. Ferrero, L. Cambiaggi, C. Calderini & R. Vecchiattini

GFRP anchoring systems for soft-rock geostructures with high cultural andenvironmental value 1173L. Sandrini, M.O. Ciantia, R. Castellanza, I. Bridi, G. Balconi & P. Perrone

Probabilistic evaluation of the seismic vulnerability of rock cavities in a historicalItalian site 1184S. Fabozzi, M. Moscatelli,F. de Silva, L. Starita & E. Bilotta

Multi-scale stability analysis at San Pedro Cliff in the Alhambra Cultural Heritage 1193J.A. Fernández-Merodo, R.M. Mateos, J.C. García-Davalillo, J.M. Azañón, C. Novo,R. Castellanza, D. Spizzichino & C. Margottini

Geotechnical and historical aspects on the collapse of the Tiber embankment wallsin the centre of Roma (1870–1900) 1206F. Casini, A. Pucci, I. Giannetti & G. Guida

Author index 1215

xi

Geotechnical Engineering for the Preservation of Monuments andHistoric Sites III – Lancellotta, Viggiani, Flora, de Silva & Mele (Eds)

© 2022 Copyright the Editor(s), ISBN 978-1-003-30886-7Open Access: www.taylorfrancis.com, CC BY-NC-ND 4.0 license

Preface

The International Symposium on the Preservation of Monuments and Historic Sites of 22-24 June2022 in Napoli (IS NAPOLI 2022) is the third of a series, the first one having been held in 1996and the second in 2013.

Drawing from the Preface of the latter, we underline that ‘TC301 is intended to provide a forumfor interchanges of ideas and discussion, to collect case histories and to promote and diffusethe culture of conservation within the geotechnical community. More specifically, it focuses ongeotechnical factors affecting historic sites, monuments, cities. TC301 searches for design criteriaand construction methods of our ancestors and reports on specific techniques adopted to preserveancient sites and constructions’.

TC301 is currently supported by AGI, the Italian member society of ISSMGE, that also orga-nized this Symposium in cooperation with the University of Napoli Federico II, and is thereforeacknowledged. Special thanks are extended to the AGI Secretary, Mrs. Susanna Antonielli, for hercontinuous and patient assistance. We would also like to express our appreciation to the Sponsorsthat helped us in making this conference sustainable.

But the true success of a Symposium is determined by the quality of the scientific contributions.After a process of peer reviewing, 80 papers have been accepted to be presented to the Symposium,written by more than 300 authors coming from all over the world. In addition, an opening address,the third Kerisel Lecture, four keynote lectures and eleven panel lectures will be presented atthe Conference. All the papers – including the invited ones - are freely available in open accesson the publisher website. The authors are therefore deeply acknowledged for having shared theirexperience, ideas, proposals, to try and set forth a reference picture of the current state of practicein the engineering approach to heritage preservation. We are confident that the discussion at theSymposium will be fruitful and stimulating and will contribute to the advancement of the discipline.

The Nobel prize poetess Wyslava Syimborska, looking at the Milkmaid, the famous painting byVermeer, wrote: ‘So long as that woman from the Rijksmuseum, in painted quiet and concentration,keeps pouring milk day after day from the pitcher to the bowl, the World hasn’t earned the world’send’. In a period of serious difficulties for people everywhere in the world, due to the Covidpandemic and to the fires of war, we believe that it is very important that there are people who docare about our past and its preservation.

Renato LancellottaCarlo Viggiani

Alessandro FloraFilomena de Silva

Lucia Mele

xiii

Geotechnical Engineering for the Preservation of Monuments andHistoric Sites III – Lancellotta, Viggiani, Flora, de Silva & Mele (Eds)

© 2022 Copyright the Editor(s), ISBN 978-1-003-30886-7Open Access: www.taylorfrancis.com, CC BY-NC-ND 4.0 license

Symposium Organizers

Under the auspices of ISSMGE TC301 “Historic Sites”

xv

Geotechnical Engineering for the Preservation of Monuments andHistoric Sites III – Lancellotta, Viggiani, Flora, de Silva & Mele (Eds)

© 2022 Copyright the Editor(s), ISBN 978-1-003-30886-7Open Access: www.taylorfrancis.com, CC BY-NC-ND 4.0 license

Committees

ORGANIZING COMMITTEEStefania Lirer – Chair (Guglielmo Marconi University)Susanna Antonielli (Associazione Geotecnica Italiana, AGI)Stefano Aversa (University of Napoli Parthenope)Riccardo Berardi (University of Genova)Emilio Bilotta (University of Napoli Federico II)Luca de Sanctis (University of Napoli Parthenope)Filomena de Silva (University of Napoli Federico II)Guido Gottardi (University of Bologna)Carlo Lai (University of Pavia)Giuseppe Lanzo (Sapienza University of Roma)Claudia Madiai (University of Firenze)Lucia Mele (University of Napoli Federico II)Sebastiano Rampello (Sapienza University of Roma)Gianpiero Russo (University of Napoli Federico II)Francesco Silvestri (University of Napoli Federico II)Paolo Simonini (University of Padova)Daniele Spizzichino (Institute for Environmental Protection and Research, ISPRA)Claudio Soccodato (Associazione Geotecnica Italiana, AGI)Fausto Somma (University of Napoli Federico II)

SCIENTIFIC COMMITTEERenato Lancellotta – Chair (Politecnico di Torino, Italy)Alessandro Flora (University of Napoli Federico II, Italy)Jitesh T. Chavda (National Institute of Technology Surat, India)Carlo Viggiani (University of Napoli Federico II, Italy)Giovanni Calabresi (Sapienza University of Roma, Italy)John Burland (Imperial College London, UK)Efraìn Ovando Shelley (Universidad Nacional Autonoma de Mexico, Mexico)Jamie Standing (Imperial College London, UK)Ivo Herle (Technische Universität Dresden, Germany)Kari Avellan (University of Oulu, Finland)Merita Guri (POLIS University Albania, Albania)V. Ulitsky (Saint Petersburg State Transport University, Russia)Lysandros Pantelidis (Cyprus University of Technology, Cyprus)Panicos Papadopoulos (Frederick University, Cyprus)Michael Bardanis (Neapolis University Pafos, Cyprus)Christos Tsatsanifos (International Society for Soil Mechanics andGeotechnical Engineering, UK)Rui Tomásio (JETsj Geotecnia, Lisbon, Portugal)Guilherme Pisco (Tetraplano, Portugal)Antonio Jaramillo (Universidad de Sevilla, Spain)Pilar Rodríguez Monteverde (Universidad Politécnica de Madrid, Spain)Jean Launay (Comité français de mécanique des sols et de géotechnique, CFMS, France)Jean-David Vernhes (UniLaSalle, France)Guido Gottardi (University of Bologna, Italy)Stefano Aversa (University of Napoli Parthenope, Italy)

xvii

Masoud Makarchian (Buali Sina University, Iran)I.V. Anirudhan (Geotechnical Solutions, Chennai, India)K. Muthukkumaran (National Institute of Technology, India)Patrick Yong (Arcadis D&E)Hongwei Sun (Northeastern University College of Engineering, USA)Mamoru Mimura (Kyoto University, Japan)Chikaosa Tanimoto (Osaka University, Japan)Stephan Jefferis (University of Surrey, UK)Charles Augarde (Durham University, UK)Daniele Spizzichino (Institute for Environmental Protection and Research, ISPRA)Michele Jamiolkowski (Politecnico di Torino, Italy)John Lambert (AECOM, UK)Harry Saroglou (National Technical University of Athens, Greece)Orhan Inanir (Istanbul Technical University, Turkey)Yoshinori Iwasaki (Geo Research Institute, Osaka, Japan)Heon-Joon Park (Seoul National University of Science and Technology, South Corea)

xviii

Geotechnical Engineering for the Preservation of Monuments andHistoric Sites III – Lancellotta, Viggiani, Flora, de Silva & Mele (Eds)

© 2022 Copyright the Editor(s), ISBN 978-1-003-30886-7Open Access: www.taylorfrancis.com, CC BY-NC-ND 4.0 license

Sponsors

xix

xx

Opening Address

Geotechnical Engineering for the Preservation of Monuments andHistoric Sites III – Lancellotta, Viggiani, Flora, de Silva & Mele (Eds)

© 2022 Copyright the Author(s), ISBN 978-1-003-30886-7Open Access: www.taylorfrancis.com, CC BY-NC-ND 4.0 license

Welcome address

C. ViggianiEmeritus Professor, University of Napoli Federico II

Dear friends, welcome to Napoli. This is the third International Symposium on GeotechnicalEngineering for the Preservation of Monuments and Historic Sites organized byTC301 of ISSMGE;Napoli is an ideal location since it is itself an outstanding cultural heritage. It has a long history: ithas been founded almost 3 millennia ago. Someone says that it is the only oriental city without aEuropean district; it is indeed the only large European city whose historical center is still inhabitedby people and not only by banks, offices, shopping malls. It is rich of thousands of culturalassets ranging from remains of many centuries ago to contemporary art works; many of them havegeotechnical interest and/or are affected by geotechnical risks; many of them are very fascinatingand will contribute making enjoyable your stay in Napoli.

A review of the history of Napoli through three millennia, as seen through the lenses of geotech-nical engineering, has been presented by Aversa et al. (2013). Evangelista and Viggiani (2013)reviewed the geotechnical risks affecting the city. Borrowing from them, a bird eye view is herereported.

Greeks founded Parthenopes (also named Palaepolis, the old city) in IX century b.C. on thePizzofalcone hill, just behind this building where we are and in front of the small Megaride island(Figure 1), where some centuries later the Castel dell’Ovo (the Castle of the Egg) was built (Fig-ure 2). After the victory against Etruscan in 474 b.C. the city was extended in the plain area Eastof Palaepolis, founding Neapolis, the new city.

Neapolis was organized following a regular pattern of mutually orthogonal streets (Figure 3):three long main streets called decumans, oriented West to East, and many orthogonal car-dines. The scheme is known as Ippodameus, from the name of the Greek architect Ippodamoof Mileto, and is found in many Greek cities of that period. It largely survives in the modern city(Figures 4, 5).

Figure 5 shows one of the old cardines, now via S. Gregorio Armeno, famous for its workshopsof figures (Pastori, i.e. shepherds) for the Nativity scenes (presepio). The street is very crowdedwith tourists, but also Neapolitans, particularly around Christmas.

The pottery or wooden shepherds of XVIII and XIX century are authentic works of art: someinstances are reported in Figures 6 and 7.

But what about geotechnical engineering? Actually, some of the most famous historical nativityscenes (presepi) are exhibited in the museum that now occupies the old S. Martino monastery. Themonastery had been founded by the Angevins in 1325, at the top of a steep hill. The tavola Strozzi(Figure 8), the oldest depiction of the medieval city, shows the monastery in a dominant positionwith a huge retaining wall already clearly distinguishable below.

DOI 10.1201/9781003308867-1 3

Figure 1. The site of the Hellenic settlement of Palaepolis (the old city) (IX – V century b.C.).

Figure 2. Castel dell’Ovo on the ancient Megaride island, in a painting of A. Pitloo, 1830.

Figure 3. The network of cardines and decumans of Neapolis, superimposed to the present city.

4

Figure 4. Spaccanapoli (Split Naples): one of the old decumans surviving in the modern city.

Figure 5. (left) Via S. Gregorio Armeno; (right) workshops of nativity figures.

Figure 6. (left). The “Presepe Cuciniello”, S. Martino Museum, Napoli; (right) The Crib.

5

Figure 7. Some figures of the Presepe Cuciniello. Old mandolon player (G. De Luca, XVIII Century); Angelof the Announcement (G.B. Polidoro, XVIII Century); Black woman giving a baby the breast (XVIII Century);Rustic carrying a barrel (F. Celano, 1729 – 1814).

6

Figure 8. The Tavola Strozzi, view of the city of Napoli from the sea. Oil on wood, 1470.

Figure 9. Bird’s eye view of the S. Martino hill today.

The vineyard contains more than 7 Km of retaining walls with a height over 3 m. The systemof retaining walls shows evident signs of degradation because of lack of any maintenance anduncontrolled runoff of water; the densely inhabited underlying built environment is exposed to ahigh landslide risk. Geotechnical engineering has thus a central role in preserving the underlyingcity, the S. Martino monastery and the Presepi!

Within the urban perimeter there are so many cultural assets of geotechnical interest, that wecan only list some of them; for instance, underground chambers excavated in different periods fordifferent purposes (Figures 10, 11, 12, 13) and still being excavated (Figures 14, 15, 16)

7

Figure 10. Subterranean tumb in ellenistic style: tomba C, ipogei dei Cristallini.

Figure 11. The S. Gennaro catacombs.

Figure 12. A Roman street beneath S. Lorenzo Maggiore.

8

Figure 13. The Fontanelle cemetery.

Figure 14. Excavation for a Metro station in Town Hall Square.

Figure 15. The old Roman harbour in Town Hall Square.

9

If we go slightly out of the urban perimeter, another world of treasures may be found. For instance,the area of the Phlegrean Fields, east of Napoli, is unique for the beauty of the landscape keeping thetraces of its volcanic origin (Figures 17, 18), for the abundance of Roman remains (Figures 19, 20),for legendary events (the entrance to the underworld through the Averno Lake, Figure 21) andmythical figures like the hero Aeneas, founder of Rome, or the Cuman Sybil. The Phlegrean Fieldshost also the three fantastic tunnels by Lucius Cocceius Aucto (Table 1, Figures 21, 22).

If we move a little further Northwards, we find a small church in a small village, the BenedictineBasilica of S. Angelo in Formis (Figure 23), that was founded in the XI century over the ruin of aRoman temple dating back to the V century b.C. It contains an outstanding cycle of frescoes withstories of Old and New Testament (Figure 24). After the destruction of Montecassino Abbey duringthe World War II, the S. Angelo frescos are probably the most important document of the medievalpainting in Southern Italy.

Starting in 1969 some fissures appeared in the central nave and gradually opened and extendedto other parts of the Basilica. Following repeated alarms on the safety of the Basilica, geologicalsurvey of the area, subsoil investigations and geodetic monitoring of several points both inside theBasilica and outside have been carried out till present.

The subsoil of the church, as resulted from the site investigations, is schematically shown inFigure 25; it includes three horizons. The upper one is composed by made ground, for a thicknessranging from a few decimeters to some meters. Below the made ground, a layer of fractured rock(dolomite, dolomitic limestone, cemented calcareous debris) is found, with a thickness variablebetween 15 and 30 m. Finally, the base formation of sandstones and variegated clay shales is found-

The Basilica is located across a stratigraphic discontinuity, with the apses and the backward partof the naves founded on rock, and the front on the debris cover or even on the made ground.

It is known that some repair works have been carried out in XVIII century; in 1930 an earthquakeproduced the collapse of the roof, reconstructed soon after. Starting in 1969 some fissures appearedin the central nave and gradually opened and extended to other parts of the Basilica (Figure 26).

Cammarota et al. (2013) published the data available on settlement of the Basilica in 1980 and2013; prof. G. Russo kindly made available further measurements in 2021.

Figure 16. Some of the stations of the new Napoli Underground lines. Someone says it is the finestunderground system of the world.

10

Figure 17. The Phlegrean Fields.

Figure 18. The volcanic origin of the Phlegrean Fields.

Figure 19. Left: the “Piscina mirabilis, an underground water reservoir for the Roman imperial fleet. Above.The remains of the Portus Julius, harbour of the imperial fleet, submerged by the sea because of a 16 m volcanicsubsidence.

11

Figure 20. The Flavian amphitheater in Pozzuoli.

Figure 21. Map of the Phlegrean Fields showing the location of the Roman tunnels.

Table 1. Characteristics of the Roman Tunnels in the Phlegrean Fields.

Name Length (m) Width (m) Height (m) Notes

Crypta Neapolitana 711 4.5 4.6 ÷ 5.2 2 inclined ventilation shaftsSeianus Grotto 780 4.0 ÷ 6.5 5.0 ÷ 8.0 3 lateral ventilation tunnelsCocceius Grotto 970 4.5 4.5 ÷ 8.0 5 inclined or vertical vent. shafts

12

Figure 22. The western intake of the Crypta Neapolitana in a painting by L. Ducros, 1793.

Figure 23. The Benedictine Basilica of S. Angelo in Formis.

Figure 24. The interior of the Basilica.

13

Figure 25. Schematic geological section of the area around the Basilica.

Figure 26. Main fissures of the superstructure.

The trend of differential settlement of the basilica is reported in Figures 27 and 28. The reasonof the movements has not yet been understood. At present, the church is monitored and only somestructural repairs have been carried out.

In a note published on a magazine some years ago (Montanari 2018) an art historian refers tothe church as “…a Benedictine Basilica of clamorous beauty …, one of the most important andfascinating Italian monuments”. He regrets “…the unbelievable inability of our generation to repairthe structural damages threatening it” and claims that we will succeed in saving S.Angelo in Formisonly if we will go deep into ourselves to really understand the problem.

This is a challenge for geotechnical engineers!

14

Figure 27. Survey on the internal measuring points: period February 1980-March 1981.

Figure 28. Survey on the internal measuring points: period February 1980-November 2012.

Finally, let me remind another aspect of Napoli: its open-minded character, its multiculturalaptitude. A famous Neapolitan song says that Napoli has thousand colors; we have seen thesecolors in the Presepe Cuciniello. This will find, I hope, correspondence in the discussions of ourSymposium, with contributions of different disciplines as structural engineering, architecture andrestauration.

REFERENCES

Amato L., Evangelista A., Nicotera M.V., Viggiani C. 2000. The Crypta Neapolitana; a Roman tunnel ofthe early imperial age. More than two thousand years in the history of Architecture. UNESCO-ICOMOSInternationl Congress, Bethlehem.

Amato L., Evangelista A., Nicotera M.V., Viggiani C (2001) The tunnels of Cocceius in Napoli: an exampleof roman engineering of the early imperial age. AITES/ITA World Tunnel Congress.

Aversa S., Evangelista A., Scotto di Santolo A. (2013) Influence of the Subsoil on the urban development ofNapoli. Proc. Intern. Symp. on Geotechnical Engineering for the Preservation of Monuments and HistoricSites, 15 – 44. Bilotta et al. eds. CRC Press/Balkema.

Cammarota A., Russo G., Viggiani C., Candela M. (2013) The Benedictine Basilica of S. Angelo in Formis(Southern Italy): a therapy without diagnosis? Proc. Intern. Symp. on Geotechnical Engineering for thePreservation of Monuments and Historic Sites, 225 – 232. Bilotta et al. eds. CRC Press/Balkema.

Evangelista A., Viggiani C. (2013) A paradise inhabited by devils? The geotechnical risks in the city of Napoliand their mitigation. Geotechnics and Heritage, 75 - 96 Bilotta et al. eds. Taylor & Francis London.

Russo G., Viggiani G.M.B., Viggiani C. (2012) Geotechnical design and construction issues for Lines 1 and6 of Naples underground. Geomechanics and Tunnelling, vol. 5, n.3, 300–311.

15

Montanari T. (2018). Salviamo la Basilica; salveremo noi stessi. Il Venerdì di Repubblica, February 22, 2018.Viggiani C. (2006) Un ingegnere romano di epoca tardo repubblicana: Lucio CocceioAucto. Atti del I Convegno

Nazionale di Storia dell’Ingegneria, Napoli, vol. 2, 785–796.Viggiani C. (2013) Portus Julius: a complex of Roman infrastructures of the late Republican age. In: E. Bilotta

et al. ed., Geotechnics and Heritage, CRC Press/Balkema, 243–260.Viggiani C. Le gallerie romane dei Campi Flegrei. SIG: “1 anno dal WTC 2019: via per montes excisa, le

opere in sotterraneo incontrano architettura, archeologia e arte. Napoli.

16

Welcome address Amato L. , Evangelista A. , Nicotera M.V. , Viggiani C. 2000. The Crypta Neapolitana; a Roman tunnel of theearly imperial age. More than two thousand years in the history of Architecture. UNESCO-ICOMOSInternationl Congress, Bethlehem. Amato L. , Evangelista A. , Nicotera M.V. , Viggiani C (2001) The tunnels of Cocceius in Napoli: an exampleof roman engineering of the early imperial age. AITES/ITA World Tunnel Congress. Aversa S. , Evangelista A. , Scotto di Santolo A. (2013) Influence of the Subsoil on the urban development ofNapoli. Proc. Intern. Symp. on Geotechnical Engineering for the Preservation of Monuments and HistoricSites, 15–44. Bilotta et al. eds. CRC Press/Balkema. Cammarota A. , Russo G. , Viggiani C. , Candela M. (2013) The Benedictine Basilica of S. Angelo in Formis(Southern Italy): a therapy without diagnosis? Proc. Intern. Symp. on Geotechnical Engineering for thePreservation of Monuments and Historic Sites, 225–232. Bilotta et al. eds. CRC Press/Balkema. Evangelista A. , Viggiani C. (2013) A paradise inhabited by devils? The geotechnical risks in the city ofNapoli and their mitigation. Geotechnics and Heritage, 75–96 Bilotta et al. eds. Taylor & Francis London. Russo G. , Viggiani G.M.B. , Viggiani C. (2012) Geotechnical design and construction issues for Lines 1 and6 of Naples underground. Geomechanics and Tunnelling, vol. 5, n.3, 300–311.. Montanari T. (2018). Salviamo la Basilica; salveremo noi stessi. Il Venerdì di Repubblica, February 22, 2018. Viggiani C. (2006) Un ingegnere romano di epoca tardo repubblicana: Lucio Cocceio Aucto. Atti del IConvegno Nazionale di Storia dell’Ingegneria , Napoli, vol. 2, 785–796. Viggiani C. (2013) Portus Julius: a complex of Roman infrastructures of the late Republican age. In: E.Bilotta et al . ed., Geotechnics and Heritage, CRC Press/Balkema, 243–260. Viggiani C. Le gallerie romane dei Campi Flegrei. SIG: “1 anno dal WTC 2019: Via per montes excisa, leopere in sotterraneo incontrano architettura, archeologia e arte. Napoli.

Taking care of heritage, a challenge for geotechnical engineers Abrams, E. M. 1994. How the Maya built their world: energetics and ancient architecture. Austin/University ofTexas Press. Ahunbay, M. , Ahunbay Z. 2000. Recent Work on the Land Walls of Istanbul: Tower 2 to Tower 5.Dumbarton Oaks Papers. 54: 227–239. Amato L. 2022. Personal communication. Amato L. , Evangelista A. , Nicotera M.V. , Viggiani C. 2001. The tunnels of Cocceius in Napoli: an exampleof Roman engineering of the early imperial age. Proc. of AITES/ITA World Tunnel Congress 2001, Progressin Tunneling after 2000, Milan 10 –13 June 2001, vol.1:.15–26, Bologna: Pàtron. Ambraseys N.N. 2002. The seismic activity of the Marmara Sea region over the last 2000 Years. Bulletin ofthe Seismological Society of America. 92:1–18. Bell E.E. , Canuto M.A. , Sharer R.J. 2004. Understanding early classic Copan. Philadelphia: University OfPennsylvania Museum of Archaeology And Anthropology. Bilotta E. 2022. Personal communication. Brandi C. 1963. Teoria del restauro. Edizioni di Storia e Letteratura. Einaudi. Burland J. , Jamiolkowski M. , Squeglia N. , Viggiani C. 2013. The Leaning Tower of Pisa. In Geotechnichsand Heritage, Bilotta, Flora, Lirer & Viggiani Ed. London: Taylor & Francis Group. Calabresi G. 2011. The soft approach to saving Monuments and Historic Sites. Proc. Of the 15 th EuropeanConf. of ISSMGE. Athens. Calabresi G. 2013. 1st Kerisel Lecture: The role of Geotechnical Engineering in saving monuments andhistoric sites. Proc. 18 th Int. Conf. of ISSMGE. Paris: Presse des Pontes. Cosenza E. , Iervolino I. 2007. Case study: Seismic retrofitting of a medieval bell tower with FRP. Journal ofComposites for Construction. DOI: 10.1061/(ASCE)1090-0268(2007)11:3(319). Escalona F. 2022. Personal communication. de Silva F. , Ceroni F. , Sica S. , Silvestri F. 2018. Non-linear analysis of the Carmine bell tower underseismic actions accounting for soil–foundation–structure interaction. Bulletin of Earthquake Engineering,16(7):2775–2808. DOI: 10.1007/s10518-017-0298-0. de Silva F. 2020. Influence of soil-structure interaction on the site-specific seismic demand to masonrytowers. Soil Dynamics and Earthquake Engineering 131. DOI: 10.1016/j.soildyn.2019.106023 D’Agostino S. 2022. Conservation and Restoration of Built Heritage. A history of conservation culture and itsmore recent developments. Built Heritage and Geotechnics Series, Lancellotta R. Ed. London: CRC Press. De Andrè F. 1967. Bocca di rosa. Bluebell Records.

Fash W.L. 1991. Scribes, Warriors and Kings: The City of Copán and the Ancient Maya. London: Thamesand Hudson. Ferrari G.W. , Lamagna R. 2015. Crypta Neapolitana: non solo un tunnel. Trasporti e Cultura, Rivista diarchitettura delle infrastrutture nel paesaggio, 40, 88–93. Flora A. 2013. General Report TC301: Monuments, Historic Sites and case histories. Proc. 18th Int. Conf. ofISSMGE. Paris: Presse des Pontes. Flora A. , Lombardi D. , Nappa V. , Bilotta E. 2018. Numerical Analyses of the Effectiveness of Soft Barriersinto the Soil for the Mitigation of Seismic Risk. Journal of Earthquake Engineering, 22 ( 1 ).DOI:10.1080/13632469.2016.1217802. Flora A. , Chiaradonna A. , de Sanctis L. , Lignola G.P. , Nappa V. , Oztoprak S. , Ramaglia G. , Sargin S.2021. Understanding the Damages Caused by the 1999 Kocaeli Earthquake on One of the Towers of theTheodosian Walls of Constantinople. Int. Journal of Architectural Heritage, Taylor & Francis.DOI:10.1080/15583058.2020.1864512 Ince G. C. , Yildirim M. , Ozaydin K. , Ozner P.T. 2008. Seismic microzonation of the historic peninsula ofIstanbul. Bulletin of Engineering Geology and the Environment. 67:41–51. DOI 10.1007/s10064-007-0099-9. Ispir M. , Demir C. , Alper I. , Kumbasar N. 2014. An outline of the seismic damages of several monumentalstructures in Istanbul after historical earthquakes. Workshop on Seismicity of Historical Structures. Istanbul,November. Iwasaki Y. , Zhussupbekov A. , Issina A. 2013. Authenticity of Foundations for Heritage Structures. Proc. 18 th Int. Conf. of ISSMGE. Paris: Presse des Pontes. Jappelli R. 1991. Contribution to a systematic approach. in The Contribution of Geotechnical Engineering tothe preservation of Italian historic sites. AGI Associazione Geotecnica Italiana Ed. Jappelli R. , Marconi N. 1997. Recommendations and prejudices in the realm of foundation engineering inItaly: A historical review. In Carlo Viggiani (ed.), Geotechnical engineering for the preservation of monumentsand historical sites; Proc. Intern. Symp., Napoli, 3-4 October 1996. Rotterdam: Balkema. Jonas H. 1984. The Imperative of Responsibility – In Search of an Ethics for the Technological Age. TheUniversity of Chicago Press. Lacombe L. , Fash W.L. , Fash B. 2020. Plan for the long-term Conservation of the Copan AcropolisTunnels. Report presented to the Instituto Hondureno de Antropologia e Historia, October. University ofHarvard. Lancellotta R. 2013. 11th Croce Lecture: La Torre Ghirlandina: una storia di interazione struttura-terreno.Rivista Italiana di Geotecnica, 47 ( 2 ). Bologna: Patròn. Loten S.H. and Pendergast D.M. 1984. A Lexicon for Maya Architecture. Archaeology Mongraph 8 . Pane V. , Martini E. 1997. The preservation of historical towns of Umbria: the Orvieto case and itsobservatory. Proc. of the 1st Int. Conf. on Geotechnical Engineering for the Preservation of Monuments andHistoric Sites, Viggiani C. Ed. Rotterdam: Balkema. Petzet M. 2004. Principles of preservation. ICOMOS Open Archive. Pires F. , Bilotta E. , Flora A. , Lourenço P.B. 2021. Assessment of Excavated Tunnels Stability in the MayaArcheological Area of Copán, Honduras. Int. Journal of Architectural Heritage, Taylor & Francis.DOI:10.1080/15583058.2021.1931730. Pires F. 2020. Safety Assessment of the Archaeological Tunnels in Copán – Honduras. SAHC MastersCourse Thesis, Advanced Master in Structural analysis of Monuments and historical Constructions.University of Minho. Roca P. , Lourenço P.B. , Gaetani A. 2019. Historic Construction and Conservation. London: Routledge. Sarimese F. 2018. Restoration and renovation of 18th and 19th Century Istanbul Land Walls. Master ofScience (MSc) Thesis, Turkish Research Institute of Marmara University (in Turkish). Schele L. 1998. Aerial View of Copan. http://ancientamericas.org/collection/aa010001. Settis S. 2018. About the future: the Besieged City. Interview by Antonio Guerriero. Electra Vol. 2, 2018. Sharer R. J. , Miller J. C. , Traxler L. P. 1992. Evolution of classic period architecture in the easternacropolis, Copan: A progress report. Ancient Mesoamerica, 3(1). DOI: 10.1017/S0956536100002364. Sharer R. J. , Traxler L.P. , Sedat D.W. , Bell E.E. , Canuto M.A. , Powel C. 1999. Early Classic ArchitectureBeneath the Copan Acropolis. Ancient Mesoamerica, 10 ( 1 ). DOI: 10.1017/s0956536199101056. Sharer R. J. , Traxler L.P. 2006. The Ancient Maya. 6 th Ed. , Stanford University Press . Somma F. , Bilotta E. , Flora A. , Viggiani G. 2021. Centrifuge Modelling of Shallow Foundation LateralDisconnection to Reduce Seismic Vulnerability. Journal of Geotechnical and Geoenvironmental Engineering.ASCE 148(2). Somma F. , Lignola G. , Ramaglia G. , de Sanctis L. , Iovino M. , Oztoprak S. , Flora A. 2022. Earthquakedamages to an historic tower: back analysis and possible mitigation measures. Bullettin of EarthquakeEngineering. Submitted. Thompson J. E. S. 1958. The Civilization of the Mayas. Chicago Natural History Museum.

Turnbull S. 2004. The walls of Constantinople AD 324-1453. Osprey Publishing. Viggiani C. 2013. Cultural Heritage and Geotechnical Engineering: an introduction. In Geotechnichs andHeritage, Bilotta, Flora, Lirer & Viggiani Ed. London: Taylor & Francis Group. Viggiani C. 2017. 2nd Kerisel Lecture: Geotechnics and Heritage. Proc. Of the 19 th Int. Conf. of ISSMGE.Seoul. von Schwerin, J. 2011. The sacred mountain in social context. Symbolism and history in maya architecture:Temple 22 at Copan, Honduras. Ancient Mesoamerica, 22 ( 2 ). DOI: 10.1017/S0956536111000319.

The historical underpinning of Winchester Cathedral – Heroic or horrific? Burland, J.B. , Jamiolkowski, M.B. , Squelia, N. & Viggiani, C. 2021. The Tower of Pisa – History ,Construction and Geotechnical Stabilization. Taylor and Francis, London, UK. Cheney, J.E. 1973. Techniques and equipment using the surveyor's level for accurate measurements ofbuilding movement. Proc. Symp. on Field Instrumentation: 85-89. BGS, London, UK. Fox, F. 1924. Sixty-Three Years of Engineering. John Murray, London, UK. Galdos-Ispizua, A. 2007. Winchester Cathedral Foundation Engineering Past and Present Approach . MScdissertation, Dept. of Civil and Environmental Engineering, Imperial College London, UK. Henderson, I.T. & Crook, J. 2004. The Winchester Diver: The Saving of a Great Cathedral . Henderson &Stirk Publishers, Crawley, Winchester, UK. Heyman, J. 2021. Why ancient cathedrals stand up: Ingenia , Magazine of the Royal Academy ofEngineering. 10:19–23. Roberts, G. 2013. How a diver saved Winchester Cathedral, UK: and today's solution? Proc. ICE,Engineering and Heritage, 166 (EH3): 164–176. Wilkinson, S. 2006. A review of the Ground Conditions below Winchester Cathedral and their Effects on theCathedral's Structure . MSc dissertation, Dept. of Civil and Environmental Engineering, Imperial CollegeLondon, UK. Yu, J. 2006. Winchester Cathedral – an Engineering Look into the Past . MSc dissertation, Dept. of Civil andEnvironmental Engineering, Imperial College London, UK.

Rethinking preventive conservation: Recent examples Abbott, G.R. , McDuling, J.J. , Parsons, S.A. , Schoeman, J.C. , 2007. Building condition assessment: aperformance evaluation tool towards sustainable asset management. Balen, K.V. , 2015. Preventive Conservation of Historic Buildings. Restoration of Buildings and Monuments21, 99–104. https://doi.org/10.1515/rbm-2015-0008 Barontini, A. , Alarcon, C. , Sousa, H.S. , Oliveira, D.V. , Masciotta, M.G. , Azenha, M. , 2021. Developmentand Demonstration of an HBIM Framework for the Preventive Conservation of Cultural Heritage.International Journal of Architectural Heritage 0, 1–23. https://doi.org/10.1080/15583058.2021.1894502 BS EN , 2020. 17412-1: Building Information Modelling. Level of Information Need. Concepts and principles. CEN , 2010. Maintenance — Maintenance terminology. Della Torre, S. , 2010. Critical reflection document on the draft European standard CEN/TC 346 WI 346013conservation of cultural property-condition survey of immovable heritage (unpublished discussion document),in: Proceedings of the Seminar on Condition Reporting Systems for the Built Cultural Heritage,Monumentenwacht, Vlaanderen. pp. 22–24. EN 2012. 16096: Conservation of cultural property - Condition survey and report of built cultural heritage. EN 15898 , 2019. Conservation of cultural heritage - Main general terms and definitions. Giovanna Masciotta, M. , Sánchez Aparicio, L.J. , Bushara, S. , V. Oliveira, D. , González Aguilera, D. ,García Alvarez, J. , 2021. Digitization of cultural heritage buildings for preventive conservation purposes, in:12th international conference on structural analysis of historical construction | 29-Septiembre a 1 Octubre2021 | Barcelona, pp. 1559–1570. Gonçalves, J. , Mateus, R. , Silvestre, J.D. , 2018. Comparative Analysis of Inspection and Diagnosis Toolsfor Ancient Buildings, in: Ioannides, M. , Fink, E. , Brumana, R. , Patias, P. , Doulamis, A. , Martins, J. ,Wallace, M. (Eds.), Digital Heritage. Progress in Cultural Heritage. Springer International Publishing, Cham,pp. 289–298. https://doi.org/10.1007/978-3-030-01765-1_32 Gonçalves, J. , Mateus, R. , Silvestre, J.D. , Vasconcelos, G. , 2017. Survey to architects: challenges toinspection and diagnosis in historical residential buildings. Green Lines Institute for Sustainable

Development. ICOMOS , 2003. ICOMOS Charter – Principles fora the Analysis, Conservation and Structural Restoration ofArchitectural Heritage. ISO , 2010. 13822: Bases for design of structures — Assessment of existing structures. Jagodzińska, K. , Sanetra-Szeliga, J. , Purchla, J. , Van Balen, K. , Thys, C. , Vandesande, A. , Van derAuwera, S. , 2015. Cultural Heritage Counts for Europe: full report. Kioussi, A. , Labropoulos, K. , Karoglou, M. , Moropoulou, A. , Zarnic, R. , 2011. Recommendations andStrategies for the Establishment of a Guideline for Monument Documentation Harmonized with the ExistingEuropean Standards and Codes. Geoinformatics FCE CTU 6, 178–184. https://doi.org/10.14311/gi.6.23 Marjanović, V. , 2014. Europe's endangered heritage (No. Doc. 13428). Report, , to Committee on Culture,Science, Education and Media. Masciotta, M.G. , Morais, M.J. , Ramos, L.F. , Oliveira, D.V. , Sánchez-Aparicio, L.J. , González-Aguilera, D., 2019. A Digital-based Integrated Methodology for the Preventive Conservation of Cultural Heritage: TheExperience of HeritageCare Project. International Journal of Architectural Heritage 1–20.https://doi.org/10.1080/15583058.2019.1668985 Masciotta, M.-G. , Ramos, L.F. , Lourenço, P.B. , 2017. The importance of structural monitoring as adiagnosis and control tool in the restoration process of heritage structures: A case study in Portugal. Journalof Cultural Heritage 27, 36–47. https://doi.org/10.1016/j.culher.2017.04.003 Ortega Heras, J. , Gonzalez, M. , Izquierdo, M. , Masini, N. , Vasconcelos, G. , Pereira, C. , Navarro, R. ,Gabellone, F. , Vitale, V. , Abate, N. , Liébana, J. , Anaya, G. , Secanellas, S. , Anaya, J. , Leucci, G. , Sileo,M. , Borghardt, J. , Ferreira, T. , 2021. Heritage Within. European Research Project. Pereira, C. , de Brito, J. , Silvestre, J.D. , 2021. Harmonized Classification of Repair Techniques in a GlobalInspection System: Proposed Methodology and Analysis of Fieldwork Data. Journal of Performance ofConstructed Facilities 35, 04020122. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001529 Ramos, L.F. , Aguilar, R. , Lourenço, P.B. , Moreira, S. , 2013. Dynamic structural health monitoring of SaintTorcato church. Mechanical Systems and Signal Processing 35, 1–15.https://doi.org/10.1016/j.ymssp.2012.09.007 Taylor, J. , 2005. An Integrated Approach to Risk Assessments and Condition Surveys. Journal of theAmerican Institute for Conservation 44, 127–141. https://doi.org/10.1179/019713605806082365 Wagg, D.J. , Worden, K. , Barthorpe, R.J. , Gardner, P. , 2020. Digital Twins: State-of-the-Art and FutureDirections for Modeling and Simulation in Engineering Dynamics Applications. ASCE-ASME J Risk andUncert in Engrg Sys Part B Mech Engrg 6. https://doi.org/10.1115/1.4046739

Protecting the Sagrada Familia temple from railway tunnel construction Bilotta, E. & Russo, G. 2011. Use of a Line of Piles to Prevent Damages Induced by Tunnel Excavation. J.Geotech. Geoenviron. Eng., 137: 254–262. Boussinesq, M.J. 1885. Application des potentiels a l’etude de l’equilibre et du mouvement des solideselastiques, avec des notes etendues sur divers points de physique mathematique et d’analyse. Paris:Gauthier-Villard imprimeur libraire. Di Mariano, A. , Gesto, J.M. , Gens, A. & Schwarz, H. 2007. Ground deformation and mitigating measuresassociated with the excavation of a new Metro line. In V. Cuéllar et al. (ed.), Geotechnical Engineering inUrban Environments; Proc. 14th Eur. Conf. Soil Mech. & Geotech. Engng., Madrid, 24-27 September, 2007,Rotterdam: Millpress Science, Vol. 4: 1901–1906. Di Mariano A . (2017). “Large Diameter Tunnels in Urban Environments – The Barcelona L9 Case”. InvitedLecture at the Workshop for the Singapore Building Control Authority (BCA) and Land Transport Authority(LTA) organized by Infraestructures.cat, Barcelona, May 31st. Ledesma, A. & Alonso, E. E. (2017) Protecting sensitive constructions from tunnelling: the case of worldheritage buildings in Barcelona. Géotechnique, 67(10): 914–925 Loganathan, N. & Poulos, H.G. 1998. Analytical prediction for tunnelling-induced ground movements inclays. J. Geotech. Geoenviron. Eng., 124(9): 846–856. Mair, R.J. 2008. Tunnelling and geotechnics: new horizons. Géotechnique, 58(9): 695–736. Melan, E. 1932. Der Spannungszustand der durch eine Einzelkraft in Innern beansprucheten Halbscheibe.Z. Angew. Math. Mech., 12: 343–346. Mindlin, R.D. 1936. Force at a point in the interior of a semi-infinite solid. Journal of Applied Physics, 7:195–202. Peck, R.B. (1969). “Advantages and Limitations of the Observational Method in Applied Soil Mechanics”, 9thRankine Lecture, Géotechnique 19, No. 2, 171–187.

Pujades, E. , Vázquez-Suñé, E. , Carrera, J. , Vilarrasa, V. , De Simone, S. , Jurado, A. , Ledesma, A. ,Ramos, G. , Lloret, A. 2014. Deep enclosures versus pumping to reduce settlements during shaftexcavations. Engineering Geology, 169: 100–111. Pujades, E. , Vázquez-Suñé, E. , Culí, L. , Carrera, J. , Ledesma, A. , Jurado, A. 2015. Hydrogeologicalimpact assessment by tunnelling at sites of high sensitivity. Engineering Geology, 193: 421–434. Sagaseta, C. 1987. Analysis of undrained soil deformation due to ground loss. Géotechnique, 37(3):301–320. Sneddon, I. 1951. The Mathematical Theory of Huygens’ Principle. By B. B. Baker and E. T. Copson .Second edition. Pp. vi, 192. 21s. 1950. (Geoffrey Cumberlege, Oxford University Press). The MathematicalGazette, 35(311): 67–67. Verruijt, A. & Booker, J.R. 1996. Surface settlements due to deformation of a tunnel in an elastic half plane.Géotechnique, 46(4): 753–756. Verruijt, A. & Booker, J.R. , 2000. Complex variable analysis of Mindlin's tunnel problem. Dev. Theor.Geomech.: 1–20. Wonsaroj, J. , Borghi, F.X. , Soga, K. , Mair, R.J. , Sugiyama, T. , Hagiwara, T. & Bowers, K.H. 2006. Effectof TBM driving parameters on ground surface movements: Channel Tunnel Rail Link Contract 220. In Bakkeret al. (ed.) Geotechnical Aspects of Underground Construction in Soft Ground. London: Taylor and FrancisGroup, 335–341.

Tunnelling under the San Francisco church in Guadalajara, Mexico Abrahamson N. (1993). “Non-Stationary spectral matching program RSPMATCH”. Obtenidode:http://www.civil.utah.edu/~bartlett/NEUP/Rspmatch/RSPmatchdocument.pdf Bensen, G.D. , Ritzwoller, M.H. , Barmin, M.P. , Levshin, A.L. , Lin, F. , Moschetti, M.P. , Shapiro, N.M. ,Yang, Y. , (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wavedispersion measurements. Geophys J. Int., 169, 3, 1239−1260. CFE (2015). PRODISIS, A Programme for seismic design. In: Manual de Obras Civiles, Mexico, ComisiónFederal de Electricidad (Mexican Electricity Board). Itasca Consulting Group Inc. (2017) “FLAC 3D: Fast lagrangian analysis of continua in 3 dimensions, User'sGuide”. Minneapolis, Minnesota, USA. Lilhanand K. y Tseng W. S. (1988). “Development and application of realistic earthquake time historiescompatible with multiple damping response spectra”, Proceedings of the 9th World Conference onEarthquake Engineering, Tokyo, Japan, Vol. II, pp 819–824 R. Meli and A. R. Sánchez Ramírez (2018). Protection and monitoring of three temples close to theexcavation of a tunnel in Guadalajara, Mexico. Paper 42, Proceedings 11th Int Conference on structuralanalysis of historical constructions, Cusco, Perú, 11-13 Sept.2018 SHAKE Schnabel, P.B. , Lysmer, J. , and Seed, H.B. 1972. SHAKE – A computer program for earthquakeresponse analysis of horizontally layered soils. Report No. EERC-72/12, University of California, Berkeley.

Under the skin Ackerman, J. S. (1949). “Ars Sine Scientia Nihil Est” Gothic Theory of Architecture at the Cathedral of Milan.The Art Bulletin 31(2), 84–111. Addis, B. (1994). The art of the structural engineer. London: Artemis. Adorno, T. W. (1991). The culture industry. London & New York: Routledge. Barthes, R. (1957). Mythologies. Paris: Seuil. Becher, B. & H. Becher (1967). Industriebauten 1830 - 1930. Eine fotografische Dokumentation. München:Die neue Sammlung. Benjamin, W. (1980). Das Kunstwerk im Zeitalter seiner technischen Reproduzierbarkeit. In R. Tiedemannand H. Schweppenhäuser (Eds.), Walter Benjamin – Gesammelte Schriften Band I, Teil 2. Frankfurt amMain: Suhrkamp. (Translation: Harry Zohn (1968). “The Work of Art in the Age of Mechanical Reproduction”.New York:Schocken/Random House). Binda, L. , A. Anzani , & G. Mirabella Roberti (2000). Tall and massive ancient masonry buildings: Long termeffects of loading. In G. Penelis Int. Symp. On Concrete and Masonry Structures, pp. 273–284. Borges, J. L. (1939). Pierre menard, author del quijote. Sur 56, 7–16.

Borges, J. L. (1980). Siete Noches (Seven nights). Argentina: Fondo de Cultura Económica. Calabresi, G. (2003). Problemi geotecnici nel consolidamento delle costruzioni di interesse storico. Quadernidi scienza della conservazione (3), 19–34. Calvino, I. (1988). Lezioni americane. Sei proposte per il prossimo millennio. Sagi blu. Milano: Garzanti. Choay, F. (1996). L’allégorie du patrimoine. Paris: Editions du seuil. Choay, F. (2009). Le patrimoine en questions - Anthologie pour un combat. Paris: Editions du seuil. Coulomb (1776). Essai sur une application des règles de maximis & minimis à quelques problèmes destatique, relatifs à l’architecture. Mémoires de mathématque et de physique, présentés à l’académie royaledes sciences, par divers savans, & lûs dans fes Affemblées 7, 343-382. Dehio, G. (1905). Denkmalschutz und Denkmalpflege im neunzehnten Jahrhundert: Rede zur Feier desGeburtstages Sr. Majestät des Kaisers gehalten in der Aula der Kaiser-Wilhelms-Universität Strassburg am27. Januar 1905. Strassburg: J.H. ED. Heitz. Dunne, E. (2018). How Xi’an's past became a blueprint for its future. Public memory as a tool ofdevelopment in Xi’an. The Diplomat. Egglezos, D. , D. Moullou , & M. Ioannidou (2013). The role of the geotechnical engineer in archaeologicalwork: The greek experience. In Bilotta, Flora, Lirer, and Viggiani (Eds.), Geotechnical Engineering for thePreservation of Monuments and Historic Sites, pp. 359–365. García Gamallo, A. M. (2003). The evolution of traditional types of building foundation prior to the firstindustrial revolution. In S. Huerta (Ed.), Proceedings of the First International Congress on ConstructionHistory, Madrid, pp. 943–956. Giovannoni, G. (1931a). La restauration des monuments en Italie. In Conférence d’Athènes sur laconservation artistique et historique des monuments. Giovannoni, G. (1931b). Les moyens modernes de construction appliqués à la restauration des monuments.In Conférence d’Athènes sur la conservation artistique et historique des monuments. Houbart, C. (2020). “Reconstruction as a creative act”: on anastylosis and restoration around the VeniceCongress. Conversaciones 9, 39–58. Huerta Fernández, S . (1990). Diseño estructural de arcos, bóvedas y cúpolas en España ca. 1500, ca.1800. Ph. D. thesis, ETSAM, Madrid. Hugo, V. (1832). Notre-Dame de Paris. 1482 (2d, definitive ed.). Paris: Eugène Renduel. ICOMOS (2003). Principles for the analysis, conservation and structural restoration of architectural heritage. ISO 13822: 2010. Bases for design of structures - Assessment of existing structures . ISO, Geneva,Switzerland. Iwasaki, Y. (2013). Characteristic elements of authenticity of heritage structures and conservation forintegrity in geotechnical engineering . In ATC19 Workshop Part II, UNESCO, Paris. Iwasaki, Y. , M. Fukuda , M. Iizuka , R. McCarty , T. Nakagawa , & V. Ly (2021). The authenticity andintegrity of soil and foundation of bayon temple in angkor, cambodia . In IOP Conf. Ser.: Earth Environ. Sci.856. Second International Conference on Geotechnical Engineering. Iwasaki, Y. , A. Zhussupbekov , & A. Issina (2013). Authenticity of foundations for heritage structures . InProceedings of the 18 International Conference on Soil Mechanics and Geotechnical Engineering, Paris, pp.3111–3114. Klinke, A. & O. Rena (2002). A new approach to risk evaluation and management: Risk-based, precaution-based, and discourse-based strategies. Risk Analysis (Society for Risk Analysis) 22(6), 1071–1094. Kérisel, J. (1975). Old structures in relation to soild conditions. Géotechnique 25(3), 433–483. Kérisel, J. (1985). The history of geotechnical engineering up until 1700. In 11th International Conference onSoil Mechanics and Foundation Engineering (San Francisco), pp. 3–93. Balkema. Golden Jubilee Volume. Lambe, T. W. (1973). Predictions in soil engineering. Géotechnique 23(2), 149–202. Larsen, K. E. (Ed.) (1995). Nara conference on authenticity in relation to the World Heritage Conservation.UNESCO, ICCROM, ICOMOS. Lassus, J.-B. & E.-E. Viollet-Le Duc (1843). Notre-Dame de Paris. Projet de restauration. Rapport. Paris:Imprimerie de Mme de Lacombe. MacIntyre, A. (1998). A short history of ethics . A history of moral philosophy from the Homeric Age to thetwentieth century. London & New York: Routledge. Montanari, T. (2015). Privati de Patrimonio. Torino: Giulio Einaudi editore. Nervi, P. L. (1997). Savoir construire (original: Costruire corretamente. Milano:Hoepli, 1995. Translated fromthe Italian by M. Gallot). Paris: Ëdition du Linteau. Paquet, P. (1931). Le ciment armé dans la restauration . In Conférence d’Athènes sur la conservationartistique et historique des monuments. Peck, R. (1969). Advantages and limitations of the observational method in applied mechanics .Géotechnique 19(2), 171–187. Pevsner, N. (1943). An Outline of Western Architecture. Pelican.

Porter, K. A. (2003). An overview of peer's performance-based earthquake engineering methodology. InNinth International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP9)July 6–9, 2003, San Francisco. Przewłócki, J. , I. Dardzińska , & J. Świniański (2005). Review of historical buildings’ foundations.Géotechnique 55(5), 363–372. Riegl, A. (1903). Der moderne Denkmalkultus, sein Wesen, seine Entstehung. (Translation: K.W. Forsterand D. Ghirardo, 1982. The modern cult of monuments: its character and origin. Oppositions 25, 20–51).Wien und Leipzig: W. Braumüller. Rudofsky, B. (1964). Architecture Without Architects: A Short Introduction to Non-Pedigreed Architecture.Garden City, New-York: Doubleday & Company. Ruskin, J. (1849). The Seven Lamps of Architecture. London: Smith, Elder, and co. Saint Augustine (1991). Confessions. Oxford: Oxford University Press. (translated by Henry Chadwick). Sandel, M. (2012). What money can’t buy. The moral limits of markets. Allen Lane. Scolobig, A. , R. Mechler , N. Komendantova , W. Liu , S. Dagmar , & A. Patt (2014). The co-production ofscientific advice and decision making under uncertainty: Lessons from the 2009 L’Aquila earthquake, Italy.GRF Davos Planet@Risk 2( 2 ), 71–76. Settis, S. (2004). Futuro del “Classico”. Torino: Giulio Einaudi editore. Settis, S. (2017). Architettura e Democrazia . Paesaggio, città, diritti civili. Torino: Giulio Einaudi editore. Skempton, A. A history of soil properties, 1717–1927 . In 11th International Conference on Soil Mechanicsand Foundation Engineerin (San Francisco), pp. 95–121. Balkema. Golden Jubilee Volume. Smars, P. (2018). Adobe constructions in Yún-Lin county, Taiwan . In I. Wouters , S. Van de Voorde , I.Bertels , B. Espion , K. De Jonge , and D. Zastavni (Eds.), 6th International Congress on ConstructionHistory 2018, July 9–13 2018, Brussels (Belgium), pp. 1237–1244. Smars, P. (2022). Documenting traditional architecture in Yún-Lin county . In K.-C. Yang and P. Smars(Eds.), Challenges of traditional architecture protection. Belgium, Bulgaria, India, Taiwan, UK. (provisionaltitle). (to be published). Smars, P. & T. Patrício (2016). Ethical questions around structural interventions in archaeological sites . InK. Van Balen and E. Verstrynge (Eds.), 10th International Conference on Structural analysis of historicalconstructions (SAHC 2016), Sept. 13–15, Leuven, Belgium, pp. 986–993. Smars, P. , T. Patrcio , M. Santana , & A. Seif (2010). Archaeological site of Baalbek, Structural RiskManagement Strategy . In International Conference on Disaster Management and Cultural Heritage, 12–14December, Thimphu (Bhutan). Stanley-Price, N. (2009). The reconstruction of ruins: Principles and practice . In A. Richmond and A.Bracker (Eds.), Conservation: Principles, Dilemmas and Uncomfortable Truths, pp. 32–46. London:Elsevier/Butterworth Heinemann. Torroja Miret, E. (2000). Razon y Ser de los Typos Estructurales (10° ed.). Textos Universitarios. Madrid :Consejo Superior de Investigaciones Cientificas. UNESCO (2021). Operational Guidelines for the Implementation of the World Heritage Convention. Paris:UNESCO. Verstrynge, E. & D. Van Gemert (2018). Creep failure of two historical masonry towers: analysis frommaterial to structure. Int. J. Masonry Research and Innovation 3(1), 50–71. Yang, K.-C. (2018). World heritage in the middle of political conflict: A discourse analysis of mixed reactionsin response to the nomination of sites of Japan's Meiji industrial revolution. In N. Prothi Khanna and S. Burke(Eds.), ICOMOS 19th General Assembly and Scientific Symposium “Heritage and Democracy”. Zevi, B. (1948). Saper vedere l’architettura . Saggio sull’interpretazione spaziale dell’architettura. Torino:Einaudi. Zhu, Y. (2017). Use of the past: negotiating heritage in Xi’an. International Journal of Heritage Studies. DOI:10.1080/13527258.2017.1347886.

Form and construction. The domes of the Baptistery and Santa Maria del Fiore inFlorence Aminti, P. 1996. Rilievo e determinazione della curvature della cupola, analisi sui rapporti dimensionali traprincipali elementi strutturali interni, in Giuseppe Rocchi Coopmans de Yoldy (ed.), S. Maria del Fiore.Piazza, Battistero, Campanile, Firenze, Il Torchio, p. 104. Bartoli et al. 2017. Bartoli G., Betti M., Monchetti S., Modellazione numerica ed analisi strutturale delBattistero di San Giovanni a Firenze, in Francesco Gurrieri (ed.) Il Battistero di San Giovanni. Conoscenza,Diagnostica, Conservazione, Firenze, Mandragora, pp. 135–157.

Blasi C. & Papi R. 2004. Geometria e struttura, in Giuseppe Rocchi Coopmans de Yoldy (ed.) S. Maria delFiore. Piazza, Battistero, Campanile, Firenze, Il Torchio, pp., 125–127. Blasi et al. 2017. Blasi C., Ottoni F., Coïsson E., Tedeschi C., Battistero di San Giovanni in Firenze. Note sudissesti, lesioni e catene, in Francesco Gurrieri (ed.) Il Battistero di San Giovanni. Conoscenza, Diagnostica,Conservazione, Firenze, Mandragora. Choisy A. 1899. Histoire de l’architecture, Paris, Gauthier-Villars, T. II, p. 602. Degl’Innocenti P. 2017. Misurare, disegnare, conoscere: dai rilievi del San Giovanni alle ipotesi storicocostruttive, in Francesco Gurrieri (ed.), Il Battistero di San Giovanni. Conoscenza, Diagnostica,Conservazione, Firenze, Mandragora, pp. 90, 96. Durm J. 1887. Die Domkuppel in Florenz und die Kuppel der Peterskirche in Rom: zwei Grossconstructionender italienischen Renaissance, Berlin, Ernst & Korn, plate II. Fondelli, M. 2004. La Cupola di Santa Maria del Fiore. Antiche testimonianze e nuove ricerche sperimentali,in Giuseppe Rocchi Coopmans de Yoldy (ed.), S. Maria del Fiore e le chiese fiorentine del Duecento e delTrecento nella città delle fabbriche arnolfiane, Firenze, Alinea Editrice, pp. 343–358. Giorgi, L. 2004. Il sistema voltato del Battistero, in Giuseppe Rocchi Coopmans de Yoldy (ed.), S. Maria delFiore e le chiesefiorentine del Duecento e del Trecento nella città delle fabbriche arnolfiane, Firenze, AlineaEditrice. Giorgi L. & Matracchi P. 2006. Santa Maria del Fiore, facciata, corpo basilicale, cupola, in Giuseppe RocchiCoopmans de Yoldi , S. Maria del Fiore. Teorie e storie dell’archeologia e del restauro nella città dellefabbriche arnolfiane, Firenze, Alinea Editrice, pp. 316–317. Giorgi & Matracchi 2017. Le murature a cassone alla base della cupola del battistero e altri aspetti costruttivi,in Francesco Gurrieri (ed.) Il Battistero di San Giovanni. Conoscenza, Diagnostica, Conservazione, Firenze,Mandragora. Giorgi L , & Matracchi P. 2018. I mattoni del Brunelleschi. Osservazioni sulla Cupola di Santa Maria delFiore, in Costruire in laterizio, 2018, 176, pp. 53–61. Giovannini, P. 1996. L’apparecchio murario e il rivestimento interno del piano terra e del matroneo. Materiali,tecniche di lavorazione e caratteristiche di messa in opera, in Giuseppe Rocchi Coopmans de Yoldy (ed.) S.Maria del Fiore. Piazza, Battistero, Campanile, Firenze, Il Torchio, pp. 87–89. Matracchi, P. 1992. La chiesa di Santa Maria delleGrazie al Calcinaiopresso Cortona e l’opera di Francescodi Giorgio, Cortona, Calosci, pp. 18–19. Miceli E. & Riccardo Papi R. 2004. Sulla statica del battistero alla luce delle nuove indagini e delleinterpretazioni dei dati sperimentali, in Giuseppe Rocchi Coopmans de Yoldi (ed.) S. Maria del Fiore e lechiese fiorentine del Duecento e del Trecento nella città delle fabbriche arnolfiane, Alinea Editrice, Firenze,pp. 177. Morelli A. 2004. Indagini geofisiche non invasive sulla volta della scarsella del Battistero, in Giuseppe RocchiCoopmans de Yoldi (ed.) S. Maria del Fiore e le chiese fiorentine del Duecento e del Trecento nella cittàdelle fabbriche arnolfiane, Alinea Editrice, Firenze, pp. 167. Negri et al. 2017. Negri M., Fellin M., Ceccotti A., I legni della cupola del Battistero, in Francesco Gurrieri(ed.) Il Battistero di San Giovanni. Conoscenza, Diagnostica, Conservazione, Firenze, Mandragora, pp.170–173. Pietramellara C. 1973. Battistero di S. Giovanni a Firenze, Firenze, Polistampa, pp. 20–21, 33. Pisetta, C. & Vitali G. M. 1996. Nuove acquisizioni sul tabernacolo di Andrea Orcagnaattraverso il rilievointerpretativo, in Diane Finiello Zervas (ed.), Orsanmichele a Firenze, Modena, Franco Cosimo Panini, p.382. Rocchi Coopmans de Yoldy, G. 1996a. Il Battistero di San Giovanni. Lo svolgimento della fabbrica, inGiuseppe Rocchi Coopmans de Yoldy (ed.) S. Maria del Fiore. Piazza, Battistero, Campanile, Firenze, IlTorchio, pp. 43, 47–48. Rocchi Coopmans de Yoldy G. 1996b. Brunelleschi e il Battistero, in Giuseppe Rocchi Coopmans de Yoldy(ed.) S. Maria del Fiore. Piazza, Battistero, Campanile, Firenze, Il Torchio, pp. 64–65. Rocchi Coopmans de Yoldy G. 2006. Il cantiere del complesso di Santa Maria del Fiore dall’epocaarnolfiano-giottesca a quella brunelleschiana, in Giuseppe Rocchi Coopmans de Yoldi (ed.) S. Maria delFiore e le chiese fiorentine del Duecento e del Trecento nella città delle fabbriche arnolfiane, Alinea Editrice,Firenze, p. 265. Trattati di architettura 1967. Trattati di architettura, ingegneria e arte militare/ Francesco di Giorgio Martini ,Corrado Maltese (ed.), Livia Maltese Degrassi (tr.), Milano, Edizioni il Polifilo, T. I, p. 92.

Understanding the mechanical history of the burial monument of the Kastatumulus at Amphipolis, Greece: A tool for documentation and design ofrestoration strategy Athanasiou F. , Malama V. , Miza M. , Sarantidou M. , Papasotiriou A. , 2012 The restoration of theMacedonian tomb of Makridis Bey in Derveni, Thessaloniki, Proceedings of the 3rd Panhellenic Congress ofRestoration ETEPAM, 2012 (in Greek). Barton N. R. , 1972, A model study of rock-joint deformation, Int.J. Rock. Mech. Min. Sci. 9. 579–602 GEOPER 2015, Study for the redesign of the temporary fixing device for the support of the Kasta Tombburial complex, Unpubl. Study. Archive of Ephorate of Antiquities of Serres (in Greek). DETYMEA , 2019, Examination of stone and marble samples from the surrounding area of the Kastasmound in Amphipolis, Serres, Unpubl. Study, Athens. Archive of the Directorate of Research and TechnicalSupport for Restoration Projects of the Hellenic Ministry of Culture and Sports-DETYMEA Archive (in Greek). Egglezos D. , 2015a, Construction and Computational support of KH EPKA for the uncovering of themonument of the Kasta Tomb and ensuring its stability by designing temporary measures: Contractualsubmission of a Technical Consultant for the period 1-9-2014 to 31-10- 2014, Unpubl. Study. Archive ofEphorate of Antiquities of Serres (in Greek). Egglezos D. 2015b, Geostatic stability study of the Kasta burial complex, Unpubl. Study. Archive of theDirectorate for the Restoration of Ancient Monuments of the Hellenic Ministry of Culture and Sports -DAAMArchive (in Greek). Egglezos D. 2016, The Burial Complex of the hill-tomb Casta from the side of a Civil Engineer, Proceedingsof the 29th Meeting of the Archaeological Project of Macedonia-Thrace (AEMTH), Thessaloniki (in Greek). Egglezos D. 2019a, The effect of the excavation process on monumental structures interacting with thesurrounding soil, Proceedings of the 5th Panhellenic Restoration Conference (ETEPAM), Athens (in Greek). Egglezos D. 2019b, Preliminary Geostatic analyses in stages of "mechanical history" for the interpretation ofthe structural condition of standing monumental structures: the example of the monuments at the Kastamound in Amphipolis, 8th Panhellenic Congress of Geotechnical Engineering, Athens (in Greek). Egglezos D. 2019c, Issues of structural pathology of the monumental complex of the Casta mound,Unpubl.Study. Archive of the Directorate for the Restoration of Ancient Monuments of the Hellenic Ministry ofCulture and Sports -DAAM Archive (in Greek). Lazaridis D. 1964, Excavations and research in Amphipolis, Proceedings of the Archaeological Society(PAE), 35-40 (in Greek) Lazaridis D. 1965, Excavations and research in Amphipolis, Proceedings of the Archaeological Society(PAE), 47-52 (in Greek) Lazaridis D. 1972, Excavations and research in Amphipolis, Proceedings of the Archaeological Society(PAE), 63-72 (in Greek) Lefantzis M. 2013, New research on the base of the Lion of Amphipolis, Proceedings of the 26th conferenceof the Archaeological Project of Macedonia-Thrace (AEMTH), Thessaloniki (in Greek). Lefantzis M. 2014, The architecture of the Casta Tomb, Proceedings of the 27th conference of theArchaeological Project of Macedonia-Thrace (AEMTH), Thessaloniki (in Greek). Lefantzis M. 2019, Architectural study of the tomb of Kasta of Amfipolis, Part B: The burial monument,Unpubl. Study. Archive of the Directorate for the Restoration of Ancient Monuments of the Hellenic Ministryof Culture and Sports- DAAM Archive (in Greek). Papadopoulos Ch. 2020, Static Study of Structural Restoration - Restoration of the Tomb Monument ofKasta Tomb, Unpubl. Study. Archive of the Directorate for the Restoration of Ancient Monuments of theHellenic Ministry of Culture and Sports (DAAM Archive) Papazachos B. and Papazachou K. 2003, The earthquakes of Greece, Thessaloniki, Ziti Publications (inGreek). Pavlides S. , Chatzipetros A. , Syrides G. , Lefantzis M. 2016, Tectonic structure and paleoseismology ofKastas Hill and the wider region of eastern Macedonia, Proceedings of the 29th Meeting of theArchaeological Project of Macedonia-Thrace (AEMTH), Thessaloniki (in Greek). Peristeri K. 2016, Excavation of the Kasta tomb of Amfipolis 2014, Proceedings of the 29th Meeting of theArchaeological Project of Macedonia-Thrace (AEMTH), Thessaloniki (in Greek). Peristeri K. , Lefantzis M. , Corso A. 2016, Study of scattered marble reliefs from the wider area of the tombof Kasta Amfipolis, Proceedings of the 29th Meeting of the Archaeological Project of Macedonia-Thrace(AEMTH), Thessaloniki (in Greek). Sotiropoulos and Associates ATE , 2020a, Presentation of geotechnical research and geotechnicalevaluation, Unpubl. Study. Archive of the Directorate for the Restoration of Ancient Monuments of theHellenic Ministry of Culture and Sports -DAAM Archive (in Greek). Sotiropoulos and Associates ATE , 2020b, Soil Technical - Geostatic Study for the protection of the BurialMonument from the surrounding soils, Unpubl. Study. Archive of Directorate for the Restoration of AncientMonuments of the Hellenic Ministry of Culture and Sports (DAAM Archive)

Syrides G. , Pavlides S. , Chatzipetros A. , Tsokas G. , Lefantzis M. 2016, The geological structure of Kastas(Amphipolis), Proceedings of the 29th Meeting of the Archaeological Project of Macedonia-Thrace (AEMTH), Thessaloniki (in Greek). Syrides G. , Pavlides S. , Chatzipetros A. 2017, The geological structure of Kastas hill archaeological site,Amphipolis, Eastern Macedonia, Greece. Bulletin of the Geological Society of Greece, 51, 39–51. Tsokas G. , Tsourlos P. , Vargemezis G. , Fikos I. , 2016, Course of geophysical surveys on the Kasta hill,Proceedings of the 29th Meeting of the Archaeological Project of Macedonia-Thrace (AEMTH), Thessaloniki(in Greek). Tsokas G. N. , Tsourlos P. I. , Kim J. H. , et al. , 2018, ERT imaging of the interior of the huge tumulus ofKastas in Amphipolis (northern Greece), Archaeological Prospection, 1–15. Zambas K. 2016, Remarks on the Design and Construction of Macedonian Tombs, Honorary Volume forProfessor Manolis Korres, Athens: Melissa Publishing House (in Greek).

Structural health monitoring of historic masonry towers: The Case of theGhirlandina Tower, Modena Cadignani R , Lugli S. La torre Ghirlandina. Storia e restauro. Italy: Luca Sossella Editore, 2010. Cadignani, R. , Lancellotta, R. & Sabia, D. 2019. The restoration of Ghirlandina Tower in Modena and theassessment of soil-structure interaction by means of dynamic identification techniques. CRC Press,Taylor&Francis Group, London. Cosentini RM , Foti S , Lancellotta R and Sabia D. Dynamic behaviour of shallow founded historic towers:validation of simplified approaches for seismic analyses. International Journal of Geotechnical Engineering,2015; 9(1): 13–29. Cross EJ , Koo KY , Brownjohn JMW and Worden K. Long-term monitoring and data analysis of the TamarBridge. Mechanical Systems and Signal Processing 2012; 35: 16–34 Demarie G , Sabia D. A machine learning approach for the automatic long-term structural health monitoring.Structural Health Monitoring, 2019(3): 819–837. Farrar CR and Worden K. An introduction to structural health monitoring. Philos. Trans. Soc. A: Math. Phys.Eng. Sci. 2007; 365: 303–315. Farrar CR and Worden K. Structural Health Monitoring: A Machine Learning Perspective. John Wiley & SonsInc., 2013. Gareth J , Witten D , Hastie T and Tibshirani R. An Introduction to Statistical Learning with Applications.Springer Text in Statistics, 2013. Lancellotta R and Sabia D. The role of monitoring and identification techniques on the preservation ofhistoric towers. Keynote Lecture in: 2nd Int. Symposium on Geotechnical engineering for the preservation ofmonuments and historic sites. London: CRC Press/Taylor and Francis Group, 2013. Lancellotta R and Sabia D. Identification technique for soil structure analysis of the Ghirlandina tower.International Journal of Architectural Heritage, 2014; 9: 391–407. Sabia D , Aoki T , Cosentini RM and Lancellotta R. Model Updating to Forecast the Dynamic Behavior of theGhirlandina Tower in Modena, Italy. Journal of Earthquake Engineering, 2015; 19: 1–21. Worden K and Manson G. The application of machine learning to structural health monitoring. Philos. Trans.Soc. A: Math. Phys. Eng. Sci. 2007; 365: 515–537. Ying Y , Garrett JH Jr , et al. Toward Data-Driven Structural Health Monitoring: Application of MachineLearning and Signal Processing to Damage Detection. Journal of Computing in Civil Engineering. 2013;27(6): 667–680.

Shake table testing of pillared historical stone constructions (mandapam) ofSouth India Block, P. , Dejong, M. , and Ochsendorf, J. 2006. As hangs the flexible line: Equilibrium of masonry arches .Nexus Network Journal, 8(2), 13–24. Clemente, P. , Buffarini, G. , and Rinaldis, D. 2010. Application of limit analysis to stone arch bridges.ARCH’10 – Proc. of 6 th International Conference on Arch Bridges. Fuzhou, China, October 11–13, 2010. Da Porto, F. , Franchetti, P. , Grendene, M. , Ranzato, L. , Valluzzi, M. , and Modena, C. 2007. Structuralcapacity of masonry arch bridges to horizontal loads. Proc. of 5 th International Conference on Arch Bridges(ARCH’07). Madeira, Portugal, 12–14 September 2007.

Fanning, P. J. , Boothby, T. E. , and Roberts, B. J. (2001). Longitudinal and transverse effects in masonryarch assessment . Construction and Building Materials, 15(1), 51–60. Jetson Ronald A. , Menon, A. , Prasad, A.M. , Menon, D. , & Magenes, G. 2018. Modelling and analysis of aSouth Indian temple structures under earthquake loading , Sādhanā, 43(74), 1–20. Lagomarsino, S. (2015). Seismic assessment of rocking masonry structures . Bulletin of EarthquakeEngineering, 13(1), 97–128. Lai, C.G. , Menon, A. , Corigliano, M. , Ornthamarrath, T. , Sanchez, H.L. Dodagoudar, G.R. 2009.Probabilistic seismic hazard assessment and stochastic site response analysis at the archaeological site ofKancheepuram in Southern India, Research Report EUCENTRE 2009/01, IUSS Press, Pavia, pp. 250. Magenes, G. , Prasad, A.M. , Dodagoudar, G.R. , Lai, C.G. , Macchi, G. , Mathews, M.S. , Menon, D. ,Menon, A. , Pavese, A. and Penna, A. 2006. Indo-Italian joint research programme on seismic vulnerabilityof historical centres in south India, In P.B. Lourenco, P. Roca, C. Modena, S. Agrawal (ed.), Proc. of the VInternational Conference on Structural Analysis of Historical Constructions, New Delhi, India, 2006, pp.1667–1674. Manohar, S. , Balamurugan, K. , Shukla, S. , Haneefa, M. , Santhanam, M. , Menon, A. 2021. Multiscale firedamage assessment stone trabeated hypostyle halls, International Journal of Architectural Heritage,Published online: 27 October 2021. DOI: 10.1080/15583058.2021.1992535. Mathews, M.S. , Menon, A. , Chandran, S. 2003. Rehabilitation and retrofit of earthquake damagedmonuments in Gujarat, in V. Jeyaraj (ed.) Special volume on conservation of stone objects, TheCommissioner of Museums, Chennai. Menon, A. , Shukla, S. , Samson, S. , Aravaind, N. , X. Romão , E. Paupério, A. 2017. Field Observations onthe Performance of Heritage Structures in the Nepal 2015 Earthquake: Invited Lecture, Proc. 16 th WorldConference on Earthquake Engineering, Santiago, Chile, January 9-13, 2017. Naik, P.M. , Bhowmik, T. and Menon, A. [2021] Estimating joint stiffness and friction parameters for dry stonemasonry constructions , Int. J. Masonry Research and Innovation, Vol. 6, No. 2, pp.232–254. Ochsendorf, J. A. 2006. The masonry arch on spreading supports . Structural Engineer, 84(2), 29–35. Palmieri M. , Magenes G. , Lai C.G. , Penna A. , Bozzoni F. , Rota M. , Macchi G. , Auricchio F. , MangriotisM.D. , Menon A. , Meher Prasad A. & Murty C.V.R. 2012. Reduction of seismic risk of Roman and Hindutemples. In P.B. Lourenco, P. Roca, C. Modena, (ed.), Proc. of VIII International Conference on StructuralAnalysis of Historical Constructions, 15–17 October, Wroclaw, Poland, 2012.

Site effects and intervention criteria for seismic risk mitigation in the ancient cityof Pompeii: The case of the Insula dei Casti Amanti Achmus, M. , Akdag, C.T. & Thieken, K. 2013. Load-bearing behavior of suction bucket foundations in sand.Applied Ocean Research, 43, 157–165. Ahlinhan, M.F. , Adjovi, E.C. , Doko, V. & Tigri, H.N. 2019. Numerical analysis of the behaviour of a large-diameter monopile for offshore wind turbines. Acta Geotechnica Slovenica 16(1), 53–69. Ashford, S. , Sitar, N. , Lysmer, J. & Deng, N. 1997. Topographic effects on the seismic response of seismicslopes. Bulletin of the Seismological Society of America 87(3), 701–709 Aversa, S. 2007. Preserving cities and monuments. Proc. of Geotechnical Engineering in UrbanEnvironments. Madrid, 24–27 sept., vol. 5, Millpress, 453–462. Blake, T.F. , D'Antonio, R. , Earnest, J. , Gharib, F. , Hollingsworth, R.A. , Horsman, L. , Hsu, D. ,Kupferman, S. , Masuda, R. , Pradel, D. , Real, C. , Reeder, W. , Sathialingam, N. , Simantob, E. & Stewart,J.P. 2002. Guidelines for analyzing and mitigating landslide hazards in California, Recommendedprocedures for implementation of DMG special publication 117. Southern California Earthquake Center pub.,Los Angeles, CA, Blake, Hollingsworth & Stewart eds., 127 pp. Bouckovals, G.D. & Papadimitriou, A.G. 2005. Numerical evaluation of slope topography effects on seismicground motion. Soil Dynamics and Earthquake Engineering 25(7–10), 47–558. Hansen, J.B. 1970. A revised and extended formula for bearing capacity. Burland, J.B. & Standing, J. R. 1997. Geotechnical monitoring of historic monuments. In Geotechnicalengineering for the preservation of monuments and historic sites (pp. 321–341). Butterfield, R. & Ticof, J. 1979. Design parameters for granular soils (discussion contribution). In Proc. 7 th International Conference Soil Mechanics & Foundation Engineering, 259–261. Butterfield, R. 2006. On shallow pad-foundations for four-legged platforms. Soils and Foundations 46(5),427–435. Byrne, B.W. & Houlsby, G.T. 1999. Drained behaviour of suction caisson foundations on very dense sand. InOffshore Technology Conference. OnePetro.

Byrne, B. W. & Houlsby, G.T. 2001. Observations of footing behaviour on loose carbonate sands.Géotechnique, 51(6), 463–466. Calabresi, G. , & D’Agostino, S. 1997. Monuments and historic sites: Intervention techniques. Proc. ArrigoCroce Memorial Symposium – Geotechnical Engineering for the Preservation of Monuments and HistoricSites, Napoli, Viggiani ed., Balkema, 409–425. California Geological Survey . 2008. Guidelines for Evaluating and Mitigating Seismic Hazards in California.California Geological Survey Special Publication 117A, 98 pp. Carey, S. & Sigurdsson, H. 1987. Temporal variations in column height and magma discharge rate duringthe 79 AD eruption of Vesuvius. Geological Society of America Bulletin 99(2), 303–314. Croce, A. (1985) Old monuments and cities. Research and preservation. Geotechnical Engineering in Italy:An overview, Special volume for ISSMFE – Golden Jubilee, Associazione Geotecnica Italiana ed., 361–415. de Sanctis, L. , Iovino, M. , Maiorano, R.M.S. & Aversa, S. 2020. Seismic stability of the excavation fronts inthe ancient Roman city of Pompeii. Soils and Foundations 60(5), 856–870. de Sanctis, L. , Maiorano, R.M.S. , Brancaccio, U. & Aversa, S. 2019. Geotechnical aspects in therestoration of Insula dei Casti Amanti in Pompeii. Proceedings of the Institution of Civil Engineers:Geotechnical Engineering 172(2), 121–130. Dean, E.T.R. , James, R.G. , Schofield, A.N. , Tan, F.S.C. & Tsukamoto, Y. 1992. The bearing ca-pacity ofconical footings on sand in relation to the behaviour of spudcan footings of jackups. In Predictive soilmechanics: Proceedings of the Wroth Memorial Symposium held at St Catherine's College, Oxford, 27–29July 1992, 230–253, Thomas Telford Publishing. Ebrahimian, H. , Jalayer, F. , Forte, G. , Convertito, V. , Licata, V. , d’Onofrio, A. & Manfredi, G. 2019. Site-specific probabilistic seismic hazard analysis for the western area of Naples, Italy. Bulletin of earthquakeengineering 17(10), 4743–4796. EN–1998–5 (CEN 250 2019). (pr)EN–1998–5:2019.2. Eurocode 8: Earthquake resistance design ofstructures – Part 5: Geotechnical aspects, Foundations, Retaining and Underground structures. EuropeanCommittee for Standardization TC 250, Brussels, Belgium Flora, A. 2013. Monuments, historic sites and case histories. General Report. Proc. 18 th InternationalConference on Soil Mechanics and Geotechnical Engineering, Paris 2013, 3087–3094. Georgiadis, M. 1993. Settlement and rotation of footings embedded in sand. Soils and Foundations 33(1),169–175. Gottardi, G. & Butterfield, R. 1993. On the bearing capacity of surface footings on sand under general planarloads. Soils and Foundations 33(3), 68–79. Gottardi, G. , Houlsby, G.T. & Butterfield, R. 1999. Plastic response of circular footings on sand undergeneral planar loading. Géotechnique 49(5), 453–469. Hudson, M.B. , Idriss, I.M. & Beikae, M. 1993. QUAD4M – A computer program for evaluating the seismicresponse of soil structures by variable damping finite element procedures. Center for Geotechnical Modeling,Department of Civil and Environmental Engineering, University of California at Davis, CA, USA. Idriss, I.M. 1985. Evaluating the seismic risk in Engineering Practice. Proc. 11th International Conference onSoil Mechanics and Foundation Engineering, San Francisco, August 12–16, vol. 1, 255–320. Jappelli, R. 1997. An integrated approach to the safeguard of monuments: The contribution of Arrigo Croce.Proc. Arrigo Croce Memorial Symposium – Geotechnical Engineering for the Preservation of Monumentsand Historic Sites, Viggiani ed., A.A. Balkema, 11–27. Jibson, R.W. & Keefer, D.K. 1993. Analysis of the Seismic Origin of Landslides: Examples from the NewMadrid Seismic Zone. Geological Society of America Bulletin 105(5), 521–536. Jibson, R.W. 1993. Predicting Earthquake–Induced Landslide Displacement Using Newmark's Sliding BlockAnalysis. Transportation Research Record 1411, 9–17. Li, D. , Zhang, Y. , Feng, L. & Gao, Y. 2015. Capacity of modified suction caissons in marine sand understatic horizontal loading. Ocean Engineering 102, 1–16. Licata, V. , Forte, G. , d’Onofrio, A. , Santo, A. & Silvestri, F. 2019. A multi–level study for the seismicmicrozonation of the Western area of Naples (Italy). Bulletin of Earthquake Engineering 17(10), 4711–4741. Luongo, G. , Perrotta, A. , Scarpati, C. , De Carolis, E. , Patricelli, G. & Ciarallo, A. 2003. Impact of the AD 79explosive eruption on Pompeii, II. Causes of death of the inhabitants inferred by stratigraphic analysis andareal distribution of the human casualties. Journal of Volcanology and Geothermal Research 126(3–4),169–200. Martin, C.M. 1994. Physical and numerical modelling of offshore foundations under combined loads. PhDthesis, University of Oxford, UK. Matasovic, N. 1991. Selection of Method for Seismic Slope Stability Analysis. Proc. 2 nd InternationalConference on Recent Advances in Geotechnical Earthquake Engineering and Soil, March 11–15, St. Louis,Missouri, Paper No. 7.20. Meletti, C. , Galadini, F. , Valensise, G. , Stucchi, M. , Basili, R. , Barba, S. , Vannucci, G. & Boschi, E. 2008.A seismic source zone model for the seismic hazard assessment of the Italian territory. Tectonophysics 450,

85–108. Newmark, N.W. 1965. Effects of earthquakes on dam and embankments. Géotechnique 15(2), 139–159. Nova, R. & Montrasio, L. 1991. Settlements of shallow foundations on sand. Géotechnique 41(2), 243–256. Rathje, E.M. , Abrahamson, N.A. , & Bray, J.D. 1998. Simplified frequency content estimates of earthquakeground motions. Journal of Geotechnical and Geoenvironmental Engineering 124(2), 150–159. Randolph, M. & Gourvenec, S. 2017. Offshore geotechnical engineering. CRC press. Rovida, A. , Locati, M. , Camassi, R. , Lolli, B. & Gasperini, P. 2016. CPTI15, the 2015 version of theparametric catalogue of Italian earthquakes. Istituto Nazionale di Geofisica e Vulcanologia, doi:10.6092/INGV.IT–CPTI1 5. Sarma, S.K. 1975. Seismic stability of earth dams and embankments. Géotechnique 25(5), 743–761. Sigurdsson, H. , Carey, S. , Cornell, W. & Pescatore, T. 1985. The eruption of Vesuvius in A.D. 79. NationalGeographic Research 1(3), 332–387. Tan, F.S.C. 1990. Centrifuge and theoretical modelling of conical footings on sand. PhD thesis, University ofCambridge, UK. Ticof, J. 1978. Surface Footings on Sand Under General Planar Loads. PhD thesis, University ofSouthampton, UK. Viggiani, C. 2013. Cultural heritage and geotechnical engineering: An introduction. Proc. 2nd InternationalSymposium on Geotechnical Engineering for the Preservation of Monuments and Historic Sites, Napoli, Italy,CRC Press/Balkema, 3–12. Villalobos, F.A. 2006. Model testing of foundations for offshore wind turbines. PhD thesis, University ofOxford, UK. Villalobos, F.A. , Byrne, B.W. & Houlsby, G.T. 2009. An experimental study of the drained capacity of suctioncaisson foundations under monotonic loading for offshore applications. Soils and Foundations 49(3),477–488. Wilson, R.C. & Keefer, D.K. 1983. Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake,California, Earthquake. Bulletin of the Seismological Society of America 73(3), 863–877. Zafeirakos, A. & Gerolymos, N. 2016. Bearing strength surface for bridge caisson foundations in frictionalsoil under combined loading. Acta Geotechnica 11(5), 1189–1208.

Long term strategies for monuments care: The importance of monitoring and of aproper diagnosis Adriani, L. , Pellegrino, A. , Bescatore, T.S. (1980). La Basilica Benedettina di S. Angelo in Formis: primarelazione. Indagini sui terreni e sulle strutture del monumento per lo studio dei dissesti. Unpublished report,Soprintendenza ai Monumenti della Campania, Napoli. Brandi, C. (1963) Teoria del restauro, Ed. di Storia e Letteratura, Torino – pp. 1–158 Candela, M. , Mandolini, A. , Russo, G. (1997). Monitoring Castel dell’Ovo in Napoli – Preliminary results.Proc. Geotech. Eng. For the Preservation of Monuments and Historical Sites, Balkema, pp. 343–347. Corniello, A. , Santo, A. (1995). I dissesti della Basilica Benedettina (XI secolo) di Sant’Angelo in Formis(Capua) ed il complesso assetto geologico dell’area. Geologia Applicata e Idrogeologia, vol. XXX, I, 125–137 De Franciscis, A . (1956). Templum Dianae Tifatinae. Soc. Di Storia Patria di Terra di Lavoro, Caserta, 60pp. Di Martire, D. , De Luca, G. , Ramondini, M. , Calcaterra, D. , (2013). Landslide-related PS datainterpretation by means of different techniques. In Landslide science and practice (pp. 347–355). SpringerBerlin Heidelberg Di Martire, D. , Novellino, A. , Ramondini, M. , Calcaterra, D. , (2016). A-Differential Synthetic ApertureRadar Interferometry analysis of a Deep Seated Gravitational Slope Deformation occurring at Bisaccia(Italy). Science of The Total Environment, Volume 550, 15 April 2016, Pages 556–573.doi:10.1016/j.scitotenv.2016.01.102 Di Nocera, S. (2013) Personal communication. Jacobitti, G.M. , Abita, S. (1992). La Basilica Benedettina di Sant’Angelo in Formis. ESI, Napoli, 97 pp Infante, D. , Di Martire, D. , Confuorto, P. , Tessitore, S. , Tòmas, R. , Calcaterra, D. , Ramondini, M. (2019).Assessment of building behavior in slow-moving landslide-affected areas through DInSAR data andstructural analysis. Engineering Structures, 199, 109638. Italian National Institute for Environmental Protection and Research, ISPRA , 2008. Landslides in Italy.Special Report 2008. ISPRA, Rapporti, 83/2008. Micillo, A. (2013). Il Complesso Ospedaliero di Santa Maria del Popolo degli Incurabilidi Napoli: evoluzionestorico urbanistica. Ph.d. thesis XXV Ciclo, Dottorato di Ricerca inStoria e Conservazione dei Beni

Architettonici del Paesaggio, Tutor prof. L. Di Mauro Mora, O. , Mallorquí, J.J. , Broquetas, A. , (2003). Linear and nonlinear terrain deformation maps from areduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens. 41, 2243–2253.http://dx.doi.org/10.1109/TGRS.2003.814657. Pellegrino, A. , Pescatore, T.S. (1981). La Basilica di S. Angelo in Formis. Indagini sui terreni di fondazioneed analisi dei dissesti: relazione finale. Unpublished report, Soprintendenza per i Beni Ambientali eArchitettonici della Campania, Napoli. Russo, G. , Viggiani C. (2000) The stability of monuments over coastal cliffs in the bay of Napoli. Proc.International Millenium Conference on Safeguarding of our Cultural Heritage Vol. (U) pp.10 held byUNESCO & ICOMOS in Bethlehem (Palestine), Oct. 2000. Russo, G. , D’Agostino, S. , Lombardi, S. , Viggiani C. (2009) Structural engineering and geology applied tothe static problems of the Etruscan “Tomba dell’Orco” (Tarquinia, Central Italy). Journal of Cultural HeritageISSN 1296-2074, vol. 11(2010), available on line since 2009, pp. 107–113 - doi10.1016/j.culher.2009.11.001 Russo G. , Viggiani C. , Cammarota A. , Candela M. (2013) The Benedictine Basilica of S. Angelo in Formis(Southern Italy): a therapy without diagnosis?. pp.225-232. In Geotechnical Engineering for the Preservationof Monuments and Historic Site (2013) vol. 1 Int. Conf. TC. 301 Russo G. , Alterio, L. Silvestri, F. (2017) Seismic Vulnerability Reduction for Historical Buildings with Non-Invasive Subsoil Treatments: The Case Study of the Mosaics Palace at Herculaneum. International Journalof Architectural Heritage, 11 (3), pp. 382–398. DOI: 10.1080/15583058.2016.1238969 Tapete, D. , & Cigna, F. (2019). COSMO-SkyMed SAR for detection and monitoring of archaeological andcultural heritage sites. Remote Sensing, 11(11), 1326. Tomás, R. , Garcia-Barba, J. , Cano, M. , Sanabria, M. P. , Ivorra, S. , Duro, J. , & Herrera, G. (2012).Subsidence damage assessment of a gothic church using Differential Interferometry and field data.Structural Health Monitoring, 11(6), 751–762. Zhou, W. , Chen, F.L. , Guo, H.D. (2015). Differential radar interferometry for structural and grounddeformation monitoring: A new tool for the conservation and sustainability of cultural heritage sites.Sustainability, 7, 1712–1729. Wettstein J. (1960) Sant’Angelo in Formis et la peinture médiévale en Campanie. Geneve

The Grand Canal at Versailles: Geotechnical investigation, II Baridon, M. 2013. “Les jardins de Le Nôtre et d’Hardouin-Mansart”, dans Arizzoli-Clementel P. (dir.),Versailles, Paris, Citadelles et Mazenod. Cordier, G. , Fleuriot, F. , Lesecq, P. , Meslamani, Y. , Meyfroidt, G. , Poulain, M. & Vanhee, M. 2019.Rapport de Project Collectif Géotechnique 5A sur le Grand Canal de Versailles, 80 p. Non publié. Guiffrey, J. (éd.) 1881-1901 (5 tomes), Comptes des bâtiments du roi sous le règne de Louis XIV (1664-1715). Source gallica.bnf.fr / Bibliothèque nationale de France. Goguel, J. 1967. Versailles, Carte géologique de la France à 1/50000, n°182, Orléans, Bureau derecherches géologiques et minières. Lablaude, P.A. 1997. Etude préalable à la restauration des berges et margelles du grand canal, rapportdestiné à l’Etablissement Public du Musée et du Domaine National de Versailles, 145 p. Non publié. Le Guillou, J.C. 2000. Le domaine de Versailles de l’Aube à l’Aurore du Roi Soleil (1643-1663), in Versalian°5. Reproduction en p. 65 d’un plan attribué à Delapointe 1664/65, Bibliothèque nationale de France, Va448 f. Vernhes, J.-D. 2017. Grands travaux d’aménagement du vallon de Marly. Bulletin du Centre de recherche duchâteau de Versailles. DOI : https://doi.org/10.4000/crcv.14555 Vernhes, J.-D. & Heitzmann, A. 2019. Le Grand Canal à Versailles : enquête géotechnique. XVII EuropeanConference on Soil Mechanics and Geotechnical Engineering. 2019, Reykjavik, Iceland. ISBN 978-9935-9436-1-3

Geotechnical studies to optimize the protection measures against flooding of St.Mark square (Venice, IT) Bettiol, G. , Ceccato, F. , Pigouni, A.E. , Modena, C. , Simonini, P. , 2015. Effect on the structure in elevationof wood deterioration on small-pile foundation: Numerical analyses. Int. J. Archit. Herit. 3058.https://doi.org/10.1080/15583058.2014.951794 Biscontin, G. , Cola, S. , Pestana, J.M. , Simonini, P. , 2007. Unified compression model for venice lagoonnatural silts. J. Geotech. Geoenvironmental Eng. 133, 932–942. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(932) Bortoletto, M. , 2019. Relazione archeologica - Interventi di salvaguardia dell’Insula di Piazza San Marco aVenezia. Ceccato, F. , Simonini, P. , Koppl, C. , Schweiger, H.F. , Tschuchnigg, F. , 2014. FE Analysis of degradationeffects on the wooden foundations in Venice. Riv. Ital. di Geotec. 2, 27–37. Ceccato, F. , Simonini, P. , Zarattini, F. , 2021. Monitoring and Modeling Tidally Induced Pore-PressureOscillations in the Soil of St . Mark ’ s Square in Venice , Italy. J. Geotech. Geoenvironmental Eng. 147,1–14. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002474 Cola, S. , Sanavia, L. , Simonini, P. , Schrefler, B. a. , 2008. Coupled thermohydromechanical analysis ofVenice lagoon salt marshes. Water Resour. Res. 44, n/a-n/a. https://doi.org/10.1029/2007WR006570 Fletcher, C.A. , Spencer, T. (Eds.), 2005. Flooding and environmental challenges for Venice and its lagoon:state of knowledge. Cambridge University Press. P. Salandin , 2020. Evaluation of flooding of the Sankt Mark's Island in: ‘Analysis of possible interventions tosafeguard the Sankt Mark's Island from high tides’ Part 3 (in italian). Padova. Ricceri, G. , 2007. Il ruolo della geotecnica nella salvaguardia della città di Venezia e della sua laguna. Ruol, P. , Favaretto, C. , Volpato, M. , Martinelli, L. , 2020. Flooding of Piazza San Marco (Venice): Physicalmodel tests to evaluate the overtopping discharge. Water (Switzerland) 12.https://doi.org/10.3390/w12020427 Simonini, P. , Ricceri, G. , Cola, S. , 2007. Geotechnical characterization and properties of Venice lagoonheterogeneous silts, in: Leroueil, Hight (Eds.), Characterisation and Engineering Properties of Natural Soils.Taylor & Francis Group, London, London, pp. 2289–2327. https://doi.org/10.1201/noe0415426916.ch17 Volpato, M. , 2019. Relazione idrologica e idraulica - Interventi di salvaguardia dell’Insula di Piazza SanMarco a Venezia. Venice.

Observed interaction between Line C of Roma underground and the CloacaMaxima Antognoli L. 2015. Il Chiavicone della Suburra, in Elisabetta Bianchi (ed.) La Cloaca Maxima e i sistemifognari di Roma dall’antichità ad oggi. Roma: Palombi Editori: 159-166. Antognoli, L. & Bianchi, E. 2009. La Cloaca Maxima dalla suburra al foro romano. Studi Romani 12: 89–125. Corsetti, G. 1925. I collettori bassi delle fogne di Roma, Annali dei Lavori Pubblici, Roma: StabilimentoLitografico del Genio Civile. Di Mucci G. & Miniero N. 2015. Indagini sperimentali su un tratto della Cloaca Maxima nell’ambito degli studiinterazione linea-preesistenze della tratta T3 della nuova linea C, in Elisabetta Bianchi (ed.) La CloacaMaxima e i sistemi fognari di Roma dall’antichità ad oggi. Roma: Palombi Editori: 207-222. Fargnoli, V. , Boldini, D. , & Amorosi, A. 2015. Twin tunnel excavation in coarse grained soils: Observationsand numerical back-predictions under free field conditions and in presence of a surface structure. Tunnellingand Underground Space Technology 49:454–469. Franza, A. & Viggiani G.M.B. 2021. Role of shear deformability on the response of tunnels and pipelines tosingle and twin tunnelling. J. Geotech. Geoenvironmental Eng. ASCE 147(12): 04021145. Hopkins, J.N.N. 2007. The Cloaca Maxima and the monumental manipulation of water in archaic Rome.Waters of Rome Journal 4:1–15 Losacco, N. & Viggiani, G.M.B. 2019. Class A prediction of mechanised tunnelling in Rome. Tunnelling andUnderground Space Technology 87:160–173. Losacco, N. & Viggiani, G.M.B. 2019b. Mechanised tunnel excavation through an instrumented site in Rome,in National Conference of the Researchers of Geotechnical Engineering, Springer, Cham: 245–254. Losacco, N. , Romani, E. , Viggiani, G.M.B. & DiMucci G. 2020. Embedded barriers as a mitigation measurefor tunnelling induced settlements: a field trial for the Line C in Rome, in Tunnels and Underground Cities :Engineering and Innovation Meet Archaeology, Architecture and Art, Volume 12: Urban Tunnels-Part 2:5845.

Palombi, D. 2013. Cloaca massima e storia urbana, Archeologia Classica 64:133–168 Wan, M.S.P. , Standing, J.R. , Potts, D.M. , & Burland, J.B. 2017. Measured short-term subsurface grounddisplacements from EPBM tunnelling in London Clay. Géotechnique, 67(9):748–779.

Safeguarding of the Aurelian Walls at Porta Asinaria from conventional tunnelling Attewell, P.B. & Woodman, J.P. 1982. Predicting the dynamics of ground settlement and its derivativescaused by tunnelling in soil. Ground Engineering, 15 (8), 13–22, 36. Attewell P.B. , Yeates, J. & Selby, A.R. 1986. Soil movements induced by tunnelling and their effects onpipelines and structures. Glasgow: Blakie. Bai, Y. , Yang, Z. & Jiang, Z. 2014. Key protection techniques adopted and analysis of influence on adjacentbuildings due to the Bund Tunnel construction. Tunnelling and Underground Space Technology, 41 , 24–34. Bilotta, E. & Taylor, R.N. 2005. Centrifuge modelling of tunnelling close to diaphragm wall. Int. J. Phys.Model. Geotech. 1 , 25–41. Bilotta, E. 2008. Use of diaphragm walls to mitigate ground movements induced by tunnelling. Géotechnique58 (2), 143–155. Burghignoli, A. , Callisto, L. , Rampello, S. , Soccodato, F.M. & Viggiani, G.M.B. 2013. The crossing of thehistorical centre of Rome by the new underground Line C: a study of soil structure-interaction for historicalbuildings. In Geotechnics and Heritage: Case Histories: 97–136. London: CRC Press. Burland, J.B. & Wroth, C.P. 1974. Settlements of buildings and associated damage. Proc. Int. Conf. onSettlements of Structures, Cambridge, 611–654. Di Mariano, A. , Gens, A. , Gesto, J.M. Schwartz, H. 2007. Ground deformation and mitigating measuresassociated with the excavation of the new Metro line. In Geotechnical Engineering in Urban Environments,Proc. of the 14th ECSMGE, Millpress Science Publisher, Rotterdam, The Netherlands, vol. 4 : 1901–1906. Fantera, L. , Rampello, S. & Masini, L. 2016. A Mitigation Technique to Reduce Ground Settlements Inducedby Tunnelling Using Diaphragm Walls. Procedia Engineering 158 , 254–259. Katzenbach, R. , Leppla, S. , Vogler, M. , Seip, M. & Kurze, S. 2013. Soil-structure interaction of tunnels andsuperstructures during construction and service time. In: Proc. of the 11th Int. Conf. on Modern BuildingMaterials, Structures and Techniques, MBMST 2013. Procedia Engineering, vol. 57 : 35–44. Losacco N. , Romani E. , Viggiani G.M.B. , Di Mucci G. 2019. Embedded barriers as a mitigation measurefor tunnelling induced settlements: A field trial for the line C in Rome. In: Proc. of the WTC 2019 ITA-AITESWorld Tunnel Congress, Naples, Italy Mair, R.J. & Hight, D. 1994. Compensation grouting. World Tunnelling Subsurface Excavation 7 (8). Mair, R.J. 2008. 46th Rankine Lecture: Tunnelling and geotechnics: new horizons. Géotechnique 58 (9),695–736. Masini, L. , Rampello, S. , Viggiani, G.M.B. , & Soga, K. 2012. Experimental and numeri-cal study of groutinjections in silty soils. Proc. 7th International Symposium on Geotechnical Aspects of UndergroundConstruction in Soft Ground, Rome, 495–503. Masini, L. , S. Rampello , & K. Soga . 2014. An approach to evaluate the efficiency of compensationgrouting. J. Geotechnical and Geoenvironmental Engineering 140 (12): 04014073. Masini, L. , Rampello, S. & Romani, E. 2019a. Performance of a deep excavation for the new Line C ofRome underground. In Geotechnical Research for Land Protection and Development – Proc. of CNRIG 2019Springer Nature Switzerland AG 2020 F. Calvetti et al. (Eds.): CNRIG 2019, Lecture Notes in CivilEngineering (LNCE) 40: 575–582. Masini, L. , Rampello, S. , Carloni, S. & Romani, E. 2019b. Ground response to mini-tunnelling plus groundimprovement in the historical city centre of Rome. In Tunnels and Underground Cities: Engineering andInnovation meet Archaeology, Architecture and Art, WTC2019, Naples 3–9 May: 5876–5885. Masini, L. , Gaudio, D. , Rampello, S. & Romani, E. 2021a. Observed Performance of a Deep Excavation inthe Historical Center of Rome. Journal of Geotech. Geoenviron. Eng., ASCE, 147 (2): 05020015. Masini, L. , Rampello, S. , Fantera, L. & Romani, E. 2021b. Mitigation of tunnelling effects via pre-installedbarriers: the case of Line C of Rome underground. In Challenges and Innovations in Geomechanics, Proc.16th Int. Conf. of IACMAG, Springer Nature Switzerland AG 2021, M. Barla et al. (Eds.): IACMAG 2021,Lecture Notes in Civil Engineering (LNCE), Torino 2021, 126(2): 197–205. Masini, L. & Rampello, S. 2021. Predicted and observed behaviour of pre-installed barriers for the mitigationof tunnelling effects. Tunnelling and Underground Space Technology, 118: 104200. Moh, Z.C. , Huang, R.N. & Ju, D.H. 1996. Ground movements around tunnels in soft ground. Proc. Int.Symp. on Geotechnical Aspects of Underground Construction in Soft Ground, London, 725–730. O’Reilly, M.P. & New, B.M. 1982. Settlements above tunnels in the United Kingdom – Their magnitudes andprediction. Proc. Tunnelling ’82 Symposium, London: 173–181.

Ou C.Y. & Hsieh P.G. 2011. A simplified method for predicting ground settlement profiles induced byexcavation in soft clay. Comput. Geotech. 38 (8): 987–997. Peck, R. B. 1969. Deep excavation and tunnelling in soft ground. State-of-the-art-report, Mex-ico City, Stateof the Art Volume, Proc. 7th Int. Conf. on Soil Mech and Found. Engng (ICSMFE): 225–290. Rampello, S. , Callisto, L. , Viggiani, G.M.B. & Soccodato, F.M. 2012. Evaluating the effects of tunnelling onhistorical buildings: the example of a new subway in Rome. Geomechanics and tunnelling 5 (3): 275–299. Rampello, S. , Fantera, L. & Masini, L. 2019. Efficiency of embedded barriers to mitigate tunnelling effects.Tunnelling and Underground Space Technology 89 : 109–124.

Principles and practices for conservation of historical buildings: the case historyof the Saint John Baptistery at Florence, Italy Bartoli G. , Betti M. & Monchetti S. (2017) Modellazione numerica ed analisi strutturale del Battistero di SanGiovanni a Firenze . In “ Il Battistero di San Giovanni, conoscenza, diagnostica, conservazione ”, F. GurrieriEd., Mandragora, Firenze, 135–157. Bianchini P. (1996) I Paramenti esterni. I materiali, i restauri degli anni 1938-1944 e cenni sullo stato diconservazione attuale . In “ Santa Maria del Fiore – Piazza, Battistero, Campanile ” Ed. G. RocchiCoopmans de Yoldi, Università degli Studi di Firenze, Dipartimento di Architettura, Il Torchio, Firenze,97–98. Blasi C. , Ottoni F. , Coïsson E. & Tedeschi C. (2017) Battistero di San Giovanni in Firenze. Note su dissesti,lesioni e catene . In “ Il Battistero di San Giovanni, conoscenza, diagnostica, conservazione ”, F. Gurrieri Ed.,Mandragora, Firenze, 119–133. Briganti R. , Ciufegni S. , Coli M. , Polimeni S. & Pranzini G. (2003) Underground Florence: Plio-quaternaryevolution of the Firenze area . Boll. Soc. Geol. It. , 122, 435–445. Cardini M. (1996) L’ipotesi tardo antica del Battistero . In “ Il bel San Giovanni e Santa Maria del Fiore ”, D.Cardini Ed., Le Lettere, Firenze, 62–93. Coli M. & Iwasaki Y. (2021) Novel Approaches and Technologies for Heritage Buildings Conservation:Editorial . Appl. Sci. 2021, 11, 10597. https://doi.org/10.3390/app112210597 Coli M. & Rubellini P. (2013) Geological anamnesis of the Florence area, Italy. Z. Dt . Ges. Geowiss . (German J. Geosci .), Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany, 581–589. Coli M. , Ciuffreda A.L. & Donigaglia T. (2019) Informative models for the cultural heritage buildings:applications and case histories. ReUSO Matera, Patrimonio in divenire, A. Conte & A. Guida Eds. GangemiEd. Int., 421-432. Coli M. , Ciuffreda A.L. , Donigaglia T. , Bencaster A. , Caciagli S. , Agostini B. & Iandelli N. (2021) SaintJohn Baptistery at Florence (Italy): studies for conservation of the external marble cladding . Appl. Sci. 2021,11, 6329. https://doi.org/10.3390/ Degl’Innocenti P. (2017) Misurare, disegnare, conoscere: dai rilievi del San Giovanni alle ipotesi styorico-costruttive . In “ Il Battistero di San Giovanni, conoscenza, diagnostica, conservazione ”, F. Gurrieri Ed.,Mandragora, Firenze, 87–103. Garzonio C.A. , Cantisani E. , Coli M. , Cuzman O. , Del Luca D. , Lubrito C. , Ricci M. , Vettori S. , & SibiliaE. (2017) I materiali costitutivi del Battistero . In “ Il Battistero di San Giovanni, conoscenza, diagnostica,conservazione ”, F. Gurrieri Ed., Mandragora, Firenze, 179–191. Giorgi L. & Matracchi P. (2017) Le murature a cassone alla base della Cupola del Battistero e altri aspetticostruttivi . In “ Il Battistero di San Giovanni, conoscenza, diagnostica, conservazione ”, F. Gurrieri Ed.,Mandragora, Firenze, 193–207. Giovannini P. (1996) L’apparato murario e il rivestimento interno del piano terra e del matroneo. Materiali,tecniche di lavorazione e caratteristiche di messa in opera . In “ Santa Maria del Fiore – Piazza, Battistero,Campanile ” Ed. G. Rocchi Coopmans de Yoldi, Università degli Studi di Firenze, Dipartimento diArchitettura, Il Torchio, Firenze 72–96. Iandelli N. , Agostini B. & Coli M. (2018) Strumenti GIS come aiuto nella gestione, monitoraggio econservazione dei beni culturali. Conferenza ESRI Italia 2018, Romahttps://www.youtube.com/watch?v=SFZpwJZqZ84&list=PL8TX2bZOHutH-uGDZNa_4cobxpbYGhg6R&index=23&t=0s Iandelli N. , Coli M. , Donigaglia T. & Ciuffreda A.L. (2021) An Unconventional Field Mapping Application: AComplete Opensource Workflow Solution Applied to Lithological Mapping of the Coatings of CulturalHeritage . ISPRS Int. J., Geo-Inf. 2021, 10, 357. https://doi.org/10.3390/ijgi10060357 Lacanna G. , Ripepe M. , Marchetti E. , Coli M. & Garzonio C.A. (2016) Dynamic response characterizationof the Baptistery of San Giovanni in Firenze, Italy, based on ambient vibration test . J. Cultural Heritage , 20,632–640

Morolli G. (1994) L’architettura del Battistero e “l’ordine antico . In “ Il Battistero di San Giovanni ”, MirabiliaItalie , A. Paolucci Ed, Franco Cosimo Panini, Modena, 33–132. Nenci C. (2004) I documenti dell’Archivio dell’Opera del Duomo relativi ai restauri eseguiti negli anni 1939-1944 . In “ Santa Maria del Fiore – Piazza, Battistero, Campanile ” Ed. G. Rocchi Coopmans de Yoldi,Università degli Studi di Firenze, Dipartimento di Architettura, Il Torchio, Firenze, 179–186. Rocchi G. Coopmans De Yoldi (1996) Il Battistero di San Giovanni: Lo svolgimento della fabbrica . In “Santa Maria del Fiore – Piazza, Battistero, Campanile ” Ed. G. Rocchi Coopmans de Yoldi, Università degliStudi di Firenze, Dipartimento di Architettura, Il Torchio, Firenze 27–72. Vannucchi G. , Severi M. & Narcisi D. (2003) Sistema di micrometropolitana per Firenze studio di fattibilità2a fase. Università degli Studi di Firenze, Firenze.

The authenticity and the integrity of the soil and the foundation of heritagestructure in Angkor APSARA , 2014 A Angkor Charter, 2014, http://apsaraauthority.gov.kh/?page= detail &menu1=647&ctypedocument&id= 647& ref_id=6 &lg=e EFEO , 1990. Conservation of Angkor 1907-1972, International Round Table on the Preservation of theAngkor Monuments, Bangkok, UNESCO/CC-90/Conf.801/6, 1990. ISO , 2010, ISO _STANDARD 13822-2010, 2010. Bases for design of structures – Assessment of existingstructures, Annex I Heritage Structures. Iwasaki, Y. and Fukuda, M. , 2018. Preservation of the main tower of Bayon temple, Angkor, Cambodia,Geotechnics and heritage – Historic Towers, CRC Press, Balkema 2018, pp.191–227 Iwasaki, Y. , 2000, 3.5.4 Structural stability of the Northern Library and monitored behavior, Report on theConservation and Restoration Work of the Northern Library of Bayon, Angkor Thom, kingdom of Cambodia,pp95–100. Katagiri. M. 1999, A consideration on the process of restoration work of the west causeway of Angkor Wat,Renaissance Culturelle du Cambodge (16), Sophia Asia Center for Research and Human Development,Tokyo, pp17–30 (in Japanese). Launay, J. 1994. A Geotechnical and Structural Engineering Approach, Proc. of XIII International Conferenceof Soil Mechanics and Foundation Engineering, New Delhi, India, 1994 (in French)191-194. Nara Doc , 1994: www.icomos.org/charters/narae.pdf JASA, Japan APSARA Safeguarding Angkor , 2011, “Chapter 3 Report on the Restoration Work of theSouthern Library of Bayon”, Report on the Conservation Research of the Bayon, pp.35–193. JSA , 2005. Report on the Conservation and Restoration Work of the Prasat Suor Prat Tower, pp. 249-324. Narita. T. , Nishimoto. S , Shimizu, M. , Akazawa Y. 2000. Out-line of excavations and investigation at theouter gallery of Bayon complex, Annual technical report 2000, JASA, Tokyo, pp3–22. UNESCO , 1993. Safeguarding and Development of Angkor, prepared for The IntergovernmentalConference on the Safeguarding and Development of the Historical Area of Angkor, Tokyo, 12–13 October1993. Royere, P. 2016. Le Baphuon, EFEO, 2016 (in French). Venice Charter , 1964, www.icomos.org/charters/venice_e.pdf

Digital transformation in the visual inspection of heritage railways tunnels:Technology, artificial intelligence and methodology Foria, F. , Avancini, G. , Ferraro, R. , Miceli, G. & Peticchia, E. 2019. ARCHITA: an innovativemultidimensional mobile mapping system for tunnels and infrastructures. MATEC Web of Conferences: 295,p. 01005. Foria, F. , Giordano, R. , Cordua, G. , Miceli, G. & Chiaino, D. 2020. Analisi transitorie FEM per ildimensionamento di sistemi di smaltimento acque in gallerie esistenti. IAGIG. Foria, F. , Giordano, R. , Tommasi, D & Miceli, G. 2020. Galleria Olmata, from survey to construction: anintegrated design approach for the renewal of railway tunnels. ITA-AITES World Tunnel Congress:WTC2022 and 46th General Assembly. Foria, F. , Miceli, G. , Tamburini, A. , Villa, F. , Rech, A. & Epifani, F. 2021. Application of Spatial Multi-Criteria Analysis (SMCA) to assess rockfall hazard and plan mitigation strategies along long infrastructures.IOP Conference Series: Earth and Environmental Science: 833(1).

Foria, F. , Calicchio, M. , Tarquini, A. , Miceli, G. , Chiaino, D. , Cuccato, D. , Rinaldo, S. , Bomben, G. ,Rosetti, G. & Allegro, A. 2021. Artificial intelligence and image processing in the MIRET approach for thewater detection and integrated geotechnical management of existing mechanized tunnels: methodology,algorithm and case study. Rocscience International Conference 2021: pp. 1–7. Foria, F. , Ferraro, R. , Peticchia, E. , Sannino, F. & Miceli, G. 2021. Modélisation des défauts etmaintenance des tunnels existants avec une approche novatrice ( MIRET ): l ’ étude de cas de la ligne dechemin de fer Gênes - Vintimille et du métro de Rome. AFTES 2021 : pp. 1–10. Foria, F. , miceli, G. , Nascetti, A. , Loprencipe, G. , Crespi, M. , Belloni, V. , Ravanelli, R. & cordaro, S .2022. Digitalization and defects analysis for the maintenance of mechanized tunnels. ITA-AITES WorldTunnel Congress: WTC2022 and 47th General Assembly. Ministero delle Infrastrutture e dei Trasporti. 2020. Manuale Ispezione Gallerie. Ren, Y. , Huang, J. , Hong, Z. , Lu, W. , Zou, L. & Shen, X. 2020. Image-based concrete crack detection intunnels using deep fully convolutional networks. Construction and Building Materials: 234. Mili, M. , Chille, F. & Thuaud, C. 2021. Comparison of international repair works practices in railways tunnels.AFTES 00261.

Sans-Soucis Site, Haiti Republic – A case study for a project of preservation,interpretation and highlighting of a worldwide heritage patrimony RGM. 2018. PAST Etudes techniques du site de la Citadelle BRGM. Carpentier, Alejo . 1954. Le royaume de ce monde . Editions Gallimard. Césaire, Aimé . 1963. La tragédie du roi Christophe . Présence africaine. Chambon, J & Delétie, P. 1997. Confortement du Palais de Sans-Souci - Analyse géologique etgéotechnique. PNUD – Ministère de la Culture - UNESCO Consortium Egis & Agence Bortolussi & Via Architectes & Hyades & Compac & CCET & Tropisme. 2020.Pôle préservation Patrimoine, Architecture, Archéologie, Paysage, Réseaux. HSS-PRE-T-CPA/ARC/APR/CPY/IFR-R-101. République d’Haïti, Ministère de l’Economie et des Finances, UnitéTechnique d’Exécution. Consortium Egis & Agence Bortolussi & Via Architectes & Hyades & Compac & CCET & Tropisme. 2020.Synthèse du contexte géologique et géotechnique, HSS-PRE-T-RPA-R-301. République d’Haïti, Ministèrede l’Economie et des Finances, Unité Technique d’Exécution. Consortium Egis & Agence Bortolussi & Via Architectes & Hyades & Compac & CCET & Tropisme. 2020.Définition des raideurs statiques et dynamiques (Palais et Chapelle), HSS-PRE-T-RPA-R-302.Républiqued’Haïti, Ministère de l’Economie et des Finances, Unité Technique d’Exécution. Consortium Egis & Agence Bortolussi & Via Architectes & Hyades & Compac & CCET & Tropisme. 2020.Etude préliminaire – Etats endommagements et propositions de renforcements structurels – Palais du Roi,HSS-PRE-T-RPA-R-303. République d’Haïti, Ministère de l’Economie et des Finances, Unité Techniqued’Exécution. Consortium Egis & Agence Bortolussi & Via Architectes & Hyades & Compac & CCET & Tropisme. 2020.Etude préliminaire – Etats endommagements et propositions de renforcements structurels – Chapelle royale,HSS-PRE-T-RPA-R-304. République d’Haïti, Ministère de l’Economie et des Finances, Unité Techniqued’Exécution. Hyvert, G. 1979. Conservation et restauration de la citadelle Laferrière, du palais de Sans Souci et du Sitedes Ramiers. ISPAN . 2021. Qui est l’architecte de la citadelle Henry? Peut-on élucider ce mystère aujourd’hui? BulletinISPAN n°43. LNBTP . 2018. PAST Campagne de reconnaissance géotechnique dans le cadre de l’étude BRGM. Norme NF EN 1998 . 2005. Eurocode 8 Calcul des structures pour leur résistance aux séismes. AFNOR Norme NF P 94-500 . 2013. Missions d’ingénierie géotechnique – classification et spécifications. AFNOR

The characteristics of “Artificial Stone Construction” used in civil engineeringstructure – A case of Doudo lumberyard Amano, T. 2020. On the 100th Anniversary of Hattori Choshichi's Death, Let's Refocus on the Historical CivilEngineering Method “Artificial Stone Construction”, 38th Symposium Range and Scope of History ofTechnology in Japan: 5-28.

Amano, H. , Amano, T. , Ohashi, K. , Sasaki, J. , Natsume, K. , Hori, K. 2006. Site of an underwaterlumberyard in the middle reaches of the river, Doudo lumberyard timber transport on the Yahagi River,Toyotashi Kindai-no Sangyo-to Kurashi Hakken-kan. Aichi Prefecture . 2005. Modern Heritage in Aichi Prefecture: Report on Comprehensive Survey of ModernHeritage (Buildings, etc.), Board of Education Office for the Protection of Cultural Properties, LifelongLearning Division: 94-96. Japanese Geotechnical Society (JGS) . 2015. Japanese Geotechnical Society Standards: LaboratoryTesting Standards of Geomaterial, Vol.1: p.262. Japanese Geotechnical Society (JGS) . 2018. Japanese Geotechnical Society Standards: Geotechnical andGeo-environmental Investigation Methods, Vol.3: p.400. Sueoka, T. 1990. Geotechnical Engineering Study on Weathered Residual Soils, Doctoral Dissertation KyotoUniversity: 101-104. Takeshita, Y. , Tanimoto, K. , Oyama, T. , Tamura, J. 2006. Considerations in Geotechnical Characteristicsof “Tataki” Soil, Chugoku Branch of Japanese Geotechnical Society, Vol. 24 No.1: 101–106.

Subsoil characterization and stability analysis for the Bourbon del Monte Palacein Piancastagnaio (Siena, Italy) Baldi, A. M. 2008. Consolidamento del Palazzo Bourbon del Monte di Piancastagnaio - Relazione geologicae geotecnica. Technical report (in Italian) Bartoli, G. , & Betti, M. 2012. Indagini diagnostiche nel Palazzo Bourbon del Monte in Piancastagnaio (SI).Technical report (in Italian) Bartoli, G. , Betti, M. , Orlando, M. , Picchioni, A. , & Spinelli, P. 2009. Analisi ed interpretazione del dissestostatico di Palazzo Bourbon-Del Monte a Piancastagnaio. Bollettino Ingegneri, n°12 (in Italian) Bartoli, G. , Orlando, M. , Betti, M. , & Picchioni, A. 2008. Monitoraggio ed indagini diagnostiche nel PalazzoBourbon del Monte in Piancastagnaio (SI). Technical report (in Italian) Betti, M. , Bartoli, G. , & Orlando, M. 2010. Evaluation study on structural fault of a Renaissance Italianpalace. Engineering Structures, 32(7): 1801–1813 Ciardi, G. 2015. Il Palazzo Bourbon del Monte a Piancastagnaio (SI): analisi e modellazione numerica delterreno di fondazione e proposta d’intervento. Master's degree thesis (in Italian) Gibbs, H. J. , & Holtz, W. G. 1957. Research on Determining the Density of Sands by Spoon PenetrationTesting. Proc. 4th Int. Conference on Soil Mechanics and Foundation Engineering, Vol. 1: 35-39 Hatanaka, M. , & Uchida, A. 1996. Empirical correlation between penetration resistance and internal frictionangle of sandy soils. Soils and foundations, 36(4): 1–9 Itasca , 2011. FLAC version 7.0. Itasca Consulting Group Inc Losito, G. M. S. 2010. Palazzo Bourbon-Del Monte a Piancastagnaio - campagna di prospezione geofisica:ert e profiler. Technical report (in Italian) Meyerhof, G.G. 1957. Discussion on Research on determining the density of sands by penetration testing.Proc. 4th Int. Conference on Soil Mechanics and Foundation Engineering, Vol. 1: 110 Montini, P. 1990. Intervento di massima urgenza per opere di presidio e salvaguardia del Palazzo Bourbondel Monte e della estremità sud dello abitato di Piancastagnaio – relazione geologica geotecnica. Technicalreport (in Italian) Picchioni, A. 2008. Il Palazzo Bourbon-Del Monte in Piancastagnaio (SI): analisi dei dissesti statici eproposta di consolidamento. Master thesis (in Italian) Skempton, A. W. 1986. Standard penetration test procedures and the effects in sands of overburdenpressure, relative density, particle size, ageing and overconsolidation. Géotechnique, 36(3): 425–447

Experimental study on the influencing factors of repairing white marble beam byMICP Al Qabany, A. , Soga, K. , Santamarina, C. , 2012. Factors Affecting Efficiency of Microbially Induced CalcitePrecipitation. Journal of Geotechnical and Geoenvironmental Engineering 138, 992–1001. Dejong, J.T. , Mortensen, B.M. , Martinez, B.C. , Nelson, D.C. , 2010. Bio-mediated soil improvement.Ecological Engineering 36, 197–210. De Muynck, W. , Verbeken, K. , De Belie, N. , Verstraete, W. , 2010. Influence of urea and calcium dosageon the effectiveness of bacterially induced carbonate precipitation on limestone. Ecological Engineering 36,

99–111. He J , Guo X , Tan Q , et al. , 2019. Experiment research on the restoration of white marble beams usingmicrobially - induced carbonate precipitation. Sciences of Conservation and Archaeology 31(6), 331–339. Le Métayer-Levrel, G. , Castanier, S. , Orial, G. , Loubière, J.-F. , Perthuisot, J.-P. , 1999. Applications ofbacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historicpatrimony. Sedimentary Geology 126, 25–34. Liu, Q. , Zhang, B. , Shen, Z. , Lu, H. , 2006. A crude protective film on historic stones and its artificialpreparation through biomimetic synthesis. Applied Surface Science 253, 2625–2632. Minto, J.M. , Tan, Q. , Lunn, R.J. , El Mountassir, G. , Guo, H. , Cheng, X. , 2018. ‘Microbial mortar’-restoration of degraded marble structures with microbially induced carbonate precipitation. Construction andBuilding Materials 180, 44–54. Mujah, D. , Shahin, M.A. , Cheng, L. , 2017. State-of-the-Art Review of Biocementation by MicrobiallyInduced Calcite Precipitation (MICP) for Soil Stabilization. Geomicrobiology Journal 34, 524–537. Qabany, A.A. , Soga, K. , 2013. Effect of chemical treatment used in MICP on engineering properties ofcemented soils. Géotechnique 63, 331–339. Tan Qian , 2017. Research on marble relics repairmen by microbially induced carbonate precipitationtechnology. Tsinghua university. Tobler, D.J. , Maclachlan, E. , Phoenix, V.R. , 2012. Microbially mediated plugging of porous media and theimpact of differing injection strategies. Ecological Engineering 42, 270–278. Whiffin, V.S. , Van Paassen, L.A. , Harkes, M.P. , 2007. Microbial Carbonate Precipitation as a SoilImprovement Technique. Geomicrobiology Journal 24, 417–423. Xu, F. , Zeng, W. , Li, D. , 2019. Recent advance in alkoxysilane-based consolidants for stone. Progress inOrganic Coatings 127, 45–54. Xu X , Guo H , Li M , et al. , 2021. Bio-cementation improvement via CaCO3 cementation pattern and crystalpolymorph: A review. Construction and Building Materials 297. Yang Z , Cheng X. , 2015. Experimental study of deteriorated historic masonry structures reinforced bymicrobial grouting method. Industrial Construction 45, 48–53. Zhang, H. , Liu, Q. , Liu, T. , Zhang, B. , 2013. The preservation damage of hydrophobic polymer coatingmaterials in conservation of stone relics. Progress in Organic Coatings 76, 1127–1134.

Shake-table tests for the dynamic characterisation of an innovative isolator forseismic protection of statues Agbabian, M. S. , Ginell, W. S. , Masri, S. F. and Nigbor, R. L. 1991. Evaluation of-earthquake damagemitigation methods for museum objects. Studies in Conservation 36:2, 111–120. Alaimo, R. , Giarrusso, R. , Montana, G. , Quinn P. 2007. Petrographic and micropalaeontological data insupport of a Sicilian origin for the Statue of Aphrodite. In: Cult Statue of a Goddess, Summary ofProceedings from a Workshop, Getty Publications, Los Angeles. Caliò, I. , Marletta, M. 2003. Passive control of the seismic rocking response of art objects. EngineeringStructures 25(8), 1009–1018. Castelli, F. , Lentini, V. , Grasso, S. 2017. Recent developments for the seismic risk assessment. Bulletin ofEarthquake Engineering 15(12), 5093–5117. Cavallaro, A. , Castelli, F. , Ferraro, A. , Grasso, S. , Lentini, V. 2018. Site response analysis for the seismicimprovement of a historical and monumental building: the case of Augusta Hangar. Bulletin of EngineeringGeology and the Environment 77(3), 1217–1248. Christopoulos, C. & Filiatrault, A. 2006. Principles of Passive Supplemental Damping and Seismic Isolation,IUSS Press, Pavia, Italy. Ciancimino, A. , Lanzo, G. , Alleanza, G.A. , Amoroso, S. , Bardotti, R. , Biondi, G. , Cascone, E. , Castelli, F., Di Giulio, A. , D’Onofrio, A. , Foti, S. , Lentini, V. , Madiai, C. , Vessia, G. 2020. Dynamic characterization offine-grained soils in Central Italy by laboratory testing. Bulletin of Earthquake Engineering 18(12),5503–5531. Guerrini, G. , Ausenda, G. , Graziotti, F. and Penna, A. 2019. An innovative seismic isolation device basedon multiple articulated quadrilateral mechanisms: analytical study and shake-table test. In. Proc. of XVIIIANIDIS Conference, Ascoli Piceno (Italy), 15–19 September 2019. Housner, G. W. 1963. The behaviour of inverted pendulum structures during earthquakes. Bulletin of theSeismological Society of America 53, 403–417. Lo Iacono, F. , Navarra, G. , Oliva, M. , Cascone, D. 2017. Experimental investigation of the dynamicperformances of the L.E.D.A. shaking tables system. Proc. of the 23rd AIMeTA Conference 2017, Salerno(Italy), 4–7 September 2017, 5, 897–915.

Marconi, C. 2011. L’identificazione della Dea di Morgantina. Prospettiva: rivista di storia dell’arte antica emoderna (in italian). Oliveira, C. S. , Çakti, E. , Stengel, D. and Branco, M. 2012. Minaret Behavior Under Earthquake Loading:The Case of Historical Istanbul. Earthquake Engineering and Structural Dynamics 41(1):19–39. Palmeri, A. , Makris, N. 2008. Response of rigid structures rocking on viscoelastic foundation. EarthquakeEngineering and Structural Dynamics 37, 1039–1063. Parisi, F. , Augenti, N. 2013. Earthquake damages to cultural heritage constructions and simplifiedassessment of artworks. Engineering Failure Analysis 34, 735–760. Podany, J. 2015. An overview of seismic damage mitigation for museums. Proc. of International Symposiumon Advances of Protection Devices for Museum Exhibits, Beijing and Shanghai (China), 13–17 April 2015. Raffiotta, S. 2011. La Venere di Morgantina. Torna a casa un capolavoro dell’arte classica. Archeologia Viva(in Italian). Shenton, H. W. , Jones, N. P. 1991. Base excitation of rigid bodies. I: Formulation. Journal of EngineeringMechanics, ASCE 117(10), 2286–2306. Spanos P. D. & Koh, A. S. 1984. Rocking of rigid blocks due to harmonic shaking. Journal of EngineeringMechanics 110(11), 1627–1642. Spyrakos, C. C. , Maniatakis, C. A. , Taflampas, I. M. 2017. Application of predictive models to assess failureof museum artifacts under seismic loads. Journal of Cultural Heritage 23, 11–21. Stavridis, A. N. , Schoettler, M. J. , Somerville, P. G. , Thio, H. K. and Podany, J. C. 2006. Design of a self-centering seismic base isolator for an antiquity, In: Proceedings of the 8th U.S. National Conference onEarthquake Engineering, San Francisco, California, USA, 18–22 April, 2006. Vestroni, F. , Di Cinto, S. 2000. Base isolation for seismic protection of statues. In: Proceedings of the 12thWorld Conference on Earthquake Engineering, Auckland (New Zealand) 30 January–4 February 2000. NewZealand Society for Earthquake Engineering. Zisa, F. 2018. L’Afrodite di Morgantina: questione di identità. In: Pre Atti-Dialoghi sull’Archeologia dellaMagna Grecia e del Mediterraneo, Paestum (Italy), 16–18 November 2018 (in Italian).

Parametric simulations on the stability conditions of the masonry wall ofChandakas, Heraklion City, Crete, Greece Amorosi, A. , Boldini, D. , de Felice, G. , Malena, M. & Di Mucci, G. 2014. Numerical modelling of theinteraction between a deep excavation and an ancient masonry wall. in 8th International Symposium onGeotechnical Aspects of Underground Construction in Soft Ground at Seoul, Korea. doi: 10.1201/b17240-46. Angiolilli, M. & Gregori, A. 2020. Triplet test on rubble stone masonry: Numerical assessment of the shearmechanical parameters. Buildings. 10(3): 15–17. doi: 10.3390/buildings10030049. Aras, F. & Gülay, A. 2015. Investigation of mechanical properties of masonry in historic buildings. Journal ofthe Croatian Association of Civil Engineers. 67(3):461–469. doi: 10.14256/jce.1145.2014. Binda, L. , Fontana, A. , & Mirabella, G. 1994. Mechanical behavior and stress distribution in multiple-leafstone walls. 10th International Brick Block Masonry Conference. 1:51-59. EN 1996-1-1 . 2005. (English): Eurocode 6: Design of masonry structures - Part 1-1: General rules forreinforced and unreinforced masonry structures [Authority: The European Union Per Regulation 305/2011,Directive 98/34/EC, Directive 2004/18/EC] Farshchi, D. M. , Masoud, M. , Schumacher, A. & Marefat, M. S. 2009. Numerical modelling of in-planebehaviour of URM walls and an investigation into the aspect ratio, vertical and horizontal post-tensioning andhead joint as a parametric study. Archives of Civil and Mechanical Engineering. 9(1): 5–27. doi:10.1016/s1644-9665(12)60037-5. Guadagnuolo, M. , Aurilio, M. , Basile, A. & Faella, G. 2020. Modulus of elasticity and compressive strengthof tuff masonry: Results of a wide set of flat-jack tests. Buildings 10(5):84. doi:10.3390/BUILDINGS10050084. Koksal, H. O. , Doran, B. , Kuruscu, A. O. & Kocak, A. 2016. Elastoplastic Finite Element analysis ofmasonry shear walls. KSCE Journal of Civil Engineering. 20(2):784–791. doi: 10.1007/s12205-015-0393-1. Korany, Y. 2011. Effective techniques for restoration of heritage Masonry. International Journal of Materialsand Structural Integrity 5(2-3):136–150. doi: 10.1504/IJMSI.2011.041931. Lourenço, P. B. 2002. Computations on historic masonry structures. Progress in Structural Engineering andMaterials 4(3):301–319. doi:10.1002/pse.120. Lourenco, P. B. , Barros, J. O. & Oliveira, J. T. 2004. Shear testing of stack bonded masonry. Constructionand Building Materials. 18:125–132. doi: 10.1016/j.conbuildmat.2003.08.018. Milosevic, J. , Gago, A. S. , Lopes, M. & Bento, R. 2013. Experimental assessment of shear strengthparameters on rubble stone masonry specimens. Construction and Building Materials. 47:1372–1380. doi:

10.1016/j.conbuildmat.2013.06.036. Petersen, R. B. 2009. In-plane Shear Behaviour of Unreinforced Masonry Panels Strengthened with FibreReinforced Polymer Strips, PhD Thesis. Newcastle-Australia. Tzompanaki, C. 2012. CHANDAKAS. THE CITY AND THE WALLS. (2). Heraklion. Greece: VIKELAIAPUBLIC LIBRARY. Vasconcelos, G. & Lourenço, P. B. 2009. Experimental characterization of stone masonry in shear andcompression. Construction and Building Materials. 23(11):3337–3345. doi:10.1016/j.conbuildmat.2009.06.045. Xatzistergiou, G. , & Skopelitis, I. 2010. Restoration study for the line-segment Bembo-Saint Francis and forthe orrechione of Sabbionara bastion of the Venetian walls (Duke Beaufort Street). Heraklion. Greece:Xatzistergiou & Associates Zavalis, R. , Jonaitis, B. & Lourenço, P. B. 2014. Analysis of bed joint influence on masonry modulus ofelasticity. 9th International Masonry Conference in Guimarães:1–11. doi: 10.13140/2.1.1643.3442. Korompilas, D. N. 2015. Study of the inelastic behaviour of the Konitsa bridge with the use of inelasticsimulation for the masonry and application of reinforcement methods. Patra: University of Patra.http://hdl.handle.net/10889/8762 Sithiakaki, V. , Kanaki, E. & Bilmezi, X. 2013. Older fortifications of Heraklion: A different approach based onrecent excavation data. In Archaeological work in Crete. Proceedings of the 3rd Meeting Rethymnon: 395-410, 5-8 December 2013. Rethymno: Department of Philosophy and Social studies. University of Crete –Ephorate of Antiquities of Rethymno

Low-impact mitigation measures to contrast the instability processes affecting theEtruscan necropolis of Norchia Ambrosini, L. , 2017. NORCHIA II (2 volumi testo+tavole) - Le necropoli ruprestri dell'Etruria meridionale III.Monografie CNR IBAM - ISTITUTO PER I BENI ARCHEOLOGICI E MONUMENTALI CNR ISBN:9788880802204. Boldini, D. , Guido, G.L. , Margottini, C. & Spizzichino D. 2017. Stability Analysis of a Large-Volume Block inthe Historical Rock-Cut City of Vardzia (Georgia). Rock Mech Rock Eng. https://doi.org/10.1007/s00603-017-1299-7. British Standard (1989). BS 8081: Code of practice for ground anchorages. Bear A. N. , Giordano G. , Giampaolo C. , & Cas, R. A. F. 2009. Volcanological constraints on the postem-placement zeolitisation of ignimbrites and geoarchaeological implications for etruscan tomb con-struction(6th-3rd century B.C.) in the red black slag tufa, Vico caldera, central Italy. Journal of Volca-nology andGeothermal Research, 183(3-4), 183–200. Ciccioli P. , Cattuto C. , Plescia P. , Valentini V. , & Negrotti R. 2010. Geochemical and engineeringgeological properties of the volcanic tuffs used in the Etruscan tombs of Norchia (northern Latium, Italy) anda study of the factors responsible for their rapid surface and structural decay. Archaeometry, 52(2), 229–251doi:http://dx.doi.org.ezproxy.unibo.it/10.1111/j.1475-4754.2009.00464.x Clonna E. & Colonna G. 1978. NORCHIA I. Le necropoli rupestri dell’Etruria. Ed. CNR. doi:http://dx.doi.org.ezproxy.unibo.it/10.1016/j.jvolgeores.2009.03.016. Deere, D.U. and Miller, R.P. (1966). Engineering classification and index properties for intact rock.” ReportAFWL-TR-65-116. Air Force Weapons Laboratory (WLDC), Kirtland Air Force Base, New Mexico,87117.Deere and Miller (1966) Rock Mass classification ISRM (1994). Raccomandazioni per determinare la resistenza a compressione monoassiale e la defor-mabilità dei materiali rocciosi. ISRM (1997). Metodologie di prova suggerite per la determinazione della resistenza a trazione di mate-rialirocciosi. Ribacchi R. , Rotonda T. , Graziani A. , Boldini D. , Tommasi P. , Lembo-Fazio A. 2018. Meccanica delleRocce. Teoria e Applicazioni nell’Ingegneria. Edizioni Efesto e Hevelius Edizioni.https://www.facebook.com/anticaeviae/photos/norchia-gli-etruschi-e-le-necropoli-rupestrinon-%C3%A8-noto-il-nome-antico-della-citt/3303436513001809/. Perini S. , Rossi P. , Tamagnini F. Gruppo Mineralogico Romano . 200. L’approccio alla ricerca di mineralisecondo il criterio geologico: l’esempio del vulcano Vicano. Stucchi M. , Meletti C. , Montaldo V. , Akinci A. , Faccioli E. , Gasperini P. , Malagnini L. , Valensise G. ,2004. Pericolosità sismica di riferimento per il territorio nazionale MPS04. Istituto Nazionale di Geofisica eVulcanologia (INGV) doi:https://doi.org/10.13127/sh/mps04/ag.

Geotechnical investigation and stabilization of the foundations of a NationalHeritage site in Portugal, the Penedono Castle Instituto Português da Qualidade (2010) Eurocódigo 8: Projecto de estruturas para resistência aos sismos.Parte 1: Regras gerais, acções sísmicas e regras para edifícios [Eurocode 8: Design of structures forearthquake resistance. Part 1: General rules, seismic actions and rules for buildings] (NP EN 1998-1:2010).Portuguese. Instituto Português da Qualidade (2012) Revestimentos de zinco por imersão a quente sobre produtosacabados de ferro e aço; Especificações e métodos de ensaio [Hot dip galvanized coatings on fabricatediron and steel articles - specifications and test methods] (NP EN ISO 1461:2012). Portuguese. Instituto Português da Qualidade (2015) Avaliação da influência de vibrações impulsivas em estruturas[Assessment of impulsive vibrations on structures] (NP 2074 2015). Portuguese.

Lateral disconnection of foundations: A respectful seismic isolation of historicbuilding Alpan, I. 1970. The geotechnical properties of soils. Earth-Science Reviews, 6(5):49–62 Brennan A.J. , Klar A. , Madabhushi S.P.G. 2013. Mitigation of seismic accelerations by soft caissons.International Journal of Geotechnical Earthquake Engineering, 4:1–17 Brinkgreve, R.B.J. , Swolfs, W.M. , Engine, E. 2011. “PLAXIS user's manual” Di Donna A. , Ferrari A. , Laloui L. 2016. Experimental investigations of the soil–concrete interface: physicalmechanisms, cyclic mobilization, and behaviour at different temperatures. Canadian Geotechnical Journal.53(4): 659–672. https://doi.org/10.1139/cgj-2015-0294 Kirtas E. , Rovithis E. , Pitilakis K. 2009. Subsoil Interventions Effect on Structural Seismic Response. Part I:Validation of Numerical Simulations. Journal of Earthquake Engineering, 13(2):155–169. Kulhawy, F. H. , Trautmann, C. H. , Beech, J. F. , O’Rourke, T. D. , McGuire, W. , Wood, W. A. , Capano, C.1983. Transmission line structure foundations for uplift compression loading. Final report. USA. Nappa V. , Bilotta E. , Flora A. , Madabhushi S.P.G. 2016. Centrifuge modelling of the seismic performanceof soft buried barriers. Bulletin of Earthquake Engineering, 14(10): 2881–2901. Nappa, V. , Bilotta, E. , Flora, A. 2019. Experimental and Numerical Investigation on the Effectiveness ofPolymeric Barriers to Mitigate Vibrations. Geotechnical and Geological Engineering, 37(6): 4687–4705. Pitilakis K. , Karapetrou S. , Tsagdi K. 2015. Numerical investigation of the seismic response of RC buildingson soil replaced with rubber–sand mixtures. Soil Dynam Earthq Eng., 79:237–252. Somma F. , Bilotta E. , Flora A. , Viggiani G.M. 2021. Centrifuge modelling of shallow foundations lateraldisconnection to reduce seismic vulnerability. Journal of Geotechnical and Geoenvironmental Engineering.doi: 10.1061/(ASCE)GT.1943-5606.0002746 Somma F. , Flora A. , Bilotta E. Viggiani G.M. 2021. Numerical analysis on shallow foundations lateraldisconnection. 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics andEarthquake Engineering. Athens, Greece, 27–30 June 2021. Terzaghi, K. 1943. Theoretical Soil Mechanics. Wiley , New York . Vesic A.S. 1973. Analysis of ultimate loads of shallow foundations. J. Soil Mech. Found., 99 (1), 45–73. Viggiani C. 2017. Geotechnics and Heritage. Second Kerisel Lecture, Proc. Of 19th ICSMGE, Seoul, SouthKorea. Yegian M.K. , Catan M. 2004. Soil isolation for seismic protection using a smooth synthetic liner. J GeotechGeoenviron Eng, 130:1131–1139.

Restoration and renovation works for the Catacombs of San Gennaro in Napoli,Italy Barton, N. 1973. Review of a shear strength criterion for rock joints. Engineering Geology 7:287–332. de Silva, F. & Scotto di Santolo, A. 2018. Probabilistic Performance-based Approaches to the Static andSeismic Assessment of Rock Cavities. International Journal of Rock Mechanics and Mining Sciences112:354–368. Evangelista, A. , Pellegrino, F. (1990) Caratteristiche geotecniche di alcune rocce tenere italiane. Atti delterzo ciclo di Conferenze di Meccanica e Ingegneria delle Rocce, MIR90, Torino (in Italian).

Geomorphological processes and rock slope instabilities affecting the AlUlaarchaeological region Boldini, D. , Guido, G.L. , Margottini, C. And Spizzichino D. 2017. Stability Analysis of a Large-Volume Blockin the Historical Rock-Cut City of Vardzia (Georgia). Rock Mech Rock Eng. https://doi.org/10.1007/s00603-017-1299-7. Bosworth W. , 2015. Geological Evolution of the Red Sea: Historical Background, Review, and Synthesis. InNajeeb M.A. Rasul and Ian C.F. Stewart (eds.) The Red Sea. The Formation, Morphology, Oceanographyand Environment of a Young Ocean Basin. Springer Verlag. Burohappold Engineering (2019) Al Ula Water Resources Study. Report 1.2 Aquifer Status and Condition.Internal report. Donal G. , Hadley D. , Elisabet M. , Brouwers H. , Thoma M. , Bown S. , 2020. Quaternary paleodunes,Arabian Gulf coast, Abu Dhabi Emirate: Age and paleoenvironmental evolution. BookQuaternary Desertsand Climatic Change, 1st Edition, First Published 1998, Imprint CRC Pres, pages 17,eBook ISBN9781003077862 Fnais, M. Al-Amri A. , Abdelrahman K. , E. Abdelmonem , S. El-Hady Seismicity and Seismotectonics ofJeddah-Makkah Region, West-Central Saudi Arabia J. Earth Sci., 26 (5) (2015), pp. 746–754,10.1007/s12583-015-0587-y ISRM (1978a) - Suggested methods for the quantitative description of discontinuities in rock masses. Int.Journ. Rock Mech. Min. Sci. & Geomech. ISRM (1978b) - Suggested methods for determining hardness and abrasiveness of rocks. Int. Journ. RockMech. Min. Sci. & Geomech. ISRM (1981) Suggested Methods for Determining Tensile Strength of Rock Materials. In: Brown, E.T. , Ed.,Suggested Method: Rock Characterization, Testing and Monitoring, Pergamon Press, Oxford, 211. Margottini C. , Spizzichino D. , 2022. Weak rocks in the Mediterranean region and surroundings: Threats andmitigation strategies for selected rock-cut heritage sites, Engineering Geology,Volume 297, 106511,ISSN0013-7952 https://doi.org/10.1016/j.enggeo.2021.106511. Margottini C. , Spizzichino D. 2021. Traditional Knowledge and Local Expertise in Landslide Risk Mitigationof World Heritages Sites. In: Sassa K. , Mikoš M. , Sassa S. , Bobrowsky P.T. , Takara K. , Dang K. (eds)Understanding and Reducing Landslide Disaster Risk. WLF 2020. ICL Contribution to Landslide DisasterRisk Reduction. Springer, Cham. https://doi.org/10.1007/978-3-030-60196-6_34; Ramsey B. C. 2020. OxCal. Available at: https://c14.arch.ox.ac.uk/oxcal.html (accessed 29 March 2021 ). Donald G. & Hadly, G. (1987). Explanatory notes to the Geological map of the Sahl Al Matran Quadrangle,sheet 26 C, Kingdom of Saudi Arabia, pp,1-24. Reimer, P.J. et al. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 calkBP). Radiocarbon 62: 725–757. https://doi.org/10.1017/RDC.2020.41. D. Spizzichino , C. Margottini , V. Chiessi , and D. Boldini . 2016. Assessment of the stability conditions of alarge-volume sandstone block in the northern sector of the Siq of Petra. Landslides and Engineered Slopes.Experience, Theory and Practice, pp.1851 -1858 Thomas, H. , Kennedy, M. , Dalton, M. , McMahon, J. , Boyer, D. , & Repper, R. (2021). The mustatils: Cultand monumentality in Neolithic north-western Arabia. Antiquity, 95(381), 605–626.doi:10.15184/aqy.2021.51. Wahbi A. M. (2014) Sedimentological and stratigraphic studies of the cambro-ordovician succession innorthwest Saudi Arabia. Master Thesis of King Fahd University of Petroleum & Minerals. Dhahran, SaudiArabia.

Monitoring of the rock mass deformation under the Pont du Gard pier VIIfoundation Amaral Vargas, E. Velloso, R.Q. Chavez, L.E. Gusmao, L. Amaral C.P. 2013. On the effect of thermallyinduced stresses in failures of some rock slopes in Rio de Janeiro, Brazil. Rock Mechanics and RockEngineering 46(1): 123–134. Anderson, M.P. 2005. Heat as a ground water tracer. Ground Water 43(6): 951–968. Bakun-Mazor, D. Hatzor, Y.H. Glaser, S.D. Santamarina, J.C. 2013. Thermally vs. seismically induced blockdisplacements in Masada rock slopes. International Journal of Rock Mechanics and Mining Sciences 61:196–211. Blasi, C. & Coïsson, E. 2008. The effects of temperature on historical stone masonry structures. StructuralAnalysis of Historic Construction; Proc. 6th Int. Conf., Bath, UK, 2, 1271-1276.

Brown, L.E. & Hannah, D.M. 2007. Alpine stream temperature response to storm events. Journal ofHydrometeorology 8: 952–967. Cassie, D. 2006. The thermal regime of rivers: A review. Freshwater Biology 51(8):1389–1406. Collins, B.D. & Stock, G.M. 2016. Rockfall triggering by cyclic thermal stressing of exfoliation fractures.Nature Geoscience 9: 295–400. Delmonaco, G. Brini, M. Cesaro, G. 2017. Advanced monitoring systems for landslide risk reduction in the'Siq' of Petra (Jordan). Digital Workflows for Heritage Conservation; Proc. 26th Int. Symp. CIPA 2017,Ottawa, Canada. Fiorucci, M. Marmoni, G.M. Martino, S. Mazzanti, P. 2018. Thermal response of jointed rock masses inferredfrom infrared thermographic surveying (Acuto Test-Site, Italy). Sensors 18(7): 2221. Greif, V. Sassa, K. Fukuoka, H. 2006. Failure mechanism in an extremely slow rock slide at Bitchu-Matsuyama castle site (Japan). Landslides 3(1): 22–38. Greif, V. Brcek, M. Vlcko, J. Varilova, Z. Zvelebil, J. 2017. Thermomechanical behavior of Pravcicka BranaRock Arch (Czech Republic). Landslides 14(4): 1441–1445. Gunzburger, Y. Merrien-Soukatchoff, V. Guglielmi, Y. 2005. Influence of daily surface temperaturefluctuations on rock slope stability: case study of the Rochers de Valabres slope (France). InternationalJournal of Rock Mechanics and Mining Sciences 42(3): 331–349. Hall, K. 1999. The role of thermal stress fatigue in the breakdown of rock in cold regions. Geomorphology31(1-4): 47–63. Hasler, A. Gruber, S. Haeberli, W. 2011. Temperature variability and offset in steep alpine rock and icefaces. The Cryosphere 5: 977–988. Hayashi, H. Tasaki, M. Uchiyama, N. Morita, M. 2013. Water quality and pollution load during flood and non-flood periods in an urban tidal river. Techniques et Stratégies Durables pour la Gestion des Eaux Urbainespar Temps de Pluie ; Actes 8éme Conf. Inter. NOVATECH 2013, Lyon, France, 1-10. Jenkins, K.A. & Smith B.J. 1990. Daytime rock surface temperature variability and its implications formechanical rock weathering: Tenerife, Canary Islands. Catena 17:449–459. Klepikova, M.V. Le Borgne, T. Bour, O. Gallagher, K. Hochreutener, R. Lavenant, N. 2014. Passivetemperature tomography experiments to characterize transmissivity and connectivity of preferential flowpaths in fractured media. Journal of Hydrology 512: 549–562. Luetscher, M. Jeannin, P.Y. 2004. Temperature distribution in karst systems: the role of air and water fluxes.Terra Nova 16: 344–350. Magne, L. Lecoq, N. Rodet, J. Chedeville, S. Viard, J.P. 2017. Evidence of daily and seasonal inversions ofairflow in petites dales cave, Normandy, France. Acta Carsologica 46(2-3): 179–197. Magnin, F. Deline, P. Ravanel, L. Noetzli, J. Pogliotti, P. 2015 Thermal characteristics of permafrost in thesteep alpine rock walls of the Aiguille du Midi (Mont Blanc Massif, 3842 m a.s.l). The Cryosphere 9:109–121. Marmoni, G.M. Fiorucci M. Grechi, G. Martino, S. 2020. Modelling of thermo-mechanical effects in a rockquarry wall induced by near-surface temperature fluctuations. International Journal of Rock Mechanics andMining Sciences 134. Merrien-Soukatchoff, V. & Gasc-Barbier, M. 2017. Consequences of daily and annual thermal cycles onfracture propagation and rock slopes stability. Progressive Rock Failure; Proc. ISRM Conf., Ascona,Switzerland, 12-14. Moore, J.R. Gischig, V. Katterbach, M. Loew, S. 2011. Air circulation in deep fractures and the temperaturefield of an alpine rock slope. Earth Surface Processes and Landforms 36(15): 1985–1996. Moreno, F. & Froese, C.R. 2007. Turtle Mountain Field Laboratory (TMFL): Part 2 – Review of Trends: 2003to 2006. Proc. 1st North American Landslide Conference, Vail, Colorado. Moreno, F. & Froese, C.R. 2012. Turtle Mountain Field Laboratory, Alberta (NTS 82G): 2010 Data andActivity Summary. Energy Resources Conservation Board/Alberta Geological Survey, ERCB/AGS Open FileReport 2012-03. Mufundirwa, A. Fujii, Y. Kodama, N. Kodama, J. 2011 Analysis of natural rock slope deformations undertemperature variation: A Case Study from Japan. Rock Slope Stability in Open Pit Mining and CivilEngineering; Proc. Int. Symp. Vancouver, Canada. O’Driscoll, M.A. & DeWalle, D.R. 2006. Stream–air temperature relations to classify stream-ground waterinteractions in a karst setting, central Pennsylvania, USA. Journal of Hydrology 329: 140–153. Pasten, C. García, M. Cortes, D.D. 2015. Physical and numerical modelling of the thermally inducedwedging mechanism. Geotechnique Letters 5(3): 186–190. Racek, O. Blahut, J. Hartvich, F. 2021. Observation of the rock slope thermal regime, coupled with crackmeter stability monitoring. Geoscientific Instrumentation Methods and Data Ststems, 2021. Read, T. Bour, O. Bense, V. Le Borgne, T. Goderniaux, P. Klepikova M.V. Hochreutener, R. Lavenant, N.Boschero, V. 2013. Characterizing groundwater flow and heat transport in fractured rock using Fiber-OpticDistributed Temperature Sensing. Geophysics Research Letter 40: 2055–2059.

Serratrice, J.F. 2020. Suivi des déformations du massif rocheux sous la fondation de la pile VII du Pont duGard. Revue Française de Géotechnique 2020, 164, 2 Subehi, L. Fukushima, T. Onda, Y. Mizugaki, S. Gomi, T. Kosugi, K. Hiramatsu, S. Kitahara, H. Kuraji, K.Terajima, T. (2010). The changes in steam water temperature and water quality parameters during rainfallevents in forested watersheds: scaling of observations. The Indonesian Journal of Geography42(2):159–180. Taboada, A. Ginouvez, H. Renouf, M. Azemard, P. 2017. Landsliding generated by thermomechanicalinteractions between rock columns and wedging blocks: Study case from the Larzac Plateau (SouthernFrance). Powders and Grains Proc. 8th Inter. Conf. on Micromechanics on Granular Media, Montpellier,France. Villarraga, C. Vaunat, J. Gasc-Barbier, M. 2017. Modelling thermal induced damage in permeable rocks.Proc. 9th workshop on code Bright, Barcelone, Spain. Vlcko, J. Greif, V. Grof, V. Jezny, M. Petro, L. Brcek, M. 2009. Rock displacement and thermal expansionstudy at historic heritage sites in Slovakia. Environmental. Geology 58(8): 1727–1740. Vlcko, J. Brcek, M. Greif, V. 2014. Deformations dynamics in response to seasonal temperature oscillations:An example from Pravcicka Brana Rock Arch (Czech Republic). Landslide Science for a SaferGeoenvironment 3, 363–368. Warren, J. Morgan, A.J. Chao, D.K. Froese, C.R. Wood, D.E. 2014. Turtle Mountain Field Laboratory,Alberta (NTS 82G): 2012 Data and Activity Summary. Alberta Energy Regulator, AER/AGS Open File Report2014-09, 16 p. Zeiger, S.J. Hubbart, J.A. 2015. Urban stormwater temperature surges: A central US watershed Study.Hydrology 2(4): 193–209.

Seismic wave dispersion in high-rise historical building by interferometricanalysis: The case history of Giotto's Bell Tower Anzani A. , Binda L. , Mirabella Roberti G. (2000). The effect of heavy persistent actions into the behaviour ofancient masonry, Mat. Struct., RILEM 33, 228, 251–261. Binda L. , Gatti G. , Mangano G. , Poggi C. , Sacchi Landriani G. (1992). The collapse of the Civic Tower ofPavia: a survey of the materials and structure, Masonry International 6 (1), 11–20. Brincker R. , P. Andersen and N. J. Jacobsen (2007). Automated Frequency Domain Decomposition forOperational Modal Analysis; in Proceedings of the 25th SEM International Modal Analysis Conference,February 19-22, Orlando, Florida, USA. Cadignani R. , Lancellotta R. , Sabia D. (2019). The restoration of Ghirlandina Tower in Modena and theassessment of soil-structure interaction by means of dynamic identification techniques. CRC Press,Taylor&Francis Group, London, 144 pp. Cosentini R.M. , Foti S. , Lancellotta R. and Sabia D. (2015) Dynamic behaviour of shallow founded historictowers: validation of simplified approaches for seismic analyses, International Journal of GeotechnicalEngineering, 9(1): 13–29. Ebrahimian, M. , and M. I. Todorovska (2013). Wave propagation in a Timoshenko beam building model, J.Eng. Mech. 140, no. 5, 04014018. Ferretti, D. , and Z. P. Bažant (2006a). Stability of ancient masonry towers: Moisture diffusion, carbonationand size effect. Cement and Concrete Research 36:1379–1388. Ferretti, D. , and Z. P. Bažant (2006b). Stability of ancient masonry towers: Stress redistribution due todrying, carbonation, and creep. Cement and Concrete Research 36:1389–1398. Fung Y. C. (1965). Fundations of solid mechanics. Prentice-Hall, N.J., 525 pp. Ghinelli A. , Vannucchi G. (1991). Condizioni stratigrafiche e fondazioni della zona absidale di Santa Mariadel Fiore in Firenze. Bollettino Ingegneri, 1–2. Gueguen P , Mercerat E.D. , and Felipe Alarcon (2019). Parametric Study on the Interpretation of WaveVelocity Obtained by Seismic Interferometry in Beam-Like Buildings. Bulletin of the Seismological Society ofAmerica. doi: 10.1785/0120190054. Gurrieri F. (2015). Il Campanile di Giotto. Atti del ciclo di conferenze, Centro Arte Cultura, maggio-giugno,Mandragora. Graff K.F. (1975). Wave motion in elastic solids. Dover Publications , N.Y., 649 pp. Lacanna G. , M. Ripepe , E. Marchetti , M. Coli , C.A. Garzonio (2016). Dynamic response of the Baptisteryof San Giovanni in Florence, Italy, based on ambient vibration test, Journal of Cultural Heritage, 2016 ,http://dx.doi.org/10.1016/j.culher.2016.02.007 Lacanna G. , M. Ripepe , M. Coli , R. Genco , E. Marchetti (2019). Full structural dynamic response fromambient vibration of Giotto's bell tower in Firenze (Italy), using modal analysis and seismic interferometry,

NTD and E international, 2019, 102, 9–15 http://doi.org/10.1016/j.ndteint.2018.11.002 Lancellotta R. , Sabia D. (2013). The role of monitoring and identification techniques on the preservation ofhistoric towers. Keynote Lecture, 2nd Int. Symposium on Geotechnical Engineering for the Preservation ofMonuments and Historic Sites, Napoli, 57-74. Lancellotta, R. , Sabia, D. (2014). Identification technique for soil-structure analysis of the Ghirlandina tower.International Journal of Architectural Heritage. DOI. 10.1080/15583058.2013.793438. Macchi G. (1993). Monitoring medieval structures in Pavia. Structural Engineering International, 1, 9–9. Michel, C. , and P. Gueguen (2018). Interpretation of the velocity measured in buildings by seismicinterferometry based on Timoshenko beam theory under weak and moderate motion, Soil Dynam. Earthq.Eng. 104, 131–142, doi: 10.1016/j.soildyn.2017.09.031. Park, C. , R. Miller , and J. Xia (1998). Imaging dispersion curves of surface waves on multi-channel record,SEG Technical Program Expanded Abstracts, 1377–1380, doi:10.1190/1.1820161. Rainieri C. , G. Fabrocino , Automated output-only indentification of civil engineering structures, MechanicalSystems and Signal Processing 24 (2010) 678–695. Ripepe M. , Coli M. , Lacanna G. , Marchetti E. , Cristofaro M. T. , De Stefano M. , Mariani V. , Tanganelli M., Bianchini P. (2015). Dynamic response of the Giotto's Bell-Tower, Firenze, Italy. Proc. Engineering Geologyfor Society and Territory, G. Lollino et al eds, vol. 8, 323-327. Saisi A. , C. Gentile : Post-earthquake diagnostic investigation of a historic masonry tower. Journal ofCultural Heritage 16 (2015) 602–609, doi:10.1016/j.culher.2014.09.002. Sneider R. and E. Safak (2006). Extracting the building response using seismic interferometry: Theory andapplication to the Millikan Library in Pasadena, California. Bulletin of the Seismological Society of America,Vol. 96, No. 2, pp.586–598. Timoshenko S. P. (1921). On the correction for shear of the differential equation for transverse vibrations ofprismatic bars. Phil. Mag., Ser. 6, 41, 744. Timoshenko S.P. (1928). Vibration problems in engineering. Van Nostrand, New Jersey. Todorovska, M.I. (2009). Seismic interferometry of a soil-structure interaction model with coupled horizontaland rocking response. Bulletin of the Seismological Society of America, Vol. 99, No. 2A, pp.611–625. Zemanek J. , Rudnick I. (1961). Attenuation and dispersion of elastic waves in a cylindrical bar. J. Acoust.Soc. Am. 33, 1283–1288.

Progress in digital documentation for historical sites by photogrammetry andrecent technology Atkinson, K.B. 2003. Close Range Photogrammetry and Machine Vision. London: Whittles Pub. Fujii, Y. & Hori, S. 2004. Three dimensional observation of fracture distribution by stereo-photogrammetry.The Journal of the Geological Society of Japan 110 (4): 251–253. (in Japanese) Fujii, Y. , Fodde, E. , Watanabe, K. & Murakami K. 2009. Digital Photogrammetry for the Documentation ofStructural Damage in Earthen Archaeological Sites: the case of Ajina Tepa, Tajikistan. Engineering Geology105: 124–133. Fujii, Y. , Shogaki, T. & Miyakawa, M. 2015. Photogrammetric documentation and measurement of surfaceerosion in Yokosuka. Japanese Geotechnical Journal 10(4): 595–602 (in Japanese with English abstract). Fujii, Y. , Shogaki, T. & Miyakawa, M. 2018. Photogrammetric documentation and non-invasive investigationof a stone dry dock, the Yokosuka Arsenal dry dock No. 1, Japan. Engineering Geology 234: 122–131. Litvinskij, B. , Zejmal, T.I. 2004. The Buddhist Monastery of Ajina Tepa, Tajikistan. Isiao, Rome. 190 pp. Luhmann, T. , Robson, S. , Kyle, S. & Boehm, J. 2014. Close Range Photogrammetry and 3D Imaging.Berlin/Boston: de Gruyter. Linder, W. 2003. Digital Photogrammetry Theory and Applications. Berlin: Springer. Takeuchi, K. & Fujii, Y. 2022. The characteristics of “Artificial Stone Construction” used in civil engineeringstructure – A case study of Doudo lumberyard –. GEOTECHNICAL ENGINEERING FOR THEPRESERVATION OF MONUMENTS AND HISTORIC SITES in press.

The characterization of slope damage at the Civita di Bagnoregio plateau using aremote sensing approach Agisoft . 2020. Metashape version 1.7. https://www.agisoft.com/ Bandis, S. , Colombini, V. , Delmonaco, G. & Margottini, C. 2000. New typology of low environmental impactconsolidation for rock fall prone cliffs through intervention from the underground. In: Bromhead, E., Dixon, N.& Ibsen, M-L. (eds). Landslides in Research, Theory and Practice. Proceedings of the 8th InternationalSymposium on Landslides, Jube 26-30 2000, Cardiff, Wales, UK. Bertini, M. , D’Amico, C. , Deriu, M. , Girotti, O. , Tagliavini, S. & Vernia, L. 1971a. Note illustrative della cartageologica d’Italia. Foglio 137 Viterbo. Servizio geologico d’Italia. (In Italian). Bertini, M. , D’Amico, C. , Deriu, M. , Girotti, O. , Tagliavini, S. & Vernia, L. 1971b. Carta geologica d’Italia.Foglio 137 Viterbo. Servizio geologico d’Italia. (map). Borgatti, L. , Guerra, C. , Nesci, O. Romeo, R.W. , Veneri, F. , Landuzzi, A. , Benedetti, G. , Marchi, G. &Lucente C.C. 2015. The 27 February 2014 San Leo landslide (northern Italy). Landslides 12, 387–394. CloudCompare (2021). CloudCompare version 2.11. https://www.danielgm.net/cc/ Delmonaco, G. , Margottini, C. , Puglisi, C. , Falconi, L. & Spizzichino, D. 2004. The dying town of Civita diBagnoregio and the killer landslide. In: Lacerda, W., Mauricio Ehrlich, Fontoura, S.A.B., Sayao A.S.F. (eds).Landslides: Evaluation and Stabilization. Proceedings of the Ninth International Symposium on Landslides,June 28-July 2 2004, Rio de Janeiro, Brazil. Donati, D. , Stead, D. , Elmo, E. & Borgatti, L. 2019. A preliminary investigation on the role of brittle fracturein the kinematics of the 2014 San Leo landslide. Geosciences 9, 256. Donati, D. , Stead, D. , Elmo, D. , Karimi Sharif, L. , Gao, F. , Borgatti, L. & Spreafico, M. 2018. Experiencegained in modelling brittle fracture in rock. In: ARMA (ed). 52nd U.S. Rock Mechanics/GeomechanicsSymposium. Seattle, Washington, June 17–20, 2018. Paper n. ARMA-2018-821. Donati, D. , Westin, A. , Stead, D. , Clague, J. , Stewart, T. , Lawrence, M. & Marsh, J. 2021. Areinterpretation of the Downie Slide (British Columbia, Canada) based on slope damage characterization andsubsurface data interpretation. Landslides 18, 1561–1583. Donati, D. , Stead, D. , Lato, M. & Gaib, S. 2020. Spatio-temporal characterization of slope damage: insightsfrom the Ten Mile Slide, British Columbia, Canada. Landslides 17, 1037–1049. Elmo, D. , Donati, D. & Stead, D. 2018. Challenges in the characterisation of intact rock bridges in rockslopes, Engineering Geology 245, 81–96 Geomechanica . 2020. Irazu FEMDEM. https://www.geomechanica.com/software Kvapil. R. & Clews, M. 1979. An examination of the Prandtl mechanism in large dimension slope failures.Transactions of the Institution of Mining and Metallurgy: section A, Volume 88, A1–A5. Itasca Ltd. 2021. FLAC: Fast Lagrangian Analysis of Continua, Version 8.1.https://www.itascacg.com/software/FLAC Itasca Ltd. 2019. Slope Model version 3. https://www.itascacg.com/software/Slope-Model Margottini, C. 1990. Evoluzione morfologica dell’area di Civita di Bagnoregio in tempi storici. In: Margottini,C. & Serafini S. (eds). Civita di Bagnoregio. Osservazioni geologiche e monitoraggio storico dell’ambiente.ENEA, Ass.Progetto Civita. Roma. (In Italian) Margottini, C. (2013). Low environmental impact consolidation works in the rock cliff of Civita di Bagnoregio(Central Italy). In: Margottini, C. , Canuti, P. & Sassa, K. (eds). Landslide science in practice: riskassessment and mitigation. Heidelberg-Berlin-New York: Springer Verlag Inc. RIEGL Laser Measurement Systems GmbH (2017). RiSCAN Pro version 2.8. Rocscience Inc. 2019. Dips version 7.0. https://www.rocscience.com/software/dips Rocscience Inc. 2020. RS2 version 11.0. https://www.rocscience.com/software/rs2 Spreafico, M. , Cervi, F. , Francioni, M. , Stead, D. & Borgatti, L. 2017a. An investigation into thedevelopment of toppling at the edge of fractured rock plateaux using a numerical modelling approach.Geomorphology 288, 83–98 Spreafico, M.C. , Franci, F. , Bitelli, G. , Borgatti, L. & Ghirotti, M. 2017b. Intact rock bridge breakage androck mass fragmentationupon failure: Quantification using remote sensing techniques. The Pho-togrammetric Record 32, 513–536 Spreafico, M. , Francioni, M. , Cervi, F. , Stead, D. , Bitelli. G. , Ghirotti, M. , Girelli V.A. , Lucente, C.C. Tini,M.A. & Borgatti, L. 2015. Back analysis of the 2014 San Leo Landslide using combined terrestrial laserscanning and 3D distinct element modelling. Rock Mechanics and Rock Engineering 49, 2235–2251 Tang, C.A. 1997. Numerical simulation of progressive failure and associated seismicity. International Journalof Rock Mechanics and Mining Sciences, 34(2). 249–261.

The geotechnical setting of the forts of the Saxon Shore in SE England: A recordlasting nearly 2 millennia Breeze, David J. 1994. Roman Forts in Britain. Princes Risborough: Shire Publications. Bromhead, E. N. Curtis, R. D. & Schofield, W. 1988 Observation and adjustment of a geodetic surveynetwork to monitor movements in a coastal landslide. Proc. 5th International Symposium on Landslides,Lausanne. 383-386. (Balkema). Bromhead, E. N. , Hopper, A. C. & Ibsen. M. L. 1998. Landslides in the Lower Greensand Escarpment ofSouth Kent. Bulletin of Engineering Geology & the Environment, Vol. 57, No. 2, 131–144. Bromhead, E. N. & Ibsen, M-L. 2004. Landslide and coast erosion damage to historic fortifications in SEBritain. Landslides Vol 3, No. 4, 341–347. Bromhead, E. N. , Ibsen, M-L. & Tapete, D. 2013. 19th and 20th century coastal military installations affectedby coastal erosion in the UK. Geotechnical Engineering for the Preservation of Monuments and HistoricSites. Editors Bilotta, E; Flora, A; Lirer, S. & Viggiani, C. 191-198 CRC/Balkema Bromhead, E. N. 2018. The landslip-damaged Roman fort at Lympne in SE England. From: Rose, E. P. F.,Ehlen, J. & Lawrence, U.L. (eds) Military Aspects of Geology: Fortification, Excavation and TerrainEvaluation. Geological Society, London, Special Publication 473 Copley, G. J. 1977. Camden's Britannia: Kent. Hutchinson & Co., London. Cunliffe, B. 1980. Excavations at the Roman fort at Lympne 1976-8, Brittannia, Vol. 11, 227–288. Dvorak, J. & Mastrolorenzo, G. (1991) The Mechanisms of Recent Vertical Crustal Movements in CampiFlegrei Caldera, Southern Italy (Special Paper (Geological Society of America)), Geological Society of Amer,47p. Fields, N. 2006. Rome's Saxon Shore - Coastal Defences of Roman Britain AD 250-500 (Fortress 56).Botley: Osprey Publishing. Hutchinson, J. N. 1980. The record of peat wastage in the EastAnglian fenlands 1848–1978. J. Ecology 68,No. 1, 229–249. Hutchinson, J. N. & Gostelow, T. P. 1976. The Development of an Abandoned Cliff in London Clay atHadleigh, Essex. Philosophical Transactions of the Royal Society of London. Series A, Mathematical andPhysical Sciences, vol. 283, no. 1315, The Royal Society, 1976, pp. 557–604 Hutchinson, J. N. , Poole, C. Lambert, N. & Bromhead, E. N. 1985. Combined archaeological andgeotechnical investigations in the Roman fort at Lympne, Kent. Brittannia, Vol. 16, 209–239. Hutchinson, J. N. & Bromhead, E. N. 1996. Back analysis of the collapse of a Roman wall built on landslip.7th International Symposium on Landslides, Trondheim, Balkema, 1243-1250. Hutchinson, J. N. , Bromhead, E. N. & Chandler, M. P. 2002. Landslide movements affecting the lighthouseat Saint Catherine's Point, Isle of Wight. Conference on Instability: Planning & Management, ThomasTelford, May 2002. 291-298. Ireland, S. 1986. Roman Britain: a sourcebook. Routledge (Second edition 1996: Taylor & Francis). Pearson, A. 2002. The Roman Shore Forts: Coastal Defences of Southern Britain. Philp, B. 2005. The excavation of the Roman Fort at Reculver, Kent. Dover: Kent Archaeological RescueUnit. Roach-Smith, C. 1850. The Antiquities of Richborough, Reculver, and Lymne, in Kent. London: John RussellSmith. Roach Smith, C. 1852. Report on Excavations on the site of the Roman Castrum at Lymne in Kent, London.Published privately for subscribers, and republished by Harry Margary, Lympne Castle, Kent (undated). Stukeley, W. 1776. Itinerarium Curiosum or an account of the antiquities and remarkable curiosities in natureor art. Second Edition, London: privately published. Wilson, R. J. A. 1980. Roman Forts: An illustrated Introduction to the Garrison Posts of Roman Britain.Bergstrom and Boyle Books.

Static behaviour of in scale masonry vaults under imposed settlement of thesupports Alforno, M. , Monaco, A. , Venuti, F. and Calderini, C. , 2020a. Validation of simplified micro-models for thestatic analysis of masonry arches and vaults, International Journal of Architectural Heritage, 1–17, DOI:10.1080/15583058.2020.1808911

Alforno, M. , Venuti F. , and Monaco, A. 2020b. The structural effects of micro-geometry on masonry vaults,Nexus Network Journal, 22: 1237–1258 Baratta, A. and Corbi, O. 2012. The static behavior of historical vaults and cupolas. Journal of HeritageConservation, 32: 65–81. Barbieri, A. , Carloni, C. and Di Tommaso, A. 2004. Masonry orthotropic vaults in historical construction: theherring-bone pattern. In Proceedings of the 4th International Conference on Arch Bridges ARCH 04(Barcelona, Spain). Boni, C. , D. Ferretti and E. Lenticchia . 2021. Effects of Brick Pattern on the Static Behavior of MasonryVaults, International Journal of Architectural Heritage, DOI: 10.1080/15583058.2021.1874565. Calderini, C. and Lagomarsino, S. 2004. The effect of the masonry pattern on the global behaviour of vaults.In Proceedings of the 4th International Conference on Structural Analysis of Historical Constructions(Padova, Italy). Calvo Barentin, C. , T. Van Mele and P. Block . 2017. Robotically controlled scale-model testing of masonryvault collapse, Meccanica, 53(7): 1917–1929. Choisy, A. 1883. L’art de batir chez les Byzantines. Société anonyme de publications périodiques, Paris. Curioni, G. 1870. L’arte di Fabbricare. Costruzioni civili, stradali, idrauliche. Negro, Torino. D’Altri, A.M. , De Miranda, S. , Castellazzi, G. , Sarhosis, V. , Hudson, J. and Theodossopoulos, D. 2019.Historic barrel vaults undergoing differential settlements, International Journal of Architectural Heritage,DOI:10.1080/15583058.2019.1596332 Eslami, A. , H.R. Ronagh , S.S. Mahini and R. Morshed . 2012. Experimental investigation and nonlinear FEanalysis of historical masonry buildings – A case study, Construction and Building mMaterials, 35:251–260 Ferrero, C. , M. Rossi , P. Roca and C. Calderini . 2021. Experimental and numerical analysis of a scaleddry-joint arch on moving supports, International Journal of Masonry Research and Innovation,10.1504/IJMRI.2021.10035577 Foraboschi, P. 2014. Resisting system and failure modes of masonry domes, Engineering Failure Analysis,44: 315–337. Manuello, A. , Riberi, F. , 2021. Form-finding of pierced vaults and digital fabrication of scaled prototype.Curved and Layer. Struct. 2021; 8:1–15. Milani, G. , M. Rossi , C. Calderini and S. Lagomarsino . 2016. Tilting plane tests on a small-scale masonrycross vault: Experimental results and numerical simulations through a heterogeneous approach. EngineeringStructures, 123: 300–312. Patrucco G. , Rinaudo, F. , Spreafico, A. 2019. A New Handheld Scanner For 3d Survey Of Small Artifacts:The Stonex F6, in The International Archives of the Photogrammetry, Remote Sensing and SpatialInformation Sciences, Volume XLII-2/W15, 2019 27th CIPA International Symposium “Documenting the pastfor a better future”, Ávila, Spain. Rossi, M. , C. Calderini and S. Lagomarsino . 2016. Experimental testing of the seismic in-planedisplacement capacity of masonry cross vaults through a scale model. Bulletin of Earthquake Engineering,14: 261–281 Shao X.X. , He X.Y. , 2021, Real-time 3D Digital Image Correlation for Large Deformation and RotationMeasurements Based on a Deformation Transfer Scheme, in Experimental Mechanics. Wendland, D. 2007. Traditional vault construction without formwork: masonry pattern and vault shape in thehistorical technical literature and in experimental studies. International Journal of Architectural Heritage, 1(4):311–365

Long term geodetic measurements in the Piazza del Duomo (Pisa, Italy) and itsrelevance for monitoring of Leaning Tower Caroti, G. , 2000. Survey and adjustment of the altimetric network for monitoring ground vertical movementsin the area of Pisa. Int. Arch. Photogramm. Remote Sens. XXXII , 20–23. Caroti, G. , Mengali, E. , Rossi, A. , Scalese, C. , 1999. Establishment of a levelling network for themonitoring of possible vertical movements in the area of Pisa-San Giuliano-Pontasserchio-Migliarino. Int.Arch. Photogramm. Remote Sens. XXXII , 154–158. Commissione Pisana per gli Studi sulla Torre Pendente , 1913. Relazione Generale 1913. Pisa. Commissione Pisana per gli Studi sulla Torre Pendente , 1927. Relazione Generale 20 luglio 1927. Pisa. Cresy, E. , Ledwell Taylor, G. , 1829. Architecture of the Middle Ages in Italy : illustrated by views, plans,elevations, sections and details, of the cathedral, baptistery, Leaning Tower or campanile and Campo santoat Pisa, from drawings and measurements taken in the year 1817: accompanied. London. Geri, G. , Palla, B. , 1985. Considerazioni sulle osservazioni ottiche effettuate dall’Istituto di Geodesia eTopografia di Pisa al Campanile del Duomo di Pisa per le variazioni di strapiombo dal 1918 al 1985. Pisa.

Istituto Geografico Militare , 1965. Misure geo-topografiche programmate dall’Istituto Geografico Militare.Firenze. Istituto Geografico Militare , 1966. Rapporto sui movimenti della Torre. Firenze. Lancellotta, R. , Flora, A. , Viggiani, C. , 2017. Geotechnics and Heritage: Historic Towers. Lunardi, P. , 1993. La torre di Pisa: note su una proposta d’intervento alternativa. Mater. e Strutt. Probl. diConserv. 1, 1–24. Palla, B. , Cetti, T. , Poggianti, M. , Mengali, E. , Bartolini, A. , 1976. I movimenti verticali del suolo nellaPianura Pisana dopo il 1920 dedotti dal confronto di livellazioni. Pisa. Palla, B. , Nardi, R. , Pertusati, P.C. , Tongiorgi, M. , 1985. Movimenti differenziali lungo l’asse della dorsalemedia toscana all’altezza dei Monti Pisani, in: C.N.R. (Ed.), 4° Convegno Nazionale Di Geofisica Della TerraSolida. Roma, pp. 1103–1109. Regia Commissione Geodetica Italiana , 1911. Livellazione Geometrica di precisione Linea 42 Pisa-Sarzana.Firenze. Squeglia, N. , Bentivoglio, G. , 2015. Role of Monitoring in Historical Building Restoration: The Case ofLeaning Tower of Pisa. Int. J. Archit. Herit. 9, 38–47. https://doi.org/10.1080/15583058.2013.865813 Squeglia, N. , Stacul, S. , Diddi, E. , 2015. The restoration of San Paolo Church in Pisa: geotechnicalaspects. Riv. Ital. di Geotec. 3/2015, 58–69.

Satellite and on-site monitoring of subsidence for heritage preservation: A criticalcomparison from Piazza del Duomo in Pisa, Italy Bilotta, E. , Flora, A. , Lirer, S. & Viggiani, C. (Eds.) 2013. Geotechnics and Heritage. 11 June 2013, London,UK. ISBN: 978-1-138-00054-4. doi:10.1201/b14965. Bischoff, C. A. , Ferretti, A. , Novali, F. , Uttini, A. , Giannico, C. & Meloni, F. 2020. Nationwide deformationmonitoring with SqueeSAR® using Sentinel-1 data. Proceedings of the Tenth International Symposium onLand Subsidence (TISOLS) 382: 31-37. doi:10.5194/piahs-382-31-2020. Bonazza, A. , Drdácký, M. , Hanus, C. , Maxwell, I. & Vintzileou, E. 2018. Study on safeguarding culturalheritage from natural and man-made disasters: a comparative analysis of risk management in the EU.https://op.europa.eu/en/publication-detail/-/publication/8fe9ea60-4cea-11e8-be1d-01aa75ed71a1. Accessedon October 2021 . Caroti, C. , Piemonte, A. & Squeglia, N. 2019. 100 Years of Geodetic Measurements in the Piazza delDuomo (Pisa, Italy): Reference Systems, Data Comparability and Geotechnical Monitoring. Proceedings ofthe 4th Joint International Symposium on Deformation Monitoring (JISDM), May 2019, Athens, Greece.http://hdl.handle.net/11568/1002453. Casagli, N. , Massini, G. & Bottai, L. 2018. Linee guida per l’utilizzo dei dati interferometrici del geoportaleRegione Toscana.http://www.regione.toscana.it/documents/10180/14985922/Linee+guida+per+l%E2%80%99utilizzo+dei+dati+interferometrici+del+geoportale.pdf/d5b091a7-a5b1-41e9-97c3-270a52b0c7ce. Accessed on October 2021. Cavalagli, N. , Kita, A. , Falco, S. , Trillo, F. , Costantini, M. & Ubertini, F. 2019. Satellite radar interferometryand in-situ measurements for static monitoring of historical monuments: The case of Gubbio, Italy. RemoteSensing of Environment 235. doi:10.1016/j.rse.2019.111453. Cleveland, R. B. , Cleveland, W. S. , McRae, J. E. & Terpenning I. 1990. STL: A Seasonal-TrendDecomposition Procedure Based on Loess. Journal of Official Statistics 6(1): 3–33. Statistics Sweden. Cleveland, W. S. , Devlin, S. J. & Grosse, E. 1988. Regression by Local Fitting: Methods, Properties, andComputational Algorithms. Journal of Econometrics 37: 87–114. Colesanti, C. , Ferretti, A. , Prati, C. & Rocca, F. 2003. Monitoring landslides and tectonic motions with thePermanent Scatterers Technique. Engineering Geology 68(1–2): 3–14. doi:10.1016/S0013-7952(02)00195-3. Commissione Pisana per gli Studi sulla Torre Pendente 1913. Relazione generale 1913. Pisa. Del Soldato, M. , Solari, L. , Raspini, F. , Bianchini, S. , Ciampalini, A. , Montalti, R. , Ferretti, A. ,Pellegrineschi, V. & Casagli, N. 2019. Monitoring Ground Instabilities Using SAR Satellite Data: A PracticalApproach. ISPRS International Journal of Geo-Information 8, 307. doi:10.3390/ijgi8070307. ESA – European Space Agency 2007. InSAR Principles: Guidelines for SAR Interferometry Processing andInterpretation (TM-19 February 2007). Fletcher K. (ed.). ESA Publications, Noordwijk, The Netherlands.ISBN: 92-9092-233-8. ESA – European Space Agency 2019. Copernicus in detail. https://www.copernicus.eu/en/about-copernicus/copernicus-detail. Accessed on October 2021 .

ESA – European Space Agency 2021. Sentinel-1 SAR Instrument. https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/sar-instrument. Accessed on October 2021 . Ferretti, A. , Prati, C. & Rocca, F. 2000. Nonlinear subsidence rate estimation using permanent scatterers indifferential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing 38(5): 2202–2212.doi:10.1109/36.868878. Ferretti, A. , Savio, G. , Barzaghi, R. , Borghi, A. , Musazzi, S. , Novali, F. , Prati, C. & Rocca, F. 2007.Submillimiter Accuracy of InSAR Time Series: Experimental Validation. IEEE Transactions on Geoscienceand Remote Sensing 45(5): 1142–1153. doi:10.1109/TGRS.2007.894440. Ferretti, A. , Fumagalli, A. , Novali, F. , Prati, C. , Rocca, F. & Rucci, A. 2011. A New Algorithm forProcessing Interferometric Data-Stacks: SqueeSAR. IEEE Transactions on Geoscience and RemoteSensing 49 (9): 3460–3470. doi:10.1109/TGRS.2011.2124465. I.G.M. – Istituto Geografico Militare 1965. Misure geo-topografiche programmate dall’Istituto GeograficoMilitare. Firenze. I.G.M. – Istituto Geografico Militare 1966. Rapporto sui movimenti della Torre. Firenze. Lagomarsino, S. & Cattari, S. 2015. PERPETUATE guidelines for seismic performance-based assessmentof cultural heritage masonry structures. Bulletin of Earthquake Engineeering 13: 13–47. doi:10/f6szr2. Leoni, M. , Squeglia, N. & Viggiani, C. 2017. Tower of Pisa: Lessons learned by observation and analysis. InRenato Lancellotta, Alessandro Flora & Carlo Viggiani (Eds.), Geotechnics and Heritage: Historic Towers:15–37. ISBN: 978-1-138-03272-9. doi:10.1201/9781315387468. Meyer, F. 2019. Spaceborne Synthetic Aperture Radar – Principles, Data Access, and Basic ProcessingTechniques. In Flores, A. et al. (ed.), SAR Handbook: Comprehensive Methodologies for Forest Monitoringand Biomass Estimation. E. NASA. doi:10.25966/ez4f-mg98. Noccioli, R. , Polvani, G. , & Salvioni, G. 1971. I movimenti della torre dal giugno 1911 a tutto il 1968.Ricerche e Studi su la Torre Pendente di Pisa e i fenomeni connessi alle condizioni d’ambiente. IstitutoGeografico Militare (ed.), Firenze. Perktold J. , Seabold S. , Sheppard K. et al. 2020. meaghanflagg/statsmodels: v0.12.1-beta (v0.12.1-beta).Zenodo. doi:10.5281/zenodo.4243083. Ramos, L. F. , Masciotta, M. G. , Morais, M. J. , Azenha, M. , Ferreira, T. , Pereira, E. B. & Lourenço, P. B.2018. HeritageCARE: Preventive conservation of built cultural heritage in the South-West Europe. In K. VanBalen, A. Vandesande (Eds.) Innovative Built Heritage Models: 135-148. doi:10.1201/9781351014793-16. Regione Toscana 2021. Geoportale Regione Toscana, https://geoportale.lamma.rete.toscana.it/difesa suolo/#/viewer/openlayers/326. Accessed on October 2021 . Rucci, A. , Ferretti, A. , Guarnieri, A.M. & Rocca, F. 2012. Sentinel 1 SAR interferometry applications: Theoutlook for sub millimeter measurements. Remote Sensing of Environment 120, 156–163.doi:10.1016/j.rse.2011.09.030. Tapete, D. & Cigna, F. 2019. COSMO-SkyMed SAR for Detection and Monitoring of Archaeological andCultural Heritage Sites. Remote Sensing 11(11), 1326. doi:10.3390/rs11111326. UNESCO 2021. Italy – UNESCO World Heritage Centre. http://whc.unesco.org/en/statesparties/it. Accessedon October 2021 . UN – United Nations 2015. Sendai Framework for Disaster Risk Reduction 2015-2030 — A/RES/69/283. 18March 2015 Sendai, Japan. https://www.unisdr.org/files/43291 sendaiframeworkfordrren.pdf. Accessed onOctober 2021 . Viggiani, C. 2019. Senza neanche toccarla – La stabilizzazione della Torre di Pisa. Hevelius Ed. EAN:9788886977968.

Cultural Heritage sites conservation and management: The case of the CircusMaximus in Rome Argentieri, A. , Capelli, G. , Mazza, R. 2020. The “Circo Massimo” borehole (Rome 1939), a site of thegeological memory. Italian Journal of Groundwater. 8. Doi:10.7343/as-2019-444. ASTM D2487 . 2020. Standard Practice for Classification of Soils for Engineering Purposes (Unified SoilClassification System). American Society for Testing and Materials, U.S.A. Bigot, P. 1908. Circus Maximus. Mélanges d'archéologie et d'histoire. 28: 229–231.Doi:10.3406/mefr.1908.6980. Brandizzi Vittucci, P. 1991. L’emiciclo del Circo Massimo nell’utilizzazione post classica. Melanges de l’EcoleFrancaise de Rome 103(1):7–40. Doi: 10.3406/mefr.1991.3150 Buonfiglio M. 2018. La definizione di uno spazio urbano: nuovi elementi sulle fasi di formazione e sviluppodel Circo Massimo alla luce delle recenti indagini (2009-2016). Bullettino della Commissione ArcheologicaComunale CXIX:123–166.

Canciani, M. , Falcolini, C. , Buonfiglio, M. et al. 2013. A method for virtual anastylosis: the case of the archof Titus at the Circus Maximus in Rome. ISPRS Annals of Photogrammetry, Remote Sensing and SpatialInformation Sciences. II5(61). Carpentieri, E. , De Rita, D. , Della Monica G. 2015. Geology of the Murcia Valley and Flood PlainModifications in the Construction of the Circus Maximus, Rome, Italy. Geoarcheology. 30(6) : 483–494. Ciancio Rossetto, P. 2002. Risultati delle indagini archeologiche nell’area centrale, Bullettino dellaCommissione Archeologica Comunale CIII: 186–189. Ciancio Rossetto, P. & Buonfiglio, M. 2007. Circo Massimo: rifiessioni e progetti. Orizzonti:rassegna diarcheologia VIII:19–41. Dahlin, T. & Zhou, B. 2004. A numerical comparison of 2D resistivity imaging with 10 electrode arrays.Geophysical Prospecting, 52: 379–398. Doi:10.1111/J.1365-2478.2004.00423.X Dal Moro, G. 2014. Surface Wave Analysis for Near Surface Applications; Elsevier: Amsterdam, TheNetherlands. Di Luzio, E. , Fazio F. , Imposa, S. , Rannisi, G. 2014. Ambient Noise Recordings in the Circo Massimo andVallis Murciae Areas: Main Results Compared with the Dynamic Response of the XII Cen. AD Torre DellaMoletta. Engineering Geology for Society and Territory. 8:399–403. Doi:10.1007/978-3-319-09408_69. Funiciello, F. et al. 1995. La Geologia di Roma. Il centro storico. Memorie Descrittive della SocietàGeologica. 50. Funiciello, R. & Giordano, G. 2008. La nuova carta geologica del comune di Roma: litostratigrafia eorganizzazione stratigrafica. In Renato Funiciello, Antonio Praturlon, Guido Giordano (eds) La geologia diRoma dal centro alla periferia. Parte Prima. Memorie Descrittive della Carta Geologica d’Italia. LXXX: 39-85. Geosonda 1983. Indagini geognostiche per scavi archeologici al Circo Massimo – 3° lotto– Perizia 213/82.Archive of the Superintendency of Cultural Heritage of Rome (in Italian). Konno, K & Ohmachi, T. 1998. Ground-motion characteristics estimated from spectral ratio betweenhorizontal and vertical components of microtremor. Bulletin of the Seismological Society of America. 88(1):228–241. Loke, M.H. & Barker, R.D. 1996. Rapid Least-Squares Inversion of Apparent Resistivity Pseudosections by aQuasi-Newton Method. Geophysical Prospecting. 44 :131–152. Doi:10.1111/j.1365-2478.1996.tb00142.x. Mancini, M. , Marini, M. , Moscatelli, M. , Stigliano, F. et al. 2018. Stratigraphy of the Palatine Hill (Rome,Italy): a record of repeated middle Pleistocene-Holocene paleovalley incision and infill. Alpine andMediterranean Quaternary. 31 (2): 171–194. Mancini, M. , Marini, M. , Moscatelli, A. , Pagliaroli, A. 2014. A Physical Stratigraphy Model for SeismicMicrozonation of the Central Archaeological Area of Rome (Italy), Bulletin of Earthquake Engineering. 12:1339–1363 Marra, F. , Florindo, F. , Anzidei, M. , Sepe, V. 2016. Paleo-surfaces of glacio-eustatically forcedaggradational successions in the coastal area of Rome: Assessing interplay between tectonics and sea-levelduring the last ten interglacials. Quaternary Science Reviews. 148: 85–100. Marra, F. , Motta, L. , Brock, A. L. , Macrì, P. et al. 2018. Rome in its Setting. Post-glacial AggradationHistory of the Tiber River alluvial Deposits and tectonic Origin of the Tiber Island, PLoS ONE, 13(3). Marra, F. , Buonfiglio, M. , Motta, L. 2021. Holocene aggradation history of the Murcia alluvial valley: insightson early Rome paleoenvironmental evolution. The Olocene (submitted). Pagliaroli, A. , Lanzo, G. , Tommasi, P. et al. 2014. Dynamic characterization of soils and soft rocks of theCentral Archeological Area of Rome. Bulletin of Earthquake Engineering. 12: 1365–1381. Doi:10.1007/s10518-013-9452-5. Park, C.B. , Miller, R.D. , Xia, J. 1999. Multichannel analysis of surface waves. Geophysics 64: 800–808.Doi:10.1190/1.1444590. Pietrangeli, C. 1940. Circus Maximus. Bullettino della Commissione Archeologica Comunale CIII:186–189. Puzzilli, L.M. , Bongiovanni, G. , Clemente, P. , Di Fiore, V. , Verrubbi, V. 2021. Effects of Anthropic andAmbient Vibrations on Archaeological Sites: The Case of the Circus Maximus in Rome. Geosciences. 11,463. Doi: 10.3390/geosciences11110463. Signorini, R. 1939. Risultati geologici della perforazione eseguita dal A.G.I.P alla Mostra autarchica delMinerale nel Circo Massimo di Roma. Boll. Soc. Geol. It. LVIII(2–3). SESAME 2004. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations-Measurements, processing and interpretation. SESAME European research project, WP12- DeliverableD23.12. Project No. EVG1-CT-2000-00026 SESAME, 62 pp. SM Working Group . 2015. Guidelines for Seismic Microzonation. Rome: Conference of Regions andAutonomous Provinces of Italy – Civil Protection Department (ed). SN 640312 . 2013. Vibrations—Vibration Effects in Buildings; Swiss Standards: Zürich, Switzerland. UNI 9916 . 2004. Criteria for the Measurement of Vibrations and the Assessment of Their Effects onBuildings; Italian code; UNI: Milan, Italy.

UNI EN ISO 22476 . 2012. Geotechnical investigation and testing. Field testing Dynamic probing; Italiancode; UNI: Milan, Italy.

Ground motion InSAR monitoring for the protection of Baia Roman Thermae(Naples, Italy) Alberti, S. , Ferretti, A. , Leoni, G. , Margottini, C. , Spizzichino, D. 2017. Surface deformation data in thearchaeological site of Petra from medium-resolution satellite radar images and SqueeSARTM algorithm.Journal of Cultural Heritage; 2017. http://dx.doi.org/10.1016/j.culher.2017.01.005 Autorità di Bacino Distrettuale dell’Appennino Meridionale (ADBCC) 2015. Piano Stralcio per l'AssettoIdrogeologico – Rischio da frana (PSAI-RI) – Version 2015. Tav. 447132.http://www.distrettoappenninomeridionale.it/index.php/elaborati-di-piano-menu/bacini-reg-nord-occidentali-bacino-reg-sarno-ex-adb-reg-campania-centrale-menu/piano-assetto-idrogeologico-rischio-da-frana-menu Di Vito, M.A. , Isaia, R. , Orsi, G. , Southon, J. , De Vita, S. , D’antonio, M. , Pappalardo, L. & Piochi, M.1999. Volcanism and deformation since 12,000 years at Campi Flegrei caldera (Italy). Journal of Volcanol.and Geotherm. Res., 91, p. 221–246. Ferretti, A. , Monti-Guarnieri, A. , Prati, C. , Rocca, F. , Massonnet, D. , Lichtenegger, J. 2007. InSARPrinciples: Guidelines for SAR Interferometry Processing and Interpretation. ESA Publications, The Nether-lands, 2007.https://www.esa.int/About_Us/ESA_Publications/InSAR_Principles_Guidelines_for_SAR_Interferometry_Processing_and_Interpretation_br_ESA_TM-19 Gianfrotta, P.A. 2019. Portus Baiarum e Bauli, a Baiae. In: Atlante tematico di topografia antica 29, 2019, pp.65–74. Hilley, G.E. , Bürgmann, R. , Ferretti, A. , Novali, F. , Rocca, F. 2004. Dynamics of slow-moving landslidesfrom Permanent Scatterer analysis, Sci. Mag. 304 (5679)(2004) 1952–1955. Iadanza. C. , Leoni. g ., Spizzichino. D. , Trigila. A. , Margottini. C. , De Nigris, B. , Martellone, A. , Costantini,M. , Francioni, E. , Trillo, F. , Minati, F. 2020. Processi di instabilità e analisi di dati satellitari nel Parcoarcheologico di Pompei. Monitoraggio e manutenzione delle aree archeologiche. Cambiamenti climati-ci,dissesto idrogeologico, degrado chimico-ambientale. Atti del Convegno Internazionale di Studi, Roma, CuriaIulia, 20–21 Marzo 2019 / A. Russo & I. Della Giovampaola (Eds.) “L’ERMA” di BRETSCHNEIDER, 2020 –(Collana Bibliotheca Archaeologica, 65) 159 p. Medri, M. 2013. In baiano sinu: il vapor, le aquae e le piccole terme di Baia. In: Bassani, M., Bressan, M.,Ghedini, F. Aquae salutiferae. Il termalismo tra antico e contemporaneo. Padova 2013, pp. 119–142. Rakob, F. 1992. Le cupole di Baia. In: Civiltà dei Campi Flegrei. In: Atti del Convegno Internazionale, 1992,pp. 229-258. Rocca, F. , Prati, C. , Monti Guarnieri, A. , Ferretti, A. 2000. Sar Interferometry And Its Applications. Surveysin Geophysics, 21: 159. https://doi.org/10.1023/A:1006710731155 Spizzichino, D. , Cacace, C. , Iadanza, C. , Trigila, A. 2013. Beni culturali e rischio idrogeologico in Italia.Bollettino ICR Nuova Serie, 27/2013. Spizzichino, D. , Leoni, G. , Comerci, V. , Brustia, E. , Guerrieri, L. , Dessì, B. , Trigila, A. , Iadanza C. 2016.PROTHEGO Deliverable D.01.01: UNESCO Cultural Heritage Vs Natural hazards at European scale,Version 1.0. JPICH Heritage Plus PROTHEGO project, Open Report.http://www.prothego.eu/downloads.html Themistocleous K. 2018. PROTHEGO Deliverable D.05.01: High Tech Monitoring Techniques. JPICHHeritage Plus PROTHEGO project, Open Report. http://www.prothego.eu/downloads.html Valagussa, A. , Frattini, P. , Crosta, G.B. , Spizzichino, D. , Leoni, G. and Margottini, C. 2020. Hazardranking of the UNESCO world heritage sites (WHSs) in Europe by multicriteria analysis. Journal of CulturalHeritage Management and Sustainable Development, Vol. 10 No. 4 (2020), pp. 359–374.https://doi.org/10.1108/JCHMSD-03-2019-0023 Valagussa, A. , Frattini, P. , Crosta, G. , Spizzichino D. , Leoni G. and Margottini C. 2021. Multi-risk analysison European cultural and natural UNESCO heritage sites. Natural Hazards 105, 2659–2676 (2021).https://doi.org/10.1007/s11069-020-04417-7.

Geotechnical-structural engineering for the preservation of Ninfeo Ponari inRoman Casinum Amorosi, A. , Boldini, D. , De Felice, G. , Lasciarrea, W.G. , Malena, M. 2015. Analisi geotecnica e strutturaledel Ninfeo di Genazzano, Roma. ASTM D7400M , 2019, Standard Test Methods for Downhole Seismic Testing, ASTM International, WestConshohocken, PA. ASTM D6951-03: American Society of Testing Materials. Standard Test Method for Use of the DynamicCone Penetrometer in Shallow Pavement Applications, ASTM International, West Conshohocken, PA. Betori, A. 2009. Cassino, novità dal Ninfeo Ponari. Le pavimentazioni dell’atrio, in AISCOM XIV, 2009, pp.195–199. Betori, A. , Tanzilli, S. , Valenti, M. 2009. Il Ninfeo Ponari di Cassino: nuove acquisizioni e prospettive divalorizzazione, in Lazio e Sabina. Scoperte Scavi e Ricerche, 5, Atti del Convegno “Quinto Incontro di Studisul Lazio e la Sabina”, a cura di G. Ghini, Roma, pp. 483–498. Betori A. , Valenti M. , Tanzilli S. , Il ninfeo Ponari a Cassino: una rilettura del monumento alla luce deirecenti restauri, in Lazio & Sabina 5. Scoperte Scavi Ricerche, Atti del 5° Incontro di Studio (Roma, 3–5dicembre 2007), Roma 2009, pp.484–488 (483–498). Borri, A. , De Maria, A. , 2009a. Scheda di valutazione dell’IQM (indice di qualità muraria) (Allegato 3b.1-UR06-1). Rete dei Laboratori Universitari di Ingegneria Sismica (RELUIS). Progetto esecutivo 2005 – 2008. Borri, A. , De Maria, A. , 2009b. Linee guida per la compilazione della scheda di valutazione dell’IQM(Allegato 3b.1-UR06-2). Rete dei Laboratori Universitari di Ingegneria Sismica (RELUIS). Progetto esecutivo2005 – 2008. Borri, A. , De Maria, A. , 2009c. Esempi compilati di scheda di valutazione dell’IQM (Allegato 3b.1-UR06-3).Rete dei Laboratori Universitari di Ingegneria Sismica (RELUIS). Progetto esecutivo 2005 – 2008. Borri, A. , De Maria, A. , 2009d. Tabelle di correlazione tra IQM e tabelle delle NTC 2008 (Allegato 3b.1-UR06-4). Rete dei Laboratori Universitari di Ingegneria Sismica (RELUIS). Progetto esecutivo 2005 – 2008. Caponero MA , Mongelli M. , Imbimbo M. , Modoni G. , Polito E. , Grande E. 2020, Monitoraggio strutturaledel Ninfeo Ponari mediante sensori in fibra ottica, fotogrammetria e scansione laser , in Caravale A., MoscatiP. (a cura di .), Logica e calcolo. Le basi dell'archeologia digitale. Atti della Sessione Speciale MetroArchaeo2019, 2019 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage(Firenze, 4-6 dicembre 2019) , “Archeologia e Calcolatori”, 31.2, 223–232. Carettoni, G.F. 1940. Casinum (presso Cassino) Italia romana Municipi e colonie s. I, vol. II, Roma. Ghini, G. , Valenti, M. 1995. Museo e area archeologica-Cassino. (Itinerari dei musei, scavi e monumentid’Italia n.s., 28); Roma. Giuliani C.F. , 1992. Opus signinum e coccio pesto in Segni I. (Università degli studi di Salerno. Quaderni delDipartimento di Scienze dell’antichità, 11. Serie Storia Antica e archeologia I. Napoli, 88–94) Neuerburg, N. 1965. L’ architettura delle fontane e dei ninfei nell’ Italia Antica, Napoli, (MemNap, V). Plaxis vers. 3D Ultimate CONNECT Edition 21.01, Geotechnical Analysis Software, Bentley System, 2021. Regione Umbria , 2003. Allegato tecnico al B.U.R. del 30.07.2003. Norme tecniche per la progettazione degliinterventi e la realizzazione delle opere di cui alla L.R. 23.10.2002 n°18 finalizzate alla riduzione dellavulnerabilità sismica. ReLUIS , 2015. Report WP1_1-1_2015UNlPG disponibile sul sito ReLUIS all’indirizzo:http://www.reluis.it/images/stories/divulgazione/WP1_1 -1_2015UNIPG_IQM_Report.pdfhttp://www.reluis.it/images/stories/divulgazione/WP1_1-1_2015UNIPG_IQM_Allegati.pdf Valenti, M. 1992. Il ninfeo Ponari di Cassino (FR): analisi stilistica e cronologica delle decorazioni inArcheologia classica vol. XLIV, 1992. L'Erma di Bretschneider. Valenti, M. 1995a. “Sull’ubicazione del foro di Casinum”, QuadAEI, 24, 615-622. Valenti, M. 1995b. Il mosaico rustico a conchiglie ed il Ninfeo Ponari di Cassino. Riflessioni su una modadecorative di età tardo-repubblicana in Atti del II Colloquio AISCOM (Roma 1994) Bordighera 49–60. Valenti M. 2010: “Abbazia di Montecassino (Cassi-no, Frosinone): la riscoperta dell’antico, la formazionedella raccolta archeologica e il suo nuovo allestimento scientifico nel Museo storico artistico”, Lazio eSabina, 6, 487–497. Valenti, M. 2012. L'opera poligonale a Casinum: aspetti tecnici, problemi cronologici, considerazionitopografiche in Quarto Seminario Internazionale di Studi sulle Mura Poligonali, Atti del Convegno (Alatri, 7-10 ottobre 2009), a cuta di L. Attenni – D. Baldassarre, Roma 2012, pp. 219–226.

Effect of slow-moving landslides on a vaulted masonry building: The case of SanCarlo Borromeo church in Cassingheno (Genova) Ansys inc . 2020a. Mechanical User's Guide, Release 2020 R2. Ansys inc . 2020b. Discovery SpaceClaim, Release 2020 R2. Arpal 2020. Banca dati ReMoVer - Commento generale all’attività di monitoraggio. Accessed September 20 ,2021. https://srvcarto.regione.liguria.it/dtuff/img/Remover/Commenti_Siti/GE026_commento_tot.pdf Autorità di bacino distrettuale del fiume Po , 2017. Atlante dei Rischi Idraulici e Idrogeologici (Atlas ofHydraulic and Hydrogeological Risks). Accessed October 25 , 2018. http://www.pai.adbpo.it/. Cabella, C. & Sacco, G.L.S. 2021. Studio degli effetti di una frana attiva su un edificio voltato: la chiesa diSan Carlo Borromeo in Cassingheno (Genova). Master thesis, University of Genoa. Cambiaggi L. 2020. Damage assessment of churches exposed to slope displacements in sliding areas. PhDdiss., University of Genoa. Cambiaggi, L. , Ferrero, C. , Riccardo, B. , Vecchiattini, R. & Calderini, C. 2021. Effect of Slow-MovingLandslides on Churches in the Liguria Region: a Geotechnical Approach. In P. Roca, L. Pelà and C. Molins(eds.) SAHC 2021: 12th International Conference on Structural Analysis of Historical Constructions; Onlineevent, 29 September-1 October 2021. Cornellà de Llobregat: Artes Gráficas Torres S.L. Cazzulo, P. , Barbieri, R. & Tirini, F. 1998. Carpeneto – Una piccola, grande Comunità. Federici, P. R. , M. Capitani , A. Chelli , N. Del Seppia , and A. Serani . 2004. Atlante dei Centri AbitatiInstabili della Liguria. II. Provincia di Genova (Atlas of the unstable inhabited centers of Liguria. II. Genovaprovince). Regione Liguria, Genova, Italy. Ferrero, C. , Cambiaggi, L. , Vecchiattini, R. & Calderini, C. 2021a. Damage Assessment of Historic MasonryChurches Exposed to Slow-moving Landslides. International Journal of Architectural Heritage. Ferrero C. , L. Cambiaggi , A. Fenialdi , P. Roca , R. Vecchiattini , and C. Calderini . 2021b. Slow-movinglandslide damage assessment of historic masonry churches: some case-studies in Italy. In P. Roca, L. Pelàand C. Molins (eds.) SAHC 2021: 12th International Conference on Structural Analysis of His-toricalConstructions; Online event, 29 September-1 October 2021. Cornellà de Llobregat: Artes Gráficas TorresS.L. Jiang, H. & Zhao, J. 2015. Calibration of the continuous surface cap model for concrete. Finite Elements inAnalysis and Design. 97, 1–19. Memme, C. 2019. Studio di un borgo ligure in zona di frana attiva: il caso del paese e della chiesa diCassingheno (Genova). Master thesis, Università degli Studi Genova. Ministero delle infrastrutture e dei trasporti. Circolare 21 gennaio 2019, n.7. Istruzioni per l’applicazione dell’“Aggiornamento delle “Norme tecniche per le costruzioni” di cui al decreto ministeriale 17 gennaio 2018. Pesci, A. , Casula, G & Boschi, E. 2011. Laser Scanning the Garisenda and Asinelli Towers in Bologna(Italy): Detailed Deformation Patterns of Two Ancient Leaning Buildings. Journal of Cultural Heritage 12(2):117–127. Sanguigliani, A.C. 1891. L’agro Vogherese. Memorie sparse di storia patria. Casorate Primo: Rossi. Vol. 3pag. 348. Regione Liguria, Regione Piemonte, Regione Valle d’Aosta, Arpal Piemonte, Università di Genova,Università di Pavia, Fondazione Montagna Sicura. 2012. Progetto strategico Interreg IIIa Alcotra RiskNat. pp.110–111. Robert McNeel & Associates . 2018. “Rhino 6 User manual”. Varese, G.B. 2015. Progetto di rifacimento del manto di copertura.

Assessing the causes of damages to the Osservanza Church in Bologna (Italy) Amorosi, A. , Barbieri, M. , Castorina, F. , Colalongo, M. , Colalongo, M.L. , Pasini, G. & Vaiani, S.C. , 1998.Sedimentology, micropalaeontology, and strontium-isotope dating of a lower–middle Pleistocene marinesuccession (Argille Azzurre) in the Romagna Apennines, northern Italy: Bollettino della Società GeologicaItaliana, 117: 789–806. Biagi M. D. & Gandolfi, G 2009. L’Osservanza di Bologna - Convento e Chiesa di San Paolo in Monte.Edizioni Fondazione del Monte (in Italian). Calabresi G. 2013. The role of Geotechnical Engineers in saving monuments and historic sites. KeriselLecture, XVIII ICSMGE, Paris: 71–83. Calabresi, G. & D’Agostino, S. 1997. Monuments and historic sites: intervention techniques. Proc. of Int.Symp. on Geotechnical Engineering for the preservation of Monuments and Historic Sites, Viggiani C. Ed.,Balkema: 409–425.

Campana, P. , Marchi, G. , & Merli, M. 1997. Clay creep effects on old masonry building. Proc. of the Int.Symp. on Engineering Geology and the Environment, Athens, 23–27 June 1997. Edited by G.C. Koukis ,P.G. Marinos , G.C. Stourna , G.C. Tsiambaos . CRC Press: 3083–3088. D’Agostino, S. 2021. Conservation and Restoration of Built Heritage: A History of Conservation Culture andits More Recent Developments. CRC Press, Taylor&Francis, 168 pp. Driscoll, R.M.C. 1983. The influence of vegetation on the swelling and shrinking of clay soils in Britain.Géotechnique, 43, 2: 93–105. Driscoll, R. 1984. The effect of clay volume changes on low-rise buildings. Ch. 10 of Ground Movements andtheir Effects on Structures, edited by P.B. Attewell and R.K. Taylor , Surrey University Press, 303–320. Giacheti, H. , Rodrigues, R. , Bezerra, R. & Rocha, B. 2019. Seasonal influence on cone penetration test: Anunsaturated soil site interpretation. Journal of Rock Mechanics and Geotechnical Engineering. 11(2):361–368. Kulhawy, F.H. & Mayne, P.W. 1990. Manual on Estimating Soil Properties for Foundation Design. ReportEPRI EL-6800, Electric Power Research Institute, Palo Alto, 1990, 306 pp. Lunne, T. , Robertson, P.K. & Powell, J.J.M. 1997. Cone Penetration Testing in Geotechnical Practice.Blackie Academic, EF Spon/Routledge Publishers, New York. Robertson, P.K. 2009. Interpretation of cone penetration test-a unified approach. Canadian GeotechnicalJournal, 46, 11: 1337–1355. Tonni, L. , García Martínez, M.F. & Rocchi, I. 2019. Recent developments in equipment and interpretation ofcone penetration test for soil characterization. Rivista Italiana di Geotecnica 53(1): 71–99. Viggiani, C. 2017. Geotechnics and Heritage. 2nd Kerisel Lecture, Proc. ICSMGE, Seoul, 119–140. Ward, W.H. 1947. The effect of fast growing trees and shrubs on shallow foundations. J. Land Archt, 11:7–16.

A geotechnical insight into the soil-foundation system of the Two Towers ofBologna, Italy Bergonzoni, F. 1989. Pietra Su Pietra Verso Il Cielo: Tecniche, Tempi e Costi di Costruzione, In Roversi(ed.), Le Torri Di Bologna: 29–48. Bologna, Italy: Grafis Editore. Bergonzoni, F. 1991. Età della Torre Asinelli. In Strenna Storica Bolognese, 45–55. Bologna, Italy: PatronEditore. Bertolini, I. Marchi, M. & Gottardi, G. in press. Learning from a well-documented geotechnical cold case: theTwo Towers of Bologna, Italy. International Journal of Architectural Heritage. Bruno, L. , Amorosi, A. , Curina, R. et al. 2013. Human landscape interactions in the Bologna area (NorthernItaly) during the middle–late Holocene with focus on the Roman period. Holocene 23: 1558–1569. Bruno, L. , Amorosi, A. & Severi, P. et al. 2015. High frequency depositional cycles within the lateQuaternary alluvial succession of Reno River (northern Italy). Italian Journal of Geosciences 134: 339–354. Bruno, L. , Marchi, M. , Bertolini I. , Gottardi, G. & Amorosi, M. 2020. Climate control on stacked paleosols inthe Pleistocene of the Po Basin (northern Italy). Journal of Quaternary Science 35(4). Dallavalle, G. Di Tommaso, A. Gottardi, G. Trombetti, T. Lancellotta, R. & Lugli, S. 2021. The GarisendaTower in Bologna: effects of degradation of selenite basement on its static behavior; Proc. Third Int. Symp.on Geotechnical Engineering for the Preservation of monuments and historic sites, Naples (Italy), 22–24June 2021. Giordano, F. 2000. La Torre Garisenda. Bologna, Italy: Edizioni Costa. Gottardi G. , Lionello, A. , Marchi, M. & Rossi, P.P. 2015. Monitoring-driven design of a multiphaseintervention for the preservation of the Frari bell tower in Venice. Rivista Italiana di Geotecnica 49(1):45–64. Gozzadini, G. 1875. Delle Torri Gentilizie Di Bologna E Delle Famiglie Alle Quali Prima Appartennero.Bologna, Italy: Zanichelli Editore. ISO 13822:2010 (en). 2010. Bases for design of structures — Assessment of existing structures,International Organization for Standardization. Kulhawy, F.H. & Mayne, P.W. 1990. Manual on Estimating Soil Properties for Foundation Design, Report No.EL-6800, Electric Power Research Institute, Palo Alto, CA. Lancellotta, R. 2013. The Ghirlandina Tower in Modena, Italy: A history of soil structure interaction. RivistaItaliana di Geotecnica 47(2):7–37. Lancellotta R. & Sabia, D. 2015. Identification technique for soil-structure analysis of the Ghirlandina Tower.International Journal of Architectural Heritage, 9(4):391–407. Marchi, M. , Butterfield, R. , Gottardi, G. & Lancellotta R. 2011. Stability and strength analysis of leaningtowers, Geotechnique 61(12):1069–1079.

Marchi, M. , Fabbi, I. , Gottardi, G. , Butterfield, R. & Lancellotta, R. 2013. Analytical modelling of the creep-rotation rate for leaning towers, 2nd International Symposium On Geotechnical Engineering For ThePreservation Of Monuments And Historic Sites, May 30-31, Naples, Italy: 531–538. Marchi, M. Bertolini, I. Gottardi, G. Amorosi, A. & Bruno, L. 2019. From geological and historical data to thegeotechnical model of the Two Towers in Bologna (Italy); Proc. XVII ECSMGE, Reykjavik, 1-6 Semptember2019. Pisanò, F. , Di Prisco, C.G. & Lancellotta, R. 2014. Soil foundation modelling in laterally loaded historicaltowers. Geotechnique 64 (1):1–15. Roversi, G. 1989. Le Torri Di Bologna. Quando e Perché sorsero, Come Vennero Costruite, Chi Le Innalzò,Come Scomparvero, Quali Esistono Ancora. Bologna, Italy: Edizioni Grafis. Senneset, K. Sandven, R. Lunne, T. By, T. & Amundsen, T. 1988. Piezocone tests in silty soils. ISOPT-1,Orlando, FL: 955-966. Rotterdam: Balkema. Tonni, L. , García Martínez, M.F. & Rocchi, I. 2019. Recent developments in equipment and interpretation ofcone penetration test for soil characterization. Rivista Italiana di Geotecnica 53(1): 71–99. Viggiani, C , 2019. Senza neanche toccarla – La stabilizzazione della Torre di Pisa. Italy: Hevelius Edizioni,152 p. ISBN 978 88 86977 96 8 (in Italian).

Geotechnical and structural investigation and monitoring techniques to determinethe origin of ongoing damage processes in historical buildings: The Saint Francisof Paola Church in Rome case history Burghignoli A. , Callisto L. , Rampello S. , Soccodato F.M. , Viggiani G.M.B. (2013). The crossing of thehistorical centre of Rome by the new underground Line C: a study of soil structure-interaction for historicalbuildings. Geotechnics and Heritage, Taylor and Francis, London, UK. Carravetta C. (2021). Analisi storico-critica, indagini geotecniche e monitoraggio della Chiesa di SanFrancesco di Paola ai Monti in Roma. Master's thesis, Supervisors: E. Ausilio E., P. Zimmaro, Corso diLaurea Magistrale a ciclo unico in Ingegneria Edile–Architettura, a.y. 2020-2021, Department of CivilEngineering, University of Calabria, Rende, Italy. Droysen G. (1886). Plan de Rome dans l'Antiquité. Allgemeiner Historischer Handatlas. Falda G.B. (1676). Nuova piante et alzata della città di Roma con tutte le strade piazze et edifici de tempii.Rijksmuseum collection, Amsterdam, The Netherlands. Galadini F. , Ricci G. , Falcucci E. , Panzieri C. (2013). I terremoti del 484-508 e 847 D.C. nelle stratigrafiearcheologiche tardoantiche e altomedievali dell’area romana. Bollettino di Archeologia online, IV(2-3-4).139–162. Italian Ministry of Infrastructure and Transport (2018). Aggiornamento delle Norme Tecniche per leCostruzioni, D.M. 17 Gennaio 2018. Gazzetta Ufficiale della Repubblica Italiana, 42. Stewart J.P. , Zimmaro P. , Lanzo G. , Mazzoni S. , Ausilio E. , Aversa S. , et al. (2018). Reconnaissance of2016 Central Italy earthquake sequence. Earthquake Spectra, 34, 1547–1555. Tempesta A. (1593). Recens prout hodie iacet almae urbis Romae cum omnibus viis aedificiisqueprospectus accuratissime delineatus. National Library of Sweden, Stockholm, Sweden. Zimmaro P. & Stewart J.P. editors, GEER (2017). Engineering reconnaissance following the October 2016Central Italy earthquakes - Version 2, GEER Association Report No. GEER-050D. DOI:10.18118/G6HS39.

Monitoring and 3D surveys for the safety fruition of a hypogeum site Aversa, S. , Evangelista, A. , & Scotto di Santolo, A. (2013). Influence of the subsoil on the urbandevelopment of Napoli. In Proc. Of the 2nd Int. Symp. On Geotechnical Engineering for the preservation ofMonuments and Historic Sites (pp. 15-43). Bieniawski Z.T. (1989). Engineering rock mass classification. John Wiley & Sons, 251 pp. Bogoslovsky V.A. and Ogilvy A.A. (1977) Geophysics, 42, pp. 562–571. CloudCompare (version 2.6.1) GPL software . (2020). User manual retrieved fromhttp://www.cloudcompare.org/ Colella, C. , Gennaro, M. D. , & Aiello, R. (2001). Use of zeolitic tuff in the building industry. Reviews inmineralogy and geochemistry, 45(1), 551–587. Colella, A. , Di Benedetto, C. , Calcaterra, D. , Cappelletti, P. , D'Amore, M. , Di Martire, D. , Graziano, S.F. ,Papa, L. , de Gennaro, M. , & Langella, A. (2017). The Neapolitan Yellow Tuff: an outstanding example of

heterogeneity. Construction and Building Materials, 136, 361–373. de Silva, F. , Scotto di Santolo A. (2018) Probabilistic performance-based approaches to the static andseismic assessment of rock cavities. International Journal of Rock Mechanics and Mining Sciences, 112, pp.354–368. De Vivo, B. (2006). Volcanism in the Campania Plain. Vesuvius, Campi Flegrei and Ignimbrites.Developments in Volcanology 9, Elsevier. De Vivo, B. , Rolandi, G. , Gans, P. B. , Calvert, A. , Bohrson, W. A. , Spera, F. J. , & Belkin, H. E. (2001).New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineralogy andPetrology, 73(1), 47–65. Edwards, L. S. (1977). A modified pseudosection for resistivity and IP. Geophysics, 42(5), 1020–1036. Esposito, C. , (2007). Gli Ipogei Greci della Sanità. Napoli, Oxiana. (In italian). Fasano, G. , Allocca, V. , Bilotta, E. , Nicotera, M. V. , Ramondini, M. , Russo, G. , Russo, M. & Calcaterra,D. (2021). Investigations and stability analysis of San Marcellino cavities in the historical centre of Naples. InIOP Conference Series: Earth and Environmental Science (Vol. 833, No. 1, p. 012071). IOP Publishing. Goodman, R.E. (1980). Introduction to Rock Mechanics (Chapter 8), Toronto: John Wiley, pp. 254–287. Hudson, J.A. and Harrison, J.P. (1997). Engineering Rock Mechanics – An Introduction to the Principles,Pergamon Press. Kim, K. , Kim, J. , Kwak, T. Y. , & Chung, C. K. (2018). Logistic regression model for sinkhole susceptibilitydue to damaged sewer pipes. Natural Hazards, 93(2), 765–785. Markland, J.T. (1972). A useful technique for estimating the stability of rock slopes when the rigid wedgeslide type of failure is expected: Imperial College Rock Mechanics Research Reprints, n. 19. Pugliese, M. , Quarto, M. , De Cicco, F. , De Sterlich, C. , & Roca, V. (2013). Radon exposure assessmentfor sewerage system's workers in Naples, South Italy. Indoor and Built Environment, 22(3), 575–579. Quarto, M. , Pugliese, M. , Loffredo, F. , Zambella, C. , & Roca, V. (2014). Radon measurements andeffective dose from radon inhalation estimation in the Neapolitan catacombs. Radiation ProtectionDosimetry, 158(4), 442–446. Rispoli, C. , Di Martire, D. , Calcaterra, D. , Cappelletti, P. , Graziano, S. F. , & Guerriero, L. (2020).Sinkholes threatening places of worship in the historic center of Naples. Journal of Cultural Heritage, 46,313–319. Romana M , (1985). New adjustment ratings for application of Bieniawski classification to slopes. Int. Symp.on the Role of Rock Mechanics ISRM. Zacatecas, pp. 49-53. Santangelo, N. , Ciampo, G. , Di Donato, V. , Esposito, P. , Petrosino, P. , Romano, P. , Russo Ermolli, E. ,Santo, A. , Toscano, F. , Villa, I. (2010). Late Quaternary buried lagoons in the northern Campania plain(southern Italy): evolution of a coastal system under the influence of volcano-tectonics and eustatism. Ital. J.Geosci. 129(1). Scotto di Santolo A. , Evangelista A. , Evangelista L. (2013). The Fontanelle Cemetery: between legend andreality. In: Geotechnical Engineering for the Preservation of Monuments and Historic Sites. p. 641–648,Taylor & Francis Group, London, ISBN: 978-1-138-00055-1, Napoli, Italy, 30-31 May 2013. Scotto di Santolo, A. S. , Evangelista, L. , Silvestri, F. , Cavuoto, G. , Di Fiore, V. , Punzo, M. , Tarallo, D. , &Evangelista, A. (2015). Investigations on the stability conditions of a tuff cavity: the Cimitero delle Fontanellein Naples. Rivista Italiana di Geotecnica XLIX (3), 28–46. Scotto di Santolo, A. S. , Forte, G. , De Falco, M. , & Santo, A. (2016). Sinkhole risk assessment in themetropolitan area of Napoli, Italy. Procedia Engineering, 158, 458–463. Scandone, R. , Bellucci, F. , Lirer, L. , & Rolandi, G. (1991). The structure of the Campanian Plain and theactivity of the Neapolitan volcanoes (Italy). Journal of Volcanology and Geothermal Research, 48(1-2), 1–31. Scarpati, C. , Cole, P. , & Perrotta, A. (1993). The Neapolitan Yellow Tuff—a large volume multiphaseeruption from Campi Flegrei, southern Italy. Bulletin of Volcanology, 55(5), 343–356. Wohletz, K. , Orsi, G. , & De Vita, S. (1995). Eruptive mechanisms of the Neapolitan Yellow Tuff interpretedfrom stratigraphic, chemical, and granulometric data. Journal of Volcanology and Geothermal Research,67(4), 263–290.

An update on the Tower of Pisa Burland J.B. & Viggiani C. 1994. Osservazioni sul comportamento della Torre di Pisa. Rivista Italiana diGeotecnica, vol. 28, 3, 179–200. Cresy E. & Taylor G.L. 1829 Architecture of the Middle Ages in Italy, illustrated by views, plans,elevations,sections and details of the cathedral, baptistery, leaning tower or campanile and camposanto atPisa, from drawing and measurements taken in the year 1817. Published by the Authors, London.

Croce A. , Burghignoli A. , Calabresi G. , Evangelista A. , Viggiani C. 1981. The Tower of Pisa and thesurrounding square: recent observations. X Int. Conf. Soil Mech. Found. Eng., Stockholm, vol. III, 61–70. Jamiolkowki M.B. 2005. Introduction to the final volumes of proceedings of the International Committee. LaTorre restituita, Bollettino d’Arte Ministero Beni Culturali, Roma, Vol I, 7–9. Leoni M. & Squeglia N. 2016. 3D creep analysis of the leaning tower of Pisa. Unpublished report, Operadella Primaziale Pisana. Leoni M. , Squeglia N. , Viggiani C. 2018. Tower of Pisa: Lessons learned by observation and analysis. InLancellotta et al. editors: Geotechnics and Heritage, Historic Towers. CRC Press, 15–38. Lizzi F. 2000. Micropiles: past, present and future. Proc. Geotech Year 2000, Bangkok, 145-152. Lizzi F. 2001. Letter to the newspaper “Il Mattino” on July, 1st 2001. Rohault de Fleury C. 1859. Le Campanile de Pise. Enciclopedie de l’Architecture, Bance, Paris. Viggiani C. 2019. Senza neanche toccarla. La stabilizzazione della Torre di Pisa. Hevelius Edizioni,Benevento, 150 pp.

Dynamic centrifuge model tests on Tumulus Mounds on cut slopes Agency for Cultural Affairs , Nara National Research Institute for Cultural Properties, Archeological Instituteof Kashihara Nara prefecture & Asuka Village Board of Education. 2017. Excavations report in theTakamatsuzuka Tumulus: 155-160 (in Japanese). Agency for Cultural Affairs . 2017. Report on tumuli damaged by the 2016 Kumamoto Earthquake (inJapanese). Asuka Village Board of Education . 2007. Excavations report in Kazumayama Tumulus (in Japanese). DPRI Geotechnical Centrifuge Center . https://sites.google.com/dpri.kyoto-u.ac.jp/centrifuge/home/souchi-shiyou?authuser=0 (accessed 2021-10-11 ) Goodman, R. E. , Taylor, R. L. , & Brekke, T. L. 1968. A model for the mechanics of jointed rock. Journal ofthe soil mechanics and foundations division, 94(3): 637–659. Ishihara, K. 1996. Soil behaviour in earthquake geotechnics, Oxford engineering science series 46 : 33–39. Japanese Geotechnical Society Standards , 2015. Laboratory testing standards of geomaterials-Part 1,Method for consolidated constant-pressure direct box shear test on soils (JGS 0561). Japanese Geotechnical Society Standards , 2017. Laboratory testing standards of geomaterials-Part 2,Method for cyclic triaxial test to determine deformation properties of geomaterials (JGS 0542). Liquefaction Geo-Research Institute . 2018. Theories and manuals for LIQCA2D18 and LIQCA3D18 (inJapanese). Mimura, M. & Ishizaki, T. 2006. Current status of Takamatsuzuka Tumulus and its geotechnical properties,Japanese Geotechnical Journal, 1 (4): 157–168 (in Japanese). Mimura, M. , Nagaya, J. & Ishizaki, T. 2011. Evaluation of seismic damage to the mound of TakamatsuzukaTumulus based on dynamic finite element analysis, Conservation Science 50: 13–22 (in Japanese). Sawada, M. , Enkhtuvshin, T. Mimura, M. 2018. Study on the seismic behavior and damage mechanism oftumulus mounds, Journal of Japan Society of Civil Engineers, Ser. C (Geosphere Engineering), 74 (3):374–387 (in Japanese). Sawada, M. , Enkhtuvshin, T. Mimura, M. 2019. Study on the mechanism of seismic damage of historicalburial mounds, Proc. 16th Asian Regional Conference, ATC19-3. Sawada, M. , Sumi, Y. & Mimura, M. 2021. Measuring desiccation-induced tensile stress during crackingprocess, Soils and Foundations, 61 (4): 915–928.

Effects of 2012 Earthquake on the behavior of Ghirlandina tower in Modena Baraccani, S. , Gasparini G. , Palermo, M. , Silvestri, S. & Trombetti, T. 2017. The structural behavior of themasonry vaults of the Cathedral of Modena. Proc. 5th International Conference on Architecture and CivilEngineering, Singapore, 8–9 May 2017. Cadignani, R. , Lancellotta, R. & Sabia, D. 2019. The restoration of Ghirlandina Tower in Modena and theassessment of soil-structure interaction by means of dynamic identification techniques. CRC Press,Taylor&Francis Group, London. Castagnetti, C. , Cosentini, R.M. , Lancellotta, R. & Capra, A. 2017. Geodetic monitoring and geotechnicalanalyses of subsidence induced settlements of historic structures. Structural Control and Health Monitoring,24(12): 1–15.

Cosentini, R.M. , Foti, S. , Lancellotta, R. & Sabia, D. 2015. Dynamic behaviour of shallow founded historictowers: validation of simplified approaches for seismic analyses. International Journal of GeotechnicalEngineering, 9(1): 13–29. D’Amico, M. , Felicetta, C. , Russo, E. , Sgobba, S. , Lanzano, G. , Pacor, F. , Luzi, L. 2020. ItalianAccelerometric Archive v 3.1 – Istituto Nazionale di Geofisica e Vulcanologia, Dipartimento della ProtezioneCivile Nazionale. doi: 10.13127/itaca.3.1. Gazetas, G. 1991. Foundation vibrations, in. H.F. Fang (ed.), Foundation engineering handbook: 553–593.New York, Van Nostrand Reinhold. Giandebiaggi, P. , Zerbi, A. & Capra, A. 2009. l rilevamento della torre Ghirlandina. In Rossella Cadignani(ed.), La torre Ghirlandina. Un progetto per la conservazione (vol. 1): 78–87. Sossella Ed., Roma. Lancellotta, R. 2009. Aspetti geotecnici nella salvaguardia della torre Ghirlandina. In Rossella Cadignani(ed.), La torre Ghirlandina. Un progetto per la conservazione (vol. 1): 178–193. Sossella Ed., Roma. Lancellotta, R. 2013. La torre Ghirlandina: una storia di interazione struttura-terreno. XI Croce Lecture.Rivista Italiana di Geotecnica, 2: 7–37. Lancellotta, R. & Sabia, D. 2013. The role of monitoring and identification techniques on the preservation ofhistoric towers. In Emilio Bilotta , Alessandro Flora , Stefania Lirer , Carlo Viggiani (eds.), Geotechnicalengineering for the preservation of monuments and historical sites; Proc. intern. Symp., Napoli, 30-31 May2013. CRC Press, Taylor&Francis Group, London. Lancellotta, R. & Sabia, D. 2015. Identification technique for soil-structure analysis of the Ghirlandina tower.International Journal of Architectural Heritage 9: 391–407. Lugli. S. 2017. Mutina sepolta: inquadramento geologico dell’area urbana di Modena. In De Luca editorid’arte (eds), Mutina splendidissima, la città romana e la sua eredità: 16–19. Roma: Italy. Tirelli, G. , Lugli, S. , Galli, A. , Hajdas, I. , Lindroos, A. , Martini, M. , Maspero, F. , Olsen, J. , Ringbom, Å. ,Sibilia, E. , Caroselli, M. , Silvestri, E. & Panzeri, L. 2020. Integrated dating of construction and restoration ofthe Modena cathedral vaults (northern Italy): Preliminary results. Radiocarbon 62(3): 667–677. Tirelli, G. , Bosi, G. , Galli, A. , Hajdas, I. , Lindroos, A. , Martini, M. , Maspero, F. , Mazzanti, M. , Olsen, J. ,Panzeri, L. , Ringbom, Å. , Sibilia, E. , Silvestri, E. , Torri, P. & Lugli, S. 2021 A Chronology of AncientEarthquake Damage in the Modena Cathedral (Italy): Integrated Dating of Mortars (14C, Pollen Record) andBricks (TL). International Journal of Architectural Heritage DOI: 10.1080/15583058.2021.1922783.

Development of a liquefaction damage assessment system based only onseismic records Abbaszadeh-Shahri, A. , 2016. Assessment and prediction of liquefaction potential using different artificialneural network models: A case study. Geotech. Geol. Eng. 34, 807–815. Association for Earthquake Disaster Prevention (AEDP-jp), 1998. Strong Motion Array Observation, No. 3,CD-ROM. Garcia, S. , Ovando-Shelley, E. , Gutiérrez, J. , 2012. Liquefaction assessment through machine learning,15WCEE, Conference Paper. (PDF available) Goh, A.T.C. , 1994. Seismic liquefaction potential assessed by neural networks. J. Geotech. Eng. ASCE,0733-9410(1994) 120:9(1467). Goh, A.T.C. , 1996. Neural network modeling of CPT seismic liquefaction data (TECHNICAL NOTES) . J.Geotech. Eng. 122, Issue 1. Hanna, A.M. , Ural, D. , Saygili, G. , 2007a. Evaluation of liquefaction potential of soil deposits using artificialneural networks. Eng. Comput., ISSN: 0264-4401. Hanna, A.M. , Ural, D. , Saygili, G. , 2007b. Neural network model for liquefaction potential in soil depositsusing Turkey and Taiwan earthquake data. Soil Dyn. Earthquake Eng. 27(6): 521–540. Hsu, S.C. , Yang, M.D. , Chen, M.C. , Lin, J.Y. , 2006. Artificial neural network of liquefaction evaluation forsoils with high fines content. Proceedings of the 2006 IEEE International Joint Conference on NeuralNetworks, July 16-21, 2006. 2643–2649. Juang, C.H. , Chen, C.H. , Mayne, P.W. , 2008. CPTU simplified stress-based model for evaluating soilliquefaction potential. Soils and Foundations 48(6): 755–770. Kamura, A. , Kurihara, G. , Mori, T. , Kazama, M. , Kwon, Y. , Kim, J. , Han, J.T. , 2021. Exploring thepossibility of assessing the damage degree of liquefaction based only on seismic records by artificial neuralnetworks. Soils and Foundations 61(3): 658–674. Kang, F. , Li, J.J. , Zhou, H. , 2013. Artificial neural network model for evaluating gravelly soils liquefactionusing shear wave velocity. Sixth China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering,May 28–June 1, 2013. https://ascelibrary.org/doi/10.1061/9780784413234.078.

Kazama, M. , Kagatani, T. , Yanagisawa, E. , 2000a. Peculiarities of liquefaction resistance of Masaso(weathered granite soil). J. of Geotechnical Engineering, JSCE, (645-III-59): 153–166. (in Japanese) Kazama, M. , Noda, T. , 2012. Damage statistics (Summary of the 2011 off the Pacific Coast of TohokuEarthquake damage). Soils and Foundations, Special Issue on Geotechnical Aspects of the 2011 off thePacific Coast of Tohoku Earthquake 52(5): 780–792. Kazama, M. , Yamaguchi, A. , Yanagisawa E. , 1998. Seismic Behavior of an Underlying Alluvial Clay atKobe Man-made Islands During the 1995 Hyogoken-Nambu Earthquake. Special Issue of Soils andFoundations, 23–32. Kazama, M. , Yamaguchi, A. , Yanagisawa E. , 2000b. Liquefaction resistance from a ductility viewpoint.Soils and Foundations 40(6): 47–60. Kazama, M. , Yanagisawa, E. , Inatomi, T. , Sugano, T. , Inagaki, H. , 1996. Stress strain relationship in theground at Kobe Port Island during the 1995 Hyogo-ken Nanbu Earthquake inferred from strong motion arrayrecords. J. of Geotechnical Engineering, JSCE, (547-III-36): 171–182. (in Japanese) Kurihara, G. , Kamura, A. , Mori, T. , 2019. Machine learning scheme of the degree of liquefactionassessment only from the health monitoring device installed in individual wooden house. Geotechnics forSustainable Infrastructure Development . Springer, Part of the Lecture Notes in Civil Engineering bookseries, 62:1099–1105. Kuwabara, K. , Matsushima, M. , 2020. Estimation of Liquefaction Susceptibility in Japan Using MachineLearning Approach. J. of JAEE 21(2): 70–89. (in Japanese) Mughieda, O.S. , Khaldoon, B.H. , Safieh, B.F.A. , 2009. Liquefaction assessment by artificial neuralnetworks based on CPT. Int. J. Geotech. Eng. 3(2): 289–302. National Research Institute for Earth Science and Disaster Resilience (NIED) , 2019. NIED K-NET, KiK-net,National Research Institute for Earth Science and Disaster Resilience. doi:10.17598/NIED.0004. Oki, Y. , Mitsuhashi, A. , Kajikawa, H. , 2019. Study on estimation method of damaged situation of finishingmaterial of wooden buildings and max story drift angles. AIJ J. Technol. Des. 25(59): 159–164. Orense, R.P. , 2016. Soil liquefaction and its effects on structures: Lessons learned from the 2010–2011Canterbury (NZ) earthquake sequence. Proceedings of IMPC 2016, 16 pages. Pijush, S. , Sitharam, G.T. , 2011. Machine learning modelling for predicting soil liquefaction susceptibility.Natural Hazards and Earth System Sciences, Vol. 11(1). doi: 10.5194/nhess-11-1-2011. Senna, S. , Ozawa, K. , Sugimoto, J. , 2021. Estimation of Liquefaction Risk Ratio Based on LiquefactionPoint, J. of JAEE 21(2): 90–108. (in Japanese) Shimizu, Y. , Ishida, E. , Isoyama, R. , Yamazaki, F. , Koganemaru, K. , Nakayama, W. , 2003. Developmentof real-time earthquake disaster mitigation system for city gas network and utilization of regional geologicalinformation. J. of JSCE 738, 283–296. (in Japanese) Suzuki, T. , Shimizu, Y. , Koganemaru, K. , Nakayama, A. , 2001. Detection accuracy of liquefactiondetermination method using zero crossing period. Proceedings of the JSCE Earthquake EngineeringSymposium (26): 1413–1416. (in Japanese) Takada, S. , Ozaki, R. , 2000. Real-time prediction of liquefaction based on strong motion ground response.J. of JSCE 640(I-50): 99–108. (in Japanese) Tung, A.T.Y. , Wang, Y.Y. , Wong, F.S. , 1993. Assessment of liquefaction potential using neural networks.Soil Dyn. Earthquake Eng. 12(6): 325–335. Unjoh, S. , Kaneko, M. , Kataoka, S. , Nagaya, K. , Matsuoka, K. , 2012. Effect of earthquake groundmotions on soil liquefaction. Soils and Foundations 52(5): 830–841. Wakamatsu, K. , Senna, S. , 2015. Liquefaction and their Site Conditions in Kanto Region during the 2011Off the Pacific Coast of Tohoku Earthquake. J. of JAEE 15(2): 25–44. (in Japanese) Yamaguchi, A. , Kazama, M. , Toyota, H. , Kitazume, M. , Sugano, T. , 2002. Effects of the stiffness of softclay layer on strong motion response. Soils and Foundations 43(1): 17–33. Yamaguchi, A. , Mori, T. , Kazama M. , Yoshida N. 2012. Liquefaction in Tohoku district during the 2011 offthe Pacific Coast of Tohoku Earthquake, Soils and Foundations, 52(5): 811–829. Yasuda, S. , Harada, K. , Ishikawa, K. , Kanemaru, Y. , 2012. Characteristics of liquefaction in Tokyo Bayarea by the 2011 Great East Japan Earthquake. Soils and Foundations 52(5): 793–810. Zschau, J. , Kueppers, A.N. , 2003. Early Warning Systems for Natural Disaster Reduction. Springer, ISBN3-540-67962-6. A.

How safe is Acropolis of Athens and its monuments to low probabilityearthquakes? ABAQUS . 2012. Theory and analysis user's manual-version 6.12. Dassault Systemes, SIMULIA Inc, USA. Andronopoulos, B. & Koukis, G. 1976. Engineering geology study in the Acropolis area. Athens, Institute ofGeology and Mineral Exploration. Report (in Greek with English summary). Danciu, L. , et al. , 2019. Status, Milestones and Next Activities on the Development of the 2020 EuropeanSeismic Hazard Model (ESHM20), (Geophysical Research Abstracts, Vol. 21, EGU2019-8317), EuropeanGeosciences Union General Assembly (Wien 2019). Douglas, J. 2018. Capturing Geographically - Varying Uncertainty in Earthquake Ground Motion Models orWhat We Think We Know May Change. Recent Advances in Earthquake Engineering in Europe. Editor:Kyriazis Pitilakis, Chapter 6, 153-181. Kalogeras, I. , Stavrakakis, G. , Melis, N. , Loukatos, D. , Boukouras, K. 2010. Deployment of the strongmotion array at Athens Acropolis area: Implementation and prospects. Acropolis Restoration News 10. Kappogianni, E. et al. , 2019. Suitability of Optical Fibre Sensors and Accelerographs for the Multi-disciplinary Monitoring of a Historically Complex Site: The Case of the Acropolis Circuit Wall and Hill.Geotech Geol Eng 37:4405–4419, https://doi.org/10.1007/s10706-019-00917-x. Konstantinidis, D. , Makris, N. 2005. Seismic response analysis of multi-drum classical columns. Earthq EngStruct Dyn 34:1243–1270. Kotha, S.R. , Weatherill, G. , Bindi, D. , Cotton, F. 2020. A regionally-adaptable ground-motion model forshallow crustal earthquakes in Europe. Bull Earthquake Eng 18:4091–4125. https://doi.org/10.1007/s10518-020-00869-1. Koukis, G. , Pyrgiotis, L. , Kouki A. 2015. The Acropolis Hill of Athens: engineering geological investigationsand protective measures for the preservation of the site and the monuments. Eng Geol Soc Territ 8:89–93. Nielsen, A.H. 2006. Absorbing boundary conditions for seismic analysis in ABAQUS. Proc. of 2006 ABAQUSUsers’ Conference, pp. 359–376. Pitilakis, K. , Tsinidis, G. , Karafagka, S. 2017. Analysis of the seismic behaviour of classical multi-drum andmonolithic columns, Bulletin of Earthquake Engineering, doi: 10.1007/s10518-017-0160-4. Psarropoulos, P. , Kapogianni, E. , Kalogeras, I. , Michalopoulou, D. , Eleftheriou, V. , Dimopoulos, G. ,Sakellariou, M. 2018. Seismic response of the Circuit Wall of the Acropolis of Athens: Recordings versusnumerical simulations. Soil Dynamics and Earthquake Engineering 113:309–316, ISSN 0267-7261,https://doi.org/10.1016/j.soildyn.2018.04.003. Psycharis, I.N. 2014. Ancient monuments under seismic actions: modelling and analysis. In: Beer, M. ,Kougioumtzoglou, I. , Patelli, E. , Au I S-K A (eds) Encyclopaedia of Earthquake Engineering, Springer BerlinHeidelberg. doi:10.1007/978-3-642-36197-5_145-1. Psycharis, I.N. , Lemos, J. , Papastamatiou, D. , Zambas, C. , Papantonopoulos, C. 2003. Numerical studyof the seismic behaviour of a part of the Parthenon Pronaos. Journal of Earthquake Engineering & StructuralDynamics 1(32):2063–2084. doi:10.1002/eqe.315. Trikkalinos, I.K. 1972. The geology of the Acropolis. Proc. of the Academy of Athens. Trikkalinos, I.K. 1977. Remarks on the published study on the geology of the Acropolis. Proc. Acad Athens,12–05:311–42.

On the seismic protection of free-standing art objects by base isolation technique:A case study Alessandri, S. , Giannini, R. , Paolacci, F. , Amoretti, M. , Freddo, A. 2015. Seismic retrofitting of an HVcircuit breaker using base isolation with wire ropes. Part 2: Shaking-table test validation, EngineeringStructures, 98: 263–274. Alessandri, S. , Giannini, R. , Paolacci, F. , Malena, M. 2015. Seismic retrofitting of an HV circuit breakerusing base isolation with wire ropes. Part 1: Preliminary tests and analyses, Engineering Structures, 98:251–262 Baggio, S. , Berto, L. , Favaretto, T. , Saetta, A. , Vitaliani, R. 2015. Seismic isolation technique of marblesculptures at the Accademia Gallery in Florence: numerical calibration and simulation modelling. Bulletin ofEarthquake Engineering, 13(9): 2719–2744. Bouc, R. 1971. Modele mathematique d’hysteresis. Acustica, 24(1): 16–25. Caliò, I. , Marletta, M. 2004. On the mitigation of the seismic risk of art objects: case-studies. Proceedings of13th World Conference on Earthquake Engineering, Vancouver, August 1-6. Demetriades, G.F. , Constantinou, M.C. , Reinhorn, A.M. 1993. Study of wire rope systems for seismicprotection of equipment in buildings. Engineering Structures, 15 (5): 321–334.

Di Donna, M. , Serino, G. , Giannini, R. 2002. Advanced earthquake protection systems for high voltageelectrical equipment. Proceedings of 12th European conference on earthquake engineering, London,September 9-13. Housner, G. W. 1963. The behavior of inverted pendulum structures during earthquakes. Bulletin of theSeismological Society of America, 53(2): 403–417. Iervolino I. , Galasso C. , Cosenza E. 2009. REXEL: computer aided record selection for code-based seismicstructural analysis. Bulletin of Earthquake Engineering, 8:339–362. Luzi, L. , Lanzano, G. , Felicetta, C. , D’Amico, M. C. , Russo, E. , Sgobba, S. , Pacor, F. , ORFEUS WorkingGroup 5. Engineering Strong Motion Database (ESM) (Version 2.0). Istituto Nazionale di Geofisica eVulcanologia (INGV), 2020. MyMiniFactory, Scan The World https://www.myminifactory.com/scantheworld/#home ParIde – Parameter Identification freeware, https://bit.ly/35F5x7Q Pellecchia, D. , Sessa, S. , Vaiana, N. Rosati, L. 2020. Comparative Assessment on the Rocking Responseof Seismically Base-Isolated Rigid Blocks. Procedia Structural Integrity, 29: 95–102. Pellecchia, D. , Lo Feudo, S. , Vaiana, N. , Dion, J.-L. , Rosati, L. 2021. A procedure to model and designelastomeric-based isolation systems for the seismic protection of rocking art objects. Computer-Aided Civiland Infrastructure Engineering, 1–18. SeismoSignal-Signal Processing of Strong-Motion data, https://seismosoft.com/products/seismosignal/ Sessa, S. , Vaiana, N. , Paradiso, M. , Rosati, L. 2020. An inverse identification strategy for the mechanicalparameters of a phenomenological hysteretic constitutive model. Mechanical Systems and SignalProcessing, 139: 106622. Sessa, S. 2021. Thermodynamic compatibility conditions of a new class of hysteretic materials. ContinuumMechanics and Thermodynamics, STRATA-Signal Processing of Strong-Motion data, https://github.com/arkottke/strata Vaiana, N. , Spizzuoco, M. , Serino, G. 2017. Wire rope isolators for seismically base-isolated lightweightstructures: Experimental characterization and mathematical modeling, Engineering Structures, 140:498–514. Vaiana, N. , Sessa, S. , Marmo, F. , Rosati, L. 2018. A class of uniaxial phenomenological models forsimulating hysteretic phenomena in rate-independent mechanical systems and materials. NonlinearDynamics, 93(3): 1647–1669. Vaiana, N. , Sessa, S. , Marmo, F. , Rosati, L. 2019. An accurate and computationally efficient uniaxialphenomenological model for steel and fiber reinforced elastomeric bearings. Composite Structures, 211:196–212. Vaiana, N. , Capuano, R. , Sessa, S. , Marmo, F. , Rosati, L. 2021a. Nonlinear Dynamic Analysis ofSeismically Base-Isolated Structures by a Novel OpenSees Hysteretic Material Model. Applied Sciences11(3). Vaiana, N. , Sessa, S. , Rosati, L. 2021b. A generalized class of uniaxial rate-independent models forsimulating asymmetric mechanical hysteresis phenomena. Mechanical Systems and Signal Processing, 146:106984. Vaiana, N. , Losanno, D. , Ravichandran, N. 2021c. A novel family of multiple springs models suitable forbiaxial rate-independent hysteretic behavior. Computers and Structures, 244: 106403. Vassiliou, M. F. , Makris, N. 2012. Analysis of the rocking response of rigid blocks standing free on aseismically isolated base. Earthquake Engineering & Structural Dynamics, 41(2): 177–196. Wen, Y. K. 1976. Method for random vibration of hysteretic systems. Journal of the Engineering MechanicsDivision, 102(2): 249–263.

Analysis of the seismic safety condition of the defensive walls of Cittadella Andreini, M. , De Falco, A. , Giresini, L. , Sassu, M. 2014. Mechanical Characterization of Masonry Wallswith Chaotic Texture: Procedures and Results of In-Situ Tests. Int. Journal of Arch. Heritage 8:367–407. Bonfiglio Dosio, G. et al. 1990. Cittadella – Città murata. Biblos ed. Casapulla, C. , Maione, A. , Argiento, L.U. 2017. Seismic analysis of an existing masonry building accordingto the multi-level approach of the Italian Guidelines on Cultural Heritage. Ingegneria Sismica 1: 1–21. Cima, V. , Tomei, V. , Grande, E. , Imbimbo, M. 2021. Fragility curves at regional basis for unreinforcedmasonry buildings prone to out-of-plane mechanisms: the case of Central Italy. Structures 34: 4774–4787. DPCM 09.02.2011 Linee Guida per la valutazione e riduzione del rischio sismico del patrimonio culturale (inItalian) Franceschetto, G. 1990. Cittadella. Saggi storici. Lions Club di Cittadella ed.

Jappelli R. (2013). Safety and/or security of monuments? An apparent dilemma. Proc. of the Second Int.Symp. on Geotechnical Engineering for the Preservation of Monument and Historic Sites, Napoli Italy), 30-31May 2013. NTC 2018. DECRETO 17 gennaio 2018. Aggiornamento delle “Norme tecniche per le costruzioni” (in Italian). NTC 2018 – Circolare 2019. ” Istruzioni per l’applicazione dell’ “Aggiornamento delle “Norme tecniche per lecostruzioni”” di cui al decreto ministeriale 17 gennaio 2018” (in Italian) Scalco, L. et al . 2007. Storia di Cittadella. SCALCO L., Vol. 2, Comune di Cittadella ed. Simonetto, P. et al . 2002. Nuovi progetti a Cittadella., Comune di Cittadella e Associazione Architettandoed. Viggiani C. 2013. Cultural heritage and geotechnical engineering: an introduction. Proc. of the Second Int.Symp. on Geotechnical Engineering for the Preservation of Monument and Historic Sites, Napoli Italy), 30-31May 2013.

The Bordeaux “Pont de Pierre” – A study case of micropiles reinforcement andbenefits of HST method and Interaction Soil Structure design Baguelin F. , Jezequel J. , Marchal J. 1970. Essai statique de fondations profondes, Bulletin de Liaison desLaboratoires Routiers 44(2):161–177 Bonelli S. 2008. On pore-pressure analysis in earthdams. International Water Power and Dam Construction60(12):36–39. Bonelli S. 2009. Approximate solution to the diffusion equation and its application to seepage-relatedproblems. Applied Mathematical Modelling 33(1):110–126. Booker J.R. , Poulos H.G. 1976. Analysis of creep settlement of pile foundations, Journal of GeotechicalEngineering Division 102(1):1–14. Cambefort H. , Chadeisson R. 1965. Critère pour l’évaluation de la force portante d’un pieu, Compte-Rendudu 6 ème Congrès International de Mécanique des Sols et des Travaux de Fondations, Montréal. Carrère A. , Colson M. , Goguel B. , Noret C. 2000. Modelling: a means of assisting interpretation ofreadings. Proc. XXth International Congress on Large Dams, Beijing, ICOLD, p. 1005-1037. Christin J. , Reiffsteck P. , Le Kouby A. , 2013. Projet Pieux Bois. Cuira F. , Flavigny E. 2016. Essai pressiométrique et calculs par éléments finis, 5 ème Congrès Maghrébinen Ingéniérie Géotechnique, Marrakech. Ferry S. , Willm G. 1958 Méthodes d’analyse et de surveillance des déplacements observés par le moyen dependules dans les barrages. Proc.VIth International Congress on Large Dams, New-York, ICOLD, p.1179–1200. Forbes J.D. 1846. Account of some experiments on the temperature of the earth at different depths and indifferent soils near Edinburgh. Transactions of The Royal Society of Edinburgh 16:189–236. Frank R. , Zhao S. 1982. Estimation par les paramètres pressiométriques de l’enfoncement sous chargeaxiale de pieux forés dans les sols fins, Bulletin de liaison des ponts et chaussées 199:17–24. Guedes Q.M. , Coelho P.S.M. 1985. Statistical behaviour model of dams. Proc. XVth International Congresson Large Dams, Lausanne, ICOLD, p. 319–334. Guo W.D. , 2000. Visco-elastic transfer models for axially loaded piles, International Journal for Numericaland Analytical Methods in Geomechanics 24, 135–163. Mylonakis G. , Gazetas G. 1998. Settlement and additional internal forces of grouped piles in layered soil,Géotechnique 48(1):55–72. NF P94-262 . 2012. Justification des Ouvrages Géotechnique, Fondations profondes. Poulos H.G. 1968. Analysis of the settlement of pile groups, Géotechnique, 18:449–471 Randolph M.F. , Worth C.P. , 1978 Analysis of deformation of vertically loaded pile, Journal of GeotechnicalEngineering, ASCE 104(12):1465–1488. Young P. 1998. Data-based mechanistic modelling of environmental, ecological, economic and engineeringsystems. Environmental Modelling & Software 13:105–122.

Effect of the presence of a historical underground quarry on site seismicresponse Araya, R. , Saragoni, R. , 1984. Earthquake accelerogram destructiveness potential factor. In: 8th WCEE,San Francisco, 1984, 2, pp. 835–841. Bessac, J-C. 1986. L'outillage traditionnel du tailleur de pierre, de l'antiquité a nos jours. Paris: Ed. du Centrenational de la recherche scientifique. Biondi, G. , Cascone, E. , Di Filippo, G. , 2012. Reliability of empirical relationships for the evaluation of thenumber of equivalent loading cycles. Rivista Italiana di Geotecnica XLVI (2), 9–39. Bommer, J.J. , Acevedo, A.B. , 2004. The use of real earthquake accelerograms as input to dynamicanalysis. J. Earthquake Engineering 8 (1), 43–91. Special issue. Bozzano, F. et al. (edited by). 2017. Cavità di origine antropica, modalità d’indagine, aspetti di catalogazione,analisi della pericolosità, monitoraggio e valorizzazione. Geologia dell’Ambiente – Supplemento al n. 4/2018:13–32; 63–71; 95–102; 387–402; Cundall PA , Hansteen H , Lacasse S , Selnes PB . NESSI, 1980, Soil structure interaction program fordynamic and static problems. Report: Norwegian Geotechnical Institute; 1980. p. 51508–9. de Silva, F. , & Scotto di Santolo, A. 2018. Probabilistic performance-based approaches to the static andseismic assessment of rock cavities. Int. J. of Rock Mechanics and Mining Sciences 112: 354–368. Di Raimondo, S. , Zocco, M. 2004. Il complesso ipogeo sottostante l'area dell'ospedale civile di Ragusa,Ragusa Sottosopra n.4 del 28/07/2004. ESMD - European Strong-motion Database. https://esm.mi.ingv.it Evangelista, L. , Landolfi, L. , d'Onofrio, A. , Silvestri, F. 2016. The influence of the 3D morphology and cavitynetwork on the seismic response of Castelnuovo hill to the 2009 Abruzzo earthquake. Bulletin of EarthquakeEngineering 14: 3363–3387. ITASCA , 2011. FLAC – Fast Lagrangian Analysis of Continua – Version 7.0. User's Guide. ItascaConsulting Group, Minneapolis, USA. Joyner, W.B. , Boore, D.M. , 1981. Peak horizontal acceleration and velocity from strong motion recordsincluding records from the 1979 Imperial Valley, California, earthquake. Bull. Seismol. Soc. Am. 71,2011–2038. Luzi, L , Pacor, F , Puglia, R , 2016. Italian Accelerometric Archive v 2.1. Istituto Nazionale di Geofisica eVulcanologia, Dipartimento della Protezione Civile Nazionale. https://doi.org/10.13127/ITACA/2.1. NTC18 , 2018. Norme Tecniche per le Costruzioni. Decreto del Ministero delle Infrastrutture e dei Trasporti,January 17, 2018. G.U. n. 42, February 20, 2018 (in Italian). Pagliaroli, A. , & Lanzo, G. , 2008. Selection of real accelerograms for the seismic response analysis of thehistorical town of Nicastro (Southern Italy) during the March 1638 Calabria earthquake. EngineeringStructures 30, 2211–2222. PEER , 2016. PEER NGA Ground Motion Database, Pacific Earthquake Engineering Research Center.http://peer.berkeley.edu/nga. Rathje, E.M. , Abrahamson, N.A. , Bray, J.D. , 1998. Simplified frequency content estimates of earthquakeground motions. J. Geotechnical Engineering ASCE 124 (2), 150–159. Scotto di Santolo, A. , Evangelista, L. , Silvestri, F. , Cavuoto, G. , Di Fiore, V. , Punzo, M. , Tarallo, D. ,Evangelista, A. , Rallo, D. 2015. Investigations on the stability conditions of a tuff cavity: the Cimitero delleFontanelle in Napoli. Rivista Italiana di Geotecnica 3: 28–46. Sica, S. , Dello Russo, A. , Rotili, F. , Simonelli, A.L. 2014. Ground motion amplification due to shallowcavities in nonlinear soils. Natural Hazards 71: 1913–1935. Smerzini, C. , Aviles, J. , Paolucci, R. , Sanchez-Sesma, F.J. 2009. Effect of underground cavities on surfaceground motion under SH wave propagation. Earthquake Engineering and Structural Dynamics 38:1441–1460. Trifunac, M.D. , Brady, A.G. , 1975. A study of the duration of strong earthquake ground motion. Bull.Seismol. Soc. Am. 65, 581–626.

Evaluation of site effects by means of 3D numerical modeling of the Palatine Hill,Roman Forum, and Coliseum archaeological area Bard P.Y. & Bouchon M. 1985. The two-dimensional resonance of sediment-filled valleys. Bull Seismol SocAm 75:519–541 Itasca Consulting Group, Inc. (2019) FLAC3D — Fast Lagrangian Analysis of Continua in Three-Dimensions,Ver. 7.0. Minneapolis: Itasca.

Kuhlemeyer, R. L. & Lysmer. J. 1973. Finite Element Method Accuracy for Wave Propagation Problems.Journal of the Soil Dynamics Division, 99, 421–427. Mancini M. et al. 2014. A physical stratigraphy model for seismic microzonation of the Central ArchaeologicalArea of Rome (Italy). Bulletin of Earthquake Engineering, 12, 1339–1363. Marzi C. et al. 1990. Seismic preservation of historical monuments in Rome: preliminary results from ambientvibration tests. In: Marinos, Koukis (eds) Engineering geology of ancient works, monuments and historicalsites, pp 2133–2134 Moscatelli M. et al 2014a. Seismic microzonation of Palatine hill, Roman Forum and Coliseum ArcheologicalArea. Bulletin of Earthquake Engineering 12, 1269–1275. Moscatelli M. et al. 2014b. Integrated geological and geophysical investigations to characterized theanthropic layer of Palatine hill and Roman Forum. Bulletin of Earthquake Engineering 12, 1319–1338. Pagliaroli A. et al. 2014a. Dynamic characterization of soils and soft rocks of the Central Archaeological Areaof Rome. Bulletin of Earthquake Engineering, 12, 1365–1381. Pagliaroli A. et al. 2014b. Numerical modelling of site effects in the Palatine hill, Roman Forum and Coliseumarchaeological area. Bulletin of Earthquake Engineering, 12, 1383–1403. Pagliaroli A. et al. 2014c. Seismic microzonation of the Central Archeological Area of Rome: results anduncertainties. Bulletin of Earthquake Engineering, 12, 1405–1428. Pau A. & Vestroni F. 2008. Vibration analysis and dynamic characterization of the Colosseum. Struct ControlHealth Monit 15:1105–1121. Pau A & Vestroni F. 2013. Vibration assessment and structural monitoring of the Basilica of Maxentius inRome. Mech Syst Signal Process.

Influence of soil deposit heterogeneity on the dynamic behaviour of masonrytowers ABAQUS 2014. ABAQUS documentation version 6.14. Dassault Systèmes, Providence, RI. Amorosi, A. , Boldini, D. , & Di Lernia, A. 2017. Dynamic soil-structure interaction: a three-dimensionalnumerical approach and its application to the Lotung case study. Computers and Geotechnics, 90, 34–54. Amorosi, A. , Boldini, D. , & Elia, G. 2010. Parametric study on seismic ground response by finite elementmodelling. Computers and Geotechnics, 37(4), 515–528. Bardet, J. P. , Ichii, K. , & Lin, C. H. 2000. EERA: a computer program for equivalent-linear earthquake siteresponse analyses of layered soil deposits. University of Southern California, Department of CivilEngineering. Bartoli, G. , Betti, M. , & Vignoli, A. 2016. A numerical study on seismic risk assessment of historic masonrytowers: a case study in San Gimignano. Bulletin of Earthquake Engineering, 14(6), 1475–1518. Bathe, K. J. 1996. Finite element procedures in engineering analysis, (2nd ed.) Upper Saddle River, NJ:Prentice Hall. Casciati, S. , & Borja, R. I. 2004. Dynamic FE analysis of South Memnon Colossus including 3Dsoil–foundation–structure interaction. Computers and Structures, 82(20–21), 1719–1736. Casolo, S. , Diana, V. , & Uva, G. 2017. Influence of soil deformability on the seismic response of a masonrytower. Bulletin of Earthquake Engineering, 15(5), 1991–2014. Casolo, S. , & Uva, G. 2013. Non-linear dynamic analysis of masonry towers under natural accelerogramsaccounting for soil-structure interaction, in: 4th ECCOMAS, Thematic Conference on Computational Methodsin Structural Dynamics and Earthquake Engineering. Crete, Greece, 2013, pp. 4488–4506. Castellazzi, G. , D’Altri, A. M. , de Miranda, S. , Chiozzi, A. , & Tralli, A. 2018. Numerical insights on theseismic behaviour of a non-isolated historical masonry tower. Bulletin of Earthquake Engineering, 16(2),933–961. Clementi F. , Milani G. , Ferrante A. , Valente M. , & Lenci S. 2019. Crumbling of Amatrice clock tower during2016 Central Italy seismic sequence: Advanced numerical insights . Frattura Ed Integrità Strutturale 14(51),313–335. Clough, R. W. , & Penzien, J. 1993. Dynamics of Structures, McGraw-Hill. Consiglio dei Ministri . 2018. DM 17 gennaio 2018 in materia di “aggiornamento delle norme tecniche per lecostruzioni”. Gazzetta ufficiale n.42 del 20 febbraio 2018. Day SM . 1978. Seismic response of embedded foundations. In Proceedings of the ASCE Convention,Chicago, IL, 16–20 October 1978; Preprint no. 3450. de Silva, F. 2020. Influence of soil-structure interaction on the site-specific seismic demand to masonrytowers. Soil Dynamics and Earthquake Engineering, 131, 106023.

de Silva, F. , Ceroni, F. , Sica, S. , & Silvestri, F. 2018a. Non-linear analysis of the Carmine bell tower underseismic actions accounting for soil–foundation–structure interaction. Bulletin of Earthquake Engineering,16(7), 2775–2808. de Silva, F. , Pitilakis, D. , Ceroni, F. , Sica, S. , & Silvestri, F. 2018b. Experimental and numerical dynamicidentification of a historic masonry bell tower accounting for different types of interaction. Soil Dynamics andEarthquake Engineering, 109, 235–250. di Lernia, A. , Amorosi, A. , & Boldini, D. 2019. A multi-directional numerical approach for the seismic groundresponse and dynamic soil-structure interaction analyses. In Earthquake Geotechnical Engineering forProtection and Development of Environment and Constructions (pp. 2145–2152). CRC Press. Elsabee, F. , Morray, J. P. , & Roesset, J. M. 1977. Dynamic behaviour of embedded foundations.Massachusetts Institute of Technology, Department of Civil Engineering, Constructed Facilities Division. Falcone, G. , Acunzo, G. , Mendicelli, A. , Mori, F. , Naso, G. , Peronace, E. , ... & Moscatelli, M. 2021.Seismic amplification maps of Italy based on site-specific microzonation dataset and one-dimensionalnumerical approach. Engineering Geology, 289, 106170. Gazetas, G. 1991. Formulas and charts for impedances of surface and embedded foundations. Journal ofGeotechnical Engineering, 117(9), 1363–1381. Gazetas, G. 1982. Vibrational characteristics of soil deposits with variable wave velocity. InternationalJournal for Numerical and Analytical Methods in Geomechanics, 6(1), 1–20. Kim, S. , & Stewart, J. P. 2003. Kinematic soil-structure interaction from strong motion recordings. Journal ofGeotechnical and Geoenvironmental Engineering, 129(4), 323–335. Kuhlemeyer, R. L. , & Lysmer, J. 1973. Finite element method accuracy for wave propagation problems.Journal of the Soil Mechanics and Foundations Division, 99(5), 421–427. Milani, G. 2019. Fast vulnerability evaluation of masonry towers by means of an interactive and adaptive 3Dkinematic limit analysis with pre-assigned failure mechanisms. International Journal of Architectural Heritage,13(7), 941–962. Mortezaei, A. , & Motaghi, A. 2016. Seismic assessment of the world's tallest pure-brick tower including soil-structure interaction. Journal of Performance of Constructed Facilities, 30(5), 04016020. Sarhosis, V. , Milani, G. , Formisano, A. , & Fabbrocino, F. 2018. Evaluation of different approaches for theestimation of the seismic vulnerability of masonry towers. Bulletin of Earthquake Engineering, 16(3),1511–1545. Torabi, H. , & Rayhani, M. T. 2014. Three-dimensional finite element modeling of seismic soil–structureinteraction in soft soil. Computers and Geotechnics, 60, 9–19. Valente, M. , & Milani, G. 2018. Effects of geometrical features on the seismic response of historical masonrytowers. Journal of Earthquake Engineering, 22(sup1), 2–34. Valente, M. , & Milani, G. 2016. Seismic assessment of historical masonry towers by means of simplifiedapproaches and standard FEM. Construction and Building Materials, 108, 74–104. Veletsos, A.S. , & Nair, V.D. 1975. Seismic interaction of structures on hysteretic foundations. Journal of theStructural Division, 101, 109–129.

An influence of the water supply in improved soil against liquefaction Bahmanpour, A. , Towhata, I. , Sakr, M. , Mahmoud, M. , Yamamoto, Y. , Yamada, S. 2019. The effect ofunderground columns on the mitigation of liquefaction in shaking table model experiments. Soil Dynamicsand Earthquake Engineering 116: 15–30. Hayashi, K. , Takahashi, S. , Saito, T. 2021. Dynamic response of the saturated soil–reinforced concretepile–superstructure interaction under repeated shaking. Soil Dynamics and Earthquake Engineering 145:106685. Icomos . 1964. International charter for the conservation and restoration of monuments and sites. 2ndInternational Congress of Architects and Technicians of Historic Monuments, Venice, Italy. Ince, G.C. 2011. The relationship between the performance of soil conditions and damage following anearthquake: a case study in Istanbul, Turkey. Natural Hazards and Earth System Sciences 11(6):1745–1758. Lombardi, D. & Bhattacharya, S. 2014. Liquefaction of soil in the Emilia-Romagna region after the 2012Northern Italy earthquake sequence. Natural hazards 73(3): 1749–1770. Okamura, M. , Ishihara, M. , Tamura, K. 2006. Degree of saturation and liquefaction resistances of sandimproved with sand compaction pile. Journal of Geotechnical and Geoenvironmental Engineering 132(2):258–264. Otsubo, M. , Towhata, I. , Hayashida, T. , Liu, B. , Goto, S. , 2016. Shaking table tests on liquefactionmitigation of embedded lifelines by backfilling with recycled materials. Soils and Foundations 56(3):

365–378. Özbakan, N. 2021. Effect of sodium polyacrylate and impermeable layer applications on soil liquefactionpotential. MSc Thesis, Eskisehir Technical University. Özbakan, N. , Evirgen, B. , Tuncan, M. 2021. An effect of impermeable top layer on liquefaction potential. InGökçe Tönük , Korhan Deniz Dalgıç , Ömer Faruk Halıcı (eds), The 9th Turkish Conference on EarthquakeEngineering; Proc. intern. symp., Istanbul , 2–3 June 2021. Özbakan, N. & Evirgen, B. 2022. An Effect of Sodium Polyacrylate on Sandy Soil Parameters and Its Use inSoil Improvement. Proceedings of the 7th World Congress on Civil, Structural, and EnvironmentalEngineering, Lisbon, Portugal– April 10–12, 2022. (accepted). Shrestha, S. R. , Karkee, M. B. , Cuadra, C. H. , Tokeshi, J. C. & Miller, S. N. 2004. Preliminary Study forEvaluation of Earthquake Risk to the Historical Structures in Kathmandu Valley. 13th World Conference onEarthquake Engineering, Vancouver, B.C. Canada, August 1–6, 2004. Simatupang, M. & Okamura, M. 2017. Liquefaction resistance of sand remediated with carbonateprecipitation at different degrees of saturation during curing. Soils and foundations 57(4): 619–631. Tophel, A. & Ramana, G.V. 2019. Protecting heritage structures against liquefaction: Recent developments.In: A. Kallel , Z.A. Erguler , Z.-D. Cui , Al. Karrech , M. Karakus , P. Kulatilake , and S.K. Shukla (eds.),Recent Advances in Geo-Environmental Engineering, Geomechanics and Geotechnics, and Geohazards.Cham: Springer International Publishing, 507–509. Unesco . 1972. Convention concerning the protection of the world cultural and natural heritage. Adopted bythe general conference at its 17th session in Paris. November 16, 1972.

Site characterization and preliminary ground response analysis for themonumental Complex of SS. Annunziata in Sulmona, Italy Amoroso, S. , Totani, F. , Totani, G. & Monaco, P. 2015. Local seismic response in the Southern part of thehistoric centre of L’Aquila. Engineering Geology for Society and Territory - Urban Geology , SustainablePlanning and Landscape Exploitation 5(XVIII): 1097–1100. Springer International Publishing. Cavinato, G.P. & Miccadei, E. 1995. Sintesi preliminare delle caratteristiche tettoniche e sedimentarie deidepositi quaternari della Conca di Sulmona (L’Aquila). Il Quaternario 8(1): 129–141. Ceccaroni, E. , Ameri G. , Gomez Capera, A.A. & Galadini, F. 2009. The 2nd century AD earthquake incentral Italy: archaeoseismological data and seismotectonic implications. Natural Hazards 50: 335–359. Ciani, F. , Madiai, C. & Amoroso, S. 2021. Risposta sismica locale nel sito del Complesso della SS.Annunziata a Sulmona. Geologia dell’Ambiente , Supplement to n. 3/2021: 76–84. Di Buccio, F. , Aprile, V. , Pagliaroli, A. , Di Domenica, A. , Pizzi, A. , (2017). Valutazione preliminare dellerisposta sismica locale del bacino di Sulmona. Incontro Annuale dei Ricercatori di Geotecnica – IARG 2017,Matera (Italy), 5–7 July 2017. Di Capua, G. , Manuel, M.R. & Peppoloni, S. 2009. Microzonazione sismica speditiva del centro storico diSulmona (AQ). Prodotto 4 dell’Unità Operativa Geologica, Progetto DPC-Reluis, Linea 10. Di Filippo, M. & Miccadei, E. 1997. Studio gravimetrico della conca di Sulmona. Il Quaternario 10(2):489–494. EPRI 1993. Guidelines for determining design basis ground motions, early site permit demonstrationprogram. Electric Power Research Institute, 1: RP3302. Palo Alto, California. Galadini, F. & Carrozzo, R. 2014. I terremoti a Sulmona: indagini di sismologia storica per la microzonazionesismica. Quaderni di Geofisica , Istituto Nazionale di Quaderni di Geofisica, 118, 34 pp. Galadini, F. & Galli, P. 2001. Archaeoseismology in Italy: case studies and implications on long-termseismicity. Journal of Earthquake Engineering 5: 35–68. Galli, P. , Giaccio, B. , Peronace, E. & Messina, P. 2015. Holocene paleoearthquakes and Early–LatePleistocene slip rate on the Sulmona fault (Central Apeninnes, Italy). Bulletin of the Seismological Society ofAmerica 105(1): 1–13. Giannantonio, R. 1997. Il palazzo della SS: Annunziata in Sulmona . I saggi di Opus (6). Pescara: CarsaEdizioni. Gori, S. , Dramis, F. , Galadini, F. & Messina, P. 2007. The use of geomorphological markers in the footwallof active faults for kinematic evaluations: examples from the central Apennines. Bollettino della SocietàGeologica Italiana 126: 365–374. Gori, S. , Falcucci, E. , Dramis, F. , Galadini, F. , Galli, P. , Giaccio, B. , Messina, P. , Pizzi, A. , Sposato, A.& Cosentino, D. 2014. Deep-seated gravitational slope deformation, large-scale rock failure, and activenormal faulting along Mt. Morrone (Sulmona basin, Central Italy): Geomorphological and paleoseismologicalanalyses. Geomorphology 208: 88–101.

Gori, S. , Giaccio, B. , Galadini, F. , Falcucci, E. , Messina, P. , Sposato, A. & Dramis, F. 2011. Active normalFaulting along the Monte Morrone South-Western slopes (Central Apennines, Italy). International Journal ofEarth Science 100(1): 157–171. Idriss, I.M. 1990. Response of soft soils during earthquakes. In J. M. Duncan (ed.), Proceedings, H. BoltonSeed Memorial Symposium 2: 273–289. Vancouver: BiTech Publishers. Iervolino, I. , Galasso, C. & Cosenza, E. 2010. REXEL: computer aided record selection for code-basedseismic structural analysis. Bulletin of Earthquake Engineering 8: 339–362. Kottke, A.R. & Rathje, E.M. 2009. Technical Manual for Strata, University of Texas, Austin, Texas. Lysmer, J. and Kuhlemeyer, R. L. (1969) Finite Dynamic Model for Infinite Media. Journal of EngineeringMechanics Division 95, 859–878. Manuel, M.R. 2007. Dalle indagini al modello geologico-tecnico per la definizione della risposta sismicalocale finalizzata alla microzonazione sismica di piane alluvionali e costiere. Phd Thesis, University of Rome“Sapienza”. Mattiocco, E. 2008. L’Annunziata di Sulmona. Editrice Itinerari: Lanciano (CH). Meletti, C. & Valensise, G. 2004. Zonazione sismogenetica ZS9 – App. 2 al Rapporto Conclusivo “Gruppo diLavoro MPS, Redazione della mappa di pericolosità sismica prevista dall’Ordinanza PCM 3274 del 20 marzo2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile”, INGV, Milano–Roma, aprile 2004, 65. Miccadei, E. , Barberi, R. , & Cavinato, G.P. 1998. La geologia quaternaria della conca di Sulmona (Abruzzo,Italia centrale). Geologica Romana 34:59–86. Ministero delle infrastrutture e dei Trasporti 2018. Norme Tecniche per le Costruzioni (NTC18). DecretoMinistero Infrastrutture. GU Serie Generale n. 42 del 20-02-2018 – Suppl. Ordinario n. 8. Modoni, G. & Gazzellone, A. 2010. Simplified theoretical analysis of the seismic response of artificiallycompacted gravels. 5 th International Conference on Recent Advance in Geotechnical EarthquakeEngineering and Soil Dynamics, San Diego, California, 24–29 May 2010, Paper Number 1.28.a. Pizzi, A. , Miccadei, E. , Piacentini, T. , Pipponzi, G. , Galadini, F. & Luzi, L. 2014. Microzonazione simica diLivello 1 del Comune di Sulmona (AQ), Relazione illustrativa con carte e sezioni allegate, RegioneAbruzzo–Dip. Protezione Civile, https://protezionecivile.regione.abruzzo.it/index.php/microzonazione. Rollins, K.M. , Evans, M.D. , Diehl, N.B. & Daily, W.D. 1998. Shear modulus and damping relationships forgravels. Journal of Geotechnical andGeoenvironmental Engineering 124: 396–405. Rovida A. , Locati M. , Camassi R. , Lolli B. , Gasperini P. , Antonucci A. (2021). Catalogo Parametrico deiTerremoti Italiani (CPTI15), versione 3.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV).https://doi.org/10.13127/CPTI/CPTI15.3 Scarascia Mugnozza, G. 2007. Microzonazione sismica di 2° livello. Indagini e risultati ai fini dellaprogettazione esecutiva della microzonazione sismica del centro abitato di Sulmona. Allegato 1. Indaginigeologico-tecniche, ricostruzioni stratigrafiche e cartografia. University of Rome “Sapienza”, Italy . Totani G. , Monaco P. , Marchetti S. & Marchetti D. 2009. VS measurements by seismic dilatometer (SDMT)in non-penetrable soils. In: Hamza M. et al. (eds.), 17th Int. Conf. on Soil Mechanics and GeotechnicalEngineering, Alexandria, 977–980. Tuteri, R. 1995. Pavimenti antichi a Sulmona. Relazione preliminare sulle nuove acquisizioni. II ColloquioAISCOM (Associazione Italiana per lo Studio e la conservazione del Mosaico), Roma, 5–7 December1994,Bordighera. 71–84. Vittori, E. , Cavinato, G.P. & Miccadei, E. 1995. Active faulting along the northeastern edge of the Sulmonabasin, central Apennines, Italy. In: Serva L. , Burton Slemmons D. (eds.), Perspective in paleoseismology.Special Publication-Association of Engineering Geologists 6: 115–126. Vucetic, M. , & Dobry, R. 1991. Effect of soil plasticity on cyclic response. Journal of GeotechnicalEngineering 117(1): 89–107.

A simplified method for the estimation of earthquake-induced pore pressures Adamidis, O. & Madabhushi, G.S.P. 2016. Post-liquefaction reconsolidation of sand. Proceedings of theRoyal Society A: Mathematical, Physical and Engineering Sciences, 472(2186): 20150745. Biondi, G. , Cascone, E. & Di Filippo, G . 2012. Affidabilità di alcune correlazioni empiriche per la stima delnumero di cicli di carico equivalente. Rivista Italiana di Geotecnica 46(2): 9–39. [in italian] Chiaradonna, A. , Tropeano, G. , d’Onofrio, A. & Silvestri, F. 2018. Development of a simplified model forpore water pressure build-up induced by cyclic loading. Bulletin of Earthquake Engineering 16(9):3627–3652. Chiaradonna, A. , Tropeano, G. , d’Onofrio, A. & Silvestri, F. 2019. Interpreting the deformation phenomenaof a levee damaged during the 2012 Emilia earthquake. Soil Dynamics and Earthquake Engineering 124:389–398.

Conti, R. , Angelini, M. & Licata, V. 2020. Nonlinearity and strength in 1D site response analyses: A simpleconstitutive approach. Bulletin of Earthquake Engineering 18: 4629–4657. Cubrinovski, M. , Bray, J.D. , Taylor, M. , Giorgini, S. , Bradley, B. A. , Wotherspoon, L. & Zupan, J. 2011.Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake.Seismological Research Letters 82: 893–904. Hancock, J. & Bommer, J. J. 2005. The effective number of cycles of earthquake ground motion. EarthquakeEngineering & Structural Dynamics 34(6): 637–664. Hardin B.O. & Drnevich VP 1972. Shear modulus and damping in soils: design equations and curves.Journal of the Soil mechanics and Foundations Division 98(7): 667–692. Idriss, I.M. & Boulanger, R.W. 2006. Semi-empirical procedures for evaluating liquefaction potential duringearthquakes. Soil Dynamics and Earthquake Engineering 26(2–4): 115–130. Idriss, I.M. & Boulanger, R.W. 2008. Soil liquefaction during earthquakes . Earthquake EngineeringResearch Institute. Kramer, S.L. 1996. Geotechnical earthquake engineering. Pearson Education India. MATLAB . 2021. version 9.10.0 (R2021a). Natick, Massachusetts: The MathWorks Inc. Miner, M.A. 1945. Cumulative damage in fatigue . Trans. ASME 67, A159–A164. Mucciarelli, M. & Liberatore, D. 2014. Guest editorial: the Emilia 2012 earthquakes, Italy. Bulletin ofEarthquake Engineering 12: 2111–2116. https://doi.org/10.1007/s1051 8–014-9629-6 Phillips, C. & Hashash, Y. M. 2009. Damping formulation for nonlinear 1D site response analyses. SoilDynamics and Earthquake Engineering 29(7): 1143–1158. Seed, H.B. & Booker, J.R. 1977. Stabilization of potentially liquefiable sand deposits using gravel drains.Journal of Geotechnical Engineering Division 103(7): 757–768. Seed, H.B. , Martin, P.P. , & Lysmer, J. 1975. The generation and dissipation of pore water pressures duringsoil liquefaction . College of Engineering, University of California. Sorrentino, L. , Liberatore, L. , Decanini, L.D. , Liberatore, D. 2013a. The performance of churches in the2012 Emilia earthquakes. Bulletin of Earthquake Engineering 12: 2299–2331. doi:10.1007/s10518-013-9519-3 Sorrentino, L. , Liberatore, L. , Liberatore, D. , Masiani, R. 2013b. The behaviour of vernacular buildings inthe 2012 Emilia earthquakes. Bulletin of Earthquake Engineering 12: 2367–2382. doi:10.1007/s10518-013-9455-2 Terzaghi, K. (1923). Die Berechnung der Durchassigkeitsziffer des Tones aus dem Verlauf derhydrodynamischen Spannungs. erscheinungen. Sitzungsber. Akad. Wiss. Math. Naturwiss. Kl. Abt. 2A 132:105–124 Tonni, L. , et al. 2015. Analisi dei fenomeni deformativi indotti dalla sequenza sismica emiliana del 2012 suun tratto di argine del Canale Diversivo di Burana (FE). Rivista Italiana di Geotecnica 49(2): 28–58. [inItalian] Trifunac, M.D. & Brady A.G. 1975. A study on the duration of strong earthquake ground motion. Bulletin ofthe Seismological Society of America 65(3): 581–626. Tropeano, G. , Chiaradonna, A. , d'Onofrio, A. & Silvestri, F. 2016. An innovative computer code for 1Dseismic response analysis including shear strength of soils. Géotechnique 66(2), 95–105. Viggiani, G.M.B. & Atkinson, J.H. 1995. Stiffness of fine-grained soil at very small strains. Géotechnique45(2): 249–265. Wichtmann, T. & Triantafyllidis, T. 2009. Influence of the grain-size distribution curve of quartz sand on thesmall strain shear modulus Gmax. Journal of Geotechnical and Geoenvironmental Engineering, ASCE135(10): 1404–1418.

Evaluation of DSSI for the preservation of the Catania University Central Palace Abate, G. , Caruso, C. , Massimino, M. R. , Maugeri, M. 2008. Evaluation of shallow foundation settlementsby an elastoplastic kinematic-isotropic hardening numerical model for granular soil. Geomechanics andGeoengineering, 3(1): 27–40. Abate, G. , Massimino, M. R. , Romano, S. 2016. Finite Element Analysis of DSSI Effects for a Building ofStrategic Importance in Catania (Italy). Proc. VI Italian Conf of Researchers in Geotech Engineering –Geotechnical Engineering in Multidisciplinary Research: from Microscale to Regional Scale, CNRIG2016.Procedia Engineering, 158: 374–379, Bologna, Italy; 22–23 September 2016. Abate, G. , Grasso, S. , Massimino, M. R. 2019. The role of shear wave velocity and non-linearity of soil inthe seismic response of a coupled tunnel-soil-above ground building system. Geosciences, 9(11): 473. Abate, G. , Bramante, S. , Massimino, M. R. 2020. Innovative seismic microzonation maps of urban areas forthe management of building heritage: a Catania case study. Geosciences, 10(12): 1–22.

Bathe, K. J. 1999. Nonlinear finite element analysis and ADINA. In: Proc of the 12th ADINA conference oncomputers and structures. Been, K. & Jefferies, M. G. 1985. A state parameter for sands. Géotechnique, 35(2): 99–112. Caruso, C. 2005. Implementation and validation of a constitutive model for sand soil into a FEM code. PhDThesis in Geotechnical Engineering, the University of Catania (in Italian). Caruso, S. , Ferraro, A. , Grasso, S. , & Massimino, M. R. 2016. Site Response Analysis in eastern Sicilybased on direct and indirect Vs measurements. Metro Geotechnics: 115–120, Proc. 1st IMEKO TC4 IntWorkshop on Metrology for Geotechnics, Benevento, Italy; 17–18 March 2016. Castelli F. , Cavallaro A. , Ferraro A. , Grasso S. , Lentini V. , Massimino M. R. e Caruso S. 2017.Caratterizzazione Geotecnica e Risposta Sismica Locale dell’Area del Monastero dei Benedettini a Catania.Proc. XXVI Conv. Naz. di Geotecnica – L'Ingegneria Geotecnica nella Conservazione e Tutela delPatrimonio Costruito, Roma, 20 – 22 Giugno 2017: 507–515. Cavallaro, A. , Grasso, S. , Maugeri, M. 2006. Volcanic soil characterisation and site response analysis in thecity of Catania. Proc. 8th US Nat Conf on Earthquake Engineering 2006, 2, 835–844. Faccioli, E. & Pessina, V. 2000. The Catania Project: Earthquake Damage Scenarios for High Risk Area inthe Mediterranean; Faccioli, E. , Pessina, V. , Eds.; CNR-Gruppo Nazionale per la Difesa dai Terremoti:Roma, Italy, 225p. FEMA 2009. NEHRP Recommended Seismic Provisions for New Buildings and Other Structures: 705.Building Seismic Safety Council of the National Institute of Building Sciences for the Federal EmergencyManagement Agency, Washington, D.C. Ferraro, A. , Grasso, S. , Massimino, M. R. , & Maugeri, M. 2015. Influence of geotechnical parameters andnumerical modelling on local seismic response analysis. Geotechnical Engineering for Infrastructure andDevelopment 4: 2183–2188 – Proc of the XVI Eur Conf. on Soil Mechanics and Geotechnical Engineering,ECSMGE 2015, Edinburgh, United Kingdom; 13–17 September 2015. Gajo, A. & Muir Wood, D . 1999. Severn–Trent sand: a kinematic-hardening constitutive model: the q–pformulation. Géotechnique, 49(5): 595–614. Gatto, M. , Massimino, M. R. , Pitilakis, D. , Rovithis, E. 2015. Numerical Simulation of large-scale soil-foundation-structure interaction experiments in the EuroProteas facility. Proc 6th Inter Conf on earthquakegeotechnical engineering 6ICEGE, Christchurch, New Zealand; 1–4 November 2015. Hashash, Y. M. , Park, D. 2002. Viscous damping formulation and high-frequency motion propagation innonlinear site response analysis. Soil Dynamics and Earthquake Engineering, 22(7): 611–624. Iervolino, I. , Galasso, C. , Cosenza, E. 2010. REXEL: computer-aided record selection for code-basedseismic structural analysis. Bulletin of Earthquake Engineering, 8: 339–362. Ilori, A. O. , Udoh, N. E. , Umenge, J. I. 2017. Determination of soil shear properties on a soil to concreteinterface using a direct shear box apparatus. International Journal of Geo-Engineering, 8(1), 1–14. Karatzetzou, A. , Pitilakis, D. 2017. Modification of dynamic foundation response due to soil-structureinteraction. Journal of Earthquake Engineering. 22(5), 861–880. Kausel, E. 2010. The early history of soil-structure interaction. Soil Dynamics and Earthquake Engineering,30(9): 822–832. Kottke, A. & Rathje, E. 2008. Technical Manual for Strata PEER Report 2008/10. University of California. Lanzo, G. & Silvestri, F. 1999. Risposta sismica locale. Helvelius Ed., Napoli. ISBN: 8886977913. Luco, J. E. 1980. Linear soil-structure interaction. Lawrence Livermore National Lab. UCRL-15272. Lysmer, J. & Kuhlemeyer, R. L. 1969. Finite dynamic model for infinite media. Eng. Mech., 95(4):859–877. Massimino, M.R. , Abate, G. , Corsico, S. , Grasso, S. , Motta, E. 2018. Dynamic behaviour of coupled soil-structure systems by means of fem analysis for the seismic risk mitigation of INGV building in Catania (Italy).Special Issue, Annals of Geophysics, 61(2), SE216: 1–25. Massimino, M. R. , Abate, G. , Grasso, S. , Pitilakis, D. 2019a. Some aspects of DSSI in the dynamicresponse of fully-coupled soil-structure systems. Rivista Italiana di Geotecnica, 1:44–70. Massimino, M. R. , Abate, G. , Corsico, S. , Louarn, R. 2019b. Comparison Between Two Approaches forNonlinear FEM Modelling of the Seismic Behaviour of a Coupled Soil–Structure System. Geotechnical andGeological Engineering, 37(3): 1957–1975. Mylonakis, G. & Gazetas, G. 2000. Seismic Soil-Structure Interaction: Beneficial or Detrimental? Journal ofEarthquake Engineering, 4(3): 277–301. NTC 2018. D.M. 17/01/18 – Updating of technical standards for buildings, Official Journal of the ItalianRepublic, 17th January 2018 (In Italian) Pandey, B. H. , Liam Finn, W. D. , Ventura, C. E. , 2012. Modification of free-field motions by soil-foundation-structure interaction for shallow foundations. Proc. 15th World Conf on Earthq Eng, Lisbon, Portugal; 24-28September 2012. Pecker, A. & Chatzigogos, C.T. 2010. Nonlinear soil structure interaction: impact on the seismic response ofstructures. Proc. XIV Eur Conf. on Earth Eng. August 2010, Ohrid, FYROM, Keynote lecture.

Pitilakis, D. , Dietz, M. , Miur Wood, D. , Clouteau, D. , Modaressi, A. 2008. Numerical simulation of dynamicsoil-structure interaction in shaking table testing. Soil Dyn and Earth Eng, 28(6): 453–467. Rovithis, E. , Kirtas, E. , Bliziotis, D. , Maltezos, E. , Pitilakis, D. , Makra, K. , Savvaidis, A. , Karakostas, C. ,Lekidis, V. 2017. A LiDAR-aided urban-scale assessment of soil-structure interaction effects: the case ofKalochori residential area (N. Greece). Bulletin of Earthquake Engineering, 15: 4821–4850. Sheng, D. , Wriggers, P. , Sloan. S.W. 2007. Application of Frictional Contact in Geotechnical Engineering.International Journal of Geomechanics 7(3), 176–185. Stucchi, M. , Meletti, C. , Montaldo, V. , Crowley, H. , Calvi, G. M. , Boschi, E. 2011. Seismic hazardassessment (2003–2009) for the Italian building code. Bulletin Seismol Society of America,101(4):1885–1911. Veletsos, A. S. , & Meek, J. W. 1974. Dynamic behaviour of buildingfoundation systems. EarthquakeEngineering and Structural Dynamics, 3(2): 121–138. Yokota, K. , Imai, T. , Konno, M. 1981. Dynamic deformation characteristics of soils determined by laboratorytests. OYO Tec. Rep, 3: 13–37.

Vulnerability assessment of historical cities including SSI and site-effects Amendola, C. , F. de Silva , A. Vratsikidis , D. Pitilakis , A. Anastasiadis , & F. Silvestri (2021). Foundationimpedance functions from full-scale soil-structure interaction tests. Soil Dynamics and EarthquakeEngineering 141 (November 2020), 106523. Brunelli, A. , F. de Silva , A. Piro , F. Parisi , S. Sica , F. Silvestri , & S. Cattari (2021). Numerical simulationof the seismic response and soil–structure interaction for a monitored masonry school building damaged bythe 2016 central italy earthquake. Bulletin of Earthquake Engineering 19 (2), 1181–1211. Cavalieri, F. & Correia, A. A. , H. Crowley , & R. Pinho (2020). Dynamic soil-structure interaction models forfragility characterisation of buildings with shallow foundations. Soil Dynamics and Earthquake Engineering132 , 106004. CEN ., (2005). Eurocode 8: Design of structures for earthquake resistance-part 1: general rules, seismicactions and rules for buildings. European Standard EN 1998-1:2004. Brussels, Belgium : EuropeanCommittee for Standardisation . Crowley, H. , V. Despotaki , D. Rodrigues , V. Silva , D. Toma-Danila , E. Riga , A. Karatzetzou , S.Fotopoulou , Z. Zugic , L. Sousa , S. Ozcebe , & P. Gamba (2020). Exposure model for european seismicrisk assessment. Earthquake Spectra 36 , 252–273. D'Ayala, D. , A. Meslem , D. Vamvatsikos , K. Porter , & T. Rossetto (2014). Guidelines for analyticalvulnerability assessment of low/mid-rise buildings, vulnerability global component project. GEM TechnicalReport 2015-08 v1.0.0 08, 162. de Silva, F. (2020). Influence of soil-structure interaction on the site-specific seismic demand to masonrytowers. Soil Dynamics and Earthquake Engineering 131 , 106023. de Silva, F. , C. Amendola , D. Pitilakis , & F. Silvestri (2022). Prediction of foundation stiffness and dampingratio under swaying and rocking motion. Di Laora, R. & L. de Sanctis (2013). Piles-induced filtering effect on the foundation input motion. SoilDynamics and Earthquake Engineering 46 , 52–63. D'Onofrio, A. & F. Silvestri (2001). Influence of micro-structure on small-strain stiffness and damping of finegrained soil and effects on local site response. In Missouri University of Science and Technology Scholars'Mine. Paper presented at International Conferences on Recent Advances in Geotechnical EarthquakeEngineering and Soil Dynamics, Missouri University of Science and Technology, 29 Mar 2001. Forte, G. , S. Fabbrocino , G. Fabbrocino , G. Lanzano , F. Santucci de Magistris , & F. Silvestri (2017). Ageolithological approach to seismic site classification: an application to the molise region (italy). Bulletin ofEarthquake Engineering 15 (1), 175–198. Jalayer, F. , P. F., & P. E. Pinto (2007). A scalar damage measure for seismic reliability analysis of rcframes. Earthquake Engineering and Structural Dynamics 36 (June), 2059–2079. Jalayer, F. and Ebrahimian, H. , A. Miano , G. Manfredi , & H. Sezen (2017). Analytical fragility assessmentusing unscaled ground motion records. Earthquake Engineering and Structural Dynamics 46 (15),2639–2663. Kalogirou, N. & A. Paka (2018). Standardizing tradition: The building code as a series of prototypes for newstructures in the traditional district of ano poli in thessaloniki. 14th International Conference in“STANDARDIZATION, PROTYPES AND QUALITY: A MEANS OF BALKAN COUNTRIES”COLLABORATION⣞, September 21 - 22, 2018, Tirana, Albania. Karapetrou, S. T. , S. D. Fotopoulou , & K. D. Pitilakis (2015). Seismic vulnerability assessment of high-risenon-ductile rc buildings considering soil-structure interaction effects. Soil Dynamics and Earthquake

Engineering 73 , 42–57. Maravas, A. , G. Mylonakis , & D. L. Karabalis (2014). Simplified discrete systems for dynamic analysis ofstructures on footings and piles. Soil Dynamics and Earthquake Engineering 61 , 29–39. Martins, L. & V. Silva (2020). Development of a fragility and vulnerability model for global seismic riskanalyses. Bulletin of Earthquake Engineering. Mazzoni, S. , F. McKenna , M. H. Scott , G. L. Fenves , et al. (2006). Opensees command language manual.Pacific Earthquake Engineering Research (PEER) Center 264 , 137–158. Nist, G. .-.-. (2012). Soil-structure interaction for building structures. Petridis, C. & D. Pitilakis (2020). Fragility curve modifiers for reinforced concrete dual buildings, includingnonlinear site effects and soil–structure interaction. Earthquake Spectra. Piro, A. , F. de Silva , F. Parisi , A. Scotto di Santolo , & F. Silvestri (2020). Effects of soil-foundation-structure interaction on fundamental frequency and radiation damping ratio of historical masonry buildingsub-structures. Bulletin of Earthquake Engineering 18 (4), 1187–1212. Pitilakis, K. , S. T. Karapetrou , & S. D. Fotopoulou (2014). Consideration of aging and ssi effects on seismicvulnerability assessment of rc buildings. Bulletin of Earthquake Engineering 12 , 1755–1776. Rajeev, P. & S. Tesfamariam (2012). Seismic fragilities of non-ductile reinforced concrete frames withconsideration of soil structure interaction. Soil Dynamics and Earthquake Engineering 40 , 78–86. Raychowdhury, P. & T. C. Hutchinson (2008). Shallowfoundationgen opensees documentation. OpenSystem for Earthquake Engineering Simulation (OpenSEES): University of California , San Diego . Saez, E. , F. Lopez-Caballero , & A. Modaressi-Farahmand-Razavi (2011). Effect of the inelastic dynamicsoil–structure interaction on the seismic vulnerability assessment. Structural safety 33 (1), 51–63. Shome, N. & C. A. Cornell (2000). Structural seismic demand analysis: consideration of collapse. In 8thASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, pp. 1–6. Veletsos, A. S. & J. W. Meek (1974). Dynamic behaviour of building-foundation systems. EarthquakeEngineering & Structural Dynamics 3 (2), 121–138. Vyzantiadou, M. M. & M. Selevista (2019). Protection of cultural heritage in thessaloniki: A review ofdesignation actions. Heritage 2 (1), 717–731. Wald, D. J. & T. I. Allen (2007). Topographic slope as a proxy for seismic site conditions and amplification.Bulletin of the Seismological Society of America 97 (5), 1379–1395.

Effects of local soil conditions on the seismic response of the historical area inSan Giuliano di Puglia (Italy) Coll A , Ribó R , Pasenau M , Escolano E , Perez J.S. , Melendo A. , Monros A. & Gárate J. 2018. GiD v.14User Manual (pdf). accessed 2020 May 25 ). www.gidhome.com. Costanzo A. , d’Onofrio A. , Lanzo G. , Pagliaroli A. , Penna A. , Puglia R. , Santucci de Magistris F. , Sica S., Silvestri F. , Tommasi P. (2007) Seismic response of historical centers in Italy: selected case studies. 4thInternational Conference on Earthquake Geotechnical Engineering, Thessaloniki, Greece. d’Onofrio, A. , Vitone, C. , Cotecchia, F. , Puglia, R. , Santucci de Magistris, F. & Silvestri, F. 2009.Caratterizzazione geotecnica del sottosuolo di San Giuliano di Puglia. In Rivista Italiana di Geotecnica(Italian Geotechnical Journal) 3, 43–61. Durante, M.G. , Brandenberg, S.J. , Ausilio, E. & Zimmaro, P. 2018. Influence of topographic irregularities onthe amplitude and phase of strong ground motions. Eleventh U.S. Nat. Conference on EarthquakeEngineering Integrating Science, Engineering & Policy. June 25–29, 2018 Los Angeles, California Fierro T. , Mignelli L. , Scasserra G. , Pagliaroli A. & Santucci de Magistris F. 2019. Key role of soilinvestigation and monitoring for the assessment of site effects for the village of San Giuliano di Puglia (CB),Italy. In VII International Conference on Earthquake Geotechnical Engineering, Rome, Italy, paper n. 10120. Fierro T. , Mignelli L. , Scasserra G. , Pagliaroli A. & Santucci de Magistris F. 2020a. The use of seismicrecords for updating the geotechnical model for a site in San Giuliano di Puglia (Italy). VI CNRIG ItalianConference of Researchers in Geotechnical Engineering, Lecco, Italy, July 2019 Fierro T. , Mignelli L. , Scasserra G. , Pagliaroli A. & Santucci de Magistris F. 2020b. Updating the SiteResponse Analyses at San Giuliano di Puglia (CB), Italy. Italian Geotech. Journal, 2020(4), pp. 5–40. Hudson, M. , Idriss, I. M. & Beikae M. 1994. QUAD4M. A computer program to evaluate the seismicresponse of soil structures using finite element procedures and incorporating a compliant base. The NationalScience Foundation, Washington D.C.; Center for Geotechnical Modeling, Department of Civil &Environmental Engineering, University of California, Davis, California. Joyner, W.B. and Chen, A.T.F. 1975. Calculation of nonlinear ground response in earthquakes, Bull. Seism.Soc. Am., 65, 1315–1336.

Kottke, A.R. , Wang X. & Rathje E.M. 2013. Technical Manual for Strata. Geotechnical Engineering CenterDepartment of Civil, Architectural, and Environmental Engineering, University of Texas. Luzi L. , Puglia R. , Russo E. & ORFEUS WG5 . 2016. Engineering Strong Motion Database, version 1.0.Istituto Nazionale di Geofisica e Vulcanologia, Observatories & Research Facilities for EuropeanSeismology. doi: 10.13127/ESM Lysmer, J. & Kuhlemeyer R.L. 1969. Finite dynamic model for infinite media. Journal of the EngineeringMechanics Division, ASCE, 95(EM4):859–877 McGann, C.R. , Arduino, P. & Mackenzie-Helnwein P. 2012. Stabilized single-point 4-node quadrilateralelement for dynamic analysis of fluid saturated porous media. Acta Geotechnica 7 (4), 297–311. McKenna F. & Fenves G.L. 2008. Using the OpenSees Interpreter on Parallel Computers. Network forEarthquake Engineering Simulations (NEES) TN-2007-16. UC Berkeley. McKenna, F. , Fenves, G. L. , Scott, M. H. & Jeremic, B. 2000. Open system for earthquake engineeringsimulation. http://opensees.berkeley.edu. Papanikolaou, V.K. , Kartalis-Kaounis, T. , Protopapadakis, V.K. & Papadopoulos, T. 2017 GiD+OpenSeesInterface : An Integrated Finite Element Analysis Platform. Lab of R/C and Masonry Structures, AristotleUniversity of Thessaloniki, Greece. Puglia R. 2008. Analisi della risposta sismica locale di San Giuliano di Puglia. Tesi di Dottorato in IngegneriaGeotecnica, Università della Calabria. Puglia R. , Russo E. , Luzi L. , D’Amico M. , Felicetta C. , Pacor F. & Lanzano G. 2018. Strong-motionprocessing service: a tool to access and analyse earthquakes strong-motion waveforms. Bull. Earthq. Eng.16, pp.2641–2651. https://doi.org/10.1007/s10518-017-0299-z Puglia, R. , Klin, P. , Pagliaroli, A. , Ladina, C. , Priolo, E. , Lanzo, G. & Silvestri, F. 2009. Analisi dellarisposta sismica locale a San Giuliano di Puglia con modelli 1D, 2D e 3D. RIG. Pagg. 62–71. Puglia, R. , Lanzo, G. , Pagliaroli, A. , Sica, S. & Silvestri, F. 2007. Ground motion amplification in SanGiuliano di Puglia (Southern Italy) during the 2002 Molise earthquake. In IV International Conference onEarthquake Geotechnical Engineering, Thessaloniki, Greece, paper no. 1611. Puglia, R. , Vona, M. , Klin, P. , Ladina, C. , Masi, A. , Priolo E. & Silvestri F. 2013. Analysis of site responseand building damage distribution induced by the 31 October 2002 earthquake at San Giuliano di Puglia(Italy). Earthquake Spectra, 29(2):497–526, doi: 10.1193/1.4000134. Rathje, E. , Dawson, C. Padgett, J.E. , Pinelli, J.-P. , Stanzione, D. , Adair, A. , Arduino, P. , Brandenberg,S.J. , Cockerill, T. , Dey, C. , Esteva, M. , Haan, Jr., F.L. , Hanlon, M. , Kareem, A. , Lowes, L. , Mock, S. &Mosqueda, G. 2017. DesignSafe: A New Cyberinfrastructure for Natural Hazards Engineering, ASCENatural Hazards Review, doi:10.1061/(ASCE)NH.1527-6996.0000246. Sanò, T. , Bongiovanni, G. , Clemente, P. & Rinaldis, D. 2015. Modellazione dei Fenomeni di AmplificazioneLocale Basata su Registrazioni Accelerometriche al Sito. In ANIDIS 2015 – XVI Convegno. Santucci de Magistris, F. , d’Onofrio, A. , Penna, A. , Puglia, R. & Silvestri, F. 2014. Lessons learned fromtwo case histories of seismic microzonation in Italy. Nat. Hazards, 74, 2005–2035. Silvestri, F. , Vitone, C. , d’Onofrio, A. , Cotecchia, F. , Puglia, R. & Santucci de Magistris, F. 2006. Theinfluence of meso-structure on the mechanical behaviour of a marly clay from low to high strains. InSymposium to celebrate Prof. Tatsuoka's 60th birthday, Roma, Italy. Yang, Z. , Lu J. & Elgamal, A. 2008. OpenSees Soil Models and Solid-Fluid Fully Coupled Elements. User'sManual. v1.0. Department of Structural Engineering, University of California, San Diego.

Simulation of damage observed on buildings in aggregate after the 2016-2017Central Italy earthquake accounting for site effects and soil-structure interaction Alleanza, G.A. 2022. Two-Dimensional Amplification of Seismic Motion in Alluvial Valleys. Ph.D. dissertation.University of Napoli “Federico II”, Napoli, Italy. Alleanza, G.A. , Chiaradonna, A. , d’Onofrio, A. , Silvestri, F. 2019. Parametric study on 2D effect on theseismic response of alluvial valleys. Proc. of the 7th ICEGE, 17–20 June 2019. Rome, Italy. Angiolilli, M. , Lagomarsino, S. , Cattari, S. , Degli Abbati, S. 2021. Seismic fragility assessment of existingmasonry buildings in aggregate. Engineering Structures 247:113–218. Brando, G. , Pagliaroli, A. , Cocco, G. , Di Buccio, F. 2020. Site effects and damage scenarios: The casestudy of two historic centers following the 2016 Central Italy earthquake. Engineering Geology 272:105674. Brunelli, A. , de Silva, F , Cattari, S. 2022. Site effects and soil-foundation-structure interaction: derivation offragility curves and comparison with Codes-conforming approaches for a masonry school. Soil Dyn. Earthq.Eng. 154(4):107125. Brunelli, A. , de Silva, F. , Piro, A. , Sica, S. , Parisi, F. , Silvestri, F. , Cattari, S. 2021. Numerical simulationof the seismic response and soil-structure interaction for a monitored masonry school building damaged by

the 2016 Central Italy earthquake. Bull Earthq Eng. 19(2):1181–1211. Calderini, C. , Cattari, S. , Lagomarsino, S. 2009. In-plane strength of unreinforced masonry piers,Earthquake Eng Struct Dyn 38(2):243–267. Caprili, S. , Mangini, F. , Salvatore, W. , Scarpelli, G. , Squeglia, N. 2015. The influence ofsoil–foundation–structure interaction on the overall behaviour and diseases of a medieval building in Pisa.STREMAH 2015, 14th STREMAH, July 13-15 2015, La Coruna, Spain. Cattari, S. , Camilletti, D. , D’Altri, A.M. , Lagomarsino, S. 2021. On the use of continuum Finite Element andEquivalent Frame models for the seismic assessment of masonry walls. J. Build. Eng. 43:102519. Cattari, S. & Lagomarsino, S. 2013. Masonry Structures in Developments in the field of displacement basedseismic assessment. Edited by Sullivan, T.J. & Calvi, G.M. , IUSS Press, Pavia, Italy, pp.151–200 andEUCENTRE, pp. 524, ISBN; 978-88-6198-090-7. Ciancimino, A. , Lanzo, G. , Alleanza, G. A. , Amoroso, S. , Bardotti, R. , et al. 2020. Dynamiccharacterization of fine-grained soils in Central Italy by laboratory testing. Bull. of Earthq. Eng.18:5503–5531. D’Altri, A.M. , Sarhosis, V. , Milani, G. , Rots, J. , Cattari, S. , Lagomarsino, S. , Sacco, E. , Tralli, A. ,Castellazzi, G. , de Miranda, S. 2020. Modeling strategies for the computational analysis of unreinforcedmasonry structures: review and classification. Arch. Comput. Methods Eng. 27:1153–1185. Gazetas, G. 1983. Analysis of machine foundation vibrations: state of the art. Soil Dyn Earthq Eng. 2:1–41. Gazetas, G. 1991. Formulas and charts for impedances of surface and embedded foundations. J GeotechEng, 117(9):1363–1381. Hudson, M. , Idriss, I.M. , Beikae, M. 2003. QUAD4M: a computer program to evaluate the seismic responseof soil structures using finie element procedures and incorporating a compliant base, rev. 2003. Center forGeotechnical Modelling Dept. of Civil and Environmental Engineering University of California, Devis. Imai, T. & Yoshimura, Y. 1970. Elastic wave velocity and soil properties in soft soil. Tsuchito-Kiso 18(1):17–22 (in Japanese). Kottke, A. & Rathje, E.M.R. 2008. Technical manual for Strata. Report No. 2008/10. Pacific Earth-quakeEngineering Research Center, University of California, Berkeley. Kuhlemeyer, R.L. & Lysmer, J. 1973. Finite element method accuracy for wave propagation problems. SoilMechanics and Foundations, 99(5):421–427. Liao, T. , Massoudi, N. , McHood, M. , Stokoe, K.H. , Jung, M. J. , Menq, F.Y. 2013. Normalized ShearModulus of Compacted Gravel. Proc. 18th Int. Conf. on Soil Mech Geotech Eng. Challenges and Innovationsin Geotechnics, 1535–1538. Lagomarsino, S. , Penna, A. , Galasco, A. , Cattari, S. 2013. TREMURI program: An equivalent frame modelfor the nonlinear seismic analysis of masonry buildings. Eng Struct. 56:1787–1799. Lee, S.H.H. 1992. Analysis of the multicollinearity of regression equations of shear wave velocities. Soils andFoundations 32(1):205–214. Maravas, A. , Mylonakis, G. , Karabalis, D.L. 2014. Simplified discrete systems for dynamic analysis ofstructures on footings and piles. Soil Dyn Earthq Eng, 61–62:29–39. MIT . 2019. Istruzioni per l’applicazione dell’aggiornamento delle Norme tecniche per le costruzioni di cui alDecreto Ministeriale 17/01/2018, Ministry of Infrastructures and Transportations, Rome, Italy. (in Italian). MZS3 . 2018. Report of the 3rd level Seismic Microzonation of Visso village. Approved by the WorkingGroup, May 29, 2018. https://www.comune.visso.mc.it/avvisi-cms/microzona-zione-sismica-iii-livello/. NTC . 2018. Norme Tecniche per le Costruzioni. DM 17/01/2018, Italian Ministry of Infrastructure andTransportation, G.U. n. 42, 20 February 2018, Rome, Italy. (in Italian). Ohta, Y. & Goto, N. 1978. Empirical shear wave velocity equations in terms of characteristic soil indexes.Earthq. Eng. Struct. Dyn. 6:167–187. Ottonelli, D. , Manzini, C.F. , Marano, C. , Cordasco, E.A. , Cattari, S. 2021. A comparative study on acomplex URM building: part I - sensitivity of the seismic response to different modelling options in theequivalent frame models. Bull. Earthq. Eng. https://doi.org/10.1007/s10518-021-01128-7. Pagliaroli A. , Pergalani F. , Ciancimino A , Chiaradonna A. , Compagnoni M. , et al. 2020. Site responseanalyses for complex geological and morphological conditions: relevant case-histories from 3rd level seismicmicrozonation in Central Italy. Bull. of Earthq. Eng. 18:5741–5777. Papadimitriou, A.G. 2019. An engineering perspective on topography and valley effects on seismic groundmotion’, Proc. of the 7th ICEGE, 17–20 June 2019. Rome, Italy. Rezaie, A. , Godio, M. , Beyer, K. 2020. Experimental investigation of strength, stiffness and drift capacity ofrubble stone masonry walls. Construction and Building Materials 251:118972. Richart, F.E. , Hall, J.R. , Wood, R.D. 1970. Vibrations of Soils and Foundations. Prentice-Hall. Sextos, A. , De Risi, R. , Pagliaroli, A. , Pagliaroli, S. , Foti, S. , et al. 2018. Local site effects and incrementaldamage of buildings during the 2016 Central Italy Earthquake sequence. Earthq Spectra. 34(4):1639–1669. Sorrentino, L. , Cattari, S. , da Porto, F. , Magenes, G. , Penna, A. 2019. Seismic behaviour of ordinarymasonry buildings during the 2016 central Italy earthquakes. Bull Earthq Eng. 17(10):5583–5607.

Turnšek, V. & Sheppard, P. 1980. The shear and flexural resistance of masonry walls. In Proc. Int. researchconf earthq eng. 30 June – 3 July 1980, Skopje, Macedonia. Vanin, F. , Zaganelli, D. , Penna, A. , Beyer, K. 2017. Estimates for the stiffness, strength and drift capacityof stone masonry walls based on 123 quasi-static cyclic tests reported in the literature. Bull. Earth. Eng,15(12):5435–5479.

A large-scale evaluation of the seismic demand for historic towers laying on softsoil Abu Zeid, N. Ribecchi, G. Tullini, N. Laudiero, F. Lanza, L. 2007. Caratterizzazione dinamica di torrimedioevali ravennati. Atti del XII Convegno ANIDIS “L’ingegneria Sismica in Italia”, 10-14 June 2007, Pisa,Italy. Bartoli, G. Betti, M. Vignoli, A. 2016. A numerical study on seismic risk assessment of historic masonrytowers: a case study in San Gimignano. Bull Earthq Eng 14:1475–1518. Casolo, S. Milani, G. Uva, G. Alessandri, C. 2013. Comparative seismic vulnerability analysis on tenmasonry towers in the coastal Po Valley in Italy. Eng Struct. 49:465–490. Casolo, S. Diana, V. Uva, G. 2017. Influence of soil deformability on the seismic response of a masonrytower. Bull Earthq Eng. 15(5):1991–2014. Clementi, F. Pierdicca, A. Milani, G. Gazzani, V. Poiani, M. Lenci S. 2018. Numerical model upgrading ofancient bell towers monitored with a wired sensors network. 10th International Masonry Conference Milani,G. Taliercio, A. Garrit, S. (eds.) 9–11 July 2018, Milan, Italy. Coli, M. Cosentini, R. Lacanna, G. Lancellotta, R. Ripepe, M. 2020 Giotto's bell tower: a contribution on thedynamic identification and soil-structure interaction. In “Il Campanile di Giotto, conoscenza, diagnostica,conservazione”, Vaccaro V. & Caciagli S. Ed., Mandragora, Firenze (in press). Cornell, C.A. Jalayer, F. Hamburger, R.O. Foutch, D.A. 2002. Probabilistic basis for 2000 SAC FederalEmergency Management Agency steel moment frame guidelines. J Struct Eng ASCE 128(4):526–533. Cosentini, R. Foti, S. Lancellotta, R. Sabia, D. 2015. Dynamic behavior of shallow founded historic towers:validation of simplified approaches for seismic analyses. Int J Geotech Eng:13–29. Cosenza, E. Iervolino, I. 2007. Seismic Retrofitting of a Medieval Bell Tower by FRP. J Comp. Constr.11(3):319–327. de Silva F. 2020. Influence of soil-structure interaction on the site-specific seismic demand of masonrytowers. Soil Dyn Earthq Eng, 131, April 2020, 106023. de Silva, F. Ceroni, F. Sica, S. Silvestri, F. 2017. Carmine bell tower in Naples: prediction of soil-structureinteraction under seismic actions. Special Volume: Geotechnics and Heritage: Historic Towers. Lancellotta,R. Flora, A. Viggiani, C. (eds). Taylor & Francis. de Silva, F. Pitilakis, D. Ceroni, F. Sica, S. Silvestri, F. 2018. Experimental and numerical dynamicidentification of Carmine bell tower in Naples (Italy), Soil Dyn Earthq Eng 109: 235–250. Dogangun, A. Livaoglu, R. Acar, R. A study on seismic behavior of minarets considering soil-structureinteraction. International earthquake symposium, 2007: 393–404, Kocaeli, Turkey. Fioravante, V. Giretti, D. Abate, G. Aversa, S. Boldini, D. Capilleri, P.P. Cavallaro, A. Chamlagain, D.Crespellani, T. Dezi, F. Facciorusso, J. Ghinelli, A. Grasso, S. Lanzo, G. Madiai, C. Massimino, M.R. 7 Fiorentino, G. Lavorato, D. Quaranta, G. Pagliaroli, A. Carlucci, G. Nuti, C. Sabetta, F. Della Monica, G.Piersanti, M. Lanzo, G. Marano, G.C. Monti, G. Squeglia, N. Bartelletti, R. 2017. Numerical and experimentalanalysis of the leaning Tower of Pisa under earthquake. Procedia Engineering 199:3350–3355. Forte, G. Chioccarelli, E. De Falco, M. Cito, P. Santo, A. Iervolino, I. 2019. Seismic soil classification of Italybased on surface geology and shear-wave velocity measurements, Soil Dyn Earthq Eng 122: 79–93. Lacanna, G. Lancellotta, R. Ripepe, M. 2019. Integrating modal analysis and seismic interferometry forstructural dynamic response: the case study of giotto's bell tower in florence (italy). 7th ECCOMAS ThematicConference on Computational Methods in Structural Dynamics and Earthquake Engineering M.Papadrakakis , M. Fragiadakis (eds.) 24–26 June 2019, Crete, Greece. Lacanna, G. Ripepe, M. Coli, M. Genco, R. Marchetti, E. 2019. Full structural dynamic response fromambient vibration of Giotto's bell tower in Firenze (Italy), using modal analysis and seismic interferometry,NDT & E International 102: 9–15. Madiai, C. Renzi, S. Vannucchi, G. 2013. Seismic risk assessment of San Gimignano towers: Geotechnicalaspect and soil structure interaction. Proc. II International Symposium on Geotechnical Engineering for thePreservation of Monuments and Historic Sites: 523–529, Napoli, Italy. Maugeri, M. Pagliaroli, A. Rainieri, C. Tropeano, G. Santucci De Magistris, F. Sica, S. Silvestri, F. Vannucchi,G. 2013. Earthquake geotechnical engineering aspect of the 2012 Emilia Romagna earthquake (Italy).Proc.VII International conference on case history on geotechnical engineering April 29-May 4 2013, Chicago,

USA. Pellegrinelli, A. Furini, A. Russo, P. 2014. Earthquakes and ancient leaning towers: Geodetic monitoring ofthe bell tower of San Benedetto church in Ferrara (Italy). Journal of Cultural Heritage 15 (6):687–691. Rainieri, C & Fabbrocino, G. 2011. Predictive correlations for the estimation of the elastic period of masonrytowers. EVACES 2011 – Experimental Vibration Analysis for Civil Engineering Structures, 3-5 October 2011, Varenna, Italy. Standoli, G. Giordano, E. Milani, G. Clementi F. 2020. Model Updating of Historical Belfries Based on OmaIdentification Techniques, International Journal of Architectural Heritage.

Dynamic impedance functions for neighbouring shallow footings Aldaikh H. , Alexander N. A. , Ibraim E. , Knappett J.A. , 2018. Evaluation of rocking and coupling rotationallinear stiffness coefficients of adjacent foundations. International Journal of Geomechanics, 18(1), 04017131 Aldaikh H. , Alexander N.A. , Ibraim E. , Oddbjornsson O. , 2015. Two dimensional numerical andexperimental models for the study of structure-soil-structure interaction involving three buildings. ComputStruct; 150:79–91. Alexander N.A. , Ibraim E. , Aldaikh H. , 2013. A simple discrete model for interaction of adjacent buildingsduring earthquakes, Comput Struct; 124:1–10. ATC-3 , 1984. Applied Technology Council, Tentative Provisions for the Development of SeismicRegulations for Buildings, National Science Foundation and National Bureau of Standards, 1st edition(1978), 2nd edition Washington, DC. Betti R. , 1997. Effects of the dynamic cross-interaction in the seismic analysis of multiple embeddedfoundations, Earthquake engineering and structural dynamics, Vol. 26, 1005–1019. Chang-Liang V. , 1974. Dynamic Response of Structure in Layered Soils. Ph.D. thesis, MIT. de Silva F. , 2020. Influence of soil-structure interaction on the site-specific seismic demand to masonrytowers, Soil Dynamics and Earthquake Engineering 131(4). de Silva F. , Ceroni F. , Sica S. , Pecce M.R. , Silvestri F. , 2015. Effects of soil-foundation-structureinteraction on the seismic behaviour of monumental towers: the case study of the Carmine Bell tower inNaples. Riv Ital Geotec; 3:3–27. Gazetas G. , 1983. Analysis of machine foundation vibrations: state of the art. International Journal of SoilDynamics and Earthquake Engineering, 2: 2–42. Gazetas, G. , 1991. Formulas and charts for impedances of surface and embedded foundations. Journal ofGeotechnical Engineering, 117(9), pp.1363–1381. Ghandil M. , Behnamfar F. , Vafaeian M. , 2016. Dynamic responses of structure-soil- structure systems withan extension of the equivalent linear soil modeling. Soil Dyn Earthq Eng; 80:149–162. Itasca Consulting Group , 2004. Inc. FLAC3D User Manual: Version 5.0. USA. Knappett J. A. , Madden P. , Caucis K. , 2015. Seismic structure-soil-structure interaction between pairs ofadjacent building structures. Geotechnique; 65:429–441. Kuhlmeier R.L. and Lysmer. J. , 1973. Finite element method accuracy for wave propagation problems.Journal Soil Dynamics Division, 99, 421–427. Lehmann L , Antes H. , 2001. Dynamic structure-soil-structure interaction applying the symmetric Galerkinboundary element method (SGBEM). Mech Res Commun; 28:297–304. Maravas A. , Mylonakis G. , Karabalis L.D. , 2014. Simplified discrete systems for dynamic analysis ofstructures on footings and piles. Soil Dyn Earthq Eng, 61–62:29–39. Padron L.A. , Aznarez J. , Maeso O. , 2009. Dynamic structure–soil–structure interaction between nearbypiled buildings under seismic excitation by BEM–FEM model. Soil Dyn Earthq Eng; 29:1084–1096. Qian J. and Beskos D.E. , 1995. Dynamic interaction between 3-D rigid surface foundations and comparisonwith the ATC-3 provisions. Earthquake Engng. Struct. Dyn., 24: 419–437. Roesset J. M. and Gonzalez J. J. , 1977. Dynamic interaction between adjacent structures. Dyn. Meth. SoilRock Mech., 1, 127. Wang S. , Schmid G. , 1992. Dynamic structure-soil-structure interaction by FEM and BEM. Comput. Mech;9:347–357. Warburton G. B. , Richardson J. D. , Webster J. J. , 1971. Forced Vibrations of Two Masses on an ElasticHalf Space. ASME. J. Appl. Mech. March 38(1): 148–156, (March 1). Zeolla E. , De Silva F. , Sica S. , 2021. Dynamic cross-interaction between two closely-spaced shallowfoundations. Compdyn 2021, 8th ECCOMAS thematic conference on computational methods in structuraldynamics and earthquake engineering, Athens.

A geotechnical study for the historical heritage preservation of the City of Noto(Italy) Agnello, G. 1931. Memorie Inedite Varie sul Terremoto Siciliano del 1693. Archivio Storico per la SiciliaOrientale, s. II, a. 7, pp. 390–402. Agnello, G. M. 1997. Considerazioni sul Sisma del 1169. La Sicilia dei Terremoti. Giuseppe MaimoneEditore, Catania, pp. 101–127. Anonimo . 1693. Sincera , ed Esatta Relazione dell’Oribile Terremoto Seguito nell’Isola di Sicilia il dì 11 diGennaio 1693. Colla Nota delle Città, e Terre Sprofondate, de’ Morti, e Luoghi, che hanno Patito, e con tuttele Particolarità più Degne da Essere Registrate. Roma. Barbano, M. S. 1985a. The Val di Noto Earthquake of December 10, 1542. Atlas of Isoseismal Maps ofItalian Earthquake. Consiglio Nazionale delle Ricerche. Progetto Finalizzato Geodinamica. Quaderni de “LaRicerca Scientifica”, 114, Ed. D. Postpischl , v. 2°, pp. 28–29. Barbano, M. S. 1985b. The Val di Noto earthquake of January 11, 1693. Atlas of Isoseismal Maps of ItalianEarthquake. Consiglio Nazionale delle Ricerche. Progetto Finalizzato Geodinamica. Quaderni de “La RicercaScientifica”, 114, Ed. D. Postpischl , v. 2°, pp. 48–49. Boccone, P. 1697. Intorno il Terremoto della Sicilia, Seguito l’anno 1693. Museo di Fisica e di EsperienzeVariato, e Decorato di Osservazioni Naturali, Note Medicinali, e Ragionamenti Secondo i Principi de’Moderni, Tip. G. B. Zuccato, Venezia, pp. 1–31. Boschi, E. , Ferrari, G. , Gasperini, P. , Guidoboni, E. , Smeriglio, G. & Valensise, G. 1995. Catalogo dei FortiTerremoti in Italia dal 461 A. C. al 1980. Istituto Nazionale di Geofisica, Storia Geofisica Ambientale,Bologna. Boschi, E. , Guidoboni, E. , Ferrari, G. , Valensise, G. & Gasperini, P. 1997. Catalogo dei Forti Terremoti inItalia dal 461 A. C. al 1990. Istituto Nazionale di Geofisica, Storia Geofisica Ambientale, Bologna. Bottone, D. 1718. De Immani Trinacriae Terraemotu. Idea Historico-Physica, in Qua non Solum TellurisConcussiones Transactae Recensetur, sed Novissimae. Anni 1717. Messina. Capilleri, P. , Cavallaro, A. & Maugeri, M. 2014. Static and Dynamic Characterization of Soils at Roio Piano(AQ). Italian Geotechnical Journal, vol. XLVIII, no. 2, April–June 2014, Patron Editor, 38–52. Castelli, F. , Cavallaro, A. , Grasso, S. & Ferraro, A. 2016a. In Situ and Laboratory Tests for Site ResponseAnalysis in the Ancient City of Noto (Italy). Proc. of the 1st IMEKO TC4 Int. Workshop on Metrology forGeotechnics, Benevento, 17–18 March 2016, 85–90. Castelli, F. , Cavallaro, A. & Grasso, S. 2016b. SDMT Soil Testing for the Local Site Response Analysis.Proc. of the 1st IMEKO TC4 Int. Workshop on Metrology for Geotechnics, Benevento, 17–18 March 2016,143–148. Castelli, F. , Cavallaro, A. , Ferraro, A. , Grasso, S. & Lentini, V. 2016c. A Seismic Geotechnical HazardStudy in the Ancient City of Noto (Italy). Proceedings of the 6 th Italian Conference of Researchers inGeotechnical Engineering (CNRIG), Bologna, 22–23 September 2016, Procedia Engineering (2016), Vol.158, pp. 535–540. Castelli, F. , Cavallaro, A. , Ferraro, A. , Grasso, S. , Lentini, V. & Massimino, M. R. 2018. Static andDynamic Properties of Soils in Catania City (Italy). Annals of Geophysics, Vol. 61, N°. 2, 2018, SE221. Castelli, F. , Cavallaro, A. , Grasso, S. and Lentini, V. 2019. Undrained Cyclic Laboratory Behaviour ofSandy Soils. Geosciences, Special Issue: "New Perspectives in the Definition/Evaluation of Seismic Hazardthrough Analysis of the Environmental Effects Induced by Earthquakes”, Geosciences 2019, 9, 512, pp.1–27. Cavallaro, A. , Lo Presti, D. C. F. , Maugeri, M. & Pallara, O. 1999a. A Case Study (The Saint NicolòCathedral) for Dynamic Characterization of Soil from in Situ and Laboratory Tests. Proceeding of the 2ndInternational Symposium on Earthquake Resistant Engineering Structures, Catania, 15–17 June 1999, pp.769–778. Cavallaro, A. , Maugeri, M. , Lo Presti, D. C. F. & Pallara, O. 1999b. Characterising Shear Modulus andDamping from in Situ and Laboratory Tests for the Seismic Area of Catania. Proceeding of the 2 nd International Symposium on Pre-failure Deformation Characteristics of Geomaterials, Torino, 28–30September 1999, pp. 51–58. Cavallaro, A. , Massimino, M. R. & Maugeri, M. 2003a. Noto Cathedral: Soil and Foundation Investigation.Construction and Building Materials, N°. 17, 2003, pp. 533–541. Cavallaro, A. , Maugeri, M. & Ragusa, A. 2003b. Small Strain Stiffness from in Situ and Laboratory Tests forthe City of Noto Soil. Proceedings of the 3 rd International Symposium on Deformation Characteristics ofGeomaterials, Lyon, 22–24 September 2003, pp. 267–274. Cavallaro, A. & Maugeri, M. 2004. Modelling of Cyclic Behaviour of a Cohesive Soil by Shear Torsional andTriaxial Tests. Proceedings of the International Conference on Cyclic Behaviour of Soils and LiquefactionPhenomena, Bochum, 31 March–02 April 2004, pp. 109–114. Cavallaro, A. & Maugeri, M. 2005. Non Linear Behaviour of Sandy Soil for the City of Catania. SeismicPrevention of Damage: A Case Study in a Mediterranean City, Wit Press Publishers, Editor by Maugeri M. ,

pp. 115–132. Cavallaro, A. , Grasso, S. , Maugeri, M. & Motta, E. 2012a. An Innovative Low-Cost SDMT MarineInvestigation for the Evaluation of the Liquefaction Potential in the Genova Harbour (Italy). Proc. of the 4 th Int. Conf. on Geotechnical and Geophysical Site Characterization, ISC’4, Porto de Galinhas, 18–21September 2012, , vol. 1, 2013, 415–422. Cavallaro, A. , Grasso, S. , Maugeri, M. & Motta, E. 2012b. Site Characterisation by in Situ and LaboratoryTests of the Sea Bed in the Genova Harbour (Italy). Proc. of the 4th Int. Conf. on Geotechnical andGeophysical Site Characterization, ISC’4, Porto de Galinhas, 18–21 September 2012, vol. 1, 637–644. Cavallaro, A. & Grasso, S. 2021. Small Shear Strain Modulus Degradation by the Seismic DilatometerMarchetti Tests (SDMTs). Proceedings of the 6 th International Conference on Geotechnical andGeophysical Site Characterisation, Budapest, 26–29 September 2021. Consiglio Nazionale Delle Ricerche . 1985a. Catalogo dei Terremoti Italiani dall'anno 1000 al 1980. ProgettoFinalizzato Geodinamica. Postpischl ED. Consiglio Nazionale Delle Ricerche . 1985b. Atlas of Isoseismal Maps of Italian Earthquakes. ProgettoFinalizzato Geodinamica. Postpischl ED. De Rubeis, V. , Gasparini, C. , Maramai, A. & Anzidei, M. 1991. Il Terremoto Siciliano del 13 Dicembre 1990.Istituto Nazionale di Geofisica. Roma. Ha-Kohen, Y. XVI Century. Lettera di Yosef Ha-Kohen a Yishaq Ha-Kohen. Manoscritto, Raccolta EpistolareKM 55, Biblioteca “The Jewish National and University Library”. Hryciw, R.D. 1990. Small Strain Shear Modulus of Soil by Dilatometer. JGED, ASCE , vol. 116, no. 11,1700–1715. Jamiolkowski, M. , Lo Presti, D. C. F. & Pallara, O. 1995. Role of In-Situ Testing in Geotechnical EarthquakeEngineering. Proc. of the 3rd Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering andSoil Dynamics, St. Louis, Missouri, 2–7 April 1995, vol. II, 1523–1546. Jardìne, R. J. , St. John, H. D. , Hight, D. W. & Potts, D. M. 1991. Some Practical Applications of a Non-Linear Ground Model. Proceedings of l0th European Regional Conference on SMFE, Firenze, Vol. I, pp.223–228. Lombardo, G. 1985. The Catania earthquake of February 4, 1169. Atlas of Isoseismal Maps of ItalianEarthquake. Consiglio Nazionale delle Ricerche. Progetto Finalizzato Geodinamica. Quaderni de “La RicercaScientifica”, 114, Ed. D. Postpischl , v. 2°, pp. 12–13. Lo Presti, D. C. F. , Jamiolkowski, M. , Cavallaro, A. & Pallara O. 1999. Influence of ReconsolidationTechniques and Strain Rate on the Stiffness of Undisturbed Clays from Triaxial Tests. Geotechnical TestingJournal, Vol. 22, N°. 3, September 1999, pp. 211–225. Marchetti, S. 1980. In Situ Tests by Flat Dilatometer. Journal of Geotechnical Engineering, ASCE, 1980, no.GT3. Marchetti, S. 1997. The Flat Dilatometer Design Applications. Proc. of the 3 rd Geotechnical EngineeringConference, Cairo University, 5–8 January 1997. Mayne, P. W. & Rix, G. J. 1993. Gmax–qc Relationships for Clays. Geotechnical Testing Journal, vol. 16, no.1, 54–60. Ohta, Y. & Goto, N. , 1978. Empirical Shear Wave Velocity Equations in Terms of Characteristic SoilIndexes. Earthquake Engineering and Structural Dynamics, vol. 6, 1978. Pertz, K. 1866. Monumenta Germaniae Historica. SS. Tomo 19, Hannover, pp. 236–266. Postpischl, D. 1985. Atlas of Isosismal Maps of Italian Earthquakes. CNR (Italian National Research Council)Geodynamical Project. Rome. Rovelli, A. , Boschi, E. , Cocco, M. , Di Bona, M. , Berardi, R. & Longhi, G. 1991. Il Terremoto del 13Dicembre 1990 nella Sicilia Orientale: Analisi dei Dati Accelerometrici. Contributi allo Studio del Terremotodella Sicilia Orientale del 13 Dicembre 1990. Istituto Nazionale di Geofisica. Roma. Simonini, P. & Cola, S. 2000. On the Use of the Piezocone to Predict the Maximum Stiffness of VenetianSoils. Journal of Geotechnical and Geoenvironmental Engineering, vol. 126, no. 4, 378–382. Siragusa, G. B. 1897. Fonti per la Storia d’Italia. SS., sec. XII, 22, Roma. Yoshida, Y. , & Motonori, I. 1988. Empirical Formulas of SPT Blow-Counts for Gravelly Soils. Proceedings ofISOPT-1, Orlando (USA).

Soil contribution on the structural identification of a historical masonry bell-tower:Simplified vs advanced numerical models Allemang, R.J. , Brown, D.L. 1982. A correlation coefficient for modal vector analysis. Proceedings of the 1stInternational Modal Analysis Conference. Orlando, USA.

ARTeMIS Modal Pro 6.1 software . 2019. Issued by Structural Vibration Solutions ApS. NOVI Science Park,Niels Jernes Vej 10, DK 9220 Aalborg East, Denmark. Bartoli G , Betti M , Giordano S. In situ static and dynamic investigations on the “Torre Grossa” masonrytower. Eng Struct 2013; 52:718–733 B.O. Hardin . 1978. The nature of stress-strain behavior for soils. Geotechnical Engineering DivisionSpecialty Conference on Earthquake Engineering and Soil Dynamics, ASCE, Pasadena (California). Brincker, R. , Zhang, L. , Andersen, P. 2001. Modal identification of output-only systems using frequencydomain decomposition. Smart Materials and Structures; 10:441–445. Casciati, S. & Borja, RI . 2004. Dynamic FE analysis of South Memnon colossus including 3D soil-foundationstructure interaction. Comput Struct; 82:1719–1736. Cattari, S. , Sivori, D. , Brunelli, A. , Sica, S. , Piro, A. , de Silva, F. et al. 2019. Soil-structure interactioneffects on the dynamic behaviour of a masonry school damaged by the 2016-2017 Central Italy earthquakesequence. Proceedings of the 7th lnternational Conference on Earthquake Geotechnical Engineering (VIIICEGE) 2019. June 17-20, Rome, Italy. Ceroni, F. , Sica, S. , Pecce, M. , Garofano, A. 2014. Evaluation of the natural vibration frequencies of ahistorical masonry building accounting for SSI. Soil Dyn Earthq Eng; 64:95–101. Circ . 2019-Instructions for “Technical Norms for Constructions”. Cosentini, R. , Foti, S. , Lancellotta, R. , Sabia, D. 2015. Dynamic behavior of shallow founded historictowers: validation of simplified approaches for seismic analyses. Int J Geotech Eng:13–29. De Angelis, A. , Lourenço, P.B. , Sica, S. , Pecce, M.R. 2022. Influence of the ground on the structuralidentification of a bell-tower by ambient vibration testing, Soil Dynamics and Earthquake Engineering. Inpress, https://doi.org/10.1016/j.soildyn.2021.107102 De Angelis, A. , Mucciacciaro, M. , Pecce, M.R. , Sica, S. 2017. Influence of SSI on the Stiffness of BridgeSystems Founded on Caissons. J. Bridge Eng., 22(8): 04017045. De Angelis, A. , Santamato, F. , Pecce, M.R. 2021. Assessment of an historical masonry bell tower by modaltesting. The 8th workshop on Civil Structural Health Monitoring CSHM-8. March 29–31, 2021. De Silva, F. , Pitilakis, D. , Ceroni, F. , Sica, S. , Silvestri, F. 2018. Experimental and numerical dynamicidentification of Carmine bell tower in Naples (Italy). Soil Dyn Earthq Eng; 109:235–250. Gazetas, G. 1991. Foundation vibrations,” Foundation Engineering Handbook, 2nd Edition, Chapter 15, H.-Y. Fang , ed., Chapman and Hall, New York, New York. Karatzetzou, A. , Negulescu, C. , Manakou, M. , Francois, B. , Seyedi, D. , Pitilakis, D. , Pitilakis, K. 2015.Ambient vibration measurements on monuments in the Medieval City of Rhodes, Greece. Bull. Earth.Eng;13(1):331–345. Kouroussis, G. , Verlinden, O. , Conti, C. 2011. Finite dynamic model for infinite media: the correctedsolution of viscous boundary efficiency. J Eng Mech; 137 (7):509–511. Luco, J.E. , and Westmann, R.A. 1971. Dynamic response of circular footings, Journal of EngineeringMechanics, Vol. 97, No. 5, pp. 1381–1395. Midas FEA NX- Midas Engineering Software–Manual Mylonakis, G. , Nikolaou, S. , and Gazetas, G. 2006. Footings under seismic loading: Analysis and designissues with emphasis on bridge foundations. Soil Dynamics and Earthquake Engineering, Vol. 26, pp.824–853. NIST . 2012. Soil-structure interaction for building structures. Technical report, US Department ofCommerce, Washington, DC. Pais, A. , and Kausel, E. 1988. Approximate formulas for dynamic stiffnesses of rigid foundations. SoilDynamics and Earthquake Engineering, Vol. 7, No. 4, pp. 213–227. Peeters, B. , De Roeck, G. 2001. Stochastic System Identification for Operational Modal Analysis: A Review.Journal of Dynamic Systems Measurement & Control; 123(4):659–667. Piro, A. , de Silva, F. , Parisi, F. , Scotto di Santolo, A. , Silvestri, F. 2019. Effects of soil-foundation-structureinteraction on fundamental frequency and radiation damping ratio of historical masonry building sub-structures. Bullettin Earthq Eng; 18: 1187–1212. Pitilakis D , Karatzetzou A. 2014. Dynamic stiffness of monumental flexible masonry foundations. BullettinEarthq Eng; 13:67–82. Ripepe, M. , Coli, M. , Lacanna, G. , Marchetti, E. , Cristofaro, M. , De Stefano, M. , Mariani, V. et al. 2014.Dynamic response of the Giotto's bell-tower, in: Proceedings Engineering Geology for Society and Territory– Turin 15–19, 2014; Vol. 8- Preservation of Cultural Heritage, pp. 323–327. Senatore, M.R. , Boscaino, M. , Pinto, F. 2019. The Quaternary geology of the Benevento urban area(southern Italy) for seismic microzonation purposes. Ital. J. Geosci.; Vol. 138, pp. 66–87. Sica, S. , Romito, M. 2017. Convezione tra il Dipartimento di Ingegneria e il Comune di Beneventonell’ambito della Manifestazione di interesse per la realizzazione di indagini e studi di Microzonazionesismica ai sensi dell’OPCM 3907 del 13-11-2010; (in Italian)

Steinbrenner, W. 1936. A rational method for determination of the vertical normal stresses underfoundations, Proceedings of the International Conference on Soil Mechanics and Foundation Engineering,Cambridge, Massuchusetts, 142–143. Stewart, J.P. , Kim, S. , Bielak, J. , Dobry, R. , and Power, M. 2003. Revisions to soil structure interactionprocedures in NEHRP design provisions,” Earthquake Spectra, Vol. 19, No. 3, pp. 677–696. Veletsos, A.S. , and Wei, Y.T. 1971. Lateral and rocking vibrations of footings,”Journal of Soil Mechanics andFoundations Division, Vol. 97, No. 9, pp. 1227–1248.

The geotechnical seismic isolation of historical buildings through polyurethaneinjections: A numerical study Barone, S. , Calvi, G. M. & Pavese, A. 2019. Experimental dynamic response of spherical friction-basedisolation devices. Journal of Earthquake Engineering 23 (9): 1465–1484. Cavallaro, A. , Massimino, M.R. & Maugeri, M. 2003. Noto Cathedral: soil and foundation investigation.Construction and Building Materials 17 (8): 533–541. Castelli, F. , Cavallaro, A. , Grasso, S. & Ferraro, A. 2016. In Situ and Laboratory Tests for Site ResponseAnalysis in the Ancient City of Noto (Italy). In: Proceedings of the 1st IMEKO TC4 Int. Workshop onMetrology for Geotechnics, Benevento, 17–18 March 2016, pp. 85–90. Castelli, F. , Cavallaro, A. , Ferraro, A. , Grasso, S. & Lentini, V. 2016. A Seismic Geotechnical Hazard Studyin the Ancient City of Noto (Italy). Procedia Engineering 158: 535–540. Dei Svaldi, A. , Favaretti, M. , Pasquetto, A. & Vinco, G. 2005. Analytical modelling of the soil improvementby injections of high expansion pressure resin. Bulletin für Angewandte Geologie 10(2):71–81. De Domenico, D. , Gandelli, E. & Quaglini, V. 2020. Effective base isolation combining low-friction curvedsurface sliders and hysteretic gap dampers. Soil Dynamics and Earthquake Engineering 130. Di Prisco, C. , Massimino, M.R. , Maugeri, M. , Nicolosi, M. & Nova, R. 2006. Cyclic numerical analysis ofNoto Cathedral: soil-structure interaction modelling. Rivista Italiana di Geotecnica 2. Eröz, M. , & DesRoches, R. 2013. A Comparative Assessment of Sliding and Elastomeric Seismic Isolationin a Typical Multi-Span Bridge. Journal of Earthquake Engineering 17 (5): 637–657. Gatto, M.P.A. , Montrasio, L. , Tsinaris, A. , Pitilakis, D. & Anastasiadis, A. 2019. The dynamic behaviour ofpolyurethane foams in geotechnical conditions. In: Proceedings of the 7th International Conference onEarthquake Geotechnical Engineering, Rome, Italy, 17–20 June 2019. Gatto, M.P.A. , Montrasio, L. , Berardengo, M. & Vanali, M. 2020. Experimental Analysis of the Effects of aPolyurethane Foam on Geotechnical Seismic Isolation. Journal of Earthquake Engineering 1–22,https://doi.org/10.1080/13632469.2020.1779871 Gatto, M.P.A. , Montrasio, L. , Zavatto, L. 2021a. Experimental Analysis and Theoretical Modelling ofPolyurethane Effects on 1D Wave Propagation through Sand-Polyurethane Specimens. Journal ofEarthquake Engineering. Gatto, M.P.A. , Lentini, V. , Castelli, F. , Montrasio, L. & Grassi, D. 2021b. The use of polyurethane injectionas a geotechnical seismic isolation method in large-scale applications: A numerical study. Geosciences11(5):201. https://doi.org/10.3390/geosciences11050201 Gatto, M.P.A. , Lentini, V. & Montrasio, L. 2022. Experimental analysis and modelling of the dynamicproperties of poliurethane for GSI employments: a numerical study. Bulletin of Earthquake Engineering(Submitted) Montrasio, L. & Gatto, M.P.A. 2016. Experimental Analyses on Cellular Polymers for GeotechnicalApplications. Procedia Engineering 158: 272–277. https://doi.org/10.1016/j.proeng.2016.08.441 Joyner, W.B. & Chen, A.T.F. 1975. Calculation of nonlinear ground response in earthquakes. Bulletin of theSeismological Society of America 65(5), 1315–1336. Montrasio, L. & Gatto, M.P.A. 2017. Experimental analyses on cellular polymers in different forms forgeotechnical applications. In: Proceedings of the ICSMGE 2017—19th International Conference on SoilMechanics and Geotechnical Engineering, Seoul, Korea, 17–27 September 2017. Tobriner, S. 2003. Building the Cathedral of Noto; earthquakes, reconstruction and building practice in 18th-century Sicily. Construction and Building Materials 17 (8): 521–532. Yu, H.S. & Houlsby, G.T. 1991. Finite cavity expansion in dilatant soils: loading analysis. Géotechnique.41(2):173–183. Mazzoni, S. , McKenna, F. , Scott, M.H. & Fenves, G.L. 2006. OpenSees Command Language Manual;Pacific Earthquake Engineering Research (PEER) Center: Berkeley, CA, USA. Nowamooz, H. 2016. Resin injection in clays with high plasticity. Comptes rendus Mécanique 707 (11):797–806.

Papanikolaou, V.K. , Kartalis-Kaounis, T. , Protopapadakis, V.K. & Papadopoulos, T. 2017. GiD+OpenSeesInterface: An Integrated Finite Element Analysis Platform; Lab of R/C and Masonry Structures, AristotleUniversity of Thessaloniki: Thessaloniki, Greece. Sabri, M.M.S. , Vatin, N.I. & Alsaffar, K.A.M. 2021. Soil Injection Technology Using an ExpandablePolyurethane Resin: A Review. Polymers 13, 3666. Tsang, H.-H. , Lo, S.H. , Xu, X. & Neaz Sheikh, M. 2012. Seismic isolation for low-to-medium-rise buildingsusing granulated rubber–soil mixtures: numerical study. Earthquake Engineering and Structural Dynamics41: 2009–2024. Tsang, H.-H. , Tran, D.P. , Hung, W.Y. , Pitilakis, K. & Gad, E.F. 2021. Performance of geotechnical seismicisolation system using rubber-soil mixtures in centrifuge testing. Earthquake Engineering and StructuralDynamics 50: 1271–1289. Tsiavos, A. , Sextos, A. , Stavridis, A. , Dietz, M. , Dihoru, L. & Alexander, N.A. 2020. Large-scaleexperimental investigation of a low-cost PVC ‘sand-wich’ (PVC-s) seismic isolation for developing countries.Earthquake Spectra 36(4):1886–1911.

Municipio Station Metro Line 6 in Naples: A case of urban tunnelling adoptingground freezing and grouting techniques to underpass archaeological findings Andersland, O.B. & Ladanyi, B. 2004. Frozen ground engineering, Second Ed., New Jersey: John Wiley &Sons. Boscardin, M. D. , & Cording, E. J. 1989. Building response to excavation-induced settlement. Journal ofGeotechnical Engineering, 115, 1–21. doi:10.1061/(asce)0733-9410(1989)115:1(1). Bilotta, E. , Russo, G. & Viggiani, C. 2002. Cedimenti indotti da gallerie superficiali in ambiente urbano. AttiXXI Convegno Nazionale di Geotecnica, Bologna: AGI. Bilotta, E. , Russo, G. & Viggiani, C. 2006. Ground movements and strains in the lining of a tunnel incohesionless soil. Proc. 5th Int. Symp. Geotech. Aspects of Underground Construction in Soft Ground:705–710. Leiden: Taylor & Francis/Balkema. Cavuoto, F. , Corbo, A. , Manassero, V. & Russo, G. 2015. Naples Metro Line 1: the service tunnel at ToledoStation, Gallerie e Grandi Opere Sotterranee, n.116, December 2015: 9–19. Bologna: Pàtron Editore. Cavuoto F. , Manassero V. , Russo G. , Corbo A. 2019. Urban tunnelling under archaeological findings inNaples (Italy) with ground freezing and grouting techniques. Proceedings of the WTC 2019 ITA-AITES WorldTunnel Congress "Tunnels and Underground Cities. Engineering and Innovation Meet Archaeology,Architecture and Art", May 3–9, 2019, Naples, Italy. Taylor & Francis Group, London. Casini, F. , Gens, A. , Olivella, S. & Viggiani, G.M.B. 2016. Artificial ground freezing of a volcanic ash:laboratory tests and modeling. Environmental Geotechnics, 3(3): 141–154. London: ICE Publishing. Croce, A. , Pellegrino, A. 1967. Il sottosuolo della città di Napoli. Caratterizzazione geotecnica del territoriourbano. Atti VIII Convegno Italiano di Geotecnica, Cagliari. Evangelista, A. , Pellegrino, A. 1990. Caratteristiche geotecniche di alcune rocce tenere italiane. In: Proc. ofthe 3rd Conf. of Rock Engineering and Mechanics MIR90, Torino, pp. 2.1–2.32. Giampaola, D. 2009. Archeologia e città: la ricostruzione della linea di costa. TeMA – Trimestrale delLaboratorio Territorio Mobilità Ambiente. 2(3): 37–46. Napoli. Losacco, N ; Callisto, L ; Burghignoli, A. 2016. Soil-structure interaction due to tunnelling in soft ground, anequivalent solid approach. In: Proceedings of the 10th International Conference on Structural Analysis ofHistorical Constructions (SAHC 2016, Leuven, Belgium). CRC Press, London, pp.495–502. Manassero, V. , Di Salvo, G. , Giannelli, F. & Colombo, G. 2008. A combination of artificial ground freezingand grouting for the excavation of a large size tunnel below groundwater. Proceedings of the 6thInternational Conference on Case Histories in Geotechnical Engineering, Arlington (VA). Manassero, V. & Di Salvo, G. 2015. The application of grouting technique to volcanic rocks and soils to solvetwo difficult tunnelling problems. In Proc. of The International Workshop on Volcanic Rocks and Soils:399–408. Ischia Island: AGI. Matrone & Russo 2012. Internal report based on Master's thesis on Settlement induced by tbm in thedowntown streth of line 6 (2012). MIT (2019). Circolare n. 7 del 21 gennaio 2019 del Ministero delle Infrastrutture e dei Trasporti. Istruzioni perl’applicazione dell’ “Aggiornamento delle “Norme tecniche per le costruzioni”” di cui al decreto ministeriale 17gennaio 2018 (in Italian). O’Reilly, M.P. & New, B.M. 1982. Settlements above tunnels in the United Kingdom – Their magnitude andprediction. Proceedings of Tunnelling’82 Symposium: 173–181. London: Institution of Mining and Metallurgy. Peck, R. B. 1969. Deep Excavations and Tunnels in Soft Ground. Proceedings of the 7th InternationalConference on Soil Mechanics and Foundation Engineering, State of the Art Volume: 225–290. Mexico City:

Sociedad Mexicana de Mecanica. Pelàez, R.R. , Casini, F. , Romero, E. , Gens, A. & Viggiani, G.M.B. 2014. Freezing-thawing tests on naturalpyroclastic samples 6th Int. Conf. Unsaturated Soils, UNSAT2014: 1689–1694. Pellegrino, A. 1967. Proprietà fisico meccaniche dei terreni vulcanici del Napoletano. In: Proc. of the VIIIItalian Geotechnical Conference, Cagliari. Russo, G. , Viggiani, C. & Viggiani, G.M.B. 2012. Geotechnical design and construction issues for lines 1and 6 of the Naples underground. Geomechanik und Tunnelbau 5(3): 300–311. Berlin: Ernst & Sohn. Russo, G. , Corbo, A. , Cavuoto, F. & Autuori, S. 2015. Artificial Ground Freezing to excavate a tunnel insandy soil below groundwater table. Measurements and back analysis. Tunnelling and Underground SpaceTechnology, 50: 226–238. The Netherlands: Elsevier. (doi:10.1016/j.tust.2015.07.008). Russo, G. , Corbo, A. , Cavuoto, F. , Manassero, V. , De Risi, A. & Pigorini, A. 2017. Underground culture:Toledo station in Naples, Italy. Proceedings of the Institution of Civil Engineers – Civil Engineering,November 2017. 170(4): 161–168. London: ICE Publishing. (doi:10.1680/jcien.16.00027). Russo G. , Cavuoto F. , Corbo A. , Manassero V. 2020. A case of urban tunnelling with ground freezing andgrouting techniques in presence of archaeological remnants: Municipio Station in Naples (Italy), Gallerie eGrandi Opere Sotterranee, n.134, November 2020, pp.7–18, Pàtron Editore - ISSN-0393-1641. Russo & Nicotera 2020. Monitoring a deep excavation in pyroclastic soil and soft rock. Submitted forpublication on Tunnelling and Underground Space Technology. The Netherlands: Elsevier. Viggiani, G.M.B. & De Sanctis, L. 2009. Geotechnical aspects of underground railway construction in theurban environment: the examples of Rome and Naples. Geological Society Engineering Geology SpecialPublication. 22(1): 215–240. London: The Geological Society. Viggiani, G.M.B. & Casini, F. 2015. Artificial Ground Freezing: from applications and case studies tofundamental research. Invited Papers: 65–92. London: ICE Publishing.

The design of Venezia station of Rome Line C underground Boscardin M.D. , Cording E.J. (1989). Building response to excavation-induced settlement. Journal ofGeotechnical Engineering, 115(1), 1–21. Burland J.B. , Wroth C.P. (1974). Settlement of buildings and associated damage, Proc. Conf. Settlement ofStructures, Cambridge, UK, 611–654. Burland J.B. (1995). Assessment of risk of damage to buildings due to tunnelling and excavation, 1st Int.Conf. on Earthquake Geotechnical Engineering, Tokyo, 1189–1201. Losacco, N. , Burghignoli, A. , & Callisto, L. (2014). Uncoupled evaluation of the structural damage inducedby tunnelling. Géotechnique, 64(8), 646–656. Losacco, N. , Callisto, L. , & Burghignoli, A. (2016). Soil-structure interaction due to tunnelling in soft ground,an equivalent solid approach. In Structural Analysis of Historical Constructions: Anamnesis, Diagnosis,Therapy, Controls (pp. 495–502). CRC Press. Losacco, N. , Romani, E. , Viggiani, G. M. B. , & DiMucci, G. (2020). Embedded barriers as a mitigationmeasure for tunnelling induced settlements: a field trial for the line C in Rome. Tunnels and UndergroundCities: Engineering and Innovation Meet Archaeology, Architecture and Art: Volume 12: Urban Tunnels-Part2, 5845. Losacco, N. , Viggiani, G.M.B. (2020). Mechanised Tunnel Excavation Through an Instrumented Site inRome: Class A Predictions and Monitoring Data. Lecture Notes in Civil Engineering, 40, pp. 245–254. DOI:10.1007/978-3-030-21359-6_26. Moh, Z.C. , Ju, D.H. , Hwang, R.N. , 1996. Ground movements around tunnels in soft ground. In: Mair, R.J.,Taylor, R.N. (Eds.), Proceedings International Symposium on Geotechnical Aspects of UndergroundConstruction in Soft Ground. Balkema, London, UK, Rotterdam, The Netherlands, pp. 725–730. Peck, R.B. (1969) Deep Excavation and Tunneling in Soft Ground. State-of-the-Art Report. Proceedings ofthe 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, 1969, 225–290. Pickhaver, J. A. (2006). Numerical modelling of building response to tunnelling (Doctoral dissertation,University of Oxford). Pickhaver, J. A. , Burd, H. J. , & Houlsby, G. T. (2010). An equivalent beam method to model masonrybuildings in 3D finite element analysis. Computers & structures, 88(19–20), 1049–1063. Rankin, W. J. (1988). Ground movements resulting from urban tunnelling: predictions and effects. GeologicalSociety, London, Engineering Geology Special Publications, 5(1), 79–92.

Improvement of foundation soil behavior for Gründerzeit buildings in Austria usingpolyurethane resin injections ASCE (American Society of Civil Engineers) . 2010. Compaction ground consensus guide, ASCE StandardASCE/G-I 53-10. ASCE. Buzzi, O. , Fityus, S. , Sasaki, Y. , e Sloan, S. 2008. Structure and properties of expanding polyurethanefoam in the con-text of foundation remediation in expansive soil. Mechanics of Materials 40, 1012–1021. Cestari, F. 2012. In situ geotechnical tests. Pàtron editore. Dei Svaldi, A. , Favaretti, M. , Pasquetto, A. , e Vinco, G. 2005. “Modellazione analitica del miglioramento delterreno attraverso iniezioni di resina ad alta pressione d’espansione.” 6th International Conference onGround Improvement Techniques, Coimbra, Portogallo. Dominijanni, A. , Manassero, M. 2014. Consolidamento dei terreni con resine espandenti: guida allaprogettazione. McGraw-Hill. Dominijanni, A. , Manassero, M. , & Minardi, A. 2020. Codice di calcolo numerico per l’analisi di iniezioni conresine poliuretaniche espandenti mediante tubi multiforo, Uretek Italia SpA, technical report, 1–118. Kovacevic, N. , Potts, D. M. , & Vaughan, P. R. 2000. The effect of the development of undrained porepressure on the efficiency of compaction grouting. Geotechnique, 50(6), 683–688. Shrivastava, N. , Zen, K. , Shukla, S. K. 2017. Modeling of compaction grouting technique with developmentof cylindrical cavity expansion problem in a finite medium. Inter-national Journal of Geosynthetics andGround Engineering, 3(4), 1–12. Skempton, A. W. 1986. Standard penetration test procedures and the effects in sands of overburdenpressure, relative density, particle size, ageing and overconsolidation. Geotechnique, 36(3), 425–447. Yu, H. S. (2000). Cavity expansion methods in geomechanics. Springer Science & Business Media. Yu, H. S. , Houlsby, G. T. 1991. Finite cavity expansion in dilatant soils: loading analysis. Geotechnique,41(2), 173–183.

Florence high-speed railway underpass – Preservation of the Italian Renaissancepre-existing structures and historical sites Boone S.J. , Westland J. , Nusink R. (1999) “Comparative evaluation of building responses to an adjacentbraced excavation”. Can. Geotech. J. 36: 210–223. Mott MacDonald (1992) “Prediction and effects of ground movements caused by tunneling in soft groundbeneath urban areas” Funders Report for CIRIA, Westminster, London. Leblais, Y. , Andre, D. , Chapeau, C , Dubois, P. , Gigan, J.P. , Guillaume, J. , Leca, E. , Pantet, A. , Riondy,G. (1995) “Settlements induced by tunnelling”. AFTES, Text of Recommendations. Boscardin M.D. , Cording E.J. , (1989) “Building response to excavation induced settlements”. Journal ofGeotechnical Engineering, ASCE, n. 115, pp.1–21. O’Really M.P. , New B.M. (1991) “Tunnelling induced ground movements: predicting their magnitude andeffects”. Proc. Int. Conf. on Ground Movements and Structures, Cardiff. Attewell, P.B. (1988) “An overview of site investigation and long-term tunnelling-induced settlements in soil”.Geological Society, Nottingham, pp.55–62. Rankin W. J. (1988) “Ground movements resulting from urban tunnelling: predictions and effects”. Eng.Geology of Underground Movements, Nottingham. Attewell, P. , Taylor, R.K. (1984) “Ground movements and their effects on structures”. Chapman and Hall ed.New York. O’Really M.P. , New B.M. (1982) “Settlements above tunnels in U.K, their magnitude and prediction”.Tunnelling, n. 82, pp173–181. Burland J.B. , Wroth C.P. (1977) “Behaviour of foundations and structures”. 9th International Conferences onSoil Mechanics and Foundation Engineering, Tokio, State-of-the-Art Report, Vol.2, pp.495–546. Bjerrum L. (1963) Contribution to discussion. Session IV, Proc. European Conf. on Soil Mechanics andFoundation Engineering, II, pp.135–137.

Late XIX century protection: The CampiFlegrei and Velia railway tunnels Abbruzzese Saccardi, A. 1976. Note biologiche nella grotta “Stufe di Nerone” (Napoli). AnnuarioSpeleologico 1974–75 della Sezione del CAI di Napoli: 3–6. Amalfitano, P. , Camodeca, G. & Medri M. (eds.) 1990. I Campi Flegrei. Un itinerario archeologico, Venezia:Marsilio, pp. 340. Baldacci, V. 2004. Il sistema dei Beni culturali in Italia. Valorizzazione, progettazione e comunicazioneculturale, Firenze: Giunti Editore. Beloch, J. 1890. Campanien. Geschichteund Topographie des antikenNeapelund seiner Umgebung,Breslau, reprint Roma 1964. Borriello, M. & D'Ambrosio, A. 1979. Baiae – Misenum. Forma Italiae, Regio I, Vol. XIV. Firenze: Olschki. Bottari, F. & Pizzicannella, F. 2007. I beni culturali e il paesaggio: le leggi, la storia, le responsabilità.Bologna: Zanichelli, pp. 115–137. Briano, I. 1977. Storia delle ferrovie in Italia. Milano: Cavallotti. Bulifon, A. 1693. Lettere memorabili, istoriche, politiche, ed erudite scritte. Raccolta seconda. Napoli: Bulifon,pp. [12], 399, [11]. Condemi, S. 1987. Dal “decoro et utile” alle “antiche memorie”. La tutela dei beni artistici e storici negliantichi Stati italiani. Curzi, V. 2004. Bene culturale e pubblica utilità. Politiche di tutela a Roma tra Ancien Régime eRestaurazione. Bologna: Minerva Edizioni. D’Alconzo, P. 2001. La tutela del patrimonio archeologico nel regno di Napoli tra Sette e Ottocento.Mélanges de l'Écolefrançaise de Rome. Italie et Méditerranée, 113 (2): 507–537. D’Arms, J.H. 2003. Romans on the Bay of Naples and other essays on Roman Campania.Bari: Edipuglia,pp. 498. De Jorio, A. 1822. Guida di Pozzuoli e contorni. Napoli: Stamperia Reale, pp. XVI, 191. De Luynes, H. 1829. Des riunes de Velia. Annales de l’Institut de correspondancearchéologique 1 (3):381–386. De Sariis, A. 1800. Terminologia puteolana a vantaggio dell'uomo infermo. Napoli: Orsino. Emiliani, A. 1996. Leggi, bandi e provvedimenti per la tutela dei beni artistici e culturali negli antichi Statiitaliani 1571–1860. Bologna. Ferrari, G. & Lamagna R. 2017. L'imperiale Bagno di Tritoli riscoperto. Atti del 3° Convegno Regionale diSpeleologia - Campagna Speleologica, Napoli, 2–4 giugno 2017 : 211–217. Fiorelli, G. 1882. Regio III–X. Velia. Notizie degli scavi di antichità , Roma 1882: 388–389. Fiorelli, G. 1886. Regio III.–XII. Velia. Notizie degli scavi di antichità , Roma 1886: 280–281. Guadagno, V. 1996. Ferrovie ed economia nell’Ottocento postunitario. Roma: Collegio amministrativoferroviario italiano. I Campi Flegrei nell’archeologia e nella storia, Atti dei convegni lincei, Accademia nazionale dei Lincei,Convegno internazionale, Roma 4–7 maggio 1976 (1977). Johannowsky, W. 1961. Un naiskos eleate con dea seduta, Napoli: L'arte Tipografica. Johnston-Lavis, H.J. 1888. [Third] Report of the Committee for the investigation of the Volcanic Phenomenaof Vesuvius and its neighbourhood. Reports of the British Association for the Advancement of Science 57(1887): 226–229. Johnston-Lavis, H.J. 1890. [Fifth] Report of the Committee for the investigation of the Volcanic Phenomenaof Vesuvius and its neighbourhood. Reports of the British Association for the Advancement of Science 59(1889): 283–294. Krinzinger, F. 1994. Intorno alla pianta di Velia. In: Greco, G. & Krinzinger, F. (eds), Velia, studi e ricerche.Modena, pp. 19–51. Krinzinger, F. 1997. Velia. In: Enciclopedia dell’Arte Antica,Suppl. 2 (1971-1994). Roma, pp. 967–969. Lenormant, F. 1883. A travers l’Apulie et la Lucanie, II. Maiuri, A. 1928. Velia. Prima ricognizione ed esplorazione. Maggio-Settembre 1927. In: Campagne dellaSocietà Magna Grecia (1926–27), Roma, pp. 14–29. Maiuri, A. 1958. I Campi Flegrei, dal sepolcro di Virgilio all’antro di Cuma, quarta edizione riveduta eaggiornata. Roma: Istituto Poligrafico dello Stato. Maiuri, A. 1983. Itinerario flegreo. Napoli: Bibliopolis. Menozzi, M. 2006. Il Ms Palatina 236: Nomina et virtutesbalneorumseu de balneisputeolorum et baiarum.Parma: Artegrafica Silva, pp. 84.

Micheletti, P. 1845. Storia dei Monumenti del Reame delle Due Sicilie, Vol. 1, Napoli: Stamperie e Cartieredel Fibreno. Mingazzini P. 1954. Velia. Scavi 1927: fornace di mattoni ed altre antichità.Atti e Memorie della MagnaGrecia, n.s. I: 21–60. Münter, F. 1818. Velia in Lucanien. Eine Beilage zu Hegewisch über die Colonien der Griechen. Altona. Napoli, M. 1966. La ricerca archeologica di Velia. In: Velia e i Focei d’Occidente in Parola del PassatoCVIII–CX: 191–199. Napoli, M. 1970. Intorno alla pianta di Velia. In: Nuovi studi su Velia.Parola del Passato CXXX–CXXXIII:226–235. Panvini, P. 1818. Il Forestierealle antichità e curiosità naturali di Pozzuoli CumaBaja e Miseno, Napoli:Niccola Gervasi. Parpagliolo, L. 1932. Codice delle antichità e degli oggetti d’arte. Raccolta di leggi, decreti, regolamenti,circolari relativi alla conservazione delle cose d’interesse storico-artistico e alla difesa delle bellezze naturali,Seconda Edizione, Vol. I, Roma, 1932. Pedio, T. 1988. La linea Napoli-Foggia-Barletta-Brindisi nel progetto ferroviario Borbonico. In: Mundi, B. &Gravina A. (eds), Atti del V convegno sulla Preistoria-Protostoria-Storia della Daunia, San Severo 9-10-11-dicembre 1983, San Severo, pp. 265–298. Pontrandolfo, A. 1996. Velia. In: La Magna Grecia nelle collezioni del Museo Archeologico di Napoli, Napoli,p. 40. Schleuning, W. 1889. Velia in Lucanien. Jahbuch des Deutschen Archäeologischen Instituts 4: 169–190. Schmiedt, G. 1970. Contributo alla ricostruzione della situazione geotopografica di Velia nell’antichità. Paroladel Passato XXV: 65–92. Sestieri, P.C. 1956. Velia. Fasti Archeologici XI, n. 2174: 45–47. Sestieri, P.C. 1960. Velia. Fasti Archeologici XV, n. 4542: 52–53. Speroni, M. 1988. La tutela dei beni culturali negli Stati italiani preunitari, I: L’età delle riforme, Milano. Tocco Sciarelli, G. 1994. Storia degli scavi e nuove prospettive di ricerca. In: Greco, G. & Krinzinger, F.(eds), Velia, studi e ricerche. Modena, pp. 13–17. Tocco Sciarelli, G. 2003. La realizzazione del Parco Archeologico: strategie di ricerca e valorizzazione. In:Greco, G. (ed), Elea-Velia, le nuove ricerche, Atti del Convegno di Studi, Napoli 14 Dicembre 2001,Pozzuoli, pp. 15–20. Tocco Sciarelli, G. 2006. Elea-Velia. Venti anni di attività dalla ricerca alla valorizzazione. Metodologia di unintervento. In: Velia. Atti del XLV Convegno di studi sulla Magna Grecia, Taranto-Marina di Ascea 21-25Settembre 2005, Taranto, pp. 117–135.

The use of the GIBV method for monitoring the effects of urban excavations onbuilt heritage Burghignoli, A. , Callisto, L. , Rampello, S. , Soccodato, F.M. and Viggiani, G.M.B. , 2013. The crossing ofthe historical centre of Rome by the new underground Line C: A study of soil structure-interaction forhistorical buildings. Geotechnics and heritage: Case histories, 3, p.97. Burland, J.B. , 1995. Assessment of damage to buildings due to tunneling and excavation. In: Invited SpecialLecture to IS-Tokyo 1995: Proceedings of 1st International Conference on Earthquake and GeotechnicalEngineering, Tokyo, pp. 1198–1201. Clough, G.W. , O’Rourke, T.D. , 1990. Construction induced movements of in situ walls. In Proc. ASCEDesign Performance Earth Retaining Struct., eds. P. C. Lambe and L. A. Hansen . Ithaca, NY, June 18–21,pp. 439–470. Devriendt, M. , Palmer, E. , Hill, R. and Lazarus, D. , 2013. Historic and non-historic building impactassessment methodology for major tunnelling infrastructure projects. Geotechnical Engineering for thePreservation of Monuments and Historic Sites (Bilotta, Flora, Lirer & Viggiani eds.), pp.335–341. Dzegniuk, B. , Hejmanowski, R. , Sroka, A. , 1997. Evaluation of the damage hazard tobuilding objects onthe mining areas considering the deformation course in time. In: Proceedings of Xth international congress ofthe international society for mine surveying. DOI: 10.13140/2.1.3356.3520 Goldberg, D.T. ; Jaworski, W.E. and Gordon, M.D. , 1976. Lateral support systems and underpinning. ReportFHWA-RD-75-128, Federal Highway Administration, Washington D.C., 1, 312. IHBC , 2020. Sustainability and Conservation of the Historic Built Environment – an IHBC PositionStatement. Institute of Historic Building Conservation, UK.https://ihbconline.co.uk/toolbox/position_statement/sustainablilityconservation.html (accessed 2021-12-18 ). Janbu, N. 1970. Grunnlag i geoteknikk. Trondheim: Tapir forlag Brinkgreve, R.B.J. 2002.

Langford J. , Karlsrud, K. , Lande, E.J. , Baardvik, G. and Engen, A. , 2016a. BegrensSkade – Limitation ofdamage caused by foundation and ground works. Grundläggnigsdagen, Swedish Geotechnical Association. Langford, J. , Baardvik, G. and Karlsrud K. , 2016b. Pore pressure reduction and settlements induced bydeep supported excavations in soft clay. Proceedings of the 17th Nordic Geotechnical Meeting, NGM 2016Reykjavik. ISBN: 978-9935-24-002-6 Long, M. , 2001. Database for retaining wall and ground movements due to deep excavations. J. Geotech.Environ., 127(3), pp. 203–224. ISSN: 1090-0241 Peck, P.B. , 1969. Deep excavations and tunneling in soft ground. In: Proceedings of 7th International Conf.on Soil Mechanics and Foundation Engineering, Mexico City, 3, pp. 225–290. Piciullo, L. , Ritter, S. , Lysdahl, A.O.K. , Langford, J. and Nadim, F. , 2021. Assessment of building damagedue to excavation-induced displacements: The GIBV method. Tunnelling and Underground SpaceTechnology, 108, p.103673. Rampello, S. , Callisto, L. , Viggiani, G. and Soccodato, F.M. , 2012. Evaluating the effects of tunnelling onhistorical buildings: the example of a new subway in Rome/Auswertung der Auswirkungen des Tunnelbausauf historische Gebäude am Beispiel einer neuen UBahnlinie in Rom. Geomechanics and tunnelling, 5(3),pp.275–299. Rankin, W.J. , 1988. Ground movements resulting from urban tunnelling: predictions an effect. GeologicalSociety, London, Eng. Geo. Sp. 5, 79–92. https://doi.org/10.1144/GSL.ENG.1988.005.01.06 Sundell, J. , Haaf, E. , Norberg, T. , Alén, C. , Karlsson, M. and Rosén, L. , 2019. Risk mapping ofgroundwaterdrawdowninduced land subsidence in heterogeneous soils on large areas. Risk Analysis, 39(1),pp.105–124. Terzaghi, K. , Fröhlich O. K. , 1936. Theorie der Setzung von Tonschichten. Leipzig, F. Deuticke. Venvik, G. , Liinamaa-Dehls, A. and Bjerke, C. , 2018. Pathways and pitfalls to better sub-urban planning.COST Action TU1206 Sub-Urban.https://www.ngu.no/upload/Publikasjoner/Boker/SubUrban_magazin_screen.pdf (accessed 2021-12-18 ).

A critical evaluation of proxy measures used to quantify excavation-induceddamage in masonry buildings Burland, J.B. , Broms, B.B. , De Mello, V.F.B. , 1977. Behavior of foundations and structures. In: Proc., 9thInt. Conf. on Soil Mechanics and Foundation Engineering. Tokyo, pp. 495–546. Crossrail Limited , 2008. Crossrail Information Paper D12 – Ground Settlement [WWW Document]. URLhttp://74f85f59f39b887b696f-ab656259048fb93837ecc0ecbcf0c557.r23.cf3.rackcdn.com/assets/library/document/d/original/d12groundsettlement.pdf (accessed 7.28.20 ). High Speed Two Limited , 2017. High Speed Two Phase One C3?: Ground Settlement [WWW Document].URLhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/672194/C3_-_Ground_Settlement__v1.pdf (accessed 7.28.20 ). Korswagen, P.A. , Longo, M. , Meulman, E. , Rots, J.G. , 2019. Crack initiation and propagation inunreinforced masonry specimens subjected to repeated in-plane loading during light damage. Bull. Earthq.Eng. 17, 4651–4687. Mair, R.J. , Taylor, R.N. , Burland, J.B. , 1996. Prediction of ground movements and assessment of risk ofbuilding damage due to bored tunnelling. Geotech. Asp. Undergr. Constr. Soft Gr. 713–718. Son, M. , Cording, E.J. , 2005. Estimation of Building Damage Due to Excavation-Induced GroundMovements. J. Geotech. Geoenvironmental Eng. 131, 162–177. Thames Water Utilities Limited , 2014. Thames Tideway Tunnel Settlement Information Paper [WWWDocument]. URL https://www.tideway.london/media/3075/app191-settlement-information-paper-3-march-2014.pdf (accessed 7.28.20 ).

A macro-element model for the assessment of tunnelling-induced damage tomasonry buildings Boscardin, M. D. & Cording, E. J. 1989. Building response to excavation-induced settlement. Journal ofGeotechnical Engineering 115(1): 1–21.

Burd, H.J. , Yiu, W.N. , Acikgoz, S. & Martin, C.M. 2022. Soil-foundation interaction model for theassessment of tunnelling-induced damage to masonry buildings. Tunnelling and Underground SpaceTechnology 119, 104208. Burland J. B. , Broms B. B. & De Mello V. F. B. 1977. Behaviour of foundations and structures. State of theart report. Session 2. Proceedings of the 9th International Conference on Soil Mechanics and FoundationEngineering, Tokyo, 3, 495–546. Burland, J. B. , & Wroth, C. P. 1974. Settlement of buildings and associated damage. In A.C. Meigh (ed.),Proceedings of the conference on settlement of structures: 611–654. London, UK: Pentech Press. Caliò, I. , Marletta, M. , & Pantò, B. 2012. A new discrete element model for the evaluation of the seismicbehaviour of unreinforced masonry buildings. Engineering Structures, 40, 327–338. Giardina, G. , van de Graaf, A. V. , Hendriks, M. A. N. , Rots, J. G. , & Marini, A. 2013. Numerical analysis ofa masonry façade subject to tunnelling-induced settlements. Engineering Structures 54: 234–247. Gulen, D. B. , Acikgoz, S. , & Burd, H. J. 2021. Equivalent frame model for the assessment of tunnel-induceddamage to masonry buildings. In Geotechnical Aspects of Underground Construction in Soft Ground (pp.545–553). CRC Press. Lagomarsino, S. , Penna, A. , Galasco, A. , & Cattari, S. 2013. TREMURI program: An equivalent framemodel for the nonlinear seismic analysis of masonry buildings. Engineering Structures 56: 1787–1799. Mair, R. J. , Taylor, R. N. & Burland, J. B. 1996. Prediction of ground movements and assessment of risk ofbuilding damage due to bored tunnelling. In R. J. Mair & R. N. Taylor (eds), Geotechnical aspects ofunderground construction in soft ground: 713–718. Rotterdam, the Netherlands: Balkema. O’Reilly, M. P. & New, B. M. 1982. Settlements above tunnels in the United Kingdom- their magnitude andprediction. In M. J. Jones (ed.), Proceedings of Tunnelling’ 82: 173–181. London, UK: Institute of Mining andMetallurgy. Peck, R. B. 1969. Deep excavations and tunnelling in soft ground. Proc. 7th Int. Conf. Soil Mech. Found.Engng: 225–290. Quagliarini, E. , Maracchini, G. , & Clementi, F. 2017. Uses and limits of the equivalent frame model onexisting unrein-forced masonry buildings for assessing their seismic risk: A review. Journal of BuildingEngineering 10: 166–182. Rankin W. J. 1988. Ground movements resulting from urban tunnelling: predictions and effects. EngineeringGeology of Geology Special Publication Nos. 79–92. Yiu, W. N. , Burd, H. J. , & Martin, C. M. 2017. Finite-element modelling for the assessment of tunnel-induced damage to a masonry building. Gѐotechnique 67(9): 780–794.

Impact assessment study of a 150-year-old government building in Chennai,India Anukwu, G.C. , Khalil, A.E. , Nawawi, M. , Abdullah, K. & Abdullah, F.M. 2018. Multi-channel analysis ofsurface waves (MASW) using CMP analysis to identify soil problems threat on the heritage site atGeorgetown, Malaysia. Proc. International Geophysical Conference, Beijing, 24–27 April. Beijing: Society ofExploration Geophysicists. Kaushal, R.K. 2019. Conservation and audit of heritage buildings . Central Public Works Department, NewDelhi, India.

Tunnelling effects on the Basilica di Massenzio: Computed and observeddisplacement fields Boscardin, M.D. & Cording, E.J. 1989. Building response to excavation-induced settlement. Journal ofGeotechnical Engineering, ASCE, 65 (1): 1–21 Brinkgreve, R.B.J. , Engin, E. & Swolfs, W.M. 2013. Plaxis 3D user manual. Plaxis BV. Delft, TheNetherlands. Burghignoli, A. , Callisto, L. , Rampello, S. , Soccodato, F.M. & Viggiani, G.M.B. 2013. The crossing of thehistorical centre of Rome by the new underground Line C: a study of soil structure-interaction for historicalbuildings. In Geotechnics and Heritage: Case Histories: 97–136. London: CRC Press Burland, J.B. & Wroth, C.P. 1974. Settlement of buildings and associated damage. Proc. Conf. onSettlement of Structures, Cambridge, UK: 611–654

Burland, J.B. 1995. Assessment of risk of damage to buildings due to tunnelling and excavation. Proc. 1stInt. Conf. on Earthquake Geotechnical Engineering, Tokyo: 1189–1201 CISTeC 2001. Rapporto sulle indagini geotecniche nell'area della Basilica di Massenzio Masini, L. & Rampello, S. 2021. Predicted and observed behaviour of pre-installed barriers for the mitigationof tunnelling effects. Tunnelling and Underground Space Technology 118 : 104200.doi.org/10.1016/j.tust.2021.104200 Masini, L. , Rampello, S. , Gaudio, D. & Romani E. 2021. Observed performance of a deep excavation in thehistorical centre of Rome. Journal of Geotechnical and Geoenvironmental Engineering 147(2): 05020015.doi.org/10.1061/(ASCE) GT.1943-5606.0002465 O’Reilly, M.P. & New, B.M. 1982. Settlements above tunnels in the United Kingdom – Their magnitudes andprediction. Proc. Tunnelling ’82 Symposium, London: 173–181 Peck, R. B. 1969. Deep excavation and tunnelling in soft ground. State-of-the-art-report, Mexico City, Stateof the Art Volume, Proc. 7th Int. Conf. on Soil Mech and Found. Engng (ICSMFE): 225–290 Rampello, S. , Callisto, L. , Viggiani, G.M.B. & Soccodato, F.M. 2012. Evaluating the effects of tunnelling onhistorical buildings: the example of a new subway in Rome. Geomechanics and tunnelling 5 (3): 275–299 Rampello, S. , Fantera, L. , & Masini, L. 2019. Efficiency of embedded barriers to mitigate tunnelling effects.Tunnelling and Underground Space Technology 89 : 109–124. doi.org/10.1016/j.tust.2019.03.027 Soccodato, F.M. , Callisto, L. , Rampello, S. & Viggiani, G.M.B. 2013. Evaluating the effects of tunnelconstruction on monuments: The example of the Basilica di Massenzio in Rome. In GeotechnicalEngineering for the Preservation of Monuments and Historic Sites , 2nd TC301 IS-Napoli: 675–682. London:CRC Press

Application of Ultrasonic Computed Tomography (UCT) technology to detectdefects in stone Adachi, T. , Y. Kondo , and A. Yamaji . 2005. ‘Nondestructive evaluation of micro-cracks in a ceramic ferruleby resonant ultrasound spectroscopy’, NDT&E International, 38: 548–553. Ahn, Eunjong , Myoungsu Shin , John S. Popovics , and Richard L. Weaverc . 2019. ‘Effectiveness of diffuseultrasound for evaluation of micro-cracking damage in concrete’, Cement and Concrete Research, 124:105862. Carrión, A. , V. Genovés , J. Gosálbez , R. Miralles , and J. Payá . 2017. ‘Ultrasonic signal modality: A novelapproach for concrete damage evaluation’, Cement and Concrete Research, 101: 25–32. Ham, Suyun , and John S. Popovics . 2015. ‘Application of contactless ultrasound toward automatedinspection of concrete structures’, Automation in Construction, 58: 155–164. Hogg, Stephen M. , Brian E. Anderson , Pierre-Yves Le Bas , and Marcel C. Remillieux . 2018. ‘Nonlinearresonant ultrasound spectroscopy of stress corrosion cracking in stainless steel rods’, NDT&E International,102: 194–198. Jia, Yu , Lei Tang , Pan Ming , and Yang Xie . 2019. ‘Ultrasound-excited thermography for detectingmicrocracks in concrete materials’, NDT&E International, 101: 62–71. Kim, Gun , Jin-Yeon Kim , Kimberly E. Kurtis , and Laurence J. Jacobs . 2017. ‘Drying shrinkage in concreteassessed by nonlinear ultrasound’, Cement and Concrete Research, 92: 16–20. Merabet, L. , S. Robert , and C. Prada . 2020. ‘The multi-mode plane wave imaging in the Fourier domain:Theory and applications to fast ultrasound imaging of cracks’, NDT&E International, 110: 102171. Naeimi, Meysam , Zili Li , Zhiwei Qian , Yu Zhou , Jun Wu , Roumen H. Petrov , Jilt Sietsma , and RolfDollevoet . 2017. ‘Reconstruction of the rolling contact fatigue cracks in rails using X-ray computedtomography’, NDT&E International, 92: 199–212. Quiviger, A. , A. Girard , C. Payan , J.F. Chaix , V. Garnier , and J. Salin . 2013. ‘Influence of the depth andmorphology of real cracks on diffuse ultrasound in concrete: A simulation study’, NDT&E International, 60:11–16. Quiviger, A. , C. Payan , J. F. Chaix , V. Garnier , and J. Salin . 2012. ‘Effect of the presence and size of areal macro-crack on diffuse ultrasound in concrete’, NDT&E International, 45: 128–132. Yu, Qiuye , Omar Obeidat , and Xiaoyan Han . 2018. ‘Ultrasound wave excitation in thermal NDE for defectdetection’, NDT&E International, 100: 153–165. Zhang, Shunquan , Wei Ma , Yuanliang Xiong , Jinya Ma , Chun Chen , Yamei Zhang , and Zongjin Li .2019. ‘Ultrasonic monitoring of crack propagation of notched concretes using embedded piezo-electrictransducers’, Journal of Advanced Concrete Technology, 17: 449–461. Zhang, Shunquan , Yamei Zhang , and Zongjin Li . 2018. ‘Ultrasonic monitoring of setting and hardening ofslag blended cement under different curing temperatures by using embedded piezoelectric transducers’,Construction and Building Materials, 159: 553–560.

Flood vulnerability and damage assessment of earthen architectural heritage ofthe Iberian Peninsula Alberola Romá, A. , 2010. Riadas, inundaciones y desastres en el sur valenciano a finales del siglo XVIII.Papeles de Geografía, 51–52, 23–32. Beckett, C.T.S. , Augarde, C.E. , Easton, D. , and Easton, T. , 2018. Strength characterisation of soil-basedconstruction materials. Geotechnique, 68 (5), 400–409. Beckett, C.T.S. , Jaquin, P.A. , and Morel, J.C. , 2020. Weathering the storm: A framework to assess theresistance of earthen structures to water damage. Construction and Building Materials, 242. Birkmann, J. , Cardona, O.D. , Carreño, M.L. , Barbat, A.H. , Pelling, M. , Schneiderbauer, S. , Kienberger,S. , Keiler, M. , Alexander, D. , Zeil, P. , and Welle, T. , 2013. Framing vulnerability, risk and societalresponses: the MOVE framework. Natural Hazards, 67, 193–211. Bui, Q.B. , Morel, J.C. , Hans, S. , and Walker, P. , 2014. Effect of moisture content on the mechanicalcharacteristics of rammed earth. Construction and Building Materials, 54, 163–169. Camarasa-Belmonte, A.M. and Soriano-García, J. , 2012. Flood risk assessment and mapping in peri-urbanMediterranean environments using hydrogeomorphology. Application to ephemeral streams in the Valenciaregion (eastern Spain). Landscape and Urban Planning, 104 (2), 189–200. Camarasa Belmonte, A.M. , 2002. Crecidas e inundaciones. In: F.J. Ayala-Carcedo and J. Olcina Cantos ,eds. Riesgos Naturales. Barcelona, 859–879. Canivell, J. , Rodríguez-García, R. , González-Serrano, A. , and Romero-Girón, A. , 2020. Assessment ofHeritage Rammed-Earth Buildings: Alcázar of King Don Pedro I, Spain. Journal of Architectural Engineering,26 (2), 05020003. D’Ayala, Di. , Wang, K. , Yan, Y. , Smith, H. , Massam, A. , Filipova, V. , and Jacqueline Pereira, J. , 2020.Flood vulnerability and risk assessment of urban traditional buildings in a heritage district of Kuala Lumpur,Malaysia. Natural Hazards and Earth System Sciences, 20 (8), 2221–2241. Drdácký, M.F. , 2010. Flood Damage to Historic Buildings and Structures. Journal of Performance ofConstructed Facilities, 24 (5), 439–445. EC , 2007. DIRECTIVE 2007/60/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23October 2007 on the assessment and management of flood risks. Official Journal of the European Union. Eguibar, M.Á. , García, R.P. , Torrijo, F.J. , and Roca, J.G. , 2021. Flood Hazards in Flat Coastal Areas ofthe Eastern Iberian Peninsula?: A Case Study in Oliva (Valencia, Spain), 1–25. Figueiredo, R. , Romão, X. , and Paupério, E. , 2021. Component-based flood vulnerability modelling forcultural heritage buildings. International Journal of Disaster Risk Reduction, 61 (102323). García Soriano, L. , 2015. La restauración de la arquitectura de tapia de 1980 a la actualidad a través de losfondos del Ministerio de Cultura y del Ministerio de Fomento del Gobierno de España. Criterios, técnicas yresultados. Generalitat Valenciana , 2004. DECRETO 126/2004, de 30 de julio, del Consell de la Generalitat, por el quese declara Bien de Interés Cultural la Vila de Alzira, con la categoría de conjunto histórico, y la Iglesia deSanta Catalina de Alzira, con la categoría de monumento. Spain. Generalitat Valenciana , 2015. Plan de Acción Territorial de carácter sectorial sobre prevención del Riesgode Inundación en la Comunidad Valenciana. Spain. Gerard, P. , Mahdad, M. , Robert McCormack, A. , and François, B. , 2015. A unified failure criterion forunstabilized rammed earth materials upon varying relative humidity conditions. Construction and BuildingMaterials, 95, 437–447. Gobierno de Aragón , 2005. Redaccion y desarrollo del plan medioambiental del Ebro y tramo bajo delCinca. Gobierno de Aragón , 2019. ANEXO I Municipios y núcleos de población situados en Zona A de alto riesgo ,a efectos de emergencia para poblaciones , incluidos en el Anexo XII ( tabla 12 ), del Decreto 201 / 2019 ,de 8 de octubre , del Gobierno de Aragón. Gómez-Patrocinio, F.J. , Vegas López-Manzanares, F. , Mileto, C. , and García-Soriano, L. , 2020.Techniques and Characteristics of Traditional Earthen Masonry Walls: The Case of Spain Techniques andCharacteristics of Traditional Earthen Masonry Walls: The Case of Spain. International Journal ofArchitectural Heritage, 14 (5), 694–710. Gordon, J.T. , 1994. The Delphi Method. Futures Research Methodology, 16 (5). Herle, I. , Herbstová, V. , Kupka, M. , and Kolymbas, D. , 2010. Geotechnical Problems of Cultural Heritagedue to Floods. Journal of Performance of Constructed Facilities, 24 (5), 446–451. Jaquin, P.A. , Augarde, C.E. , Gallipoli, D. , and Toll, D.G. , 2009. The strength of unstabilised rammed earthmaterials. Geotechnique, 59 (5), 487–490. Keefe, L. , 2005. Earth Building. Methods and materials, repair and conservation. London: Taylor andFrancis Group. Kelman, I. and Spence, R. , 2004. An overview of flood actions on buildings. Engineering Geology, 73 (3–4),297–309.

Lastrada, E. , Cobos, G. , and Torrijo, F.J. , 2020. Analysis of climate change's effect on flood risk. Casestudy of Reinosa in the Ebro river Basin. Water (Switzerland), 12 (4). Macías-Bernal, J.M. , Calama-Rodríguez, J.M. , and Chávez-De Diego, M.J. , 2014. Modelo de predicciónde la vida útil de la edificación patrimonial a partir de la lógica difusa. Informes de la Construccion, 65 (533). Maldonado Ramos, L. and Vela Cossío, F. , 2002. Arquitectura y construcción con tierra. Madrid?: Mairea,. Mileto, C. and Vegas, F. , 2017. La restauración de la tapia en la Península Ibérica. Valencia: TCCuadernos. Mileto, C. , Vegas, F. , García, L. , and Pérez, A. , 2021. Assessment of Vulnerability of Earthen VernacularArchitecture in the Iberian Peninsula to Natural Risks. Generation of an Analysis Tool. International Journalof Architectural Heritage, 00 (00), 1–14. Ortiz, P. , Antunez, V. , Martín, J.M. , Ortiz, R. , Vázquez, M.A. , and Galán, E. , 2014. Approach toenvironmental risk analysis for the main monuments in a historical city. Journal of Cultural Heritage, 15 (4),432–440. Ortiz, R. and Ortiz, P. , 2016. Vulnerability Index: A New Approach for Preventive Conservation ofMonuments. International Journal of Architectural Heritage, 10 (8), 1078–1100. Ribera, J. , 1887. Topografía de Alzira árabe. El Archivo II. Siedel, H. , 2010. Historic Building Stones and Flooding: Changes of Physical Properties due to WaterSaturation. Journal of Performance of Constructed Facilities, 24 (5), 452–461. Solín, Ľ. , 2012. Spatial variability in the flood vulnerability of urban areas in the headwater basins ofSlovakia. Journal of Flood Risk Management, 5 (4), 303–320. Sperotto, A. , Torresan, S. , Gallina, V. , Coppola, E. , Critto, A. , and Marcomini, A. , 2015. A multi-disciplinary approach to evaluate pluvial floods risk under changing climate: The case study of themunicipality of Venice (Italy). Science of the Total Environment, 562, 1031–1043. Stephenson, V. and D’Ayala, D. , 2014. A new approach to flood vulnerability assessment for historicbuildings in England. Natural Hazards and Earth System Sciences, 14 (5), 1035–1048. Trizio, F. , Torrijo, F.J. , Mileto, C. , and Vegas, F. , 2021. Flood Risk in a Heritage City: Alzira as a CaseStudy. Water (Switzerland), 13, 1138. Vegas, F. , Mileto, C. , and Cristini, V. , 2011. Earthen architecture in Spain. In: Terra Europae. EarthenArchitecture in European Union. 181–183. Villacampa Crespo, L. , 2018. La Restauracion y La Rehabilitacion De La Arquitectura Tradicional de Tierra.EL Caso De Aragon. Univerisidad Politecnica De Valencia. Universitat Politècnica de València, Valencia. Wang, J.J. , 2015. Flood risk maps to cultural heritage: Measures and process. Journal of Cultural Heritage,16 (2), 210–220. Warren, J. , 1999. Conservation of Earth Structures . Oxford: Butterworth Heinemann. Xu, L. , Wong, K.K. , Fabbri, A. , Champiré, F. , and Branque, D. , 2018. Loading-unloading shear behaviorof rammed earth upon varying clay content and relative humidity conditions. Soils and Foundations, 58 (4),1001–1015.

Climate change impacts on cultural heritage building foundations in WesternAndalusia Alvarez-Cuesta, M. , A. Toimil , y I. J. Losada . 2021. “Modelling long-term shoreline evolution in highlyanthropized coastal areas. Part 2: Assessing the response to climate change”. Coastal Engineering 168:103961. Diz-Mellado, Eduardo et al. 2021. “Non-destructive testing and Finite Element Method integrated procedurefor heritage diagnosis: The Seville Cathedral case study”. Journal of Building Engineering 37: 102134.https://linkinghub.elsevier.com/retrieve/pii/S2352710220337669. Ekström G , Meredith Nettles and Victor C. Tsai . 2006. “Seasonality and Increasing Frequency of GreenlandGlacial Earthquakes on JSTOR”. Science, 311(5768), 1756–1758. https://www--jstor--org.us.debiblio.com/stable/3845719?Search=yes&resultItemClick=true&searchText=%22Seasonality+and+Increasing+Frequency+of+Greenland+Glacial+Earthquakes%22&searchUri=%2Faction%2FdoBasicSearch%3FQuery%3D%2522Seasonality%2Band%2BIncreasing (2 de noviembre de 2021). García Sánchez , Francisco, Héctor García Sánchez, y Cecilia Ribalaygua . 2020. “Cultural heritage and sealevel rise threat: risk assessment of coastal fortifications in the Canary Islands”. Journal of Cultural Heritage44: 211–217. Germinario, Luigi , Gioacchino Francesco Andriani, y Rocco Laviano . 2015. “Decay of calcareous buildingstone under the combined action of thermoclastism and cryoclastism: A laboratory simulation”. Constructionand Building Materials 75: 385–394.

Gil-Guirado, Salvador et al. 2022. “Flood impact on the Spanish Mediterranean coast since 1960 based onthe prevailing synoptic patterns”. Science of The Total Environment 807: 150777. Martín-del-Rio, J.J. et al. 2021. “Analysis of the materials and state of conservation of the medieval rammedearth walls of Seville (Spain)”. Journal of Building Engineering 44: 103381.https://doi.org/10.1016/j.jobe.2021.103381 (14 de octubre de 2021). Marzeion, Ben , y Anders Levermann . 2014. “Loss of cultural world heritage and currently inhabited placesto sea-level rise”. Environmental Research Letters 9(3): 034001.https://iopscience.iop.org/article/10.1088/1748-9326/9/3/034001 (2 de noviembre de 2021). Reimann, Lena et al. 2018. “Mediterranean UNESCO World Heritage at risk from coastal flooding anderosion due to sea-level rise”. Nature Communications 2018 9:1 9(1): 1–11.https://www.nature.com/articles/s41467-018-06645-9 (2 de noviembre de 2021). Sun, Yuqing et al. 2019. “A critical review of risks, characteristics, and treatment strategies for potentiallytoxic elements in wastewater from shale gas extraction”. Environment International 125: 452–469. Wright, Jeneva . 2016. “Maritime Archaeology and Climate Change: An Invitation”. Journal of MaritimeArchaeology 11(3): 255–270.

The Garisenda Tower in Bologna: Effects of degradation of selenite basement onits static behaviour. Andreon F. , Dallavalle G. , Gasparini G. , Trombetti T. (2011). Le Torri Asinelli e Garisenda : le indagini e gliinterventi di consolidamento. Inarcos n 719 Maggio. Anzani A. , Binda L. , Mirabella Roberti G. (2000). The effect of heavy persistent actions into the behaviour ofancient masonry, Mat. Struct., RILEM 33, 228, 251–261. Artieda O. , 2013. Morphology and micro-fabrics of weathering features on gyprock exposures in a semiaridenvironment (Ebro Tertiary Basin, NE Spain). Geomorphology 196 (2013) 198–210. Bertolini I. , Marchi M. , Gottardi G. , Amorosi A. , Bruno L. (2022). Investigating a geotechnical ‘cold case’:the Two Towers of Bologna (Italy). In Proceedings of the III International Symposium On GeotechnicalEngineering For The Preservation Of Monuments And Historic Sites, Naples, Italy, 22–24 June 2022.Submitted for publication. Binda L. , Gatti G. , Mangano G. , Poggi C. , Sacchi Landriani G. (1992). The collapse of the Civic Tower ofPavia: a survey of the materials and structure, Masonry International 6 (1) (1992) 11–20. Bitelli G. (2018). Convenzione tra il comune di Bologna e Università di Bologna (Dipartimento DICAM)sull’organizzazione dei dati storici relativi ai rilievi di livellazione geometrica effettuati sulle due torri. Ceccoli C. (1998). (coordinator of the Commission). Relazione programmatica-descrizione dei metodi diindagine e del sistema di monitoraggio. Novembre. Ceccoli C. (1999). (coordinator of the commission) Il consolidamento della Torre Garisenda. Relazioneillustrativa. Ottobre. Ceccoli C. (2001) (coordinator of the commission). Relazione tecnica sul progetto complessivo diconsolidamento e sugli interventi di prima fase. Marzo. Capra A. , Bertacchini E. , Castagnetti C. , Dubbini M. , Rivola R. , Toschi I. (2011). Rilievi laserscanner perl’analisi geometrica delle Torri degli Asinelli e della Garisenda. Inarcos n 719 Maggio. Cavani F. (1903). Pendenza, stabilità e movimento delle torri. La Garisenda di Bologna e la Ghirlandina diModena. Atti del Collegio degli Ingegneri e degli Architetti in Bologna. Cavani F. (1917). Sulla pendenza delle principali torri di Bologna, Modena e Pisa. Atti del Collegio degliIngegneri e degli Architetti di Bologna. Cavani F. (1919). Su alcune questioni relative alla pendenza delle torri Atti del Collegio degli Ingegneri edegli Architetti di Bologna. Darini G. , Modoni G. , Saroli M. , Croce P. (2008). Land subsidence induced by groundwater extraction: thecase of Bologna. Int. Congress on Environmental Modelling and Software Integrating Sciences andInformation Technology for Environmental Assessment and Decision Making, 1386–1393. Del Monte M. , 2005. L'epoca d'oro della selenite a Bologna. Il Geologo dell'Emilia-Romagna, 20, p. 5–24. Del Monte M. , Forti P. and Tolomelli M. , 1999. Degradazione meteorica dei gessi: nuovi dati dalle torrimedioevali di Bologna (Italia)”. Atti e Memorie della Commissione Grotte “E. Boegan”, Trieste 2000, 37,77–91. Ferretti, D. , and Z. P. Bažant (2006). Stability of ancient masonry towers: Stress redistribution due to drying,carbonation, and creep. Cement and Concrete Research 36:1389–1398. Giordano F. (2000). La torre Garisenda. Costa Editore, 208 pp. Lugli S. 1995. Blocchi di roccia gessosa nella chiesa abbaziale di S. Silvestro a Nonantola (Modena):caratteristiche geologico-petrografiche e ipotesi di provenienza. Atti della Società dei Naturalisti e Matematici

di Modena, 124 (1993), 137–160. Lugli S. , 2002. Recognition of ancient fires in archaeological sites containing gypsum rocks. Proceedings ofthe VI International Conference of the Association for the Study of Marble and Other Stones in Antiquity(ASMOSIA), Venice, 15–18 June 2000, 545–548. Lugli S. , 2019, Il gesso in natura e nell’arte. GeoArcheoGypsum2019, Geologia e archeologia del gesso: dallapis specularis alla scagliola, (a cura di) D. Gulli S. Lugli, R. Ruggieri, R. Ferlisi. Palermo, Regione siciliana,17–31. Lugli S. , Manzi V. , Roveri M. & Schreiber B.C. , 2010. The Primary Lower Gypsum in the Mediterranean: Anew facies interpretation for the first stage of the Messinian salinity crisis. Palaeogeography,Palaeoclimatology, Palaeoecology, 297, 83–99. Macchi G. (1993). Monitoring medieval structures in Pavia. Structural Engineering International, 1, 9–9. Marchi M. , Bertolini I. , Gottardi G. , Amorosi A. , Bruno L. (2019). From geological and historical data to thegeotechnical model of the Two Towers in Bologna (Italy). In Proceedings of the XVII ECSMGE, Reykjavik,1–6 September. Pozzati P. , Unguendoli M. (1997). Situazione statico strutturale delle due torri di Bologna. Convenzione fraComune di Bologna ed Università degli studi di Bologna. Relazione conclusiva dei responsabili scientifici. Rhind T. , Ronholm J. , Berg B. , Mann P. , Applin D. , Stromberg J. , Sharma R. , Whyte L.G. and CloutisE.A. , 2014. Gypsum-hosted endolithic communities of the Lake St. Martin impact structure, Manitoba,Canada: spectroscopic detectability and implications for Mars. International Journal of Astrobiology 13 (4):366–377. Roversi G. (2011). Le torri di Bologna-quando,come e perché. Grafis.

A simplified approach to assess the stability of tuff cavities accounting for thespatial variability of the shear strength and the presence of joints Barton, N. 1973. Review of a shear strength criterion for rock joints. Engineering Geology 7:287–332. Barton, N. , & Choubey, V. 1977. The shear strength of rock joints in theory and practice. Rock Mechanics10:1–54. Boldini, D. , Guido, G. , Margottini, C. , & Spizzichino, D. 2018. Stability Analysis of a Large-Volume Block inthe Historical Rock-Cut City of Vardzia (Georgia). Rock Mech Rock Eng 51, 341–349. de Silva, F. & Scotto Di Santolo, A . 2018. Probabilistic Performance-based Approaches to the Static andSeismic Assessment of Rock Cavities. International Journal of Rock Mechanics and Mining Sciences112:354–368. Evangelista, A. , Feola, A. , Flora, A. , Lirer, S. , & Maiorano, R. 2000. Numerical anlaysis of roof failuremechanisms of cavities in a soft rock. ISRM International Symposium, Melbourne, Australia. Evangelista, A. , Flora, A. , Lirer, S. , de Sanctis, F. , & Lombardi, G. 2002. Studi ed interventi per la tutela diun patrimonio sotterraneo: l'esempio delle cavità di Napoli. Proc. XXI Convegno Nazionale di Geotecnica. Fazio, N.L. , Perrotti, M. , Lollino, P. , Parise, M. , Vattano, M. , Madonia, G. , Di Maggio, C. 2017. A three-dimensional back-analysis of the collapse of an underground cavity in soft rocks. Engineering Geology 228301–311. Federico, F. & Screpanti, S. 2003. Analytical criteria and numerical procedures for safety analyses of pillarsand vaults excavated in pyroclastic rocks. Proc. XXII Convegno Nazionale di Geotecnica. Liu, K. , Hao, H. , Li, X. 2017. Numerical analysis of the stability of abandoned cavities in bench blasting.International Journal of Rock Mechanics & Mining Sciences 92:30–39. Perrotti, M. , Lollino, P. , Fazio, N. & Pisano, L. 2016. Finite element-based stability charts for undergroundcavities in soft calcarenites Finite element-based stability charts for underground cavities in soft calcarenites.International journal of Geomechanics 18(7). Scotto di Santolo, A & de Silva, F. 2019. 3D numerical analysis of historical ipogeum. Proceedings of theXVII ECSMGE-2019 Geotechnical Engineering foundation of the future. Scotto di Santolo A. , Ciardulli F. & Silvestri F. 2016. Triaxial and shear box tests on a pyroclastic soft rock.Volcanic Rocks and Soils – Rotonda et al. (eds) Taylor & Francis Group, London. Sherizadeh, T. & Kulatilake, P. 2016. Assessment of roof stability in a room and pillar coal mine in the U.S.using three-dimensional distinct element method. Tunnelling and underground space Technology 59:24–37. Suchowerska, A.M. , Merifield, R.S. , Carter, J.P. , Clausen, J. 2012. Prediction of underground cavity roofcollapse using the Hoek–Brown failure criterion. Computers and Geotechnics 44:93–103. Tsesarsky, M. , Gal, E. & Machlav, E. 2013. 3-D global-local finite element analysis of shallow undergroundcaverns in soft sedimentary rock. International Journal of rock mechanics and mining sciences 57:89–99. Walthama, A.C. & Swift, N. 2004. Bearing capacity of rock over mined cavities in Nottingham. Engineeringgeology 75:15–31.

Zimbardo, M. , Cannone, C. , Ercoli, L. , Nocilla, A. 2018. A risk assessment proposal for undergroundcavities in Hard Soils-Soft Rocks. International Journal of Rock Mechanics and Mining Sciences 103:43–54.

Comparison of two machine learning algorithms for anthropogenic sinkholesusceptibility assessment in the city of Naples (Italy). Allocca, V. , Di Napoli, M. , Coda, S. , Carotenuto, F. , Calcaterra, D. , Di Martire, D. , & De Vita, P. (2021). Anovel methodology for Groundwater Flooding Susceptibility assessment through Machine Learningtechniques in a mixed-land use aquifer. Science of The Total Environment, 148067. Aprile, F. , Sbrana, A. , & Toccaceli, R. M. (2004). Il ruolo dei depositi piroclastici nell’analisicronostratigrafica dei terreni quaternari del sottosuolo della Piana Campana (Italia meridionale). IlQuaternario, 17, 547–554.(in italian). Ardau, F. , Balia, R. , Bianco, M. , & De Waele, J. (2007). Assessment of cover-collapse sinkholes in SWSardinia (Italy). Geological Society, London, Special Publications, 279(1), 47–57. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32. Bruno, E. , Calcaterra, D. , & Parise, M. (2008). Development and morphometry of sinkholes in coastal plainsof Apulia, southern Italy. Preliminary sinkhole susceptibility assessment. Engineering Geology, 99(3–4),198–209. Calcaterra, D. , Cappelletti, P. , Langella, A. , Morra, V. , Colella, A. , & de Gennaro, R. (2000). The buildingstones of the ancient centre of Naples (Italy): Piperno from Campi Flegrei. A contribution to the knowledge ofa long-time-used stone. Journal of Cultural Heritage, 1(4), 415–427. Calcaterra, D. , Langella, A. , de Gennaro, R. , de’Gennaro, M. , & Cappelletti, P. (2005). Piperno fromCampi Flegrei: a relevant stone in the historical and monumental heritage of Naples (Italy). Environmentalgeology, 47(3), 341–352. Calcaterra, D. , Coppin, D. , De Vita, S. , Di Vito, M. A. , Orsi, G. , Palma, B. , & Parise, M. (2007). Slopeprocesses in weathered volcaniclastic deposits within the city of Naples: the Camaldoli Hill case.Geomorphology, 87(3), 132–157. Catani, F. , Lagomarsino, D. , Segoni, S. , & Tofani, V. (2013). Landslide susceptibility estimation by randomforests technique: sensitivity and scaling issues. Natural Hazards and Earth System Sciences, 13(11),2815–2831. Ciotoli, G. , Di Loreto, E. , Finoia, M. G. , Liperi, L. , Meloni, F. , Nisio, S. , & Sericola, A . (2016). Sinkholesusceptibility, Lazio Region, central Italy. Journal of Maps, 12(2), 287–294. Colella, A. , Di Benedetto, C. , Calcaterra, D. , Cappelletti, P. , D'Amore, M. , Di Martire, D. , Graziano, S.F. ,Papa, L. , de Gennaro, M. , & Langella, A. (2017). The Neapolitan Yellow Tuff: an outstanding example ofheterogeneity. Construction and Building Materials, 136, 361–373. Convertino, M. , Troccoli, A. , & Catani, F. (2013). Detecting fingerprints of landslide drivers: a MaxEntmodel. Journal of Geophysical Research: Earth Surface, 118(3), 1367–1386. Craney, T. A. , & Surles, J. G. (2002). Model-dependent variance inflation factor cutoff values. QualityEngineering, 14(3), 391–403. Culshaw, M. G. , & Waltham, A. C. (1987). Natural and artificial cavities as ground engineering hazards.Quarterly Journal of Engineering Geology and Hydrogeology, 20(2), 139–150. de Vivo, B. , Rolandi, G. , Gans, P. B. , Calvert, A. , Bohrson, W. A. , Spera, F. J. , & Belkin, H. E. (2001).New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineralogy andPetrology, 73(1), 47–65. de’Gennaro, M. , Calcaterra, D. , Cappelletti, P. , Langella, A. , & Morra, V. (2000). Building stone andrelated weathering in the architecture of the ancient city of Naples. Journal of Cultural Heritage, 1(4),399–414. Deino, A. L. , Orsi, G. , de Vita, S. , & Piochi, M. (2004). The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera–Italy) assessed by 40Ar/39Ar dating method. Journal ofVolcanology and Geothermal Research, 133(1–4), 157–170. Di Napoli, M. , Carotenuto, F. , Cevasco, A. , Confuorto, P. , Di Martire, D. , Firpo, M. , Pepe, G. , Raso, E. &Calcaterra, D . (2020a). Machine learning ensemble modelling as a tool to improve landslide susceptibilitymapping reliability. Landslides, 17(8), 1897–1914. Di Napoli, M. , Marsiglia, P. , Di Martire, D. , Ramondini, M. , Ullo, S. L. , & Calcaterra, D . (2020b). Landslidesusceptibility assessment of wildfire burnt areas through earth-observation techniques and a machinelearning-based approach. Remote Sensing, 12(15), 2505. Di Napoli, M. , Martire, D. D. , Bausilio, G. , Calcaterra, D. , Confuorto, P. , Firpo, M. , Pepe, G. , & Cevasco,A. (2021). Rainfall-induced shallow landslide detachment, transit and runout susceptibility mapping byintegrating machine learning techniques and GIS-based approaches. Water, 13(4), 488.

Fairbridge, R. W. (1968). The Encyclopedia of Geomorphology. Encyclopedia of Earth Sciences Series, Vol.III. Dowden, Hutchinson and Ross. Inc., Stroudsburg, Pennsylvania. 1295pp. Felicísimo, Á. M. , Cuartero, A. , Remondo, J. , & Quirós, E. (2013). Mapping landslide susceptibility withlogistic regression, multiple adaptive regression splines, classification and regression trees, and maximumentropy methods: a comparative study. Landslides, 10(2), 175–189. Ford, D. , & Williams, P. D. (2013). Karst hydrogeology and geomorphology. John Wiley & Sons. Galve, J. P. , Gutiérrez, F. , Remondo, J. , Bonachea, J. , Lucha, P. , & Cendrero, A. (2009). Evaluating andcomparing methods of sinkhole susceptibility mapping in the Ebro Valley evaporite karst (NE Spain).Geomorphology, 111(3–4), 160–172. Galve, J. P. , Remondo, J. , & Gutiérrez, F. (2011). Improving sinkhole hazard models incorporatingmagnitude–frequency relationships and nearest neighbor analysis. Geomorphology, 134(1–2), 157–170. Guarino, P. M. , & Nisio, S. (2012). Anthropogenic sinkholes in the territory of the city of Naples (SouthernItaly). Physics and Chemistry of the Earth, Parts A/B/C, 49, 92–102. Guarino, P. M. , Santo, A. , Forte, G. , De Falco, M. , & Niceforo, D. M. A. (2018). Analysis of a database foranthropogenic sinkhole triggering and zonation in the Naples hinterland (Southern Italy). Natural Hazards,91(1), 173–192. Gutiérrez, F. , Cooper, A. H. , & Johnson, K. S. (2008b). Identification, prediction, and mitigation of sinkholehazards in evaporite karst areas. Environmental Geology, 53(5), 1007–1022. Gutiérrez, F. , Galve, J. P. , Lucha, P. , Castañeda, C. , Bonachea, J. , & Guerrero, J. (2011). Integratinggeomorphological mapping, trenching, InSAR and GPR for the identification and characterization ofsinkholes: A review and application in the mantled evaporite karst of the Ebro Valley (NE Spain).Geomorphology, 134(1–2), 144–156. Gutiérrez, F. , Guerrero, J. , & Lucha, P. (2008a). A genetic classification of sinkholes illustrated fromevaporite paleokarst exposures in Spain. Environmental Geology, 53(5), 993–1006. Gutiérrez, F. , Parise, M. , De Waele, J. , & Jourde, H. (2014). A review on natural and human-inducedgeohazards and impacts in karst. Earth-Science Reviews, 138, 61–88. Isaia, R. , Iannuzzi, E. , Sbrana, A. , & Marianelli, P. (2018). Note Illustrative della Carta Geologica d’Italiaalla scala 1: 50.000, Foglio 446–447 Napoli (aree emerse). Jenks, G. F. (1977). Optimal data classification for choropleth maps occasional paper no 2. University ofKansas, Department of Geography. Kim, J. C. , Lee, S. , Jung, H. S. , & Lee, S. (2018). Landslide susceptibility mapping using random forestand boosted tree models in Pyeong-Chang, Korea. Geocarto international, 33(9), 1000–1015. Klimchouk, A. , Forti, P. , & Cooper, A. (1996). Gypsum karst of the World: a brief overview. InternationalJournal of Speleology, 25(3), 12. Lee, S. , Kim, J. C. , Jung, H. S. , Lee, M. J. , & Lee, S. (2017). Spatial prediction of flood susceptibility usingrandom-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomatics, Natural Hazards andRisk, 8(2), 1185–1203. Liaw, A. , Wiener, M. (2002). Classification and Regression by randomForest. R News 2(3), 18–22. Lombardo, M. , Frisone, F. , Review by Pollini, A. (2012). Colonie di colonie, Le fondazioni sub-colonialigreche tra colonizzazione e colonialismo, Atti del Convegno Internazionale (Lecce, 22–24 giugno 2006). (initalian) Ma, B. , & Sun, J. (2018). Predicting the distribution of Stipa purpurea across the Tibetan Plateau via theMaxEnt model. BMC ecology, 18(1), 1–12. Morra, V. , Calcaterra, D. , Cappelletti, P. , Colella, A. , Fedele, L. , de’ Gennaro, R. , Langella, A. , Mercurio,M. , & de’ Gennaro, M. (2010). Urban geology: relationships between geological setting and architecturalheritage of the Neapolitan area, in Beltrando, M. , Peccerillo, A. , Mattei, M. , Conticelli, S. , and Doglioni, C. ,eds., The Geology of Italy: tectonics and life along plate margins, Journal of the Virtual Explorer, v. 36, paper27. Nhu, V. H. ; Shirzadi, A. ; Shahabi, H. ; Chen, W. ; Clague, J.J. ; Geertsema, M. ; Jaafari, A. ; Avand, M. ;Miraki, S. ; Talebpour Asl, D. ; Pham, B.T. ; Ahmad, B.B. ; Lee, S. (2020). Shallow Landslide SusceptibilityMapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran. Forests, 11,421. Novellino, A. , Cesarano, M. , Cappelletti, P. , Di Martire, D. , Di Napoli, M. , Ramondini, M. , Sowter, A. , &Calcaterra, D . (2021). Slow-moving landslide risk assessment combining Machine Learning and InSARtechniques. CATENA, 203, 105317. Orsi, G. , De Vita, S. , & Di Vito, M. (1996). The restless, resurgent Campi Flegrei nested caldera (Italy):constraints on its evolution and configuration. Journal of Volcanology and Geothermal Research, 74(3–4),179–214. Pappalardo, L. , Civetta, L. , De Vita, S. , Di Vito, M. , Orsi, G. , Carandente, A. , & Fisher, R. V. (2002).Timing of magma extraction during the Campanian Ignimbrite eruption (Campi Flegrei Caldera). Journal ofVolcanology and Geothermal Research, 114(3–4), 479–497.

Parise, M. (2015). A procedure for evaluating the susceptibility to natural and anthropogenic sinkholes.Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 9(4), 272–285. Phillips, S. J. , & Dudík, M. (2008) – Modeling of species distributions with Maxent: new extensions and acomprehensive evaluation. Ecography, 31(2), 161–175. Phillips, S.J. ; Dudík, M. ; Schapire, R.E. (2021) – [Internet] Maxent software for modeling species nichesand distributions (Version 3.4.4). Available from url:http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 02 /05/2021. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for StatisticalComputing, Vienna, Austria. URL https://www.R-project.org/. Robin, X. , Turck, N. , Hainard, A. , Tiberti, N. , Lisacek, F. , Sanchez, J. C. , & Müller, M. (2011). pROC: anopen-source package for R and S+ to analyze and compare ROC curves. BMC bioinformatics, 12(1), 1–8. Rodriguez-Galiano, V. , Sanchez-Castillo, M. , Chica-Olmo, M. , & Chica-Rivas, M. J. O. G. R. (2015).Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, randomforest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818. Rolandi, G. , Bellucci, F. , Heizler, M. T. , Belkin, H. E. , & De Vivo, B. (2003). Tectonic controls on thegenesis of ignimbrites from the Campanian Volcanic Zone, southern Italy. Mineralogy and Petrology,79(1–2), 3–31. Rosdi, M. A. H. M. , Abd Latif, Z. , Othman, A. N. , & Nasir, N. M. (2018, November). Sinkhole SusceptibilityHazard Zones Using GIS Framework and Heuristic Method. In Conference of the Arabian Journal ofGeosciences (pp. 261–264). Springer, Cham. Rosi, M. , Vezzoli, L. , Aleotti, P. , & De Censi, M. (1996). Interaction between caldera collapse and eruptivedynamics during the Campanian Ignimbrite eruption, Phlegraean Fields, Italy. Bulletin of Volcanology, 57(7),541–554. Santangelo, N. , Ciampo, G. , Di Donato, V. , Esposito, P. , Petrosino, P. , Romano, P. , Ermolli, E. R. ,Santo, A. , Toscano, F. , & Villa, I. (2010). Late Quaternary buried lagoons in the northern Campania plain(southern Italy): evolution of a coastal system under the influence of volcano-tectonics and eustatism. Italianjournal of geosciences, 129(1), 156–175. Scarpati, C. , Cole, P. , & Perrotta, A. (1993). The Neapolitan Yellow Tuff—a large volume multiphaseeruption from Campi Flegrei, southern Italy. Bulletin of Volcanology, 55(5), 343–356. Scotto di Santolo, A. , Evangelista, L. , Silvestri, F. , Cavuoto, G. , Di Fiore, V. , Punzo, M. , Tarallo D.Evangelista, A. (2015). Investigations on the stability conditions of a tuff cavity: the Cimitero delle Fontanellein Naples. Rivista Italiana di Geotecnica XLIX (3), 28–46. Scotto di Santolo, A. , Forte, G. , De Falco, M. , & Santo, A. (2016). Sinkhole risk assessment in themetropolitan area of Napoli, Italy. Procedia Engineering, 158, 458–463. Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–1293. Tharp, T. M. (1999). Mechanics of upward propagation of cover-collapse sinkholes. Engineering geology,52(1–2), 23–33. Tufano, R. ; Guerriero, L. ; Annibali Corona, M. ; Bausilio, G. ; Di Martire, D. , Nisio, S. ; Calcaterra, D. ( inprep.) – Anthropogenic sinkholes inventory of the city of Naples, Italy: an update. Nat Hazards (underreview). Waltham, T. , Waltham, A. C. , Bell, F. G. , & Culshaw, M. G. (2005). Sinkholes and subsidence: karst andcavernous rocks in engineering and construction. Springer Science & Business Media. West, A. M. , Kumar, S. , Brown, C. S. , Stohlgren, T. J. , & Bromberg, J. (2016). Field validation of aninvasive species Maxent model. Ecological Informatics, 36, 126–134.

Crack development in an old church building due to clay shrink-swell Australia ICOMOS Inc. 2000. The Burra Charter: Australia ICOMOS Charter for Places of CulturalSignificance 1999. Burwood: Australia ICOMOS Incorporated. Bayklif (Bayerisches Netzwerk für Klimaforschung) , 2021. German Weather Service: 2020 was the secondwarmest year in Germany since weather records began. Available at: https://www.bayklif.de/en/german-weather-service-2020-was-the-second-warmest-year-in-germany-since-the-beginning (Accessed: 16December 2021). Berntsen 2022. Crack Monitors - For the monitoring of cracks in buildings and civil engineering structures.Available at https://www.berntsen.com/Construction/Avongard-Crack-Monitor (Accessed: 22 February 2022). Biddle, P.G. 2001. Tree root damage to buildings. Expansive clay soils and vegetative influence on shallowfoundations , ASCE Geotechnical special publications, 116: 1–23. British Geological Society (BGS) 2021. Swelling and shrinking soils. Available at:https://www.bgs.ac.uk/geology-projects/shallow-geohazards/clay-shrink-swell/ (Accessed: 16 December

2021). Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) (2014) Soil Regions of Germany. Available at:https://sites.google.com/site/soilsofgermany/home/soil-information (Accessed: 16 December 2021). Cho, K.H. , Choi, M.K. , Nam, S.W. , Lee, I.M. 2006. Geotechnical parameter estimation in tunnelling usingrelative convergence measurement. International Journal for Numerical and Analytical Methods inGeomechanics 30(2): 137–155. Deutscher Wetterdienst (DWD) (n.d.). The weather in Germany in 2018. Press release. Deutscher Wetterdienst (DWD) 2020. Klimastatusbericht Deutschland Jahr 2019. Available at:https://www.dwd.de/DE/leistungen/klimastatusbericht/publikationen/ksb_2019.html (Accessed: 16 December2021). Eapen D. , Martínez J.J. , Cassab G.I. 2015. Assays for root hydrotropism and response to water stress. InBlancaflor E.B. (ed). Plant Gravitropism: Methods and Protocols, 133–142, New York, USA: Springer. DOI:10.1007/978-1-4939-2697-8_11 – PubMed. Evangelical Church Massenheim (ECM) 2000a. Exhibition documents in Massenheim church with timetables and newspaper clippings about the renovation. Evangelical Church Council Massenheim (ECM) 2000b. The church renovation. Information about the historyand church renovation of the Evangelical church. Evangelical Church Council Massenheim (ECM) 2004. Cracks in the mansonry. Evangelical communityletter for Massenheim and Wicker, 3–4, Massenheim. Franke-Meißner and Partner Ltd. (BFM) 2003. Geotechnical Expert opinion: Field investigation and subsoilassesment. Renovation of the evangelichal church Massenheim. Franke-Meißner and Partner Ltd. (BFM) 2004. Geotechnical Expert opinion: Short report to subsoil in-vesigations. Renovation of the evangelichal church Massenheim. Franke-Meißner and Partner Ltd. (BFM) 2021. Geotechnical Expert opinion: Settlements and convergencemeasurement. Renovation of the evangelichal church Massenheim. Jones, L.D. & Jefferson, I. 2012. Expansive soils. In John Burland (ed.), ICE Manual of GeotechnicalEngineering. Volume 1, Geotechnical Engineering principles, problematic soils and site investigation:413–441. London, UK: ICE Publishing. Li, J. & Cameron, D.A. 2002. Case Study of Courtyard House Damaged by Expansive Soils. J. Perform.Constr. Facil., 16(4): 169–175. Müller-Westermeier, G. & Riecke, W. 2004. Klimastatusbericht 2003: Die Witterung in Deutschland.Available at:https://www.dwd.de/DE/leistungen/klimastatusbericht/publiktionen/ksb2003_pdf/01g_2003.html?nn=16102(Accessed 16 of December 2021). Nelson, J.D. & Miller, D.J. 1992. Expansive soils: Problems and practice in Foundation and PavementEngineering. New York, USA: John Wiley & Sons, Incorporated. Odom, I. E. 1984. Smectite Clay Minerals: Properties and Uses. Philosophical Transactions of the RoyalSociety of London – Series A, Mathematical and Physical Sciences 311(1517): 391–409. Ola, S.A. 1982. Geotechnical properties of an Attapulgite clay shale in Northwestern Nigeria. EngineeringGeology 19: 1–13. Amsterdam. O’Neil, M.W. & Poormoayed, N. 1980. Methodology for Foundations on Expansive Clays. ASCE Journal ofGeotechnical Engineering 106(12): 1345–1367. ORS (2020) Cracking In Buildings. Available at: https://www.ors.ie/news/cracking-in-buildings/ (Accessed 16December 2021 ). Rebetez, M. , Mayer, H. , DuPont, O. , Schindler, D. , Gartner, K. , Kropp, J.P. , Menzel, A. 2006. Heat anddrought 2003 in Europe: a climate synthesis. Annals of Forest Science 63(6): 569–577. Schultze, E. & Muhs H. 1967. Bodenuntersuchungen für Ingenieurbauten. 2nd Edition. Berlin. Sivapullaiah, P.V. , Sitharam, T.G. , Subba Rao K.S. 1987. Modified Free Swell Index for Clays.Geotechnieal Testing Journal 10(2): 80–85. Skempton, A.W. & MacDonald D.H. 1956. The allowable settlements of buildings. Proceedings of theInstitution of Civil Engineers 5(6): 727–768. U.S. Bureau of Reclamation (USBR) 1974. Earth Manual. 2nd Edition. Denver, USA: U.S. Bureau ofReclamation. Wigger, H. 2000. Rissbildung infolge Setzungszwang in historischem Natursteinmauerwerk. Dissertation,Fachbereich für Bauingenieure- und Vermessungswesen der Technischen Universität Braunschweig,Braunschweig, Germany. Wisconsin Historical Society (n.d). Identifying Structural Problems with Your Historic Building. Available at:https://www.wisconsinhistory.org/Records/Article/CS4298 (Accessed 16 of December 2021). Yao, Y. , Tung, S-T. E. , Glisic, B. 2014. Crack detection and characterization techniques—An overview.Structural Control Health Monitoring 21 (12): 1387–1413.

Yue, E. 2017. Soil Matric Suction and Active Zone Depth in Oklahama. PhD Thesis, Oklahoma StateUniversity, Oklahama, USA.

The study of the geological conditions of the territory is the key to the strategy ofpreserving the underground caves of the Holy Dormition Pskovo-Pechersky(Pskov-Caves) Monastery Averin I.V. et al. 2019. Development of emergency measures on the territory of the Holy Dormition Pskov-Pechersk Monastery/On-site investigation report: 162. Moscow: Limited Liability company “IngineeringGeology”. vol. 1. Barton, H. , Suarez, P. , Muench, B. , Giarrizzo, J. , Broering, M. , Banks, E. , Venkateswaran, K. , 2009. Thealkali speleogenesis of Roraima Sur Cave, Venezuela. In: White, W.B. (Ed.), Proceedings of the 15thInternational Congress of Speleology, Kerrville, Texas, July 19–26 2009, pp. 802–807 Geology of the USSR . Volume I. Leningrad, Pskov and Novgorod regions. Geological description. North-Western Territorial State Institution. Ed. by A.V. Sidorenko . Moscow. Nedra 1971, 504 p. Gradziñski M. , Chmiel M.J. , Lewandowska A. , Michalska-Kasperkiewicz B. , 2010. Siliciclasticmicrostromatolites in a sandstone cave: role of trapping and binding of detrital particles in formation of cavedeposits. Annales Societatis Geologorum Poloniae, 80, 303–314 Martini, J.E.J. , 2000. Dissolution of quartz and silicate minerals. In: Klimchouk, A.B. , Ford, D.C. , Palmer,A.N. , Dreybrodt, W. (Eds.), Speleogenesis. Evolution of karst aquifers. National Speleological Society,Huntsville: 452–457 Martini, J.E.J. , 2004. Silicate Karst. In: Gunn, J. (Ed.), Encyclopedia of Caves and Karst Science. FitzroyDearborn, London: 1385–1393 Piccini, L. , Mecchia, M. , 2009. Solution weathering rate and origin of karst landforms and caves in thequartzite of Auyan-tepui (Gran Sabana, Venezuela). Geomorphology 106, 15–25 Ryazantsev S.V. 1994. Thanatology – the science of death. 336. Moscow: East European Institute ofPsychoanalysis. Sauro, F. , Piccini, L. , Mecchia, M. , De Waele, J. , 2013. Comment on “Sandstone caves on Venezuelantepuis: Return to pseudokarst?” by R. Aubrecht, T. Lánczos, M. Gregor, J. Schlögl, B. Smída, P. Liscák, Ch.Brewer-Carías, L. Vlcek, Geomorphology 132, 351–365. Geomorphology 197, 190–196 Taymasov D.V. Mineral Composition of Zapolarnoe Deposit (Kola Peninsula). /Bulletin of Perm university.Series: Geology. 2018. Vol 17. No.4. p.386–394. Tricart, J. , 1972. The Landforms of the Humid Tropics, Forests and Savannas. Longman. London, 306 p. Urtâns J. , Eniòš G. , 2001. Latvian sandstone caves as cultural phenomena. Journal of Baltic Studies, 32(1),95–99 Wray, R.A.L. , 1997. A global review of solutional weathering forms on quartz sandstones. Earth ScienceReviews 42, 137–160

FEM simulation of differential settlement of Wat Krasai, a leaning brick madepagoda on soft ground, in Ayutthaya, Thailand Burland J.B. , Jamiolkowski M. & Viggiani C. 2003. The stabilisation of the Leaning Tower of Pisa. Soils andFoundations 43(5): 60–80. Iizuka A. & Ohta H. 1987. A determination procedure of input parameters in elasto-viscoplastic finite elementanalysis. Soils and Foundations 27(3): 71–87. Jaky J. 1944. The coefficient of earth pressure at rest. J. of the Society of Hungarian Architects andEngineers. 355–358. Karube D. 1975. Unstandardized triaxial testing procedures and related subjects for inquiry. In: Proceedingsof the 20th symposium on geotechnical engineering. 45–60. Kenney T. C. 1959. Discussion: Journal of the Soil Mechanics and Foundation Engineering Division. ASCE.85(3): 67–79. Ohta H. 1971. Analysis of deformations of soils based on the theory of plasticity and its application tosettlement of embankments. Doctor thesis. Kyoto University. Roscoe K.H. & Burland J.B. 1968. On the generalised stress–strain behaviour of ‘wet’ clay. In EngineeringPlasticity, Heyman J, Leckie FA (eds). Cambridge University Press : Cambridge . 563–609.

Sekiguchi H. & Ohta H. 1977. Induced anisotropy and time dependency in clays. Proc. Specialty Session 9.In 9th International Conference on Soil Mechanics and Foundation Engineering. 229–237. Vermeer P.A. , Neher H.P. , Vogler U. & Bonnier P.G. 2002. 3D Creep Analysis of the Leaning Tower ofPisa. Technical report, Kroener, Stuttgart University. Yuan J.L. , Wang J. & Lv H.Z. 2007. Analysis and simulation on unequal settlement of ancient masonrypagodas. WIT Transactions on The Built Environment 95: 459–467.

Bentonite based barriers for protecting offshore monuments from saltwaterintrusion ASTM D5856 , 2015. Standard Test Method for Measurement of Hydraulic Conductivity of Porous MaterialUsing a Rigid-Wall, Compaction-Mold Permeameter (ASTM International, 2015). Badv, K. & Abdolalizadeh, R. 2004. A laboratory investigation on the hydraulic trap effect in minimizingchloride migration through silt. Iran J Sci Technol Trans B 28(B1):107–118. Barone, F. S. Rowe, R. K. & Quigley, R.M. 1992. A laboratory estimation of diffusion and adsorptioncoefficients for several volatile organics in a natural clayey soil. J Contam Hydrol 10:225–250. Bharat, T.V. 2008. Agents based algorithms for design parameter estimation in contaminant transportinverse problems. In: IEEE swarm intelligence symposium, pp 1–7. Bharat, T. V. 2013. Analytical model for 1-D contaminant diffusion through clay barriers. Environ Geotech1(4):210–222. Bharat, T.V. Sivapullaiah, P.V. & Allam, M. M. 2008. Accurate parameter estimation of contaminant transportinverse problem using particle swarm optimization. In: IEEE swarm intelligence symposium St. Louis MOUSA, September 21–23. Bharat, T.V. Sivapullaiah, P.V. & Allam, M. M. 2012. Robust solver based on modified particle swarmoptimization for improved solution of diffusion transport through containment facilities. Expert Syst Appl39(12):10812–10820. Bharat, T.V. Yadav, H. Mahaur, J.P. and Kushwaha, S. 2020. “Effect of Aging Time on Consistency Limits ofBentonites.” Geotech Geol Engg. 38, 3737–3749. https://doi.org/10.1007/s10706-020-01251-3. Cardell, C. Delalieux, F. Roumpopoulos, K. Moropoulou, A. Auger, F. & Van Grieken, R. 2003. Salt-induceddecay in calcareous stone monuments and buildings in a marine environment in SW France, Constructionand Building Materials, Volume 17, Issue 3, Pages 165–179, ISSN 0950-0618,https://doi.org/10.1016/S0950-0618(02)00104-6. Das, P. & Bharat, T. V. 2016. Salt diffusion in compacted plastic clay: experimental and theoreticalevaluation. In: International conference on soil and environment, ICSE 2016, Bangalore Das, D. S. & Bharat, T.V. 2021. “Specific Surface Area of Plastic Clays from Equilibrium Sediment Volumeunder Salt Environment.” Geotechnical Testing Journal. https://doi.org/10.1520/GTJ20200190. Das, P. & Bharat, T.V. 2017. “Effect of counter ions on the diffusion characteristics of a compactedbentonite.” Indian Geotechnical Journal, 47(4), 477–484. Gapak, Y. Das, G. Yerramshetty, U. & Bharat, T. V. 2017. “Laboratory determination of volumetric shrinkagebehavior of bentonites: A critical appraisal.” Applied Clay Science, 135, 554–566.https://doi.org/10.1016/j.clay.2016.10.038. Gilliam, R.W. Robin, M.L.J. Dytynyshyn, D.J. & Johnston, H.M. 1985. “Diffusion of nonreactive and reactivesolutes through fined grained barrier materials.” Can. Geotech. Journal. 541–550. La Iglesia, M.A. Garcia del Cura, S. Ordonez . 1997. “The physicochemical weathering of monumentaldolostones, granites and limestones; dimension stones of the Cathedral of Toledo (Spain).” Sci. TotalEnviron., 152, pp 179–188. Loke, M.E. Kumar, P. & Haldenwang, R. 2020. “Characterisation of heritage cementing materials forrestoration purposes: A review.” J. S. Afr. Inst. Civ. Eng. 2020:62(1), Art. #0723, 12 pages.http://dx.doi.org/10.17159/2309-8775/2020/v62n1a2. Mieszkowski, R. 2003. “Diffusion of lead ions trough the Poznan clay (Neogene) and through glacial clay.”Geol. Quart., 47 (1). 111–118. Warszawa. Phillips, R.E. & Brown, D.A. 1964. “Ion Diffusion: II. Comparision of Apparent Self and Counter DiffusionCoefficients.” Soil Science Society Proceedings. 758–763. Robin, M.J.L. Gilliham, R.W. & Oscarson, D.W. 1987. “Diffusion of strontium and chloride in compacted clay– based materials.” Soil Sci. J. Vol. 51. 1102–1108. Roehl, K.E. , & Czurda, K. 1998. “Diffusion and solid specimen of Cd and Pb in clay liners.” J. of AppliedClay Science. 12. 387–402. Rowe, R.K. 1988. “Contaminant transport through growndwater- the role of modelling in design of barriers.”11th Canadian Geotechnical Colloquium. Canadian Geotechnical Journal, 25:778–798.

Sardini, P. Delay, F. Hellmuth, K. Porel, G. & Oila, E. 2003. “Interpretation of out-diffusion experiments oncrystalline rocks using random walk modeling”. J Contam Hydrol 61:339–350 Theoulakis , & Moropoulou , 1997. “Microstructural and Mechanical parameters determining the susceptibilityof porous building stones to salt decay”. Construction Building Materials., 11(1), pp 65–71. Van Loon, L.R. & Jakob, A. 2005. “Evidence for a second transport porosity for the diffusion of tritiated water(HTO) in a sedimentary rock (Opalinus clay-OPA): application of through- and out-diffusion techniques.”Transp Porous Media 61:193–214 Vasudev, A. Das, P. & Bharat, T.V. 2019. “Stability analysis of possible embankment construction forplacement of granite capstone on Brihadeeshwara temple, Tanjavur.” International Symposium onGeotechnical Aspects of Heritage Structures. Chennai, India. Yadav, H. and Bharat, T.V. 2022. “Mechanical granulation process and plasticity of granular bentonite onself-sealing and volume change behavior.” Journal of Hazardous, Toxic and Radioactive Waste.DOI:10.1061/(ASCE)HZ.2153-5515.0000688. Zezza, F. 1996. Marine spray and polluted atmosphere as factors of damage to monuments in theMediterranean coastal environment. In: Zezza F. Ed. Bari. Origin, mechanisms and effects of salts ondegradation of monuments in marine and continental environments. Protection and conservation ofEuropean Cultural Heritage, E.C. Project, Report 4. Pp. 3–19.

Historic masonry churches exposed to slow-moving landslides: A critical damageassessment Antronico, L. , Borrelli, L. , Coscarelli, R. & Gullà, G. 2015. Time evolution of landslide damages to buildings:the case study of Lungro (Calabria, southern Italy). Bulletin of Engineering Geology and the Environment 74:47–59. Calderini, C. & De Matteis, G. 2020. Report. Task 4.8_Modelli e curve di fragilità delle chiese. WP4_MAppedi Rischio e Scenari di danno sismico (MARS). Progetto ReLUIS-DPC 2019–2021. Cambiaggi L. 2020. Damage assessment of churches exposed to slope displacements in sliding areas. PhDdiss., University of Genoa. Cigna, F. , Liguori, V. , Del Ventisette, C. & Casagli, N. 2013. Landslide impacts on Agrigento's Cathedralimaged with radar interferometry. In C. Margottini , P. Canuti & K. Sassa (eds.), Landslide Science andPractice, 475–481. Springer Berlin Heidelberg. Cooper, A. H. 2008. The classification, recording, databasing and use of information about building damagecaused by subsidence and landslides. Quarterly Journal of Engineering Geology & Hydrogeology 41:409–424. Cruden, D.M. & Varnes, D.J. 1996. Landslide types and processes. In: Landslides: investigation andmitigation, Transportation Research Board, Special Report 247, 36–75. Washington, D.C.: NationalAcademy of Sciences. Doglioni, F. , Moretti, A. & Petrini V. 1994. Le chiese e il terremoto . National Research Council, Trieste, IT:Lint Press (in Italian). Federici, P.R. & Chelli, A. 2007. Atlante dei Centri Abitati Instabili della Liguria. IV. Provincia di Imperia(Atlas of the Unstable Inhabited Centres of Liguria. IV. Imperia province) . Regione Liguria. Ferrero, C. , Cambiaggi, L. , Vecchiattini, R. & Calderini C. 2021a. Damage assessment of historic masonrychurches exposed to slow-moving . International Journal of Architectural Heritage 15(8): 1170–1195. Ferrero C. , L. Cambiaggi , A. Fenialdi , P. Roca , R. Vecchiattini , and C. Calderini . 2021b. Slow-movinglandslide damage assessment of historic masonry churches: some case-studies in Italy. In P. Roca , L. Pelàand C. Molins (eds.) SAHC 2021: 12th International Conference on Structural Analysis of HistoricalConstructions; Online event, 29 September-1 October 2021. Cornellà de Llobregat: Artes Gráficas TorresS.L. Geoportale Regione Liguria. Visualizzatore Cartografico. Accessed January 20 , 2020. https://geoportal.regione.liguria.it Grünthal, G. 1998. European Macroseismic Scale 1998 (EMS-98), Cahiers du Centre Europèen deGèodynamique et de Seismologie 15. Centre Europèen de Gèodynamique et de Seismologie. Guzzetti, F. , Cardinali, M. , Reichenbach, P. , Cipolla, F. , Sebastiani, C. , Galli, M. & Salvati P. 2004.Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy.Engineering Geology 73(2): 229–245. Lagomarsino, S. 2012. Damage assessment of churches after L'Aquila earthquake (2009). Bulletin ofEarthquake Engineering 10(1): 73–92. Margottini, C. , Spizzichino, D. & Sonnessa, A. 2013. Landslide risk and monitoring system for conservationof Vardzia monastery, Georgia. In. E. Bilotta , A. Flora , S. Lirer , & C. Viggiani (eds.), Geotechnical

Engineering for the Preservation of Monuments and Historic Site. London, UK: CRC Press. Penna, A. , Calderini, C. , Sorrentino, L. , Carocci, C.F. , Cescatti, E. , Sisti, R. , Borri, A. , Modena, C. &Prota, A. 2019. Damage to churches in the 2016 central Italy earthquakes. Bulletin of EarthquakeEngineering 17(10): 5763–5790. Piano di Bacino Stralcio per l'Assetto Idrogeologico, Regione Liguria, 2017. Carte della Suscettività alDissesto (Landslide Susceptibility Maps). Accessed October 25 , 2018.http://www.pianidibacino.ambienteinliguria.it/. Piano Stralcio per l'Assetto Idrogeologico, Autorità di bacino distrettuale del fiume Po, 2017. Atlante deiRischi Idraulici e Idrogeologici (Atlas of Hydraulic and Hydrogeological Risks). Accessed October 25 , 2018.http://www.pai.adbpo.it/. QGIS 2017. Open Source Geographic Information System. Accessed May 3 , 2018. https://qgis.org/en/site/. Regione Liguria e Segretariato Regionale del MiBACT per la Liguria . 2017. Vincoli architettonici,archeologici, paesaggistici. Accessed May 3 , 2018. http://www.liguriavincoli.it/. Soccodato, F.M.E. Martini, L. Tortoioli and A.M. Mazzi . 2013. The preservation of historical, archaeologicaland artistic heritage of Orvieto: an interdisciplinary project. In E. Bilotta , A. Flora , S. Lirer , & C. Viggiani(eds.), Geotechnical Engineering for the Preservation of Monuments and Historic Sites. London, UK: CRCPress (Taylor & Francis Group). Trigila, A. , C. Iadanza , M. Bussettini , and B. Lastoria . 2018. Dissesto idrogeologico in Italia: pericolosità eindicatori di rischio. Rapporti 287/2018. Istituto Superiore per la Protezione e la Ricerca Ambientale – ISPRA(in Italian).

GFRP anchoring systems for soft-rock geostructures with high cultural andenvironmental value 1015-11, U. E. (n.d.). Methods of test for mortar for masonry Part 11: Determination of flexural andcompressive strengthof hardened mortar 2006; UNI: Rome, Italy, 2006. 12190:2000, U. E. (n.d.). Product and system for the protection and repair concretestructures—Testmethods—Determination of compressive strength of repair mortar; UNI: Rome, Italy, 2000. Andriani, G. F. , & Walsh, N. (2002). Physical properties and textural parameters of calcarenitic rocks:Qualitative and quantitative evaluations. Engineering Geology, 67(1–2), 5–15. https://doi.org/10.1016/S0013-7952(02)00106-0 Andriani, Gioacchino F. , & Walsh, N. (2007). Rocky coast geomorphology and erosional processes: A casestudy along the Murgia coastline South of Bari, Apulia — SE Italy. Geomorphology, 87(3), 224–238.https://doi.org/10.1016/J.GEOMORPH.2006.03.033 Castellanza, R. , Lollino, P. , & Ciantia, M. (2018). A methodological approach to assess the hazard ofunderground cavities subjected to environmental weathering. Tunnelling and Underground SpaceTechnology, 82(January 2017), 278–292. https://doi.org/10.1016/j.tust.2018.08.041 Cheng, Y. M. , Choi, Y.-K. , Yeung, A. T. , Asce, F. , Tham, L G , Asce, M. , Alfred Au, S. K. , Asce, A. M. ,Wei, W B , & Chen, J. (2009). New Soil Nail Material—Pilot Study of Grouted GFRP Pipe Nails in Korea andHong Kong. Journal of Materials in Civil Engineering, 21(3), 93–102. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:3(93) Ciantia, M. O. , Castellanza, R. , Crosta, G. B. , & Hueckel, T. (2015). Effects of mineral suspension anddissolution on strength and compressibility of soft carbonate rocks. Engineering Geology, 184, 1–18.https://doi.org/10.1016/J.ENGGEO.2014.10.024 Ciantia, M. O. , Castellanza, R. , & di Prisco, C. (2015). Experimental Study on the Water-InducedWeakening of Calcarenites. Rock Mechanics and Rock Engineering, 48(2), 441–461.https://doi.org/10.1007/s00603-014-0603-z Dorion, J. F. , & Hadjigeorgiou, J. (2014). Corrosion considerations in design and operation of rock supportsystems. Http://Dx.Doi.Org/10.1179/1743286313Y.0000000054, 123(2), 59–68.https://doi.org/10.1179/1743286313Y.0000000054 Festa V. (2003). Cretaceous structural features of the Murge area (Apu- lian Foreland, southern Italy).Eclogae Geologicae Helvetiae, 96:11–22. Jabbar, S. A. A. , & Farid, S. B. H. (2018). Replacement of steel rebars by GFRP rebars in the concretestructures. Karbala International Journal of Modern Science, 4(2), 216–227.https://doi.org/10.1016/J.KIJOMS.2018.02.002 Kemp M. B. D. (2003). Concrete Reinforcement and Glass Fibre Reinforced Polymer. Liu, J. , Zhou, H. , Yuan, H. J. , & Li, J. F. (2014). Experimental Research on Strength of GFRP Bars inShield Engineering. Advanced Materials Research, 1020, 308–313.https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.1020.308

Manquehual, C. J. , Pål , ·, Jakobsen, D. , Amund , ·, & No, C. J. M. (2021). Corrosion Level of Rock BoltsExposed to Aggressive Environments in Nordic Road Tunnels. Rock Mechanics and Rock Engineering, 54,5903–5920. https://doi.org/10.1007/s00603-021-02547-3 Patil, V. R. (2014). IJIRAE::Experimental Study of Behavior of RCC Beam by Replacing Steel Bars withGlass Fibre Reinforced Polymer a Experimental Study of Behavior of RCC Beam by Replacing Steel Barswith Glass Fibre Reinforced Polymer and Carbon Reinforced Fibre Polymer (GFRP). I Nter National Journalof I Nnovative Research in Advanced Engineering (I JI RAE, 1(5), 2349–2163. RILEM-FIP-CEB. Bond test for reinforcing steel: 1 . Beam test (7-II-28 D). 2. Pull-Out Test (7-II-128).Tentative Recommendations. Materials and Structures, v. 6, n. 32, p. 96–105, 1978. (n.d.). No Title. Spalluto, L. (2012). Facies evolution and sequence chronostratigraphy of a “mid”-Cretaceous shallow-watercarbonate succession of the Apulia Carbonate Platform from the northern Murge area (Apulia, southernItaly). 58, 17–36. https://doi.org/10.1007/s10347-011-0266-0 Wang, W. , Song, Q. , Xu, C. , & Gong, H. (2018). Mechanical behaviour of fully grouted GFRP rock boltsunder the joint action of pre-tension load and blast dynamic load. Tunnelling and Underground SpaceTechnology, 73, 82–91. https://doi.org/10.1016/J.TUST.2017.12.007 Zhang, M. Y. , Kuang, Z. , Bai, X. Y. , & Chen, X. Y. (2018). Pullout behavior of GFRP anti-floating anchorbased on the FBG sensor technology. Mathematical Problems in Engineering, 2018.https://doi.org/10.1155/2018/6424791 Zou, W.-L. , Wang, X.-Q. , & Vanapalli, S. K. (2016). Experimental Evaluation of Engineering Properties ofGFRP Screw Anchors for Anchoring Applications. Journal of Materials in Civil Engineering, 28(7), 04016029.https://doi.org/10.1061/(ASCE)MT.1943-5533.0001471

Probabilistic evaluation of the seismic vulnerability of rock cavities in a historicalItalian site Benz, T. 2007. Small-strain stiffness of soils and its numerical consequences. PhD thesis. Univ Stuttgard. de Silva, F. , Ceroni, F. , Sica, S. , Pecce, M.R. , Silvestri, F. 2015. Effects of soil-foundation-structureinteraction on the seismic behaviour of monumental towers: the case study of the Carmine bell tower inNaples. Rivista Italiana di Geotecnica numero special “Il ruolo della geotecnica nella salvaguardia deimonumenti e siti storici”, 3, 3–27, ISSN 0557-1405. de Silva, F. , Melillo, M. , Calcaterra, D. , Fascia, F. , Scotto di Santolo, A. , Silvestri, F. , Stendardo, L. 2013.A study for the requalification and safety against natural hazards of the environmental and building heritageof Sant’Agata de’ Goti (Italy). In C. Viggiani et al. (eds), Proc. Int. Symp. on Geotechnical engineering for thepreservation of monuments and historic sites, Napoli 2013, 307–316. Taylor & Francis Group: London. de Silva, F. , Scotto di Santolo, A. 2018. Probabilistic Performance-based Approaches to the Static andSeismic Assessment of Rock Cavities. International Journal of Rock Mechanics and Mining SciencesDecember 2018, 112, 354–368. https://doi.org/10.1016/j.ijrmms.2018.10.028. Fabozzi, S. , Bilotta, E. , Russo, G. 2016. Numerical interpretation of monitoring data of an instrumentedtunnel segmental ring. 1° IMEKO-TC4 International Workshop on Metrology for geotechnics.MetroGeotechnics 2016 pp. 350–355. Benevento, Italy / March 17–18, 2016. Fabozzi, S. , Licata, V. , Autuori, S. , Bilotta, E. , Russo, G. , Silvestri, F. 2017. Prediction of the seismicbehavior of an underground railway station and a tunnel in Napoli (Italy) . Underground Space 2 (2017)88–105. http://dx.doi.org/10.1016/j.undsp.2017.03.05. Fabozzi, S. , de Silva, F. , Nocentini, M. , Peronace, E. , Bilotta, E. , Moscatelli, M. 2021. Seismicvulnerability of shallow underground cavities in soft rock . COMPDYN Proceedings. Volume 2021-June20218th International Conference on Computational Methods in Structural Dynamics and EarthquakeEngineering, COMPDYN 2021Athens 28 June 2021 through 30 June 2021 Code 174550. Fortunato, C. , Martino, S. , Prestininzi, A. , Romeo, R.W. , coauthors, Fantini, A. , Sanandrea, P. 2012. Newrelease of the Italian catalogue of earthquake-induced ground failures (CEDIT). Italian Journal ofEngineering Geology and Environment, DOI: 10.4408/IJEGE.2012-02. O-05. Guidoboni, E. , Comastri, A. , 2005. Catalogue of earthquakes and tsunamis in the Mediterranean area fromthe 11th to the 15th century. INGV-SGA, Bologna. Guidoboni, E. , Ferrari, G. , Mariotti, D. , Comastri, A. , Tarabusi, G. , Valensise, G. , 1997. Catalogue ofstrong earthquakes in Italy 461 BC – 1997 and Mediterranean area 760 BC – 1500, fromhttp://storing.ingv.it/cfti4med/. Guidoboni, E. , Ferrari, G. , Tarabusi, G. , Sgattoni, G. , Comastri, A. , Mariotti, D. , Ciuccarelli, C. , Bianchi,M.G. , Valensise, G. 2019. CFTI5Med, the new release of the catalogue of strong earthquakes in Italy and inthe Mediterranean area . Scientific Data 6, 80. doi:https://doi.org/10.1038/s41597-019-0091-9.

Jalayer, F. , De Risi, R. & Manfredi, G. 2015. Bayesian cloud analysis: efficient structural fragilityassessment using linear regression . Bull. Earthquake Engng 13, No. 4, 1183–1203. Kuhlemeyer, R. L. , & Lysmer, J. 1973. Finite element method accuracy for wave propagation problems .Journal of the Soil Mechanics and Foundation Division, 99(5), 421–427. Meletti, C. , Montaldo, V. 2007. Estimation of the seismic hazard for different probabilities of exceedance in50 years: PGA values . DPC-INGV S1 Project, Deliverable D2, http://esse1.mi.ingv.it/d2.html. Nocentini, M. , Fabozzi, S. , Peronace, E. , Castenetto, S. 2022. Proposal procedure to evaluate the seismicstability of underground cavities in seismic microzonation studies. Italian Journal of Geosciences (accepted). Piro, A. , Martinelli, G. , Meccariello, M. , Parisi, F. , Scotto di Santolo, A. , de Silva, F. , Silvestri, F. 2019.Effects of the underground urban development on the seismic response of a historical centre in Italy. 7thInternational Conference on Earthquake Geotechnical Engineering for Protection and Development ofEnvironment and Constructions – Silvestri & Moraci (Eds). Associazione Geotecnica Italiana, Rome, Italy,ISBN 978-0-367-14328-2 (Roma, Italy). Pitilakis, K. , Crowley, H. & Kaynia, A. (eds). 2014. SYNER-G: typology definition and fragility functions forphysical elements at seismic risk, buildings, lifelines, transportation networks and critical facilities. p. 27.Dordrecht, the Netherlands: Springer. UNISDR . 2011. Global Assessment Report on Disaster Risk Reduction: Revealing Risk, RedefiningDevelopment. UNISDR Practical Action 2012, Geneva. UNISDR . 2015. Sendai framework for disaster risk reduction 2015–2030. UNISDR (2005), Hyogoframework for action 2005–2015: Building the resilience of nations and communities to disasters. UNISDR, IRP. 2012. Guidance Note on Recovery: Pre-Disaster Recovery Planning. available at:https://www.unisdr.org/we/inform/publications/31963 (accessed 15 September 2017 ). Vinale, F. 1988, Caratterizzazione sismica del sottosuolo di un‘area campione di Napoli ai fini di unamicrozonazione sismica. Rivista Italiana di Geotecnica, 22(2), 77–100 (in Italian).

Multi-scale stability analysis at San Pedro Cliff in the Alhambra Cultural Heritage Azañón, J.M. , Azor J.L. , De Justo Alpañés, J. , Martín Rosales, W. , Mateos, R.M. , Pérez-Peña, V. (2007).Deslizamientos E Inundaciones Cuaternarias En La Cuenca Vertiente Del Río Darro: La Génesis Del TajoDe San Pedro (La Alambra, Granada). Resúmenes Xii Reunión Nacional De Cuaternario. 13–14. Ávila,2007. Braga, J.C. , Martín, J.M. And Alcalá, B. (1990). Coral Reefs In Coarse-Terrigenous SedimentaryEnvironments (Upper Tortonian, Southern Spain): Sedimentary Geology, Vol. 66, No. 1–2: 135–150. Bru, G. , Fernández-Merodo, J.A. , García-Davalillo, J.C. , Herrera, G. And Fernández, J. (2017). Site ScaleModeling Of Slow-Moving Landslides, A 3d Viscoplastic Finite Element Modeling Approach. Landslides. Doi10.1007/S10346-017-0867-Y Chacón, J. , Irigaray, C. , Fernández, T. (2007). Movimientos De Ladera. In Ferrer, M. (Coordinator), AtlasProvincial De Riesgos Naturales En Granada: Diputación Granada-Igme, Spain. Pp. 45–82, Maps1:200,000/400,000, 1 Cd. Chacón, F. , Irigaray, C. , El Hamdouni, R. , Valverde-Palaciuos, I. , Valverde-Espinosa, I. , Calvo, F. ,Jiménez-Perálvarez, J. , Chacón, E. , Fernández, P. , Garrido, J. , Lamas, F. (2012). Engineering AndEnvironmental Geology Of Granada And Its Metropolitan Area (Spain). Environmental And EngineeringGeoscience. Vol Xviii, 3:217–260. Fernández-Merodo, J.A. , García-Davalillo. J.C. , Herrera, G. , Mira, P. , Pastor, M. (2014) 2d ViscoplasticFinite Element Modelling Of Slow Landslides: The Portalet Case Study (Spain). Landslides 11: 29–42 Fernandez-Merodo, J.A. , Mateos, R. , Azañon, J.M. , Ezquerro, P. , García-Davalillo, J.C. , Lorenzo, C. ,Hernandez, M. , Bejar, M. , Herrera, G. , Castellanza, R. (2018). PROTHEGO Deliverable D.06.01:PROTHEGO PILOTS: THE ALHAMBRA. Local scale investigation, monitoring and advanced modelling ofthe geo-hazards affecting the Alhambra World Heritage Case Study Site Version 1.3. JPI-CH Heritage PlusPROTHEGO project, Open Report. Date 11/05/2018. 66 Pages. Available at: http://www.prothego.eu/ Ferreira, T. , Mateos, R.M. , Roldán, F.J. (2015). Los Deslizamientos De La Cuenca Baja Del Río Darro(Granada, España). Geogaceta, 57: 103–106. Irigaray, C. , Lamas, F. , El Hamdouni, R. , Fernández, T. , Chacón, J. (2000). The Importance OfPrecipitation And The Susceptibility Of The Slopes For The Triggering Of Landslides Along The Roads:Natural Hazards, Vol. 21, No. 1, Pp. 65–81. Justo, J.L. , Azanón J.M. , Azor, A. , Saura, J. , Durand, P. , Villalobos, M. , Morales, A. , Justo, E. (2008)Neotectonics And Slope Stabilization At The Alhambra, Granada, Spain. Engineering Geology 100, 101–119 Lague, D. , Brodu, N. And Leroux, J. (2013) Accurate 3d Comparison Of Complex Topography WithTerrestrial Laser Scanner: Application To The Rangitikei Canyon (N-Z). Isprs Journal Of Photogrammmetry

And Remote Sensing 80, P. 10–26 Páez, J. (1996). El Clima De Al-Andalus. In Chacón J. And Rosúa J. L. (Editors), I Conferencia InternacionalDe Sierra Nevada, Vol. 5: University Of Granada, Granada, Spain, Pp. 9–21. Sanz De Galdeano, C. And Alfaro, P. (2004), Tectonic Significance Of The Present Relief Of The BeticCordillera: Geomorphology, Vol. 63, No. 3–4, Pp. 175–190. Valagussa, A. , Frattini, P. , Crosta, G. , Spizzichino, D. , Leoni, G. & Margottini, C. (2021). Multi-risk analysison European cultural and natural UNESCO heritage sites. Nat Hazards 105, 2659–2676.https://doi.org/10.1007/s11069-020-04417-7

Geotechnical and historical aspects on the collapse of the Tiber embankmentwalls in the centre of Roma (1870–1900) Biadego, G. 1866. Fondazioni ad aria compressa: ponti metallici. Camilla e Bertolero, Turin, Italy. Bruno, G. 1895. Le fondazioni pneumatiche e quelle profonde. Appendice al corso di costruzioni idrauliche.Pallerano, Naples, Italy Canevari, R. 1875. Studi per la sistemazione del Tevere nel tronco entro Roma. Tip. e Lit. del Giornale delGenio Civile, Rome, Italy. Canevari, R. 1879. Relazione della Commissione di Vigilanza sui lavori di sistemazione del Tevere intornoall’andamento dei lavori a tutto l’anno 1878. Tip. e Lit. del Giornale del Genio Civile Rome, Italy. Consiglio Superiore dei Lavori Pubblici , 1876. Sedute del 25–29 novembre. Archivio di Centrale dello Stato,Fondo Ministero dei LLPP, busta 30 / inventario 30/03, Rome, Italy. Consiglio Superiore dei Lavori Pubblici , 1882. Sedute del 10 settembre. Archivio di Centrale dello Stato,Fondo Ministero, busta 30 / inventario 30/03, Rome, Italy. Culmann, C. 1866. Die Graphishe Statik. Meyer & Zeller, Zurich, Swisse. Giannetti, I. & Casini, F. 2021. The construction and the collapse of the Tiber retaining walls in Rome, Italy(1870–1900). Proc.of the Institution of Civil Engineers – Engineering History and Heritage, in press. Hohensinner, S. Lager, B. Sonnlechner, C. 2013. Changes in water and land: the reconstructed Vienneseriverscape from 1500 to the present. Water Hist 5: 145–172, Lancellotta, R. 2002. Analytical solution of passive earth pressure. Géotechnique 52(8). Lestel, L. Eschbach, D. Meybeck, M. Gob, F. 2020. The Evolution of the Seine Basin Water Bodies ThroughHistorical Maps . In The Seine River Basin. Springer, Berlin, Germany. Porter, D.H. 1998. The Thames Embankment, Environment, Technology and Society in Victorian London.University of Ackron Press, Ackron Ohio, US. Rebhann, G. 1871. Theorie des Erddruckes und der Futtermauern. C. Gerold's Sohn, Berlin, Germany. Segarra Laguenes MM (2004) Il Tevere e Roma. Storia di una simbiosi. Gangemi, Rome, Italy.