349
CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE DE ENERGÍA EÓLICA EN EGIPTO JUNIO 2018 Fco Javier Santos Barrero DIRECTOR DEL PROYECTO: D. Jorge Esteban Ortega Francisco Javier Santos Barrero PROYECTO FIN DE CARRERA PARA LA OBTENCIÓN DEL TÍTULO DE INGENIERO INDUSTRIAL

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN

Embed Size (px)

Citation preview

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE DE ENERGÍA EÓLICA EN EGIPTO

JUNIO 2018

Fco Javier Santos Barrero

DIRECTOR DEL PROYECTO:

D. Jorge Esteban Ortega

Fran

cisc

o Ja

vier

San

tos

Bar

rero

PROYECTO FIN DE CARRERA

PARA LA OBTENCIÓN DEL TÍTULO DE

INGENIERO INDUSTRIAL

AGRADECIMIENTOS

Muchas han sido las veces que he deseado tirar la toalla, pero he sido afortunado al encontrarme siempre con quien me lo impidiera. A ellos les dedico este Proyecto Fin de Carrera, como culminación a unos estudios que me han aportado una gran capacidad de sacrificio:

A mis padres, por el poso que han dejado la educación y valores en que me habéis educado. Por el invisible sacrificio que es como hijo el haberme mantenido en la senda correcta. Por relativizar mis problemas y hacerme tan exigente con lo importante.

A mi hermano, por tu buen consejo. Por ser ejemplo de superación. Por tus grandes virtudes, tenacidad, capacidad de observación y de análisis. Por tu insistencia, consciente de mi pereza. Por cuestionármelo todo. Porque siempre estás ahí.

A mi esposa, Leyre. Por tu apoyo incondicional y compartirlo todo conmigo. Por el esfuerzo que me demuestras cada día por mantenernos unidos. Por entender mis inquietudes. Por tu amor infinito. Por ser mi cómplice. Porque te quiero.

A mis hijos, Pedro, Javier y Gabriel. El sentido de mi vida.

RESUMEN EJECUTIVO

La componente multidisciplinar de una obra de ingeniería hace que se requieran profesionales de diversos campos para abordar aspectos tan importantes como el diseño, la ingeniería o la fabricación pues son necesarias varias especialidades trabajando conjuntamente, pero no menos importantes y complementarios a éstos son, por ejemplo, la gestión de los recursos humanos, el control de riesgos o de calidad, la gestión de las adquisiciones, la seguridad y salud durante la ejecución, para lo cual se deben desarrollar valores y habilidades dispares como la empatía, la asertividad, el liderazgo o el trabajo en equipo.

Este proyecto fin de carrera surge por la necesidad de aportar una visión global a este conjunto de actividades llamadas obra de ingeniería. La idea es trasladar al papel todas aquellas actividades que lleva a cabo un consultor externo que participase en todas las fases en que se puede desglosar un proyecto de ingeniería.

La idea de elegir un consultor es porque se trata de un actor independiente, que vela principalmente por los intereses del proyecto (a través de su cliente) y que, por su experiencia en múltiples proyectos de similares características, aporta el conocimiento necesario para guiar a las partes a través de la creación de la obra de ingeniería.

En este caso, se trata de un parque eólico de 120MW en Egipto y la figura del consultor estará presente desde la fase inicial de planteamiento de construcción hasta su terminación y cierre.

A lo largo de todo este recorrido que puede durar años, si no se dispone de la experiencia necesaria, se requiere de herramientas que permitan, con poco o nulo conocimiento, poder dar un servicio de calidad y, poder gestionar el proyecto durante todas sus fases con solvencia.

Estas herramientas que se mencionan son aportadas en el proyecto cuyo hilo conductor es la exposición cronológica de todas las fases e hitos relevantes.

El proyecto se fragmenta, por el alcance de las fases y su objetivo, en los siguientes puntos:

Planificación: En este momento, en que se considera la necesidad del parque, se debe determinar su ubicación, valorar su viabilidad técnica, económica, medioambiental y decidir, con todos los inputs recogidos, el paso a la siguiente fase. Durante esta fase será necesario generar la siguiente información:

o Un estudio del recurso eólico

o Un estudio de la conexión a la red eléctrica

o Un estudio geotécnico y topográfico

o Una planificación

o Un diseño general

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 3 -

o Un estudio de impacto social y medioambiental

Contratación de los servicios de construcción: Para lo cual hay que recurrir a la licitación y posterior adjudicación del contrato. Con los documentos de la fase anterior y una recopilación de requisitos técnicos, además del contrato, se crea un documento que sirve para la contratación de la empresa constructora. En este caso, al tratarse de una licitación pública, se redactan adicionalmente unas instrucciones de concurrencia y se prepara una visita al lugar de la ejecución.

Ejecución de los trabajos: Es una fase que se puede dividir en cinco procesos en función del objetivo de cada uno de ellos, siendo los siguientes:

o Iniciación: Los procesos necesarios para definir el alcance inicial y comprometer los recursos financieros iniciales. En este momento es importante identificar a los interesados.

o Planificación: El conjunto de procesos requeridos para definir el alcance del proyecto, refinar los objetivos y definir el curso de acción necesario que permite alcanzarlos.

o Ejecución: El conjunto de procesos realizados para completar el trabajo definido en el Plan para la dirección de proyecto a fin de cumplir con los requisitos del mismo.

o Seguimiento y Control: Procesos realizados para dar seguimiento, analizar y regular el progreso y el desempeño del proyecto, para identificar áreas en las que el proyecto requiera cambios y para iniciar los correspondientes. la naturaleza integradora de la dirección de proyectos hace que este grupo interactúe con el resto de los procesos.

o Cierre: Aquellos Procesos realizados para terminar todas las actividades a través de todos los grupos de procesos a fin de cerrar el proyecto o parte del mismo.

Como se podrá ver, la gestión de un proyecto requiere un gran conocimiento de la hoja de ruta del proyecto global para poder desglosarlo en partes más pequeñas o fases que puedan ser independientes y éstas, a su vez, en los cinco grupos de procesos de la dirección de proyectos. La metodología permite alcanzar un nivel de división en unidades de trabajo manejables, que pueden ser medibles en términos de tiempo, coste, recursos y alcance. Éstas se denominan actividades y son la unidad mínima con la que se va a trabajar a nivel de gestión.

Se espera que el proyecto en sí mismo pueda ser extrapolable a cualquier otro de energía eólica aportando las herramientas necesarias para acometer tal empresa. Como se puede observar en su índice, la propia estructura del documento define los pasos cronológicamente que se deben seguir para la construcción de un parque eólico desde su concepción hasta su cierre por lo que es una guía perfecta en el que apoyarse para la gestión con garantías de éxito de un proyecto en este campo.

- 4 - Escuela Técnica Superior de Ing. Industriales (UPM)

CONSULTORÍA DE UN PROYECTO DE

CONSTRUCCIÓN DE UN PARQUE DE ENERGÍA

EÓLICA EN EGIPTO

Contenido

1. PREÁMBULO 8

2. CICLO DE VIDA DEL PROYECTO 9

3. GRUPO 1: ESTUDIOS PRELIMINARES Y DE VIABILIDAD DEL PROYECTO 11

3.1 ESTUDIO DEL RECURSO EÓLICO 13

3.2 ESTUDIO DE CONEXIÓN A LA RED ELÉCTRICA 13

3.3 ESTUDIO GEOTÉCNICO Y TOPOGRÁFICO 14

3.4 PLANIFICACIÓN TEMPORAL 14

3.5 DISEÑO GENERAL 16

3.6 ESTUDIO DE IMPACTO SOCIAL Y MEDIOAMBIENTAL 17

4. GRUPO 2: LICITACIÓN Y ADJUDICACIÓN DEL PROYECTO DE EJECUCIÓN 19

4.1 CREACIÓN DE LA DOCUMENTACIÓN Y PUBLICACIÓN24

4.2 SITE VISIT Y ACLARACIONES 29

4.3 EVALUACIÓN 29

4.4 ADJUDICACIÓN Y NEGOCIACIÓN 33

5. GRUPO 3: GESTIÓN DEL CONTRATO Y LOS TRABAJOS DE CONSTRUCCIÓN 34

5.1 INICIACIÓN 41

5.1.1 FORMALIZAR EL PROYECTO 44

5.1.2 DEFINIR RESPONSABILIDADES 45

5.1.3 DESCRIPCIÓN DE LOS PARTÍCIPES DEL PROYECTO 46

5.1.4 DEFINIR LAS FASES DEL PROYECTO 49

5.1.5 ESTABLECER OBJETIVO Y DESCRIPCIÓN 50

5.2 PLANIFICACIÓN 56

5.2.1 PLAN DIRECTOR DE GESTIÓN DEL CONTRATO O PROYECTO (PDGC) 57

5.2.1.1 ORGANIZACIÓN Y RECURSOS 58

5.2.1.2 PLANIFICACIÓN DE ACTIVIDADES 58

5.2.1.2.1 PAQUETES DE TRABAJO 61

- 6 - Escuela Técnica Superior de Ing. Industriales (UPM)

5.2.1.2.2 LISTADO DE ENTREGABLES Y CRITERIO DE ACEPTACIÓN 63

5.2.1.2.3 REVISIONES Y CONTROL DE CAMBIOS 76

5.2.1.2.4 NO CONFORMIDADES / ACCIONES CORRECTIVAS Y PREVENTIVAS 78

5.2.1.3 GESTIÓN DE LAS COMUNICACIONES 82

5.2.1.4 ASPECTOS ECONÓMICO/FINANCIEROS 85

5.2.1.4.1 CERTIFICACIONES 88

5.2.1.5 SEGUIMIENTO Y CONTROL 89

5.2.1.5.1 INDICADORES 90

5.2.1.5.2 INFORMES DE SEGUIMIENTO Y CONTROL (IS) 90

5.2.1.5.3 MATRIZ DE VERIFICACIÓN 101

5.2.1.6 REVISIÓN DEL PDGC 126

5.2.1.7 REGISTRO Y ARCHIVO 126

5.2.1.8 PLAN DE GESTIÓN DE LA CONFIGURACIÓN 127

5.2.2 PLANIFICACIÓN DE LA CALIDAD 127

5.2.3 PROYECTO BÁSICO DE CONSTRUCCIÓN 133

5.2.4 ANÁLISIS DE RIESGOS 133

5.2.4.1 RISK MANAGEMENT OBJECTIVES 133

5.2.4.2 RESPONSABILIDADES 134

5.2.4.3 IDENTIFICACIÓN DE RIESGOS 134

5.2.4.4 ESTUDIO DE IMPACTO 134

5.2.4.5 RISK CLASSIFICATION PARMETER 135

5.2.4.6 ACTIONS AND FOLLOW -UP 136

5.2.4.7 RISK REGISTER 137

5.3 GESTIÓN DE LA CONSTRUCCIÓN 143

5.3.1 DIRIGIR Y GESTIONAR LA EJECUCIÓN 143

5.3.2 ASEGURAMIENTO DE LA CALIDAD 144

5.4 SEGUIMIENTO Y CONTROL 145

.2.3 CONTROL ALCANCE 145

.2.3.1 GESTIÓN DE EJECUCIÓN 149

.2.4 CONTROL CRONOGRAMA 160

.2.5 CONTROL CALIDAD 167

5.5 CIERRE 207

6. CONCLUSIONES 243

7. REFERENCIAS 244

8. ANEXO I – SECTION 1 TECHNICAL SPECIFICATIONS 245

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 7 -

- 8 - Escuela Técnica Superior de Ing. Industriales (UPM)

1. PREÁMBULO

El presente trabajo pretende afrontar la gestión del proyecto de construcción de un parque eólico desde el punto de vista de un consultor o equipo consultor externo. Pudiendo asemejarse este servicio al de ingeniería de la propiedad o, incluso al de una asistencia técnica. Por equipo externo, se entiende la ausencia de conflicto de interés con ninguno de los participantes del proyecto más allá de la relación comercial que los pueda unir.

Debe aclararse el punto de vista desde el que se afronta el proyecto pues hay grandes diferencias entre este servicio y el de gestión de la construcción del parque desde el punto de vista de la constructora que, dicho sea de paso, es un papel de gran relevancia aún no siendo el de mayor peso en la fase de construcción del proyecto. Se trata de un rol que, velando por los intereses del promotor, garantiza el cumplimiento del contrato en su más amplio sentido, evitando en la medida de lo posible desviaciones del mismo y proporcionando apoyo técnico allí donde se requiera, a la vez que sirve de promotor y gestor de las comunicaciones entre todos los involucrados.

A pesar de todo y sin duda alguna, se considera al contratista principal como el actor sobre el que giran el resto de los partícipes del proyecto, principalmente por la responsabilidad que asume en el proyecto y, en segundo lugar, por ser el mayor experto en la tecnología de que se trata.

La responsabilidad que tiene sobre el proyecto es elevada pues además de aportar una garantía económica que cubra la exitosa ejecución de los trabajos, es responsable de la seguridad y salud en la obra por lo que, indudablemente, está en juego su reputación para la obtención de futuros contratos. En cuanto a su interés, se puede decir que el principal es el de obtener el máximo beneficio y respecto al ciclo de vida del proyecto, difiere sustancialmente del de el consultor, así como el alcance de los trabajos. Más adelante se verá en detalle el alcance de los trabajos del consultor durante la fase de ejecución, alguna diferencias son por ejemplo, el hecho de que la adquisición de equipos, bienes y materiales es objeto únicamente de la constructora, la cual se lleva a cabo a través de un departamento especializado de la empresa (habitualmente compras). El proceso es complejo pues se requiere: establecer los requisitos técnicos determinados por el departamento de ingeniería, redactar el contrato, adaptar requisitos técnicos a la oferta existente y los contractuales a la legislación local, preseleccionar candidatos que cumplan con el mínimo exigible, estudiar las ofertas, negociar los contratos, adjudicar y dar seguimiento a dichos contratos. Este proceso, que incluye múltiples contrataciones a lo largo del proyecto, se suele llevar a cabo en paralelo a los trabajos de ejecución, siendo el jefe de obra a veces ajeno a aquel, que dura desde que son adjudicatarios del contrato hasta el comienzo del alcance de los trabajos que se estén pretendiendo contratar. Así mismo, el seguimiento del contrato puede ser complejo, pues en el caso de actividades, se lleva a cabo a través de hojas de encargo de trabajos que se van certificando diariamente por horas o por tajo, e incluso pueden incluir varias subcontratas. Esto ocurre tanto para los trabajos de obra civil como los de fabricación y montaje, por lo que el proyecto está lleno de pequeñas y grandes compras que deben gestionarse adecuadamente. En lo que al consultor se refiere, con respecto a las adquisiciones, únicamente interviene para aprobar la lista de subcontratistas aceptados conjuntamente con el promotor y valorar su coordinación con el ritmo de ejecución de los trabajos.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 9 -

Por gestión, se entiende el conjunto de acciones que hacen posible la coordinación de todos los intereses e interesados, la planificación de los distintos estadios que hacen posible la construcción, el establecimiento de las reglas relativas a las comunicaciones, el estudio de riesgos, la definición del alcance de los trabajos, el control técnico y económico del avance de los trabajos, el cumplimiento del contrato, etc.

El agente consultor podría ser el mismo en todas las fases del proyecto o distinto. Además, puede estar involucrado, como es este caso, en el proceso de adjudicación del contrato de construcción el cual se lleva a cabo a través de una licitación internacional y particularmente con financiación española.

Hay que destacar que, aunque la construcción en sí misma es una actividad importante en el éxito del proyecto, no es la única etapa necesaria. Deberán tenerse en cuenta otras que se describirán en este trabajo, cuyos resultados alimentan otras fases que en su conjunto hacen posible seguir avanzando.

Este proyecto se compone de tres grandes grupos, de diferente alcance económico, temporal, técnico y de recursos necesarios, si bien cada uno de los cuales deberá finalizar para poder dar paso al siguiente. No sólo eso, además, el resultado deberá ser positivo para garantizar el éxito del siguiente grupo de actividades. Estos grupos a los que se hace referencia se enumeran en el siguiente epígrafe.

El objetivo principal de este trabajo es el de dotar de herramientas suficientes a cualquier gestor para poder evaluar la complejidad de un proyecto de esta envergadura y así poder proporcionar asesoramiento en la toma de decisiones de las distintas fases del proyecto, incluyendo no sólo las de alto nivel, donde se plantea en un plano estratégico la necesidad de su construcción sino también, las de más bajo nivel, donde se requiere conocimiento técnico para evaluar su viabilidad y ofrecer garantías de éxito.

2. CICLO DE VIDA DEL PROYECTO

El ciclo de vida del Proyecto consta de tres fases secuenciales y claramente diferenciadas de manera que el producto de la primera alimenta a la segunda y éste a la tercera y última fase. Por tanto, están vinculadas, siendo requisito indispensable pero no suficiente la consecución del objetivo propuesto para avanzar a la siguiente fase, quedando así la primera cerrada. No obstante, no es requisito suficiente pues existen factores externos que pueden romper la continuidad del proyecto, bien porque el riesgo de ocurrencia de un determinado evento es muy alto o porque su impacto es muy significativo, por poner un ejemplo, la inestabilidad política podría ser un factor determinante.

En relación con lo anterior, existe un caso particular muy relevante que debe tenerse en cuenta, el cual se mencionará en estas líneas. Se trata de la falta de financiación. Hay diversas maneras de financiar un proyecto de este tipo y diversos tipos de financiadores, si bien, no es objeto de este proyecto el recoger las diversas opciones. Se pretende resaltar que a nivel de países, los mecanismos de financiación pueden ser más lentos y, por tanto, puede ocurrir que habiendo obtenido financiación para una fase no se haya podido garantizar para la siguiente.

- 10 - Escuela Técnica Superior de Ing. Industriales (UPM)

Es más, podría ocurrir que el parque eólico se licitara por lotes debido al tamaño del mismo y haya necesidad de encontrar diversas fuentes de financiación.

También existen aspectos regulatorios, siendo los de tipo administrativo de menor impacto y de resolución en paralelo a la evolución el proyecto, si bien son los aspectos generales con carácter legislativo los que deberán preverse y aclararse antes de incurrir en ningún gasto pues pueden ser decisiones irrevocables. Aspectos relativos a la infraestructura existente en el país o los medioambientales, deben valorarse previamente pues el no cumplimiento con alguno de ellos puede ser motivo suficiente para la cancelación del proyecto.

Cada fase puede llevarse a cabo por una misma o diferente, empresa o agrupaciones temporales de empresas. En cuanto al consultor, puede tratarse de la misma o distinta figura según la fase del proyecto. Respecto a las empresas encargadas de llevar a cabo cada uno de los trabajos, en el caso que nos ocupa serán diferentes incluso a nivel de sub-fases. Hay que recordar que, por ejemplo, en el mercado se pueden encontrar empresas especializadas en el estudio del recurso eólico únicamente, lo cual es práctica habitual en el sector subcontratarlo en ciertos casos.

Se enumeran a continuación los tres grandes grupos en que se divide la construcción del parque eólico referidos con anterioridad:

Grupo 1: Estudios preliminares y de viabilidad del proyecto.

Grupo 2: Licitación y adjudicación del Proyecto de Ejecución.

Grupo 3: Gestión del contrato y los trabajos de construcción.

En una clasificación tradicional se podría identificar la etapa número 1 con la de Iniciación, la número 2 con la Planificación y la 3 con la Ejecución, la 4 con el Seguimiento/Control y la 5ª y última con el Cierre. No obstante, cada una de estas etapas a su vez se puede considerar como un subproyecto con todas sus fases de iniciación, planificación, ejecución, seguimiento/control y cierre.

Entre estos tres grupos, puede haber algunas actividades que se compartan con ciertas particularidades, y por tanto, sean de aplicación durante la vida útil del proyecto. Por ejemplo, el análisis general de riesgos o los interesados en el proyecto.

Se verá en detalle el esquema general de cómo cada fase es independiente de la anterior con respecto al alcance que aquí concierne.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 11 -

En general, un proyecto son un conjunto de fases, generalmente secuenciales y en ocasiones superpuestas, cuyo nombre y número se determinan por las necesidades de gestión y control de la organización u organizaciones que participan en el proyecto, la naturaleza propia del proyecto y su área de aplicación. Un ciclo de vida puede documentarse con ayuda de una metodología. El ciclo de vida del proyecto puede ser determinado o conformado por los aspectos únicos de la organización, de la industria o de la tecnología empleada. Mientras que cada proyecto tiene un inicio y un final definidos, los entregables específicos y las actividades que se llevan a cabo entre éstos variarán ampliamente de acuerdo con el proyecto. El ciclo de vida proporciona el marco de referencia básico para dirigir el proyecto, independientemente del trabajo específico involucrado.

3. GRUPO 1: ESTUDIOS PRELIMINARES Y DE VIABILIDAD DEL PROYECTO

En este primer grupo, en el que se desarrollan los estudios que permiten valorar la posibilidad de llevar a cabo la inversión, se puede incluir una serie de estudios previos necesarios para considerar la viabilidad del proyecto y el consecuente lanzamiento de la siguiente fase en la que se procede a la búsqueda de la empresa constructora. Cuando se habla de una instalación de generación de electricidad con aprovechamiento del recurso eólico, se debe tener en cuenta los aspectos limitadores inherentes a su instalación que se evalúan a través de los estudios necesarios que se destacan a continuación:

1. ESTUDIO DEL RECURSO EÓLICO

2. ETUDIO DE SU CONEXIÓN A LA RED

3. ESTUDIO GEOTÉCNICO Y TOPOGRÁFICO

4. PLANIFICACIÓN TEMPORAL

5. DISEÑO GENERAL

- 12 - Escuela Técnica Superior de Ing. Industriales (UPM)

6. ESTUDIO DE IMPACTO SOCIAL Y MEDIOAMBIENTAL

La decisión de estudiar la posibilidad de construir un parque eólico se fundamente en los dos siguientes aspectos:

- Planes económico y energético estratégico nacional de los años 2007-2012 y 2013-2017. Tradicionalmente, Egipto ha dependido del petróleo como principal fuente de energía, lo que le ha llevado a muchos problemas de contaminación e ineficiencia, además de la presión social y política obvia que este asunto de las energías contaminantes. En consecuencia, siempre ha estado en un riesgo constante de quedarse sin recursos.

- Ubicación geográfica. Afortunadamente, en la actualidad se encuentra como candidato a ser dependiente de las energías renovables ya que dispone de abundante espacio físico y climatología favorable para el desarrollo de las principales fuentes de abastecimiento renovable, energía solar y eólicas. Específicamente en el golfo de Suez, se dispone de un viento medio de 10,5 m/seg lo que lo convierte en una zona magnífica para el desarrollo de este tipo de proyectos, tal y como se puede comprobar a continuación en el plan actual de desarrollo de proyectos eólicos en esta zona.

Egipto se encuentra entre los pocos países en el mundo con un Atlas de viento Nacional publicado, de acuerdo con export.gov, una página dependiente del Departamento de Comercio de Estados Unidos en colaboración con 19 Agencias gubernamentales dirigida a grandes inversores.

La energía eólica, se espera tenga un papel central en la producción de energía para el país en el futuro cercano. Tal es así, que el gobierno pretende que el suministro a través de energías renovables sea del 20% de la demanda del año 2022, de la cual el 12% se pretende sea de tipo eólica.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 13 -

- Wind Atlas for the Gulf of Suez 1991-1995. Respecto a la condición de los datos eólicos, NREA ha llevado a cabo el estudio potencial del recurso eólico con la asistencia de la organización danesa RISØ National Laboratory, que se compila en dicho informe. Los datos referentes a las condiciones de viento han continuado desde entonces.

A continuación, se describe el contenido de los estudios preliminares de forma que sean aptos para analizar la situación general de la zona. Adicionalmente, se adjunta un modelo para cada uno de estos documentos en el anejo correspondiente.

3.1 ESTUDIO DEL RECURSO EÓLICO

Este tipo de estudio es el resultado de un análisis técnico cuyo objetivo es clasificar el lugar, de acuerdo a los estándares recogidos en la norma IEC 61400-1 Ed.2.

Los trabajos que se llevan a cabo incluyen:

Recogida y procesamiento de datos disponibles de las estaciones meteorológicas instaladas ad-hoc para este cometido, determinando los parámetros básicos de viento.

Intensidad turbulencia y clasificación IEC de las localizaciones.

Modelización del área.

Creación de un esquema tipo empleando dos tipos de turbinas, de 850kW y 2MW de potencia.

Estimación turbulencia dentro del parque para los esquemas propuestos.

Clasificación de clase y sub-clase de las diferentes posiciones para las turbinas.

3.2 ESTUDIO DE CONEXIÓN A LA RED ELÉCTRICA

El objetivo de este tipo de informes es presentar una serie de estudios eléctricos pre-operacionales para poder comparar el comportamiento de los parámetros de la red eléctrica principal entre la red nacional unificada en proyecto (estimación a 2016) con la misma red con la afectación de la conexión del parque eólico bajo estudio. Se pretende obtener un resultado positivo demostrando que la conexión del parque no tiene efectos perjudiciales sobre el sistema de trasmisión. Para ello, los estudios eléctricos que se llevan a cabo comprenden los siguientes aspectos:

Unificación de la red eléctrica de alta tensión y modelización del parque eólico.

Operación continuada (steady state).

Cálculo de cortocircuitos.

- 14 - Escuela Técnica Superior de Ing. Industriales (UPM)

Verificaciones de estabilidad ante transient (transient stability).

Respuesta a variaciones de tensión (voltaje dips)

3.3 ESTUDIO GEOTÉCNICO Y TOPOGRÁFICO

Este estudio se lleva a cabo con el objetivo siguiente:

Evaluar las condiciones geotécnicas generales del área de proyecto.

Dotar al promotor con información geotécnica preliminar para el diseño del parque.

Definir las propiedades de cada estrato.

Proveer las curvas de nivel del área de estudio.

3.4 PLANIFICACIÓN TEMPORAL

A estas alturas del proyecto, se realiza una estimación considerando el mes como unidad temporal mínima con el fin de valorar la planificación de las diferentes etapas. Una previsión realista de alto nivel podría ser algo como lo expuesto a continuación:

Obviamente, la duración de todas las fases dependen de los recursos empleados, pero quizá las más complicada de estimar sería la ejecución, para lo cual merece la pena bajar algo más al detalle para su cálculo:

YEAR

MONTHS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

2014 20152013 2016-2018

PROJECT TIME SCHEDULE - WIND PLANT GULF EL-ZAYT

30/07/2013Administrative process Wind Plant at Gulf El-Zayt

Preparation of Bids 3 months

01/11/2013

Bids Evaluation 3 months

02/02/2014

Awarding and Negociation 1 month

01/04/201402/07/2015

01/01/2016Wind Plant Construction and O&M

Construction 21 months

O&M - Defect Liability Period 3 Years

commissioning 6 months

Substation 01/04/2014

Tendering process

01/10/201401/04/2015

Construction

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 15 -

Topic Latest Dates

(Months after effective date of Contract)

Effective Date of Contract 0

Submission of Technical Documentation on the WECs, the Electrical Equipment and the RMCS

0.75

Submission of wind park design and siting based on the available Map 1:10,000

0.75

Submission of topographical and geotechnical survey 2

Submission of detailed design documents of roads, foundations and electrical works

3

Start of construction works (Construction yard preparation, site office, access road)

3

Start civil works (roads, foundation & trenches) 4

Start of factory inspection of WECs for the 1st circuit 4

Arrival of first shipment at Egyptian harbour 5

Start of installation works 6.5

Training (Start) abroad 7.5

Start of Testing and Commissioning 8.5

Training (Start) at the site 8.5

Completion of the 1st circuit 12

Complete Construction after Shipment per each shipment lot 15

- 16 - Escuela Técnica Superior de Ing. Industriales (UPM)

Completion of the 2nd circuit

Start of factory inspection of WECs for the last circuit 14.5

Completion of the ….. circuit

SCADA and CMS tests 20

Completion of the last circuit (max……circuits) and of the overall wind park

21

Submission of as built documentation and plans 22

Submission of Power performance test report 23

Operational acceptance of the wind park 23

Verification of power curves 25

3.5 DISEÑO GENERAL

El proceso de estudio de viabilidad culmina con un diseño básico general de un parque eólico con las condiciones de contorno reales. Si es posible, se recomienda realizar el estudio para 2 o 3 tipos de turbinas. Este proyecto es de gran valor para desarrollar el documento de requisitos técnicos necesarios para la siguiente fase de licitación. El proyecto básico en este caso sesrvirá para:

• To describe the works and facilities necessary to carry out the construction of the Wind Power Plant.

• To serve as a basis for the processing of permits and authorizations necessary for the execution of work and subsequent commissioning and operation of the wind farm before the competent authorities and organizations.

• To offer two possible alternatives depending on the wind turbines election, as follows:

Alternative A: “Large” WT. Rated power between 1500 and 2300 kW.

Alternative B: “Small” WT. Rated power between 800 and 1300 kW.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 17 -

• To study class and subclass according to IEC 61400-1.

• To choose the wind turbine appropriate to the site. To gather information to produce a market survey of wind turbines available on the market and adapting them to the wind farm conditions to guide the selection of appropriate turbine type and size.

• To assess on wind resources and wind energy yield (production study).

• To evaluate different wind farm design alternatives, taking into account:

Maximum capacity (total power) to be installed.

Land availability.

Technical and structural characteristics of the wind turbines available.

Restrictions and limitations.

3.6 ESTUDIO DE IMPACTO SOCIAL Y MEDIOAMBIENTAL

This ESIA (Environmental and Social Impact Assessment) covers the main areas that might be affected by the construction and operation of the proposed Wind power plant.

The main objective of the Study is:

- To have a series of dialogues with local communities/households living in and around the project site as well as other stakeholders (e.g.. local NGOs) to deepen the understanding of the project;

- To assess the potential impacts that might be generated during the construction and operation phases of the project; - formulate necessary countermeasures against the likely adverse impacts so as to minimize negative impacts due to project implementation; and - prepare an Environmental and Social Management Plan (ESMP), including environmental monitoring plan so that NREA can prevent environmental negative effects and take necessary action before the things come irreversible.

Main Items Contained in the EIA Report as per the EEAA Guidelines

Table of Contents

I NON TECHNICAL EXECUTIVE SUMMARY

II DESCRIPTION OF THE PROPOSE PROJECT

II.1 Objectives and Scope of the Proposal

- 18 - Escuela Técnica Superior de Ing. Industriales (UPM)

II.2 The Location

II.3 Detailed Description and Layout of the Proposed Development and Associated Facilities

II.4 Site Preparation and Construction

II.5 Existing Project in the Locality

III BACKGROUND INFORMATION

III.1 Legislative FrameworK

III.2 Method

III.3 Consultation

III.4 Consideration of Alternatives

IV DESCRIPTION OF THE EXISTING ENVIRONMENT – THE BASELINE

IV.1 Overview

IV.2 Land characteristics and use

IV.3 Landscape character and existing views

IV.4 Flora and Fauna

IV.5 Noise and vibration levels

IV.6 Antiquities and other sites of historical and cultural importance

IV.7 Social and economic context

IV.8 Existing transport infrastructure and traffic flows

IV.9 Existing utilities infrastructure and usage

V PREDICTION OF IMPACT AND EVALUATION OF SIGNIFICANT ENVIRONMENTAL EFFECTS

V.1 Basic methodology

V.2 Land uses and infrastructure

V.3 Construction Works

V.4 Economic impacts during construction

V.5 Economic impacts during operation

V.6 Economic effects on the local economy

V.7 Dust V.8 Waste Disposal

V.9 Noise and vibration

V.10 Light and reflections and shadows

V.11 Interference with telecommunication system

V.12 Traffic V.13 Services and infrastructure

V.14 Global environment effects

V.15 Risk Assessment

VI MITIGATION

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 19 -

VI.1 Mitigation strategy

VI.2 Specific mitigation measures

VI.3 Environnemental Management Plan

VII CONCLUSION

4. GRUPO 2: LICITACIÓN Y ADJUDICACIÓN DEL PROYECTO DE EJECUCIÓN

Una vez obtenido como resultado un diseño general del parque y considerados los aspectos medioambientales, técnicos, normativos y otras restricciones adicionales, se puede proceder a preparar la fase de búsqueda de la empresa constructora del parque para lo cual debe redactarse un pliego de prescripciones en el que se recoja la información necesaria que permita a una empresa elaborar una oferta técnica y económica basada en esa información que será vinculante a lo largo del proyecto. Además, deberá recogerse el contrato por el que se regirá la relación, las instrucciones para elaborar la oferta, los criterios de evaluación, los hitos del contrato, etc.

Dentro de esta fase, se pueden distinguir distintas sub-fases entre las que se encuentran:

1. Creación de la documentación y publicación

2. Site visit y aclaraciones sobre la publicación.

3. Evaluación técnica y económica y aclaraciones.

4. Adjudicación y negociación

La duración de este grupo varía bastante en función de los recursos aportados y de los plazos legales para el paso entre una y otra fase. Sin duda la fase de mayor duración es la creación del documento pues requiere de varias iteraciones sobre la primera propuesta que debe llevarse a cabo habitualmente en reuniones de trabajo con el promotor.

Una propuesta técnica habitual de los servicios de consultoría sería la siguiente:

1. TECHNICAL PROPOSAL

The main activities included in the scope of works will be the following ones:

TASK 1: Starting from the issuance of the project documents up to receiving the proposals from the sponsors.

o To study all related documentation to the Project including the Tender Documents and complete any requirement that may found necessary in order to produce solid documentation.

o To define the criteria for the evaluation of tenders.

- 20 - Escuela Técnica Superior de Ing. Industriales (UPM)

o To receive all clarifications and inquiries from the sponsors and to draft proper responses.

o To issue the required clarifications and addenda to the Tender Documents.

TASK 2: Starting from the evaluation of proposals up to the selection of the winner.

o To attend the bid opening.

o To analyze and study all technical and financial proposals received from the sponsors and to evaluate their compliance with the Tender requirements and any other needed requirements enforced by law as well.

o To manage, prepare and issue all the required clarifications to the proposals and to evaluate feedback and responses to these clarifications.

o To submit for approval technical and financial evaluation reports including the final recommendation and all the necessary analysis, examples and supports to show the results of the evaluation and the final ranking of the sponsors.

o To draft a letter to sponsors indicating their ranking,

o To participate in the negotiation of the project agreement with the successful sponsor and to redraft the project agreement if necessary.

TASK 3: Starting from the project implementation and construction up to the commissioning and final acceptance of the Project.

o To supervise and follow up the construction works to ensure a proper implementation of the plant as per the signed contract and time schedule of the project.

o To realize all the required tests included in the signed project contract.

o To assess on the field tests. These tests will include the necessary electrical characterization.

o To assess on the data processing to determine the efficiency curves and the nominal power of each generator studied.

o To attend the commissioning of the wind farm, including the provisional and final acceptation.

o To elaborate the Provisional and Final Acceptation Reports.

As part of this assignment, it will be produced the following reports and documents:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 21 -

- Tasks Reports.

- Commissioning Report.

- Provisional Acceptation Report.

- Final Acceptation Report.

En este momento se recomienda hacer una planificación más detallada de esta fase pues ya se dispone de información suficiente para ello.

Para la realización de estos trabajos, debe establecerse un calendario aproximado con los hitos importantes durante esta fase. A continuación, se muestra una programación aproximada para la evaluación de un proyecto de este tipo, de derecha a izquierda, las primeras dos columnas corresponden al cliente y las siguientes al consultor:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PA RQUE EÓLICO EN EGIPTO

Fco. Javier Santos Barrero - 23 -

- 24 - Escuela Técnica Superior de Ing. Industriales (UPM)

Una estructura de desglose de trabajos habitual sería la siguiente:

4.1 CREACIÓN DE LA DOCUMENTACIÓN Y PUBLICACIÓN

En cuanto a la redacción del pliego de condiciones, que contendrá apartados de diversa índole como por ejemplo las instrucciones a los oferentes, se debe estructurar de forma clara. A continuación, se muestra la tabla de contenidos habitual en este tipo de documentos según los siguientes tres capítulos importantes, denominados:

1. Instrucciones a los licitadores

2. Especificaciones técnicas

3. Contrato

A continuación, se describe en detalle la estructura de este documento y en el anejo correspondiente, el contenido del apartado más importante técnicamente, las especificaciones:

VOLUME I. TENDERING INSTRUCTIONS

SECTION 1. INSTRUCTIONS TO TENDERERS.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 25 -

Esta sección contiene las instrucciones para la presentación de las ofertas. Recoge aspectos como el criterio de elegibilidad, el formato de entrega, las fechas, el contenido básico, las garantías, el modo de entrega, los criterios de evaluación, etc.

1. Introduction 1.1. Source of Funds 1.2. Eligible Bidders 1.3. Eligibility of the Bid 1.4. Timetable 1.5. Cost of Bidding 1.6. One Bid Per Bidder 2. The Bidding Documents 2.1. Content and Presentation of Bid 2.2. Clarification of Bidding Documents; and Pre-Bid Meeting 2.3. Amendment of Bidding Documents 3. Preparation of Bids 3.1. Language of Bid 3.2. Documents and Information Comprising the Bid 3.3. Bid Forms and Price Schedules 3.4. Tender Price 3.5. Tender Currencies 3.6. Bid Security 3.7. Period of Validity of Tender 3.8. Format and Signing of Tender 4. Submission of Tenders 4.1. Sealing and Marking of Tenders 4.2. Deadline for Submission of Tenders 4.3. Late Tenders 4.4. Modification of Bids 5. Bid Opening and Evaluation 5.1. Opening of Bids by Employer 5.2. Preliminary Examination of Bids 5.3. Technical Evaluation 5.4. Financial Evaluation 5.5. Evaluation Sheet 5.6. Domestic Preference 5.7. Contacting the Employer 6. Award of Contract 6.1. Award Criteria 6.2. Employer’s Right to accept any Bid and to reject any or all Bids 6.3. Notification of Award 6.4. Signing the Contract Agreement 6.5. Performance Security 6.6. Fraud and Corruption VOLUME I. TENDERING INSTRUCTIONS SECTION 2. SAMPLE FORMS AND PROCEDURES

- 26 - Escuela Técnica Superior de Ing. Industriales (UPM)

Esta sección contiene los formularios que deben rellenarse con el objeto de que toda la información se presente en un formato homogéneo que haga más sencilla la revisión y su evaluación. Se podría aportar un formulario para los siguientes temas:

1. Form 1: General Information about the Bidder 2. Form 2: Power of Attorney 3. Form 3: Experience as Contractor/Designer 4. Form 4: Prequalification Document 5. Form 5: Commitment Letter 6. Form 6: Price Schedules 7. Form 7: Schedule of Particulars 7.1. General Remarks 7.2. Schedule of Particulars 8. Form 8: Deviation Form on Technical Deviations 9. Form 9: Financial Offer 10. Form 10: Bid Security Form (Bank Guarantee) 11. Form 11: Price Adjustment 12. Form 12: Insurance Requirements 13. Form 13: Time Frame Schedule 14. Form 14: List of Envisaged Subcontractors 15. Form 15: Scope of Works and Supply by the Employer 16. Form 16: List of Documents for Approval or Review 17. Form 17: Guarantees, Performance (functional) - Guarantees and Claims 17.1. Guarantees 17.2. Defect Liability Period for Contract Plant and Equipment 17.3. Delay/Performance / Functional Guarantees 17.3.1 Availability Guarantee 17.3.2 Power Curve Guarantee 17.3.2.1. General Conditions 17.3.2.2. Method - Power Performance Test of Wind Park (Measurement of the Power Curve of Three Selected WECs representing all WECs of the Wind Park) 17.3.2.3. Determination of the Guaranteed and the Measured Energy Yield/Generation 17.4. Penalties 17.5. Liquidated Damages 17.5.1 Claims on Late Completion 17.5.2 Claims on Low Power Performance 17.5.3 Claims on Low Availability 17.5.4 Limitation of Liability on Functional and Availability Guarantee 18. Form 18: Parameters Guaranteed by the Bidder 19. Form 19: Performance Security Forms 20. Form 20: Bank Guarantee Form for Advance Payment (For local and foreign currency portions) 21. Form 21: Form of Completion Certificate 22. Form 22: Form of Operational Acceptance Certificate 23. Form 23: Financial Statement 24. Form 24: Litigation History

SECTION 3. BID DATA SHEET

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 27 -

Suele consistir en un resumen en forma de tabla de los aspectos más importantes, sobre todo relativos a la fecha de presentación de la documentación y algunos requisitos excluyentes que se recogen en el pliego, por tanto, todos de carácter obligatorio. De esta forma, se exponen resumidamente con referencia a su ubicación en el documento lo cual facilita su localización dada la extensión de éste.

VOLUME II. EMPLOYER’S REQUIREMENTS

En esta sección se incluyen todos los mínimos requisitos técnicos con los que la instalación debe cumplir por lo que se detalla, según una clasificación básica que agrupe por grandes capítulos las diferentes partes en que se puede subdividir la instalación y las actividades necesarias. Dado que se trata de una instalación llave en mano, es el lugar donde describir todo lo concerniente a los criterios mínimos que debe cumplir el parque y los de referencia sobre los que se evaluará el rendimiento pues estas restricciones son vinculantes para ambas partes a lo largo del proyecto.

Adicionalmente, a los requisitos mencionados, se puede incluir toda información útil que ha sido empleada por la propiedad para la toma de decisiones para ayudar a los licitantes a producir la oferta económica y técnica más ajustada a la realidad posible dado que no van a poder disponer de datos propios sobre los que basar sus cálculos. Por ello, es habitual que los estudios que se produjeron en la anterior fase se incluyan ahora como anejos en este gran documento y en este apartado de requisitos técnicos. Un índice estándar de lo puede ser este gran capítulo se describe a continuación.

VOL II - SECTION 1. TECHNICAL SPECIFICATIONS

Incluido por completo en el ANEJO I.

Habitualmente, en esta fase se lleva a cabo un estudio de mercado o “market survey” en el que se analizan los potenciales candidatos que podrían participar en el concurso de licitación de acuerdo a las bases del mismo.

Este estudio se lleva a cabo en esta fase en paralelo a la redacción de los pliegos pues es el momento en que se redactan las bases y los requisitos técnicos, financieros y de otra índole que pueden descartar a ciertas empresas. Por ejemplo, el pliego podría estar enfocado a empresas constructoras y no aceptar promotoras o con una cierta capitalización o restringido por nacionalidades por imperativo del órgano licitador.

El objetivo de este estudio es valorar si habrá la concurrencia mínima necesaria teniendo en cuenta las características del pliego y evaluar la idoneidad de éste.

Los estudios que se enumeran a continuación ya se describieron en el capítulo previo correspondiente al Grupo 1: Estudios preliminares y de viabilidad del proyecto.

SECTION 2. SITE ASSESSMENT

- 28 - Escuela Técnica Superior de Ing. Industriales (UPM)

SECTION 3. GENERAL DESIGN

SECTION 4. WIND DATA

SECTION 5. GEOTECHNICAL AND TOPOGRAPHICAL STUDIES

SECTION 6. ENVIRONMENTAL AND SOCIAL IMPACT

SECTION 7. GRID INTEGRATION STUDY

VOLUME III. CONTRACTUAL DOCUMENTS

Este volumen recoge el contrato tipo que se firmará entre las partes y donde se recogen las cláusulas generales y específicas del contrato. Además, se debe incluir en una sección aparte la lista de aquellos documentos contractuales que deberá presentar el oferente a la entrega de la oferta o a los que deberá comprometerse en caso de ser adjudicatario del proyecto.

Es importante en este apartado definir las garantías que se le solicita al oferente ya que son necesarias para el comienzo de los trabajos, son las mencionadas más abajo, en la sección 3, anejos 3 y 4, Advance Payment Guarantee y Performance Guarantee respectivamente.

Todos los anejos de esta sección son relevantes por lo que se recomienda no omitir ninguno en la preparación de la documentación.

SECTION 1. GENERAL CONDITIONS

SECTION 2. SPECIAL CONDITIONS

SECTION 3. FORM OF CONTRACT AND ANNEXES

1. Attachments 1: Certificate of Insurance 2. Attachments 2: Site Work Rules 3. Attachments 3: Unconditional Letter of Guarantee for Advance Payment 4. Attachments 4: Performance Bank Guarantee (Unconditional Letter of Guarantee) 4.1. Bank Guarantee—Unconditional (Foreign Currency Portion) 4.2. Bank Guarantee—Unconditional (Local Currency Portion) 5. Attachments 5: Form of Contract Agreement 6. Attachments 6: Plan Fabrication and Shipping Progress Report 7. Attachments 7: Procedure for Issue of Protocols and Certificates 8. Attachments 8: Payment Schedule 9. Attachments 9: Insurance Requirements 10. Attachments 10: Form of Operational Acceptance Certificate

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 29 -

4.2 SITE VISIT Y ACLARACIONES

Consiste en una visita al lugar donde se levantará el parque con la intención de revisar la orografía visualmente, así como las estaciones de meteorología existentes. Suele ser una tarea encomendada a técnicos de las empresas constructoras quienes confirmarán sobre el terreno si sus hipótesis de cálculo son adecuadas. La visita suele ser guiada y, de ser posible, es interesante contar con el geólogo que realizó la campaña geotécnica, así como los técnicos encargados de recoger los datos de viento para resolver cualquier duda que pudiese surgir.

El objeto de la visita es que los oferentes ajusten su precio lo más posible a la realidad por reducción de la incertidumbre. Es por tanto una práctica que beneficia a todos y transmite confianza en el proyecto.

Además, es una primera ocasión para conocerse y, algunas empresas aprovechan el viaje para hacer los primeros contactos por su cuenta con las empresas locales susceptibles de ser subcontratadas, pues deben contar con esa información para realizar la oferta.

4.3 EVALUACIÓN

La fase de evaluación se realizará de la siguiente manera:

1. Evaluación requisitos administrativos / financieros

2. Evaluación técnica

3. Evaluación económica

4. Resultado final – Informe recomendación.

1. Evaluación requisitos administrativos / financieros

Se muestra a continuación una tabla donde se recogen algunos requisitos típicos de este tipo de licitaciones:

Número Tipología Ejemplo de Condición

1 Formality of Application All the required documents and forms shall be provided in accordance with ITT Sub-Clause 3.2 Application Submission Form shall be signed by an authorized representative of the Applicant Application documents shall be submitted to the specified place by the specified deadline. Late application shall be rejected Application documents, in sealed envelopes, shall be properly identified and marked according to ITT 4.1 The original and 5 copies, together with one soft copy (in PDF format), shall be Provided according to ITT 3.8

- 30 - Escuela Técnica Superior de Ing. Industriales (UPM)

2 Completeness And Verification of Information

Completeness of verification matrix

3 Eligibility Nationality of the Company or Joint Venture: European

No conflicts of interest in GC sub item 53 Has the Applicant not been determined to be ineligible with respect of “Fraud and Corruption” (ITT 6.6) Joint Venture Agreement

4 The power of attorney The tender must be signed by a person or persons empowered by the power of attorney

5 Litigation History Based on FORM 24 6 Prime contractor

Experience Two wind power plant projects adding up a total power capacity of at least 100 MW, that have been successfully and substantially completed within the last 5 (five) years and that are similar to the proposed works including wind park design, foundations, WTG supply, erection, electrical MV grid, road works and also including the operation (O&M) services. All of these shall be evidenced by a customer statement of satisfactory completion. Evidence of having manufactured and erected at least 300 WTGs of all types until December 31th, 2013 The applicant has manufactured at least 60 WTG’s of the offered type until December 31th, 2013. Overall annual production capacity of more than 120 MW for the type of WTG to be prequalified as of December 31th, 2013

6 Specific Construction Experience (A minimum construction experience, as prime contractor, or subcontractor in the following key activities)

More than 6 road construction projects of at least 5 km length each successfully completed More than 6 Medium Voltage distribution network implementation projects of a volume of at least EUR 500,000 or equivalent each successfully completed

7 Financial Situation Specific Turnover: The average annual turnover shall be of at least Million Euro(M€) 150 million (exchange rate as per December 31st, 2012) on the wind energy business, calculated as total certified payments received for contracts in progress or completed, within the last three (3) years. Financial Resources: The Tenderer shall demonstrate, by a statement from his bank, that he has available or he has access to, liquid assets, lines of credit, or other financial means sufficient to meet the construction cash flow for the contract, not less than 25 million Euro equivalent, for a period of 6 (six) months, in addition to the

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 31 -

Tenderer’s commitments for other contracts. Financial Position: Submission of audited balance sheets or if not required by the law of the Applicant’s country, other financial statements acceptable to the Employer, for the last five (5) years to demonstrate the current soundness of the Applicant’s financial position and its prospective long term profitability. As a minimum, the Applicant’s net worth calculated as the difference between total assets and total liabilities shall be positive for the last three years Profit: The overall profit of the bidder for the last five years (2009, 2010, 2011, 2012 and 2013) with, at least, two years must be positive

8 Bid Security

2. Evaluación técnica

The comparison shall be based on the following ratio: the total price of the turn-key project plus the estimation of operation and maintenance costs over a period of 20 years divided by the Annual Energy Production (AEP). It shall be considered as winner of the tender the bidder that proposes the lowest levelised specific generating cost.

The table below shows the results of the AEP calculations for the bidders:

- 32 - Escuela Técnica Superior de Ing. Industriales (UPM)

OFERTA 1 OFERTA 2 OFERTA 3

WTG model Model A 1.5 MW Model B 2 MW Model C 2 MW

Hub Height 60 m 60 m 60 m

Total amount of turbines 80 60 60

Total wind farm power 120MW 120 MW 120MW

Wadi OK ok T13, T14 are located in wadi

Transmission lines OK OK OK

Border OK OK OK

Pipelines OK OK OK

Sub Station Area

Service Area OK OK OK

Setback in main wind direction ok ok ok

Setback in cross wind direction OK ok ok

Air density 1,15 1,18 1,162

Wake decay constant OK 0,075 0,075

Neigbouring wind farm considered OK OK OK

WAsP version OK ok ok

WAsP parameter setting OK ok ok

Remarks 0k ok ok

Layout modification performed by NREA

Gross wind farm yield (incl. wakes) [GWh] 696,4 668,0

Gross wind farm yield (incl. wakes+ other losses)

[GWh]625,3 606,4

P50 625,3 634,0 725,5

P70 585,9 503,7 688,4

Restricted areas

Energy yield (submitted from bidders)

OFERTA 1 OFERTA 2 OFERTA 3

NREA Net wind farm yield (incl. wakes)

[GWh/year]688,003 681,000 688,844

Availability loss 3% 3% 3%

Local grid loss 1,10% 2,16% 1,56%

Step up transformer loss (if any) 0,60% 0,00% 0,60%

Other losses 4,40% 4,40% 4,40%

Derating 0,00% 1,00% 1,00%

Net AEP (P50) (GWh/year) 625,4 609,1 616,1

Energy Losses

Other Losses OFERTA 1 OFERTA 2 OFERTA 3Items

(Main grid loss (Tgrid)) 0,50% 0,50% 0,50%

Force majeur (Tfm) 0,10% 0,10% 0,10%

Stopped by owner (Tp) 0,70% 0,70% 0,70%

Wind farm consumption (light, staff house

consumption)0,10% 0,10% 0,10%

Blade contamination and degradation loss 3% 3% 3%

Total calculated 4,40% 4,40% 4,40%

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 33 -

Evaluación económica

Es práctica habitual exponer el criterio de evaluación en los pliegos de condiciones para que cada oferente pueda modelizar el resultado al que pueden comprometerse. También se suele producir la apertura de ofertas económicas delante de las empresas que logran superar la evaluación técnica, a fin de dar trasparencia al proceso de evaluación, garantizando la independencia de ambos tipos de evaluación.

Se suele emplear un tipo de cambio constante a efectos de evalución. Un ejemplo de tabla de cálculo podría ser la siguiente:

4.4 ADJUDICACIÓN Y NEGOCIACIÓN

La fase de licitación concluye con la comunicación oficial según la legislación vigente del país y concluidos los plazos oportunos para reclamaciones se firma el contrato entre las partes.

Bidder 2

Input Data:

Definition Bid price (Mio. euros) Corrected Bid pric e (Mio. euros)

A1 Price Schedule 1: Wind Turbines 116.624.124,81 € 116.624.124,81 € A2 Price Schedule 2: Civil Works 26.459.510,01 € 26.459.510,01 € A3 Price Schedule 3: Electrical Works 16.475.782,36 € 16.475.782,36 € A4 Price Schedule 4: Technical Services 19.036.048,15 € 19.036.048,15 € A5 Price Schedule 5: Scada System 540.506,00 € 540.506,00 € A6 Price Schedule 6: Documentation 40.000,00 € 40.000,00 € A7 Price Schedule 7: Spare Parts, Consumibles, Special Tools6.604.908,00 € 6.604.908,00 €

A8 Price Schedule Grand Summary: 185.780.879,32 € 185.780.879,32 €

SC Service Cost during Defect Liability Period 13.060.892,15 € 13.060.892,15 €

OC Annual Operating Cost (NREA) - € - €

OM6 Anual O&M cost during the first 6 years = (A7)/6 + SC/ 3 + OC 5.454.448,72 € 5.454.448,72 € OME Annual O&M cost escalation starting from the year No. 7 - 0,03na Availability guaranteed by the Bidder 97%

EAnnua Energy Production (AEP) according to IEC 61400 and Tendering Instructions 530.864,200 530.864,200

d Depreciation rate - 0,05Tsize Turbine size (kW) -

NPV Net Present Value

Item Item MWh

0 A8 - A7 - SC 01 OM6 1 Annual Energy Production 530.864,2002 OM6 2 Annual Energy Production 530.864,2003 OM6 3 Annual Energy Production 530.864,2004 OM6 4 Annual Energy Production 530.864,2005 OM6 5 Annual Energy Production 530.864,2006 OM6 6 Annual Energy Production 530.864,2007 OME 7 Annual Energy Production 530.864,2008 OME 8 Annual Energy Production 530.864,2009 OME 9 Annual Energy Production 530.864,200

10 OME 10 Annual Energy Production 530.864,20011 OME 11 Annual Energy Production 530.864,20012 OME 12 Annual Energy Production 530.864,20013 OME 13 Annual Energy Production 530.864,20014 OME 14 Annual Energy Production 530.864,20015 OME 15 Annual Energy Production 530.864,20016 OME 16 Annual Energy Production 530.864,20017 OME 17 Annual Energy Production 530.864,20018 OME 18 Annual Energy Production 530.864,20019 OME 19 Annual Energy Production 530.864,20020 OME 20 Annual Energy Production 530.864,200

NPV of money expenses NPV of MWh generated 10.617.284,000

(Note: Lowest Levelised Specific Generating Cost Wi ns)

Year YearAnnual Expense

Remarks

Bid Price of Price Schedule 1Bid Price of Price Schedule 2

Bid Price of Price Schedule 3

Bid Price of Price Schedule 4

Bid Price of Price Schedule 5

Bid Price of Price Schedule 6

Bid Price of Price Schedule 7

Bid Price (total)

O&M Costs services for defect liability period from Price Schedule 4; Item 4.7Annual cost of NREA for personnel, administration, etc. but without repair, external services, spare parts, consumables

Average based on statistics - same for all turbines

MW.h

Depreciation rate applied in this project

(here only for information)

Mio. Euros

166.115.079,17 € 5.454.448,72 € 5.454.448,72 €

Electricity Generated

5.454.448,72 € 5.454.448,72 € 5.454.448,72 € 5.454.448,72 € 5.590.809,93 € 5.730.580,18 € 5.873.844,69 € 6.020.690,80 € 6.171.208,07 € 6.325.488,27 € 6.483.625,48 € 6.645.716,12 €

241.586.046,71 €

(Simplified) Specific Generation Cost Euros/KWh 0,022754

6.811.859,02 € 6.982.155,50 € 7.156.709,38 € 7.335.627,12 € 7.519.017,80 € 7.706.993,24 €

= +

=n

iii

d

valuesNPV

1 )1(

- 34 - Escuela Técnica Superior de Ing. Industriales (UPM)

Se entiende por negociación el hecho de que, por diversos motivos como, por ejemplo, el avance de la tecnología, la disponibilidad de stock, los cambios regulatorios, o el deseo de matizar alguna clausula contractual, surja por alguna de las dos partes contratantes alguna propuesta de modificación. Esta fase es la idónea para valorarlo y aprobarlo, llegado el caso, ya que al tratarse de un proyecto llave en mano será difícil gestionar una modificación más adelante.

Hay que tener en cuenta que durante la fase previa de evaluación no se puede hacer frente a toda casuística posible pues se pretende establecer una línea base sobre la que poder evaluar en igualdad a todos los candidatos.

Un ejemplo de cambio posible es la evolución de la tecnología de una turbina, entendiendo que desde la publicación de los pliegos hasta el momento de envío de las primeras turbinas al parque pueda pasar más de un año y medio, podría haber ocurrido un cambio generacional de algún modelo y en previsión de tal efecto, se proponga adaptar la propuesta técnica a la nueva turbina.

Como ya se indica anteriormente, en esta fase se deberán repasar los siguientes puntos:

Precio final.

Desviaciones al pliego de licitación aprobadas durante la fase de evaluación.

Claúsulas contractuales.

Orden de prelación de los documentos.

5. GRUPO 3: GESTIÓN DEL CONTRATO Y LOS TRABAJOS DE CONSTRUCCIÓN

Se procede a desarrollar una gestión del contrato según un patrón clásico y extrapolable a la gestión de múltiples tipos de proyectos. Según el organismo americano PMBOK especializado en Gestión de Proyectos, una división clásica sería la siguiente:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 35 -

Este ciclo de vida presenta por lo general unas características concretas que son la causa de que se desglosen las tareas para la gestión del proyecto que se describen a posteriori. Nótese a continuación cuáles son estas características concretas:

Los niveles de costo y dotación de personal son bajos al inicio del proyecto, alcanzando su punto máximo según se desarrolla el trabajo y caen rápidamente cuando se acerca al cierre. Se ve claramente en el gráfico anterior.

La influencia de los interesados, los riesgos y la incertidumbre son mayores al inicio del proyecto y disminuyen durante la vida del proyecto. Se ve claramente en el gráfico a continuación.

La capacidad de influir en las características del producto final sin afectar significativamente al coste es más alta al inicio del proyecto e irá disminuyendo a medida que el proyecto avanza. Se puede observar en el gráfico a continuación.

- 36 - Escuela Técnica Superior de Ing. Industriales (UPM)

Desde el punto de vista del consultor, una gran parte del tiempo se dedicará a la gestión de la integración, ésta incluye todos los procesos requeridos para asegurar que los elementos del proyecto estén coordinados. Realiza un compendio entre los objetivos y las alternativas para satisfacer las necesidades y expectativas de todos los participantes en el proyecto.

No existe una forma única de dirigir los proyectos. El Director de Proyecto debe aplicar sus conocimientos y habilidades para implementar los procesos y así lograr los objetivos del proyecto.

Se debe, por tanto:

Analizar y entender el Alcance (requisitos del proyecto y del producto)

Entender la forma de usar la información para poder transformarla en el Plan para la Dirección del Proyecto.

Realizar las actividades para generar los entregables.

Medir y controlar los aspectos del avance del proyecto. Así se podrán implementar las acciones que resulten más convenientes para cumplir los objetivos del proyecto.

El consultor externo debe conseguir que el proyecto siga su curso correctamente. Gran parte de su trabajo consiste en vigilar que el trabajo se ejecute según lo planeado. La Gestión de la Integración ayuda al trabajo diario del Director de Proyecto.

Este Proyecto sigue un patrón claro como cualquier otro: se inicia, se planifica, se ejecuta y controla y, finalmente, se cierra. Por este motivo, los Grupos de Procesos son muy útiles.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 37 -

Los grupos de procesos se vinculan entre sí a través de los resultados que producen, de esta forma, la salida de un proceso se convierte habitualmente en la entrada del siguiente proceso o corresponde con un entregable del proyecto. Respecto al grupo de planificación, el objetivo es que vaya alimentando al proceso de ejecución a través del plan director del proyecto y los documentos del proyecto, y conforme se avanza, suele ser habitual actualizar el plan y estos documentos.

No se entienden los grupos de procesos como fases de un proyecto, pues cada sub-fase en que se pueda dividir el proyecto deberá tener su iniciación, planificación, ejecución, seguimiento y control y cierre.

En el caso de un proyecto de construcción de un parque eólico, se trata de proyecto extenso que puede abarcar fácilmente dos años, con un patrón repetido varias veces que se puede tratar como sub-proyectos o fases. Las fases o etapas principales del Proyecto pueden denominarse como:

El consultor debe definir el alcance de los trabajos a su cliente que habitualmente es el promotor del Proyecto, para lo cual deberá preparar en base a su experiencia y al pliego de

- 38 - Escuela Técnica Superior de Ing. Industriales (UPM)

licitación, una propuesta técnica y económica. Para planificar los recursos se debe tener en cuenta la estructura de gestión de proyectos de la empresa y el ciclo de vida del Proyecto.

La organización funcional de la empresa tiene relevancia en la gestión del proyecto en que, según se trate de una organización funcional, orientada a proyectos o matricial, el director del proyecto tendrá un determinado poder de decisión. La carencia de poder de decisión convierte al director en un coordinador, junto al hecho de que es un Proyecto en una región remota puede influir en el desarrollo del mismo.

Respecto a las etapas en que se ha dividido anteriormente la fase de Construcción, se describen las características generales de cada una de ellas:

• ETAPA DE INICIACIÓN

Las actividades que se ponen en marcha en este proyecto son las siguientes:

Selección del director del Proyecto.

Determinación de la cultura de la compañía y los sistemas existentes.

Recolección de los procesos, los procedimientos y la información histórica.

División del proyecto en fases.

Comprensión correcta del objetivo del proyecto.

Identifición de los requisitos, los supuestos y riesgos iniciales.

Evaluación del proyecto y su viabilidad con las restricciones dadas.

Creación de unos objetivos medibles.

Desarrollo del acta de constitución del proyecto.

Identificación de los interesados.

Desarrollo de una estrategia de gestión de los interesados

• ETAPA DE PLANIFICACIÓN

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 39 -

Determinación del modo en que se llevará a cabo la planificación.

Determinación de los requisitos detallados.

Creación del enunciado del alcance del proyecto.

Evaluación de la necesidad de adquisiciones.

• ETAPA DE EJECUCIÓN

• ETAPA DE SEGUIMIENTO Y CONTROL

- 40 - Escuela Técnica Superior de Ing. Industriales (UPM)

• ETAPA DE CIERRE

La forma en que se va a relacionar los grupos de procesos con las distintas áreas de conocimiento se representa en una tabla como la que sigue:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 41 -

GRUPOS DE PROCESOS

Área de conocimiento

INICIACIÓN PLANIFICACIÓN EJECUCIÓN SEGUIMIENTO Y CONTROL

CIERRE

Gestión de la integración

Desarrollar Project charter

Desarrollar Plan de Gestión del Proyecto

Dirigir y gestionar la ejecución

Controlar y monitorizar el proyecto

Llevar a cabo el control integrado

Cierre

Gestión del Alcance

Recopilar Requisitos

Definir alcance

Crear la EDT

Verificar alcance

Controlar alcance

Gestión del tiempo

Definir actividades

Secuencia y duración

Crear cronograma

Control cronograma

Gestión de costes

Estimación costes y presupuesto

Control de costes

Gestión de calidad

Crear Plan calidad Gestionar asegurarmiento de calidad

Control de calidad

Gestión de RRHH

Crear Plan de Gestion de RRHH

Adquirir equipo de proyecto y gestionarlo

Gestión de las comunicaciones

Identificar interesados

Plan de comunicaciones

Distribuir información

Gestionar expectativas

Notificar rendimiento

Gestión de Riesgos

Plan de gestión de riesgos

Identificar riesgos

Análisis cualitatio

Análisis cuantitativo

Plan de respuesta

Controlar riesgos

Gestión de las adquisiciones

Plan de Adquisiciones

Llevar a cabo comprar

Administrar compras

Cerrar

5.1 INICIACIÓN

El Órgano Consultor tiene el papel de velar por el cumplimiento del Contrato y los intereses del Promotor. Así mismo, debe asegurar que la calidad del servicio prestado por la Contrata es aquella por la que se le contrata, lo cual se debe revisar continuamente a pesar de ser un

- 42 - Escuela Técnica Superior de Ing. Industriales (UPM)

contrato llave en mano. Por otro lado, debe informar al Financiador del progreso de los trabajos. El consultor debe definir claramente el alcance de sus trabajos al comienzo para así asegurarse que el Promotor puede hacer frente a esta empresa con los recursos propios.

El Consultor define las siguientes acciones y responsabilidades bajo las cuales llevará a cabo su función de control y monitorización del contrato desde su comienzo hasta el fin. En el presente proyecto, el Financiador, al ser a través de un crédito entre ambos países enmarcado en un MoU selecciona y contrata al Consultor para asegurar la adecuada gestión de los recursos económicos. Por este motivo, el Consultor deberá velar también por los intereses del Financiador que difieren sutilmente de aquellos de la Propiedad.

Es importante conocer la infraestructura de cualquier organización interesada en el proyecto, saber cómo se reparten y distribuyen los trabajos y tareas entre las distintas especialidades en que se divide la construcción del parque dentro de la empresa constructora pues será clave para gestionar la información a lo largo del proyecto. La mayoría de las veces, algunos de los departamentos son muy estancos y eso conlleva a comunicaciones infructuosas. Entre los factores ambientales de la empresa se podrían incluir:

Procesos estructura y cultura de la organización.

Normas de la industria o gubernamental.

Infraestructura.

Recursos humanos existentes.

Administración de personal.

Sistemas de autorización de tareas y trabajos.

Condiciones de mercado.

Tolerancia al riesgo por parte de los interesados.

Clima político.

Canales de comunicación establecidos en la organización.

Bases de datos comerciales.

Sistemas de información para la dirección de proyectos.

Es por tanto necesario, conocer las normas administrativas o industriales que aplican, así como las condiciones de mercado. Así mismo, se incluyen en este necesario conocimiento las lecciones aprendidas y la información histórica, estos activos de la organización pueden estar recogidos y documentados en forma de cronogramas, informes completos de riesgos, tablas y datos sobre el valor ganado, etc.

Entre los procedimientos de una organización se incluyen los siguientes que se deben revisar:

Criterios de evaluación de propuestas.

Procesos estándar de la organización, normas, políticas (de seguridad y salud, de ética, de calidad…).

Plantillas empleadas.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 43 -

Requisitos de comunicación.

Requisitos de cierre de proyecto.

Procedimientos de control financiero.

Procedimientos de control de cambios.

Procedimientos de control de riesgos.

Gestión de aprobación de autorizaciones de trabajo.

En este proyecto, se deben compatibilizar procedimientos de la empresa constructora, una entidad privada occidental, con los del organismo promotor, un ente público egipcio. Es decir, orgnizativ y culturalmente distintos, por lo que habrá diferencias que deberán solventarse adaptándose lo más posible a lo que el promotor requiere salvo allí donde haya margen de cambio que se preferirá lo más sencillo, bien porque es un proceso/tecnología ya desarrollado o porque es de más sencilla aplicación. Por norma general, en caso de conflicto, se regirá por lo establecido en el pliego de licitación. Por lo tanto, la figura del consultor tendrá un papel fundamental a la hora de demostrar que ciertas buenas prácticas funcionan y aumentan la probabilidad de éxito del proyecto, es por esto que, junto con el resto del equipo de proyecto, será responsable de determinar qué procesos son apropiados y el grado de rigor adecuado para cada uno.

Es importante, conocer el funcionamiento general de la empresa constructora, por lo que se hace una consideración inicial sobre la jerarquización típica por fases:

La constructora aparece por primera vez al adquirir los pliegos de licitación. En este momento el departamento comercial de la empresa constructora aprueba la oportunidad comercial y será el encargado de la preparación de la oferta técnica y económica que se presentará al órgano competente. El alcance de los trabajos de este departamento, con el que se trabaja durante el proceso de licitación, suele finalizar con la adjudicación del proyecto, momento en que se transfiere la documentación contractual a los departamentos de operativos de la compañía para que planifiquen los trabajos de construcción de acuerdo a la oferta presentada.

Es habitual dividir los trabajos de construcción de un parque eólico en dos grupos importantes, la obra civil y la construcción. Se entiende la obra civil, todos aquellos trabajos auxiliares necesarios para el montaje de las turbinas, por tanto, es habitual incluir dentro de este capítulo la parte eléctrica. Por otro lado, la construcción, se puede dividir a su vez en dos subcapítulos que son la fabricación y el montaje. En la fabricación se incluyen los trabajos de diseño y certificación, así como la producción en fábrica de todos los componentes y su preparación y embalaje para el transporte, mientras que en el montaje se incluyen los trabajos de acopio de materiales en obra o en puerto de destino, su transporte al lugar de construcción, ensamblaje de estos, energización, pruebas finales y puesta en marcha.

Posterior a la construcción, existe otro equipo que se encargará del mantenimiento y operación del parque que, dependiendo del tipo de contrato que se lleve a cabo, podrá ser gestionado por la empresa que ha construido el parque, por otra distinta o por el cliente. En este caso, se establecen 3 años de garantía (Defect Liability Period) durante los cuales, la empresa constructora se encargará de la gestión del parque y estará sujeta a una producción energética mínima de acuerdo al rendimiento de las turbinas, estableciéndose una penalización económica por no cumplimiento.

- 44 - Escuela Técnica Superior de Ing. Industriales (UPM)

El hecho de activar los procesos de iniciación al comienzo del proyecto ayuda a mantener centradas las necesidades iniciales del negocio para el que el proyecto está pensado. En general, involucrar a los clientes y demás interesados desde el proceso de iniciación mejora la probabilidad de contar con la aceptación de los entregables y con la satisfacción del cliente y resto de interesados, en consecuencia, la comunicación será uno de los aspectos sobre el que prestar gran atención para que esto se cumpla.

Se identifican los siguientes criterios de actuación como parte del proceso de iniciación del proyecto de nuestro parque eólico y se crea el acta de constitución del proyecto con la información que se obtenga de ellos.

Formalizar el proyecto con la carta de proyecto

Definir responsabilidades

Identificar cómo afectan al proyecto la disponibilidad de recursos y el presupuesto.

Definir las fases del proyecto.

Identificar a los interesados.

Definir criterios de éxito.

Se describe a continuación cómo aplicaría en el proyecto la búsqueda de los mencionados criterios de actuación

5.1.1 FORMALIZAR EL PROYECTO

Como resultado de la adjudicación del Proyecto se dispone de diferentes documentos que serán vinculantes a lo largo de la vida del Proyecto cuyo orden de prelación en términos de prioridad en caso de conflicto entre las partes habrá sido definido previamente y que se muestran a continuación en orden decreciente de prioridad:

1. Acuerdo de contrato

2. Calendario de pagos

3. Notificación de adjudicación

4. Clarificaciones técnicas y financieras realizadas durante la fase de licitación

5. Clausulas especiales del Contrato

6. Clausulas generales del Contrato

7. Pliego de licitación

8. Oferta técnica y económica del licitador

Este documento deberá ser firmado entre personal con poder de firma de la empresa adjudicataria del contrato de construcción del parque (Contratista principal) y el director del organismo promotor del parque, en este caso NREA, en presencia del consultor externo.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 45 -

En este caso, se establece la reunión de lanzamiento de proyecto o “kick-off meeting” como fase de iniciación del proyecto. Ésta será una primera reunión en la que estarán presente todos los interesados relevantes. En ella, se recordarán los criterios de gestión del proyecto y se establecerán algunas otras directrices no recogidas en la documentación contractual.

Se definen los aspectos más relevantes que se deben contemplar en el orden del día de esta primera reunión que culminará con el acta de constitución del proyecto:

Definición de la fecha de comienzo. Para lo cual se requerirá una carta de activación del Proyecto firmada por responsables de ambas partes.

Definir los entregables del proyecto.

Detallar todos los responsables del proyecto, definir sus funciones y aportar los datos de contacto. Para ellos se realiza una matriz organizativa del personal.

Consideraciones respecto a la gestión documental y procedimiento de control de cambios.

Recopilación de información histórica de proyectos anteriores, base de conocimiento y lecciones aprendidas.

5.1.2 DEFINIR RESPONSABILIDADES

El alcance de los trabajos de este contrato deberá abarcar la construcción, la puesta en marcha, la operación y el mantenimiento. Esta última fase por un período de 3 años.

A tal efecto, deberá establecerse un documento de aspectos que quedarán amparadas por el servicio de consultoría y, definir claramente las fronteras con respecto a aquello que, si bien necesario, no se considerará dentro del servicio a prestar.

Por ejemplo, un aspecto que debe aclararse en esta fase es la figura responsable de los trabajos de supervisión de la Seguridad y Salud en la obra, ya que en este caso, será necesaria una formación específica, deberá estar amparado por un seguro de responsabilidad civil acorde al cargo, debe ser reportado por los técnicos encargados de la implementación y, a su vez, deberá reportar regularmente además de las incidencias leves o graves acaecidas en la obra tanto al órgano supervisor como a todos los interesados. En definitiva, unas funciones que no pueden quedar sin nominación y un alcance sin que esté claramente definido.

Una descripción de responsabilidades de alto nivel podría ser esta:

Revisión de documentación técnica.

Inspección de la fabricación de las turbinas.

Recepción e inspección de los equipos.

Verificación de las facturas emitidas por el contratista.

Supervisión de la ejecución de los trabajos en zona.

Reuniones de seguimiento y control.

- 46 - Escuela Técnica Superior de Ing. Industriales (UPM)

Auditorías de calidad.

Coordinación con los contratistas responsables de los trabajos de obra y puesta en marcha de la subestación.

Seguimiento del presupuesto y previsión de pagos.

Aprobación de la puesta en marcha.

Supervisión de la operación.

Certificación de aceptación final.

5.1.3 DESCRIPCIÓN DE LOS PARTÍCIPES DEL PROYECTO

Es de crucial importancia identificar a todos los actores, partícipes e interesados en el Proyecto, así como entender qué los motiva y cuál es su papel principal. Así mismo, hay que entender que todos ellos tendrán motivaciones secundarias y posiblemente, en tanto en cuanto son personas u organizaciones, algunas de las acciones estarán condicionadas por su entorno.

Además, una vez identificados todos los actores, se debe establecer la estrategia de comunicación hacia/desde ellos.

Es interesante también recabar la mayor información posible acerca de su motivación porque esta información además ayudará en el posterior análisis de riesgos.

A continuación, se enumeran los partícipes y se describe su rol en el proyecto:

1. Financiador: El Ministerio de Economía y Competitividad – Gobierno de España

Interés principal: En primer lugar, velar por la adecuada gestión de los recursos económicos y en segundo lugar, garantizar que se cumplen las condiciones del contrato de construcción del parque eólico objeto del MoU entre ambos países.

2. Propiedad/Promotor/Cliente/Usuario: La Autoridad de Energía Nueva y Renovable (NREA por sus siglas en inglés) - La República Árabe de Egipto.

Interés principal: Que el proyecto se entregue en plazo, tiempo y conforme a las calidades recogidas en el pliego de prescripciones de licitación. Además, contratar la construcción de la subestación a tiempo para su conexión.

3. Contratista Principal:

Interés principal: Ajustarse lo máximo posible a la solución cotizada y presentada en su oferta, coordinar el ritmo de trabajo con el calendario de pagos para disponer de Flujo de

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 47 -

Caja Operativo en todo momento y obtener el máximo beneficio, gestionando lo más eficientemente posible sus recursos, así como las indefiniciones del proyecto.

4. Consultor (Oficina Dirección Proyecto): Designado por España a través de MINECO

Interés principal: Velar por los intereses de ambos países y, en concreto, por el adecuado cumplimiento del contrato.

5. Director del Proyecto: designado por la organización ejecutante para alcanzar los objetivos del proyecto. Se trata de un rol prestigioso, lleno de desafíos, con una responsabilidad significativa y prioridades cambiantes. Requiere de flexibilidad, buen juicio, fuerte liderazgo y habilidades para la negociación, así como de un conocimiento sólido de las prácticas de dirección de proyectos. Un director de proyecto debe ser capaz de comprender los detalles del proyecto, pero debe dirigirlo desde una perspectiva global. Como responsable del éxito del proyecto, el director del proyecto tiene a su cargo todos los aspectos del proyecto, que abarcan, entre otros: desarrollar el plan para la dirección del proyecto, así como todos los planes complementarios relacionados, o mantener el proyecto encaminado en términos de cronograma y presupuesto, o identificar, dar seguimiento y responder a los riesgos, y o proporcionar informes precisos y oportunos sobre las métricas del proyecto. El director del proyecto es la persona líder responsable de la comunicación con todos los interesados, en particular con el patrocinador del proyecto, el equipo del proyecto y otros interesados clave. El director del proyecto ocupa el centro de las interacciones entre los interesados y el proyecto en sí.

6. Órganos de Certificación: Necesarios en diversos estados del Proyecto para la verificación independiente de los resultados que presente el Contratista Principal.

7. Subcontratas: Por diversos motivos, tales como la especialización, la reducción de costes, la simplificación de los trabajos, el cumplimiento de la normativa existente y la adecuación al país donde se lleven a cabo los trabajos, puede ser muy interesante la subcontratación de ciertos trabajos. De este modo, se podrán encontrar diversas empresas, de diversas nacionalidades, en el mismo proyecto, siendo un reto adicional, la sincronización de todas ellas en tiempo, debiendo prestarse especial atención a la definición de los diversos alcances de trabajos para que no quede ningún vacío entre ellas ni se solapen.

La elección de las subcontratas en este proyecto requiere de una preselección a nivel de presentación de ofertas, quedando sujetas a aprobación por parte del Promotor y una segunda selección durante la fase de ejecución en función del perfil que más se ajuste en su momento a las necesidades de la obra.

8. Empresa de Control de Calidad. Agente externo independiente y certificado que valida la calidad necesaria acorde a unos estándares internacionales y conforme a unos procedimientos establecidos.

9. ICO y Central Bank of Egypt: Instituciones bancarias a través de las cuales se organizan los pagos y cobros entre ambos países.

- 48 - Escuela Técnica Superior de Ing. Industriales (UPM)

10. Autoridades locales (EETC Egyptian Electricity Transmition Company, autoridades portuarias).

EETC: Se trata de Egyptian Electricity Transmition Co., es la propietaria y gestora de la infraestructura eléctrica del país. Su papel principal será la construcción de una subestación eléctrica donde se conectará el parque. Requiere de una buena planificación y definición de los trabajos pues se trata de contratos con alcances complementarios cuya ejecución debe ser tal que la subestación esté lista en el momento exacto en que las distintas líneas eléctricas estén preparadas para su puesta en marcha y posterior energización de la instalación.

Autoridades aduaneras: Tanto española como egipcia, pues aproximadamente el 80% del valor material del proyecto se importa por barco desde España. Prácticamente todo exceptuando las torres y el cable eléctrico.

11. Servidumbres. Empresas que directa o indirectamente tienen algún derecho sobre la propiedad objeto de la construcción.

Petroleum Company: Esta empresa dispone de un gaseoducto que atraviesa el parque y deberá tenerse en cuenta en la definición de los viales de acceso que atraviesen aquel.

En segundo lugar, dado que no todos los interesados tienen el mismo impacto en el proyecto, se puede identificar el apoyo potencial de cada uno y clasificarlos para definir una estrategia de aproximación y gestión de las comunicaciones específica. Se recomienda realizar este análisis en el caso de grandes interesados para priorizar y gestionar sus expectativas. Se realiza clasificando según una matriz de poder/interés, agrupando a los interesados en cuatro grupos basándonos en su autoridad y preocupación por el proyecto de la forma siguiente y gestionando, en consecuencia, la atención necesaria según se muestra a continuación:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 49 -

Del mismo modo, se podría llevar a cabo una matriz de poder/influencia o de influencia/impacto o de prominencia, donde se clasificaría según el poder, urgencia y legitimidad.

5.1.4 DEFINIR LAS FASES DEL PROYECTO

Se han dividido los trabajos en tres fases diferenciadas:

• Fase I: Construcción. Separados a su vez en dos etapas.

o Etapa 1: A realizar en oficina y en los centros destinados a la fabricación de los distintos componentes de las turbinas. No requiere desplazamiento al lugar de construcción del parque. La mayoría serán trabajos previos a la construcción o que se ejecutan en paralelo a las actividades de construcción, como por ejemplo la obra civil.

o Etap 2: Se lleva a cabo en el emplazamiento donde se construirá el parque.

• Fase II: Puesta en Marcha.

• Fase III: Periodo de Garantía. Durante esta fase, de duración 3 años, se gestionará además el parque.

- 50 - Escuela Técnica Superior de Ing. Industriales (UPM)

5.1.5 ESTABLECER OBJETIVO Y DESCRIPCIÓN

• Fase I: Construcción

o Etapa 1

Esta etapa está orientada a cubrir todas aquellas actividades relacionadas con la supervisión de los diseños finales elaborados por el contratista, la planificación, la fabricación de las torres y su envío a punto final en Egipto.

Actividad: Revisión de documentación técnica

Se revisará el Diseño Técnico final asegurando que se adecua a los requisitos definidos por el Promotor, incluyendo:

Estudios geotécnicos y topográficos

Micro-sitting final

Diseños de obra civil

Diseños eléctricos y mecánicos

La revisión de documentación técnica incluirá adicionalmente:

Documentación de las turbinas, incluyendo manuales de operación y mantenimiento y del sistema SCADA.

Método de erección de las torres.

Informes geotécnicos y de cimentación de cada una de las localizaciones específicas de las turbinas

Diseño de las cimentaciones y ensayos de verificación

Documentación sobre los diseños eléctricos.

Planos de los equipamientos y trabajos eléctricos.

Diseño de las cimentaciones de las package stations.

Planos de construcción de edificaciones, carreteras y viales de acceso.

Cálculos de cargas estáticas.

Documentación de los equipos eléctricos y electrónicos suministrados

Planos de equipos y trabajos eléctricos

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 51 -

Actividad: Inspección de la fabricación de las turbinas

Se llevarán a cabo visitas de inspección a las fábricas de producción de los distintos elementos que componen la torre, tales como el buje, las palas, la góndola, los tramos de torre y otros subcomponentes, previamente a su envío al puerto de destino.

De acuerdo a las prácticas habituales, las visitas consistirán en inspecciones previas al embarque que se centrarán en evaluar la calidad de acuerdo al programa de fabricación. Se verificará que una unidad seleccionada al azar cumple con las especificaciones recogidas en el contrato.

Estas inspecciones en fábrica se realizarán de forma puntual y se considerarán puntos de control del proceso de fabricación de los equipos.

Actividad: Recepción e inspección de los equipos.

Se supervisará el envío a destino de todos los equipos asegurando que se reciben de acuerdo con los documentos de embarque. Para los equipos suministrados por proveedores locales se realizarán así mismo inspecciones aleatorias en destino

Actividad: Verificación de las facturas emitidas por el contratista

Las facturas correspondientes a esta fase de los trabajos serán revisadas y se remitirán al promotor y al financiador con las consideraciones oportunas en cada caso.

o Etapa 2.

Esta segunda etapa está orientada a cubrir todas aquellas actividades relacionadas con la supervisión de las obras de construcción del proyecto.

Actividad: Supervisión de la ejecución de los trabajos en zona

Durante la construcción se realizarán labores de Gestión de Proyecto garantizando la supervisión técnica de las obras, para ello se llevarán a cabo las siguientes tareas específicas:

Supervisión de la ejecución del contrato, asegurando el cumplimiento de las especificaciones técnicas del mismo.

Supervisión de la ejecución de los trabajos en zona incluyendo la revisión de los diseños, auditorías de calidad y eléctricas.

Verificación de las facturas emitidas por los contratistas.

- 52 - Escuela Técnica Superior de Ing. Industriales (UPM)

Seguimiento de la ejecución del presupuesto y de los pagos previstos.

La asistencia técnica durante la supervisión de los trabajos de construcción abarcará, aunque no limitada, las siguientes partes de la obra: cimentaciones, carreteras/accesos, edificaciones y trabajos eléctricos.

Para ello será necesario desplazar a personal de la compañía a la obra para garantizar un control continuo.

Actividad: Auditorías de calidad

Se revisarán los procedimientos de Aseguramiento de la Calidad propuestos por el Contratista, así como su implementación, control y modificaciones, asegurando que cumple con las especificaciones técnicas.

Actividad: Coordinación con los contratistas responsables de los trabajos de obra y puesta

en marcha de la subestación.

Se colaborará con Egyptian Electricity Transmission Company (EETC) durante todo el proyecto asegurando la coordinación permanente con el Promotor y el Contratista.

Actividad: Verificación de las facturas emitidas por el contratista

Se asesorará a NREA respecto a la emisión de los certificados de aceptación provisionales para cada lote de trabajo.

Actividad: Seguimiento del presupuesto y previsión de pagos.

Se analizará periódicamente el presupuesto del proyecto y su estado de avance de acuerdo a la planificación del proyecto. Las desviaciones serán estudiadas en detalle y se propondrán acciones de mitigación que permitan reducir los riesgos identificados.

Actividad: Reuniones técnicas semanales (incluyendo agenda y minutas)

Se asistirá a las reuniones semanales de obra, preparando la agenda de las mismas y las minutas una vez realizadas.

Actividad: Informes mensuales.

Se organizarán reuniones mensuales con las partes interesadas con el fin de tratar regularmente las siguientes cuestiones generales:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 53 -

Actualización del calendario de ejecución

Cumplimiento del Presupuesto

Incumplimientos del Contrato

Acciones de mitigación de riesgos

• Fase II: Commissioning

Las inspecciones finales previas a la transferencia de la planta eólica se centrarán en comprobar el estado de la misma y el nivel de completitud de los trabajos realizados. Para cada lote (entendiendo por lote, todas aquellas particiones del proyecto a los que aplica cada una de las pruebas de puesta en marcha) se establecerá una lista de comprobaciones que derivarán en aceptaciones totales, parciales y sus correspondientes acciones correctivas de mayor o menor impacto. Los certificados de aceptación provisionales serán emitidos una vez ejecutadas esas correcciones y aceptados todos los elementos de la lista de comprobación.

La supervisión durante toda la fase de commissioning se llevará a cabo por parte de personal experto y cualificado. Cada vez que el Contratista estime que se ha completado una parte de un lote determinado, se realizará la inspección pertinente. Un certificado de aceptación será emitido si la inspección es satisfactoria y no se detectan deficiencias graves.

Adicionalmente a las actividades de puesta en marcha existen otra serie de tareas asociadas que se incluyen también durante esta fase:

Revisión de los protocolos y los procedimientos desarrollados por los fabricantes de las turbinas para verificar que cumplen con lo especificado en el contrato.

Supervisión y repetición si fuera necesario de las pruebas de recepción y aceptación de una selección aleatoria de turbinas para garantizar su correcto funcionamiento.

Verificación de los WTG mediante test de carga de acuerdo a los resultados de los “Test on Completion Certificate”.

Revisión y verificación del sistema SCADA de control remoto.

Emisión del certificado de aceptación provisional o del completo para cada lote.

Tras la aceptación provisional, elaboración del paquete completo de documentación técnica incluyendo:

• Especificaciones técnicas del fabricante

- 54 - Escuela Técnica Superior de Ing. Industriales (UPM)

• Protocolos de ensayos del fabricante

• Certificados firmados usados durante los procesos de aceptación total y/o parcial

• Resumen del estado de las garantías y avales

• Manuales de operación y mantenimiento

Esta documentación deberá estar organizada por turbina y por lote.

Respecto a los trabajos eléctricos, las tareas de puesta en marcha incluirán:

Revisión de los ensayos propuestos y del plan de transferencia

Supervisión de las principales pruebas de cableado y protecciones, especialmente de aquellos relacionados con la limpieza y la seguridad.

• Fase III: Defect liability period.

Se supervisará la operación de la planta eólica y el mantenimiento de la misma por parte del Contratista durante los tres años de duración de la garantía. Así mismo, gestionará las posibles reclamaciones durante la ejecución del contrato.

Durante este tiempo, el contratista deberá asegurar el correcto funcionamiento de las turbinas.

Las principales tareas a desempeñar serán:

Verificación del nivel de cumplimiento de los parámetros de producción, disponibilidad y fiabilidad de la red

Supervisión de los trabajos de operación y mantenimiento que lleva a cabo el contratista para asegurar el correcto estado de uso de los equipos.

Seguimiento y tramitación con el contratista de la reparación de posibles incumplimientos por fallas o defectos

Reporte cada seis meses del estado de operación

Preparación de las inspecciones durante el período de garantía y de la certificación y aceptación final.

La monitorización de la operación del parque eólico durante el período de garantía es una de las labores críticas del proyecto ya que persigue garantizar el adecuado proceso de transferencia.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 55 -

Para ello, se realizarán visitas periódicas a la instalación que se acompañarán de los informes de estado posteriores. Se involucrará al promotor en el proceso de aprobaciones parciales y subsanación de reclamación, fallos y defectos con el objeto de facilitar la firma de la aceptación final por parte de ésta una vez llegado el momento de la transferencia.

Así mismo, Se asume la responsabilidad de chequear la correcta operación del parque y de la correcta ejecución de los servicios de mantenimiento del mismo por parte del contratista durante todo este período en el caso de que alguna irregularidad fuese detectada por parte del promotor. En ese momento, un consultor se desplazaría al parque para solicitar al contratista la documentación pertinente y solicitar la realización de las pruebas oportunas. Los datos de las mismas serían almacenados por el promotor y estarían a disposición cuando se estime necesario. Aquellas turbinas cuya operación estuviese por debajo de los estándares adecuados, serán revisadas caso a caso mediante un protocolo elaborado por el contratista bajo la supervisión del consultor, que deberá ser ejecutado de forma previa al desplazamiento a zona, para disponer de esos resultados con antelación.

Se manejarán dos tipos de procedimientos:

Para las turbinas de manera aislada

Para el parque en su totalidad.

Las inspecciones consistirán en revisiones acústicas y visuales de los componentes principales de cada turbina con especial atención a aquellos cuyos parámetros de salida; ruidos o vibraciones sean inusuales, tengan evidencia de corrosión, fracturas, pérdida de líquidos o fatiga de algún tipo, presenten temperaturas excesivas, baja lubricación o juntas dañadas. Los componentes serán inspeccionados en su interior en la manera de lo posible y se tomarán muestras o ensayos si fuera necesario. Se informará inmediatamente después al promotor si hubiese cualquier tipo de anomalía.

Durante el período de garantía, se elaborará un informe trimestral con las incidencias del período así como con las recomendaciones asociadas a los posibles problemas detectados para garantizar un tiempo de respuesta aceptable de cara a la mitigación o solución del problema.

Actividad: Certificado de aceptación final

Por ser ésta una de las partes críticas de la presente oferta, se ha dedicado un espacio específico a definir los trabajos que se realizarán asociados a este proceso.

Se apoyará y asesorará técnicamente durante las negociaciones entre Promotor y Contratista para garantizar que la transferencia de la planta se realiza con éxito.

- 56 - Escuela Técnica Superior de Ing. Industriales (UPM)

Se participará en todas las inspecciones finales junto al Promotor para garantizar que la planta opera de forma adecuada y que los posibles fallos o incumplimientos que se hubieran ido detectando durante el período de garantía han sido subsanados y solucionados en su totalidad.

En ese sentido, turbinas, sistemas de distribución eléctrica, accesos, viales, edificios y sistemas de control (SCADA) serán inspeccionados y revisados.

Un experto independiente de un organismo certificador cualificado propuesto (y financiado) por el contratista, aprobado por el promotor y supervisado por el consultor participará también en las inspecciones de certificación final, garantizando que una tercera parte externa valida también la transferencia.

Se emitirá un informe final con todas las consideraciones correspondientes al proceso de transferencia.

5.2 PLANIFICACIÓN

Para una buena gestión del Proyecto, desde el punto de vista de la gestión se deben entender bien las fases de construcción, en el caso de un parque eólico, y desgranarlo en la mayor cantidad de subactividades posibles que, siendo aún un nivel de detalle manejable, permita establecer las especialidades necesarias, entendidas como disciplinas de la ingeniería, con que va a ser necesario contar para afrontar el proyecto. Así, puede ser necesario que uno se plantee subcontratar algunos de los servicios si no se dispone del conocimiento necesario, bien sea porque no lo hay en la empresa o no está disponible.

Es importante ser consciente del entorno en que se va a desarrollar el proyecto, pues afectará al rendimiento de éste. En el caso que nos ocupa, hay que tener en cuenta, que se trata de un Proyecto que se lleva a cabo en un país de mayoría musulmana, lo cual afecta significativamente en dos aspectos relativos a la jornada laboral, pues los viernes es su día sagrado y, por tanto, festivo. Este hecho afecta a las relaciones internacionales pues se reducen a cuatro los días laborables que se comparten con Occidente (por ejemplo, al importar material o solicitar asistencia externa).

También tiene un gran efecto que debe considerarse el mes de Ramadán porque es práctica habitual el ayuno diario (tampoco se bebe agua) por lo que se produce una caída de rendimiento a lo largo del mes. Durante el día es habitual que se trabaje hasta las 12 de mediodía como muy tarde.

Adicionalmente, deben considerarse aspectos culturales. Una característica es que las decisiones se lleven a cabo tras múltiples reuniones, donde se tratan incluso aspectos de menor importancia que provocan que la reunión se alarge en el tiempo. Normalmente, se requiere de mucha gente en una misma reunión pues se hace partícipe a todo el que tiene algo que decir, a esto debe añadirse que hay cierta reticencia a tomar la decisión final pues se teme esa responsabilidad, suelen ser decisiones mancomunadas en la que es necesaria la figura del asistente externo. Debe añadirse a todo ello la barrera del idioma.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 57 -

Por lo general, el ambiente en las reuniones es amable y ciertamente, se caracterizan por seguir al pie de la letra lo que rezan los contratos y documentos legales. No conciben sobrecostes en un proyecto de tipo llave en mano y cualquier modificación al mismo debe estar debidamente justificada y no ser causa nunca de posteriores sobrecostes.

Este tipo de proyectos en los que se trabaja con personal expatriado debe también tenerse en cuenta aspectos regulatorios relativos al Ministerio de Trabajos y los convenios aduaneros de los países relativos a las personas. En Egipto salvo que se reúnan ciertas condiciones, no se permite la estancia en el país por motivos de trabajo por períodos superiores a un mes, lo que conlleva tener en cuenta rotaciones de personal.

Por otro lado, la ubicación y el momento de construcción del parque tienen un añadido fundamental ya que se trata de una zona aislada en un período revuelto políticamente con ocurrencia de diversos atentados terroristas.

Con el documento de requisitos y la oferta técnica se dispone de un proyecto básico en el que se recoge a nivel de detalle suficiente el alcance de los trabajos, las actividades, el cronograma, los costes, las necesidades de adquisiciones, etc. Así que en esta fase de planificación se creará un Plan Director de Gestión del proyecto que nos permita dar seguimiento al éste según avanza.

5.2.1 PLAN DIRECTOR DE GESTIÓN DEL CONTRATO O PROYECTO (PDGC)

El PDGC es un documento en el que se presenta la estrategia de gestión de la suma de procesos que componen cada área de conocimiento. Es toda una declaración de intenciones sobre cómo definir, planificar, gestionar, seguir y controlar el alcance de los trabajos, de los costes, de la calidad, etc. El plan de gestión del proyecto es una función de integración pues intenta cohesionar los distintos planes del proyecto, como por ejemplo el de:

Gestión de Requisitos: donde se indique cómo gestionarlos y controlarlos.

Gestión de Cambios.

Gestión de la configuración: donde se recojan los cambios en los entregables del proyecto.

Mejora de los procesos.

Creación del cronograma y línea de coste: con respecto a lo cuales se puede evaluar el rendimiento del proyecto.

El PDGC se le presentará a las partes interesadas para ayudar a tomar conciencia del esfuerzo que se va a llevar a cabo durante la ejecución de los trabajos para garantizar el éxito del proyecto. Para su creación, se habrá tenido en cuenta la definición de requisitos, el registro de interesados, la documentación requerida, la lista de actividades, el registro de riesgos, etc.

El plan para la dirección del proyecto incluye en particular el ciclo de vida del proyecto, el modo en que se ejecutará el trabajo el trabajo para alcanzar los objetivos del proyecto o las técnicas que se emplearán para llevar a cabo los procesos que se aplicarán en cada fase.

- 58 - Escuela Técnica Superior de Ing. Industriales (UPM)

5.2.1.1 ORGANIZACIÓN Y RECURSOS

En términos generales, este servicio podría prestarse en las siguientes condiciones:

- Presencia permanente en zona de dos ingenieros.

- Personal internacional (no local).

- 4 ingenieros en plantilla para cubrir rotaciones ya que el visado de trabajo se hace por un mes que se debe renovar saliendo del país.

- Apoyo ingeniería desde servicios centrales con el personal que no está desplazado al lugar de construcción.

- Formación de los ingenieros en obra civil, electricidad y máquinas eléctricas. Todos ellos con experiencia en proyectos de construcción de parques eólicos.

- No será necesario subcontratar ningún servicio.

Un calendario de rotaciones podría ser algo así, para un período de 3 meses.

Se debe poner en marcha con antelación suficiente la gestión de los recursos humanos que incluirá aspectos como:

- El proceso de selección del equipo.

- Adaptación de la política de la empresa al entorno en particular.

- Planificación de las estancias.

- Estudio de los desplazamientos a obra.

- Gestión de la seguridad física durante el total de la duración del proyecto, incluye acuerdos con empresas de seguridad, información a la embajada, análisis del entorno, etc.

Se puede planificar el equipo apoyándose en el juicio de expertos y con la información que se obtiene del desglose de las actividades del proyecto en paquetes de trabajo de primer orden.

5.2.1.2 PLANIFICACIÓN DE ACTIVIDADES

Una adecuada planificación de los trabajos requiere un desglose de las actividades del proyecto desde el nivel más amplio que es el proyecto en sí hasta un nivel manejable que permita la asignación de de tareas individualmente, así como programarlas en el tiempo.

X J V S D L M X J V S D L M X J V S D L M X J V S D L M X J V S D L M X J V S D L M X J V S D L M X J V S D L M X J V S D L M X J V S D L M X J V S D L M X J V S D L M X J V S D L M X

Día del Mes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 # 19 20 21 22 23 # 25 26 # 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ## 19 20 21 22 23 24 25 ## 27 ## 29 30 31 1 2 3 4 5 6 7 8 9 # # # # 14 15 # # # # # 21 # # # # # # 28 # # #

Ingeniero 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Ingeniero 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Ingeniero 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Ingeniero 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Apoyo extra

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

JUNIO JULIO AGOSTO

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 59 -

A esta técnica se la denomina estructura de desglose de trabajos (EDT o por sus siglas en inglés WBS). Se verá a continuación en que consiste y cómo se puede aplicar a este proyecto en concreto.

Un aspecto necesario para poder planificar y garantizar un adecuado control y seguimiento de los trabajos es la realización de un diagrama de Gantt. Un cronograma donde se desglosen las actividades de construcción del parque donde poder estudiar la duración de cada una y la vinculación entre ellas.

- 60 - Escuela Técnica Superior de Ing. Industriales (UPM)

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 61 -

5.2.1.2.1 PAQUETES DE TRABAJO

Crear la EDT consiste en subdividir los entregables y el trabajo de todo proyecto en unas unidades más pequeñas, que resulten además más manejables.

La EDT es una descomposición jerarquizada que está basada en aquello que se debe ejecutar en el proyecto para conseguir lograr los objetivos del proyecto. El paquete de trabajo es el nivel más bajo de la EDT, entendido el trabajo como referido a las salidas del proyecto.

La EDT organiza y define el alcance total del proyecto y representa el trabajo especificado en la declaración del alcance del proyecto. Se subdivide el trabajo hasta conseguir niveles que puedan mostrar resultados verificables. Se encuentra estructurado como un esquema u organigrama en el que cada entregable tendrá un grado de descomposición diferente. No se omite nada y no se contempla hacer trabajo que no sea necesario.

Se definen a continuación los paquetes de trabajo de este proyecto:

1. EDT de primer orden:

2. EDT de segundo orden:

- 62 - Escuela Técnica Superior de Ing. Industriales (UPM)

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 63 -

5.2.1.2.2 LISTADO DE ENTREGABLES Y CRITERIO DE ACEPTACIÓN

A lo largo del Proyecto se elaborarán una serie de documentos que conviene codificar y acordar para su fácil gestión (almacenamiento y localización). La metodología que se explica a continuación permite conocer a simple vista el tipo de documento, la versión y en caso necesario la fecha de creación.

La lista de entregables que se muestra a continuación son algunos de los documentos típicos que se crearán a lo largo del Proyecto, si bien existen muchos más que pueden seguir la misma regla básica de creación. Todos los tipos de documentos deberán recogerse en esta tabla que debe actualizarse a lo largo del Proyecto.

TIPO DE INFORME CODIFICACIÓN REGULARIDAD

Quality Management Plan QMP-Vxx.yy Al comienzo

- 64 - Escuela Técnica Superior de Ing. Industriales (UPM)

TIPO DE INFORME CODIFICACIÓN REGULARIDAD

Monthly Report MR-Vxx.yy Monthly

Final Report FR-Vxx.yy Al final

Minutes MIN-ZZZ-Vxx.yy Monthly

Progress Report PR-ZZZ-Vxx.yy Monthly

Change Order CO-ZZZ-Vxx.yy Puntualmente

Document review DR-ZZZ-Vxx.yy Puntualmente

……………

Leyenda:

ZZZ= dia reunion, escrito como sigue: mes-día-año (p.e. 01232012)

V= significa “Versión”

xx= número de versión

yy= número revisión (de cada versión)

Documentos internos: Son todos aquellos eleborados para uso interno, bien porque son borradores o porque son de uso confidencial.

Documentos externos: Son todos aquellos que se elaboran para distribución entre los interesados y de uso público, por ejemplo las minutas de la reunion.

En esta fase del Proyecto conviene recoger todos los documentos que vayan a generarse durante la duración del proyect, bien sea porque están recogidos en el document de licitación o porque se acuerde su elaboración. A nivel contractual, se puede recoger una lista como la siguiente:

Wind Farm Project

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 65 -

RESUMEN DE TAREAS

RESTRICCIÓN CONTRACTUAL

CRITERIO DE ACEPTACIÓN

Contract Award

Contract signed

Firmado

approval 5. CVs of key personnel

Cumplimiento experiencia

review 6. Contractors Organization Chart

Nivel de definición

review 1. Quality assurance manual

Presentación

review 10. Training Plan

not later than three (3) months after contract award

• Vol II. Employer's requirements. Sect.1. Tec Specs.14.6 Training seasons content. (pag213): Contractor is responsible for content and requirements to pass the training related to all Employer O&M personnel Training Sessions. The above requirements shall be explained and outlined by Contractor to Employer, his representatives and his on site O&M Personnel

NTP Effective (Commencement Date)

Contract signed, basic engineering approved, necessary permits and authorizations issued and NTP payments received and accounted

Presentado

review 13. During the implementation phase: Biweekly Contractors reports on the progress of the project (Monthly progress report)

within 30 calendar days from the Commencement Date,

• Vol III. Contractual Docs. Sect.2. Special conditions. 8. Schedule Submittals Reports (pag759): 90 Day/Daily Engineering Schedule

within 30 calendar days from the Commencement Date and monthly

• Vol III. Contractual Docs. Sect.2. Special conditions. 9. Contractor Reports (pag 760): Plant Fabrication and shipping Progress Report

- 66 - Escuela Técnica Superior de Ing. Industriales (UPM)

thereafter

Thirty days prior to start of work at the Site

• Vol III. Contractual Docs. Sect.2. Special conditions. 8. Schedule Submittals Reports (pag759): 90 Day/Daily Construction Schedule

approval 3. Topographical survey.

within 4 weeks after entering into force of the contract

Vol II. Employer's requirements. Sect.1. Tec Specs. 5. Civil Works. 5.3. Detailed Topographical Survey and Geo-Technical Survey (pag 177) The Contractor shall carry out a detailed geo-technical investigation for each WEC site and shall check the results during an open pit inspection by an qualified expert. 5.4.WEC Foundations (pag 177). Based on these results of the geotechnical investigations to be carried out within 4 weeks after entering into force of the contract the Contractor has to design the relevant foundation types being subject for certification. The foundation design shall be certified by an accepted independent sworn expert.

approval 4.Detailed design drawings of the complete wind park.

latest 10 weeks after commencement date

• Vol II. Employer's requirements. Sect.1. Tec Specs. 7.1. Technical documentation for planning and design to be provided by the contractor(pag 194): Contractor will carry out the micro siting and the wind park optimization to be approved by Employer and Consultant.->final layout-> four (4) complete sets of technical documentation (technical specifications, descriptions, drawings, installation drawings with all dimensions and loads, detailed account of the calculations and a detailed design with a complete set of working drawings for the foundations (certified by an independent sworn statically expert), cabling and road of the supplied Plant to be approved by the Employer and the Consultant • Vol II. Employer's requirements. Sect.1. Tec Specs. 4. Design.-4.1.Wind energy Converters-> General Requirements (pag 137)The Contractor shall provide a Type Certificate (issued by an accredited certification institute) for the whole WEC

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 67 -

system (including tower) compliant with IEC 61400-1 (Ed.2 or latest)...The Contractor shall provide a Certificate, issued by an independent sworn expert, that the turbine design including tower and foundation is sufficient to withstand also loads due to earthquake risks at the site

review 2. Calculation documents certified by an independent expert for foundation and any other static calculations.

within 10 weeks after commencement date

• Vol II. Employer's requirements. Sect.1. Tec Specs. 5. Civil Works (pag175): detailed account of the calculations and of the detailed design with a complete set of working drawings for the foundations and the roads

review 4. Design information including general drawings, electric diagramm and specifications of the WEC, transformers and grid connection.

latest 10 weeks after commencement date

• Vol II. Employer's requirements. Sect.1. Tec Specs.7.1. Technical documentation for planning and design to be provided by the contractor (pag 194)

review 7. Technical Documentation as outline in the Technical Specifications and in the Schedules of Prices.

latest 10 weeks after commencement date

• Vol II. Employer's requirements. Sect.1. Tec Specs.7.1. Technical documentation for planning and design to be provided by the contractor (pag 194)

Civil Works

Det. Geotechnical Surveys

within 4 weeks after entering into force of the contract

• Vol II. Employer's requirements. Sect.1. Tec Specs. 5. Civil Works. 5.4.WEC Foundations (pag 177). Based on these results of the geotechnical investigations to be carried out within 4 weeks after entering into force of the contract the Contractor has to design the relevant foundation types being subject for certification. The foundation design shall be certified by an accepted independent sworn expert.

Det. Geotech Reports issued

Presentado

approval 2.Geotechnical

Presentado

- 68 - Escuela Técnica Superior de Ing. Industriales (UPM)

survey report 1/5 a 5/5

Foundation design validation by independent expert

Presentado

Approval 1. Foundation design 1/5 a 5/5

Presentado

Approval 8. Proposal on Contractor’s construction yard on the site.

Presentado

Site mobilization and temporary facilities

Presentado

Validated of basic engineering and purchase orders

Presentado

Detailed engineering

Access road construction (earthworks as suitable for site acces)

Presentado

Internal roads construction

Presentado

E&A platform

Presentado

approval 9. Quality assurance programme for civil works incl. laboratory test programme.

one month prior to start of foundation construction

• Vol II. Employer's requirements.Sect.1. Tec Specs. 5. Civil Works. 5.4.WEC FOUNDATIONS (pag 177)The Contractor shall propose a quality assurance program with corresponding checklists for approval by the Employer and the Consultant

Foundations excavation

approval 11. As built documentation and plans.

Within seven (7) days after receipt of the Contractor's protocol

• Vol III. Contractual Docs. Sect.1. General conditions. 37.Construction Completion Protocol. (pag737): Each Completion Protocol has to be approved by the CM.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 69 -

review 14. Quality surveillance reports on civil works and installation works for the individual lots.

not less than 45 days in advance of tests

• Vol III. Contractual Docs. Sect.1. General conditions. 26 Contractor Quality Surveillance. (pag730): Written notice , to allow Owner to be present to witness tests specified in the Contract.

Electrical works

Validated of basic engineering and purchase orders

Presentado

Detailed engineering

approval 10. Power curve Performance monitoring plan

Thirty (30) days before TOC

• Vol I. Tendering instructions. Sect.2 Sample forms and procedures. 17.3.2.Power Curve Guarantee. 17.3.2.1.GENERAL CONDITIONS (pag88) This guaranteed power curve shall be verified by Power Performance Tests of at least 3 selected wind turbines before the date of issue of the operational acceptance certificate of the Wind Park. The power performance testing shall be carried out by an internationally accredited/acknowledged institute/ Consultant by being member of MEASNET. The Contractor shall suggest five of such institutes//Consultants out of which the Employer will select one. This may be done before signature of the Contract. The cost of the performance testing shall be borne by the Contractor.

within thirty (30) days after receiving the notice from the contractor

• Vol I. Tendering instructions. Sect.2 Sample forms and procedures. 17.3.2.Power Curve Guarantee. 17.3.2.2.Method - Power Performance Test of Wind Park (Measurement of the Power Curve of Three Selected WECs representing all WECs of the Wind Park)•(pag 89) The power performance testing shall commence latest one month after completion of the wind park and shall continue until the conditions laid down in IEC 61400-12 have been met or until it has been agreed by the Contractor, the Employer and the Independent Consultant that sufficient data

- 70 - Escuela Técnica Superior de Ing. Industriales (UPM)

has been collected

approval 6. Design and construction drawings of earthing system

latest 10 weeks after commencement date

• Vol II. Employer's requirements.Sect.1. Tec Specs.7.1. Technical documentation for planning and design to be provided by the contractor(pag 194)

approval 7. Design and construction drawings of power factor correction equipment

latest 10 weeks after commencement date

• Vol II. Employer's requirements.Sect.1. Tec Specs.7.1. Technical documentation for planning and design to be provided by the contractor(pag 194)

Circuits connection to SST

approval 11. As built documentation and plans.

Within seven (7) days after receipt of the Contractor's protocol

• Vol III. Contractual Docs. Sect.1. General conditions. 37.Construction Completion Protocol. (pag737):Each Completion Protocol has to be approved by the CM.

review 14. Quality surveillance reports on civil works and installation works for the individual lots.

not less than 45 days in advance of tests

• Vol III. Contractual Docs. Sect.1. General conditions. 26 Contractor Quality Surveillance. (pag730): Written notice, to allow Owner to be present to witness tests specified in the Contract.

WTGs ExW and Transportations

review 3. Factory inspection plans for the major items of Plant and Equipment and quality surveillance documentation on manufacturing.

21 days prior first factory inspection

• Vol II. Employer's requirements.Sect.1. Tec Specs.7.1. Technical documentation for planning and design to be provided by the contractor(pag 194):the contractor shall submit two copies of the detailed factory testing program. • Vol II. Employer's requirements.Sect.1. Tec Specs.11.Inspection, Testing and Aceptance. 11.2. Technical Inspection At The Factory. (pag 204):detailed testing

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 71 -

programme shall be specified by the Contractor and shall be sent to the Employer and for approval

Deliverable: Schedule for plant inspection

6 (six) weeks prior to the inspection and testing of Plant

• Vol III. Contractual Docs. Sect.2. Special conditions. 23. Packing And Shipment Requirements. (pag768): Contractor shall notify Owner and the Consultant of the date of the inspection

Deliverable (owner): list of inspectors

within 4 (four) weeks after receiving Contractor’s notice

• Vol III. Contractual Docs. Sect.2. Special conditions. 23. Packing And Shipment Requirements. (pag768): Owner shall inform Contractor of the list of his appointed inspectors so as to enable Contractor to render assistance in obtaining their entry visas

Deliverable: Final notice for inspection

two (2) weeks in advance

• Vol II.Employer's Requirements. Sect.1 Tech Specs. 10. Installation. 10.5. WTG Erection. 10.5.10.Wtg Commissioning Inspection. (Pag 204):Contractor shall notify Employer, Site Project Manager and The Engineer is ready to carry out a Commissioning Inspection.

EXWORKS NAC:

Ágreda (60)

review 5.Tower manufacturing documentation.

21 days prior first factory inspection

• Vol II. Employer's requirements.Sect.1. Tec Specs.7.1. Technical documentation for planning and design to be provided by the contractor(pag 194):the contractor shall submit two copies of the detailed factory testing program. • Vol II. Employer's requirements.Sect.1. Tec Specs. 11.Inspection, Testing and Aceptance. 11.2. Technical Inspection At The Factory. (pag 204):detailed testing programme shall be specified by the Contractor and shall be sent

- 72 - Escuela Técnica Superior de Ing. Industriales (UPM)

to the Employer and for approval

EXWORKS ROT: 2 x Miranda (60)

review 5.Tower manufacturing documentation.

21 days prior first factory inspection

• Vol II. Employer's requirements.Sect.1. Tec Specs.7.1. Technical documentation for planning and design to be provided by the contractor(pag 194):the contractor shall submit two copies of the detailed factory testing program. • Vol II. Employer's requirements.Sect.1. Tec Specs.11.Inspection, Testing and Aceptance. 11.2. Technical Inspection At The Factory. (pag 204):detailed testing programme shall be specified by the Contractor and shall be sent to the Employer and for approval

EXWORKS Torres: Ferrometalco(30);SIAG(30)

review 5.Tower manufacturing documentation.

21 days prior first factory inspection

• Vol II. Employer's requirements. Sect.1. Tec Specs.7.1. Technical documentation for planning and design to be provided by the contractor (pag 194):the contractor shall submit two copies of the detailed factory testing program. • Vol II. Employer's requirements. Sect.1. Tec Specs.11. Inspection, Testing and Aceptance. 11.2. Technical Inspection At The Factory. (pag 204): detailed testing programme shall be specified by the Contractor and shall be sent to the Employer and for approval

Shipments WTGs

Presentado (bill of lading)

WTGs Assembly, Commissioning and TOC

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 73 -

Deliverable: Protection Settings

not later than 3 months before erection works

• Vol II. Employer's requirements.Sect.1. Tec Specs. 6. Electrical Works. 6.12. Protection Settings. (pag 190):advise protection settings for the purpose of Employer's grading and coordination with electrical infrastructure protection

Deliverable: WTG Erection Plan

not later than 3 months before erection works

• Vol II.Employer's Requirements. Sect.1 Tech Specs. 10. Installation. 10.5. WTG Erection. 10.5.1 Planned Methods for WTG Erection (pag 199): inform The Engineer in details about planned and expected methods to be used for the WTG erections.

WTGs Erection

review 8.Pre-Commissioning Plan.

30 days prior to the start of any commissioning

• Vol II.Employer's Requirements. Sect.1 Tech Specs. 11.Inspection, Testing and acceptance. 11.4. Pre-Commissioning Testing And Inspection. (pag 204): The testing plan shall be submitted to the Employer

review 9. Installation manual

Six (6) weeks in advance first training outside Egypt

• Vol II. Employer's requirements. Sect.1. Tec Specs. 7.3 Technical Documentation for Installation, Operation, Maintenance, and Service to be provided by the Contractor (pag 195):supply two (2) sets of Installation, Operation, Maintenance, and Service Manuals, one for the Employer and one for the Consultant

Review 11.O&M manuals and catalogues of spare parts, materials and tools.

Six (6) weeks in advance first training outside Egypt

• Vol II. Employer's requirements.Sect.1. Tec Specs. 7.3 Technical Documentation for Installation, Operation, Maintenance, and Service to be provided by the Contractor (pag 195): supply two (2) sets of Installation, Operation, Maintenance, and Service Manuals, one for the Employer and one for the Consultant

no later than three (3) months before expected TOC

• Vol II. Employer's requirements. Sect.1. Tec Specs. 14. DLP and Related Services. 14.1. O&M Plans And Schedules (pag 211): Contractor shall produce and provide an O&M Plan (Availability Reports shall be part of Contractor’s monthly WTG O&M

- 74 - Escuela Técnica Superior de Ing. Industriales (UPM)

Reporting to Employer and The Engineer.

WTGs E&M Completion

Presentado

WTG Completion certificate

Presentado

WTGs Commissioning

Presentado

WTGs reliability test (240h max)

Presentado

Circuits provisional acceptance

Presentado

Deliverable: Notice for provisional acceptance

Thirty (30) days before TOC

• Vol III. Contractual Docs. Sect.1. General conditions. 38. Taking over and Acceptance Certificate (pag 739): the contractor shall forward to the owner/ operator a notice including all the necessary documents regarding the circuits availability for the Provisional Acceptance with the request to issue a Provisional Acceptance Certificate for the circuit

Deliverable (owner): Provisional Acceptance Certificate

within thirty (30) days after receiving the notice from the contractor

• Vol III. Contractual Docs. Sect.1. General conditions. 38. Taking over and Acceptance Certificate (pag 739): The owner shall sign with the contractor a protocol of the circuit Provisional Acceptance and issue the Provisional Acceptance Certificate

Wind farm provisional acceptance

approval 11. As built documentation and plans.

Within seven (7) days after receipt of the Contractor's protocol

• Vol III. Contractual Docs. Sect.1. General conditions 37. Construction Completion Protocol. (pag737): Each Completion Protocol has to be approved by the CM.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 75 -

Deliverable: Test on completion of Scada

one (1) week in advance of completion of the Scada

• Vol II. Employer's requirements. Sect.1. Tec Specs. 11. Inspection, Testing, and Acceptance. 11.4 Pre-Commissioning Testing And Inspection - SCADA – Test on Completion. (pag 204): notify Employer and The Engineer Contractor is ready to commission the SCADA system. In order to Test the SCADA, the whole wind plant must be completed (erected and connected to the grid).

Deliverable: Regulate all shipments

within (6) months from the date of issuance of Taking Over and Acceptance

• Vol III. Contractual Docs. Sect.2. Special conditions.1. Extent Of The Contracts(pag753); h)Regulate all shipments for which NREA has issued a letter of undertaking or a letter of introduction

review 12. Power performance test report of independent institute.

no later than nine (9) months after TOC

• Vol II. Employer's requirements.Sect.1. Tec Specs.14. DLP and Related Services. 14.9. Power Curve Verification(pag 215):Contractor shall issue Power Curve Verification Report for not less than fifteen (15) WTG’s randomly picked within the El Zayt site to Employer and The Engineer. • Vol II. Employer's requirements. Sect.1. Tec Specs. 13.DLP and Related services.13.3. Equipment for Power Curve Measurement (pag 210)For carrying out the power curve measurement by an independent Expert, the Contractor shall deliver the complete measurement equipment. The contractor shall ensure that the equipment delivered fulfil the quality requirements for the measurement according to the IEC standard

latest eight-teen (18) months after TOC

• Vol II. Employer's requirements. Sect.1. Tec Specs.14. DLP and Related Services. 14.9. Power Curve Verification(pag 215):WTG Power Curves shall be verified according to IEC 61400-12 (Ed. 2) Full Scale Power curve verification shall be conducted on one randomly selected WTG.

Circuit Warranty Period

- 76 - Escuela Técnica Superior de Ing. Industriales (UPM)

5.2.1.2.3 REVISIONES Y CONTROL DE CAMBIOS

Es un ejercicio de planificación ante posibles cambios, adelantándose a éstos para limitar sus efectos negativos. La idea no es facilitar la propuesta de cambios sino hacer de barrera de éstos para prevenir cambios innecesarios para minimizar la necesidad de éstos. Un proyecto

review 15. During DLP O&M reports for each scheduled service for the individual lots and semiannual availability verification reports

• Vol III. Contractual Docs. Sect.2. Special conditions. 28.Consequences of Serial Failures (pag 773) In case of a serial fault has occurred in one of the major components during the Warranty Period the Contractor shall provide a report from an independent expert concluding on the cause of the failure and proposing actions necessary for remedy of these defects. The Contractor shall remedy the defects as recommended by the independent expert at his own cost. In case the serial fault can not be remedied the Contractor shall replace the affected components by redesigned and improved components in all the wind turbines

approval 12. Guarantee inspection report carried out by an expert at the end of the 3-Year DLP

Fourteen (14) days prior to the date of expiration of the circuit warranty period

• Vol III. Contractual Docs. Sect.1. General conditions. 40. Final Acceptance Certificate. (pag 740): the contractor shall submit to the owner notice stating the contractor's readiness for Final Acceptance of the circuit "Final Acceptance Notice, and shall request issuance of the Final Acceptance Certificate

Deliverable : Final Contract Report

Two weeks before expiry of the warranty period and planned issue of the Final Acceptance Certificate

• Vol III. Contractual Docs. Sect.2. Special conditions 9. Contractor Reports (pag 760): Final Contract Report

Deliverable (owner): Final Acceptance Certificate

Within fourteen (14) days after receipt of the acceptance notice from the contractor

• Vol III. Contractual Docs. Sect.1. General conditions. 40. Final Acceptance Certificate. (pag 740): Issuance of the Final Acceptance Certificate

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 77 -

con cambios es por definición más costoso que uno en que se hubiesen tenido en cuenta todos esos cambios desde el origen. Por lo tanto, los cambios deben gestionarse seriamente. Dentro del proceso de gestión cambios se debe incluir:

Procedimiento de cambio, incluyendo cómo y quién propone los cambios.

Quién lo autoriza.

El comité de evaluación.

Un plan general para su gestión.

Herramientas organizacionales para su seguimiento y control.

En general, dado que se trata de un proyecto llave en mano, no se admitirán cambios que supongan un sobrecoste pues no se contempla por definición de tipo de contrato. No obstante, se puede producir un cambio por diferentes causas, por ejemplo, descatalogación de un producto o carencia de una tecnología o producto en el país de construcción, etc. En este caso y siempre que no suponga un sobrecoste, se puede valorar su adecuación al proyecto.

Para estos casos, se define cómo será el proceso del cambio:

1. Adelantarse a la causa del cambio: Supone estudiar e iterar el proyecto en busca de posibles cambios que podrían afectar al proyecto para elminar la necesidad del cambio.

2. Identificar el cambio: En caso de producirse el cambio, registrar la persona que solicita el cambio y su motivación. Esto último es muy importante pues es posible que lo que motiva ese cambio sea contraproducente para el proyecto, lo cual debe evaluarse en este momento.

3. Evaluar el impacto en el proyecto: Se debe valorar si afectará al cronograma, a la calidad del producto final, etc.

4. Solicitar el cambio.

5. Realizar control de cambios integrado: De esta forma se estudia la afección sobre otros aspectos del proyecto:

a. Evaluar el tipo de cambio. Si el cambio estaba recogido dentro de los riesgos, se debe gestionar según está previsto en el plan. Esta fase es compleja pues supone modelizar todas las actividades que estarán afectadas por este cambio, que pueden ser anteriores o posteriores y ver si éstas afectan a terceros. Es por ello, un trabajo arduo.

b. Búsqueda de opciones. Supone encontrar la moneda de cambio o asumir la contraprestación.

c. Aprobación / Rechazo del cambio.

- 78 - Escuela Técnica Superior de Ing. Industriales (UPM)

d. Actualización del estado del cambio según el sistema de control de cambios.

6. Actualizar los documentos afectados, entre ellos, el alcance, cronograma y presupuesto.

7. Gestionar las expectativas de los interesados mediante comunicaciones a todos aquellos afectados.

Se podría recoger en forma de tabla de forma que facilite su seguimiento a lo largo del proyecto.

ID Estado Solicitud

Evaluación Opciones Aprobación Actualiz. proyecto

Interesados

5.2.1.2.4 NO CONFORMIDADES / ACCIONES CORRECTIVAS Y PREVENTIVAS

El registro de no conformidades y de desviaciones contendrá en formato tabla los siguientes aspectos:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 79 -

En cuanto al registro de no conformidades, puede ser un documento del siguiente tipo, donde se recoge la causa de aparición y el seguimiento de la acción que recae sobre aquella:

Nº cimentaciones de WTG m.l de RMT nº plataformas MW parque

m^3 de hormigón para cimentaciones m.l de LAT m.l de accesos

• Tipo de incidenciao Desviación DVo No conformidad NC

• Código• Fecha de detección• Detectada por• Fase de detección

o Recepcióno Procesoo Inspección finalo Auditoríao Otros

• Documento de referencia / normativa / procedimiento / especificación• Componente afectado:

o Cimentacióno Grouto Plataformao Vialeso Subestacióno Red de Mediao Red de Altao Otros

• Identificacióno Número de aeroo Número de vialo Número de plataformao Número de subestacióno Número de circuitoo Número torre

• Unidades afectadas• Concepto general de la NC• Descripción• Importancia (Leve, Media, Grave)• Imputación inicial• Estado (Abierta, Proceso, Cerrada)• Acciones• Responsible• Evidencia fotográfica• Evidencia fotográfica de cierre

- 80 - Escuela Técnica Superior de Ing. Industriales (UPM)

La gestion de no conformidades y acciones correctivas implementadas incluirán, al menos, el siguiente procedimiento:

Análisis del origen de la no conformidad.

Definición de las acciones correctivas, responsable y fecha de implementación.

Eficacia y evaluación de las acciones correctivas.

Registro y almacenamiento de no conformidades y acciones correctivas.

Control de las acciones correctivas.

Idealmente, todo el personal debería ser capaz de poder notificar y ser responsible de informar sobre una no conformidad observada dentro del área de competencia de cada uno.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 81 -

Es importante destacar que las acciones tomadas para eliminar la causa real o potencial de una no conformidad deben ser las apropriadas al efecto de la no conformidad y que deben ser revisadas para asegurar su efectividad. Para ello, es importante hacer uso del juicio de expertos y recurrir a lecciones aprendidas de la construcción de otros parques. Una metodología de trabajo es la basada en el ciclo PDCA que usa ocho disciplinas para ayudar a encontrar la causa raíz y desarrollar las acciones para minimizer su efecto o propiciar su erradicación. Los ocho pasos son:

- Descripción del problema

- Asignación del equipo

- Acción de contención o mitigación

- Análisis causa-raíz

- Plan de acción para su erradicación

- Implementación del plan

- Verificación de la efectividad

- Evitar recurrencia / recoger lección aprendida

Como parte de las acciones a tener en cuenta, puede ser necesario activar la gestion de atención al cliente.

- 82 - Escuela Técnica Superior de Ing. Industriales (UPM)

5.2.1.3 GESTIÓN DE LAS COMUNICACIONES

El plan de comunicaciones debe establecer y definir claramente los canales de comunicación abiertos para tratar cualquier tema entre los actores principales durante la duración de los servicios. Dentro de este plan se deberá incluir la matriz de hitos importantes donde poder acudir en el momento necesario para efectuar una comunicación efectiva y que esté formalmente recogida para que ésta sea vinculante.

Además, se debe conocer en todo momento la estructura organizacional de la constructora y de la promotora para establecer los criterios de las comunicaciones. Esta matriz organizacional debe actualizarse con cualquier cambio y debe recoger los nombres concretos, números de teléfono y direcciones de correo donde poder realizer la comunicación:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 83 -

CONSTRUCTORA

- 84 - Escuela Técnica Superior de Ing. Industriales (UPM)

PROMOTORA

Por norma general, las comunicaciones se llevarán a cabo según unas reglas básicas que se pueden establecer al comienzo del proyecto en la kick-off meeting:

- Las instrucciones de trabajo se enviarán a la persona interesada y al responsable inmediato superior.

- Las decisiones de reuniones de trabajo se comunican al responsable inmediato (BOP, construcción, SCADA…) y copia al jefe de Proyecto.

- La información relativa a riesgos se comunican al responsible inmediato y copia al jefe de Proyecto.

- La información de trabajo relativa a Seguridad y Salud se transmitirá entre coordinadores y el responsable del área de trabajo. Las no conformidades se harán llegar al jefe de Proyecto.

- Las solicitudes de modificación de Proyecto se enviarán a las personas interesadas y copia hasta el nivel de director.

Hay que indicar que las comunicaciones internas se llevan a cabo por un canal privado.

INFORMATION CONTENT RESPONSIBLE DISTRIBUTION FREQUENCY COMM. CHANNEL OUTPUTS

Monthly following up meetings / Video or Tele

Proposed agenda

PM NREA/CONSTRUCTOR

Monthly Email / phone

Minutes / specific actions

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 85 -

INFORMATION CONTENT RESPONSIBLE DISTRIBUTION FREQUENCY COMM. CHANNEL OUTPUTS

Conference

Progress meetings

Proposed agenda

PM NREA/CONSTRUCTOR

Quarterly Email / Forum

minutes

Mid-term meeting

Project status

PM NREA/CONSTRUCTOR

One time Email / phone

Minutes / specific actions

Final meeting

Project results presentation

PM NREA/CONSTRUCTOR

One time Email / phone

Approval

Internal meetings

Progress PM / Responsible

Internal On a demanding basis

Email Minutes / specific actions

Otro tipo de situaciones se comunicarán acordándose directamente entre las partes para asegurarse que es efectiva.

5.2.1.4 ASPECTOS ECONÓMICO/FINANCIEROS

En lo referente a los pagos, deben llevarse a cabo según se establezca en el contrato. Es práctica habitual que al comienzo del proyecto se produzca un pago inicial solicitando una garantía a la contraparte para facilitarle al contratista las primeras inversiones y evitando así riesgos como por ejemplo el exceso de apalancamiento o el retraso de los trabajos.

Más adelante, los pagos se irán haciendo proporcionalmente al avance de los trabajos, para lo cual se requiere de un responsable de certificar la ejecución de los mismos. Este papel sí que suele delegarse en un consultor externo con presencia permanente en obra.

Por último, suele mantenerse una proporción razonable que se pagará al final de la obra o proporcionalmente al avance del período de garantía.

Un ejemplo de términos de pago podría ser el siguiente:

Advance Payment

- 86 - Escuela Técnica Superior de Ing. Industriales (UPM)

Fifteen percent (15%) of the total Contract Price shall be disbursed by the Employer to the Contractor as an advance payment against an irrevocable advance payment security for an equivalent amount and currency made out in favour of the Employer.

The advance payment security shall be reduced until its extinction in a pro rata base of 15% of the value of each completed work, after the submission of each respective invoice by theContractor to the Employer.

The advance payments for the foreign and the local currency portions shall be effected forty (40) calendar days after the Employer received the following documents listed below and found them in order:

−−−− Advance payment guarantees for the foreign and local advance payments (endorsed by an Egyptian Bank).

−−−− Performance guarantee covering 10% of the total amount of the project (endorsed by an Egyptian Bank).

−−−− In case of the foreign currency advance payment additionally: Either a copy of the effective export license issued by the relevant authorities or a statement certifying that no export license is required, issued by the relevant authorities or by the Contractor.

First Phase of Pro-rata payments. Plant and Equipment.

Twenty five percent (25%) of Total Contract amount will be received by the Contractor upon the completion of delivery at point of materials, delivery of it associated documentation and completion of works stated in the following schedules:

−−−− Schedule 1: Wind Energy Converters (WECs).

−−−− Schedule 2: Remote Control and Monitoring System, Data Acquisition.

−−−− Schedule 3: Civil Works.

−−−− Schedule 4: Electrical Works.

−−−− Schedule 5: Spare Parts, Materials and Special Tools.

−−−− Schedule 6: Packing and Transport.

−−−− Schedule 7: Planning and Design of the Wind Park.

Payments shall be divided into seven (7) lots, each one corresponding to each price schedule proporcionally. That means that the twenty percent (25%) to be paid shall be divided proportionally to each lot based on the Price Quotation submitted within the Financial Proposal.

Upon completion of this schedule: Hundred percent (100%) of the corresponding amount for each respective price schedule will be disbursed by the Employer within forty (40) days after reception of:

−−−− Completion certificate issued by the Employer in one original and one copy.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 87 -

−−−− Commercial invoice in one original and three copies.

−−−− Additionally, for the local portion it is required to present social insurance certificates.

Second Phase of Pro-rata Payments. Installation and Technical Services.

Twenty five percent (25%) of Total Contract amount upon the completion of the delivery at point of materials delivery to the employer of documentation and completion of works stated in the following schedules:

−−−− Schedule 10: Installation, Testing and Commissioning.

−−−− Schedule 14: Delivery Period of Specific Spare Parts.

Payments shall be divided into two (2) lots each one corresponding to each price schedule. Twenty five percent (25%) to be paid shall be divided proportionally to each lot based on the Price Quotation submitted in the Financial Proposal.

Upon completion of this schedule: Hundred percent (100%) of the corresponding amount for each respective price schedule will be disbursed by the Employer within forty (40) days after reception of:

−−−− Completion certificate issued by the Employer in one original and one copy.

−−−− Commercial invoice in one original and three copies.

−−−− Additionally, for the local portion it is required to present social insurance certificates.

Third Phase of Pro-rata Payments. Technical Services.

Twenty five percent (25%) of Total Contract amount upon the completion of the delivery at point of materials delivery to the employer of documentation and completion of works stated in the following schedules:

−−−− Schedule 8: Technical Inspection.

−−−− Schedule 12: Technical Documentation.

−−−− Schedule 13: Further Options.

Payments shall be divided into three (3) lots each one corresponding to each price schedule. Twenty five percent (25%) to be paid shall be divided proportionally to each lot based on the Price Quotation submitted in the Financial Proposal.

Upon completion of this schedule: Hundred percent (100%) of the corresponding amount for each respective price schedule will be disbursed by the Employer within forty (40) days after reception of:

−−−− Completion certificate issued by the Employer in one original and one copy.

−−−− Commercial invoice in one original and three copies.

- 88 - Escuela Técnica Superior de Ing. Industriales (UPM)

−−−− Additionally, for the local portion it is required to present social insurance certificates.

Final Payment. Technical Services.

Ten percent (10%) of Total Contract amount upon the completion of the delivery at point of materials delivery to the employer of documentation and completion of works stated in the following schedules:

−−−− Schedule 9: Training.

−−−− Schedule 15: Spare Parts, Materials and Special Tools.

−−−− Provisional Taking Over and Acceptance Certificate.

Ten percent (10%) Payment shall be paid in one time upon the completion of the schedules 9 & 15 and the Provisional tacking over certificate.

Upon completion of this schedule: Hundred percent (100%) of the corresponding amount for each respective price schedule will be disbursed by the Employer within forty (40) days after reception of:

−−−− Completion certificate issued by the Employer in one original and one copy.

−−−− Commercial invoice in one original and three copies.

−−−− Additionally, for the local and foreign portion it is required to present all documentation related to social insurance certificates, sales taxes, and declaration from subcontractors stating there is no longer obligation between contractor and subcontractor.

5.2.1.4.1 CERTIFICACIONES

En el ámbito del control económico de la obra se debe hacer un seguimiento de avance de los trabajos para poder llevar la contabilidad adecuada. Para ello conviene disponer de la siguiente información:

- Calendario de avance de los trabajos actualizado y trabajos ejecutados.

- Calendario de envíos

- Borrador de facturas

- Bill of lading

- Calendario pagos

- Certificado de bienes suministrados. P.e.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 89 -

Conviene llevar un control contable de las facturas emitidas sobre el total del proyecto, para lo que se recomienda actualizar una tabla del tipo:

5.2.1.5 SEGUIMIENTO Y CONTROL

A lo largo del Proyecto llave en mano, se llevará un estricto control de las actividades de construcción del parque, de este modo, se puede hacer una gestión activa de forma que se actúe ante retrasos potenciales, disminución de la calidad. Ver apartado de seguimiento y control más Adelante.

IR Invoice NumberSubmission

DateDescription Euros EG.P.

1 xxx-xxxx dd/mm/aaaa 1.000.000,00 100.000,00

2 xxx-xxxx dd/mm/aaaa 1.000.000,00 100.000,00

3 xxx-xxxx dd/mm/aaaa 1.000.000,00 100.000,00

xxx-xxxx dd/mm/aaaa 1.000.000,00 100.000,00

xxx-xxxx dd/mm/aaaa 1.000.000,00 100.000,00

xxx-xxxx dd/mm/aaaa 1.000.000,00 100.000,00

6.000.000,00 600.000,00

6,00% 3,00%

100.000.000,00 20.000.000,00

Total Invoiced

Total Project

4

- 90 - Escuela Técnica Superior de Ing. Industriales (UPM)

5.2.1.5.1 INDICADORES

INDICATOR MONITORED AREA

DESCRIPTION LEVEL OF SERVICE

METHOD OF MEASUREMENT

Deviation over planning

Performance Deliveries must be delivered on time

100 % of deliveries on time

% of deliverables delivered on time

Deliveries approved

Quality

Deliveries must be approved within the timeline

100 % of deliveries approved

% of deliverables approved

5.2.1.5.2 INFORMES DE SEGUIMIENTO Y CONTROL (IS)

En el capítulo relativo seguimiento y control, se estudia en profundidad el alcance de estos informes. Cabe mencionar, sin embargo, que el informe de seguimiento mensual puede tener la siguiente estructura:

1 INTRODUCTION

2 DIRECTION, MONITORING AND CONTROL

3 PERSONNEL- QUALIFICATION

4 LIAISONS

5 INSURANCES

6 PURPOSE OF THE REPORT:

7 AUDIT-INSPECTIONS

8 PROJECT SUMMARY: RECORD OF THE MAIN PERFOMANCE FROM THE CONTRACT SIGNATURE

9 PLANNED ACTIVITIES

10 ACTUAL PROGRESS VERSUS UP-CONTRACTUAL TIMESCHEDULE

11 PREVENTIVE ACTION NOTICES

12 INVOICING AND BONDS (ANNEX XIX)

13 HEALTH, SAFETY AND ENVIRONMENT

A continuación se indica la estructura de anejos que debería actualizarse mensualmente y se describe debajo el contenido de los más relevantes:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 91 -

ANNEXES

I Organization chart

II -1 Site Progress Map (Civil Works)

II -2 Site Progress Map

III Relative Weights in Construction Phase

IV Construction Monthly Progress Report

V Civil Works Progress

VI Erection Works Progress

VII Electrical Works Progress

VIII Commissioning & Realiability Test Progress

IX Inland Transportation

X Construction reference datas

XI HSE Report

XII WEC´S Components Serial Numbers

XIII Concrete compression test

XIV Average recorded wind speed

XV Site submittals

XVI Project Pictures

XVII-1 Project Vs. Actual Progress

XVII-2 Differenciated Project Progress

XVIII Circuits distribution

XIX Invoicing Status

XX Contractual Time Schedule

II-1 Site Progress Map (Civil Works)

- 92 - Escuela Técnica Superior de Ing. Industriales (UPM)

II-2 Site Progress Map

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 93 -

III Relative Weights in Construction Phase

- 94 - Escuela Técnica Superior de Ing. Industriales (UPM)

IV Construction Monthly Progress Report

V Civil Works Progress

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 95 -

Tabla progreso resumen por circuito eléctrico:

VI Erection Works Progress

Ejemplo de una tabla de progreso por circuito:

- 96 - Escuela Técnica Superior de Ing. Industriales (UPM)

VII Electrical Works Progress

IX Inland Transportation

X Construction reference date

FOUNDBOTTOM SECTION

INTERME SECTION

TOP SECTION

NACELLE HUB BLADE 1 BLADE 2 BLADE 3POWER CABLE

GROUND CABINET

MAIN SWITCH

1

23

4

5

6

89

1013141516

WEC

COMPONENT

CIR

CU

IT 1

CIR

CU

IT 2

Found.Pouring

+28 days

Platform Ready

Bottom Interm. Top Nacelle Hub BladesPower cable

Control cable

Punch List

START UP

R. TEST

1

2

3

4

5

6

89

1013141516

CIR

CU

IT 2

ERECTIONCIVIL WORKS COMMISSIONING

WEC

CIR

CU

IT 1

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 97 -

XIII Concrete compression test

XVII-1 Project Vs Actual Progress

- 98 - Escuela Técnica Superior de Ing. Industriales (UPM)

Project completion forecast:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 99 -

XVII-2 Differeciated Project Progress

- 100 - Escuela Técnica Superior de Ing. Industriales (UPM)

XVIII Circuits distribution

1 2 3

4 5 6

Nº WTGs Nº WTGs 7 8 9 10

C1 6 C6 7 11 12 13 14 15 16

C2 7 C7 7 17 18 19 20 21 22 23 24

C3 7 C8 6 25 26 27 28 29 30 31 32 33 34

C4 6 C9 7 35 36 37 38 39 40 41 42 43 44

C5 7 45 46 47 48 49 50 51

52 53 54 55 56 57 58 59 60

Main Feeders: 04 - 07 - 08 - 18 - 27 - 28 - 38 - 45 - 54

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 101 -

5.2.1.5.3 MATRIZ DE VERIFICACIÓN

La matriz de verificación de requisitos es una tabla en la que se recogen los requisitos del proyecto y los vincula con su origen, lo cual proporciona un medio para monitorizarlos a lo largo de la vida útil del proyecto, lo cual ayuda a que al final del proyecto se entregen lo requisitos aprobados en la documentación de requisitos y también a gestionar los cambios al alcance del producto final.

En la matriz de verificación de requisitos pueden registrarse los atributos asociados a cada uno. Éstos dan información clave acerca de cada uno. Además, puede incluir un identificador único que lo codifique, una descripción del mismo, el fundamento de su incorporación, el responsable, la fuente, la prioridad, la versión, el estado actual (vigente, candelado, diferido, aprobado) o la fecha del mismo. Puede incluso incluirse el criterio de aceptación.

Esta gestión garantizará la satisfacción del cliente. Entender, evaluar, definir y gestionar las expectatias, de modo que se cumplan los requisitos del cliente. Esto requiere una combinación de conformidad con los requisitos para asegurar que el proyecto produzca aquello para lo cual fue emprendido y, adecuación para su uso.

Un ejemplo sencillo de cómo sería una matriz de verificación sería el siguiente:

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

1.1 General Data

1.1.1 Manufacturer

1.1.2 Type

1.1.3 Total number of WECs offered for the El Zayt Wind Power Plant Project

1.1.4 Type of power regulation Pitch control

1.1.5 Mode of operation

1.1.6 Max. upper tip height m <= 100

1.1.7 Max. lower tip height m 20

1.1.8 Hub height m

1.1.9 Average design wind speed m min. 10 m/s

1.1.10 Maximum 10 min average design wind speed at hub height, vmax

m/s min. 35

1.1.11 Maximum 5 s Gust design wind speed at hub height, vmax, 5 s

m/s min. 50

1.1.12 Expected life time Yrs min. 20

1.1.13 Min. admissible ambient temperature °C -5

1.1.14 Max. admissible ambient temperature °C 50

1.1.15 Max admissible ambient temperature for operation

°C 45

- 102 - Escuela Técnica Superior de Ing. Industriales (UPM)

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

1.1.16 Max. relative humidity at 25 °C %

1.1.17 Measured and certified sound power level

(8 m/s measured in 10 m height)

dB

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 103 -

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

1.1.18 Design certificate According to IEC 61400 Type Certificate, at least Class 1A or equivalent

1.1.19 Type certificate or a record of tests of implementation of the design requirements in production and erection, quality management system (QMS) and prototype test including the gear box by internationally recognized organizations

Required, if de-sign certificate according to IEC Type CertificateI, At least Class 1A or equivalent was not already sub-mitted with PQ documents

1.1.20 All components, materials, coatings, design etc. according to the site conditions

yes

1.2 Power Performance

1.2.1 Rated power Pn kW >= 1000

1.2.2 Cos phi at rated power (compensated) min. 0.96

1.2.3 Cut-in wind speed m/s

1.2.4 Cut-out wind speed m/s

1.2.5 Rated wind speed m/s

1.2.6 Measured and certified power-curve

1.2.7 Measured electric parameters

1.2.8 Max. instantaneous electrical power output P0.2

kW P0.2/Pn = < 1.06

1.2.9 Max. electrical power output over a minute P60

kW P60/Pn = < 1.03

1.2.10 Reactive power consumption at no load kVar

1.2.11 Reactive power consumption at normal operation

kVar

1.3 Nacelle

1.3.1 Manufacturer

1.3.2 Material of hull

1.3.3 Type of coating of hull

1.3.4 Lightning protection

1.3.5 Rated capacity of lifting device in nacelle t

1.3.6 Dimensions ready for mounting m

1.3.7 Weight ready for mounting t

1.3.8 Dimensions packed for transport (length, width, height)

m

1.3.9 Weight packed for transport t

1.3.10 Cooling and ventilation (if applicable)

1.4 Rotor

1.4.1 Diameter m

1.4.2 Number of blades Nos 3

1.4.3 Manufacturer of hub

- 104 - Escuela Técnica Superior de Ing. Industriales (UPM)

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

1.4.4 Type of hub

1.4.5 Material of hub

1.4.6 Rated rotor speed rpm

1.4.7 Range of rotor speed rpm

1.4.8 Max. rotor speed nmax rpm

1.4.9 Rated tip speed m/s

1.4.10 Blade angle if not pitch deg.

1.4.11 Cone angle deg.

1.4.12 Rotor axis angle deg.

1.4.13 Blade adjustment speed deg./s

1.4.14 Dimensions ready for mounting m

1.4.15 Weight ready for mounting t

1.4.16 Dimensions packed for transport m

1.4.17 Type of blade adapter

1.4.18 Material of blade adapter

1.5 Blade

1.5.1 Manufacturer

1.5.2 Type

1.5.3 Profile

1.5.4. Vortex generator

1.5.5 Material

1.5.6 Length m

1.5.7 Max. root chord m

1.5.8 Tip chord m

1.5.9 Lightning protection

1.5.10 Dimensions ready for mounting m

1.5.11 Weight ready for mounting t

1.5.12 Dimensions packed for transport m

1.5.13 Weight packed for transport t

1.5.14 Standard, normal thickness of outer surface layer

µm

1.5.15 Description and specification of design of the outer surface layer

1.5.16 Protection of leading edge as specified in Technical Specifications

1.5.17 Lifetime of surface coating years

1.5.18 Required cleaning intervals

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 105 -

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

1.6 Drive Train – Gear Box

Gear Box (if applicable)

1.6.1 Manufacturer

1.6.2 Type/design

1.6.3 Ratio

1.6.4 Rated capacity kW

1.6.5 Rated torque kNm

1.6.6 Oil volume l

1.6.7 Type and quality of oil

1.6.8 Maximum admissible instantaneous power kW

1.6.9 Design safety factor

1.6.10 Weight ready for mounting t

1.6.11 Cooling System

1.6.12 Oil filter

1.6.13 Interval of oil change

Main Shaft resp. Axle Pin

1.6.13 Manufacturer

1.6.14 Type

1.6.15 Material

Main Bearings

1.6.18 Manufacturer

1.6.19 Type

1.7 Yaw system

1.7.1 Manufacturer of yaw motor

1.7.2 Type/design

1.7.3 Manufacturer of yaw gear

1.7.4 Type/design

1.7.5 Control

1.7.6 Yaw control speed deg./s

1.7.7 Dumping system

1.7.8 Type of anemometer

1.7.9 Type of wind vane

1.7.10 Max. instantaneous yaw error deg

1.7.11 Max. systematic yaw error deg

1.7.12 Number of motors

- 106 - Escuela Técnica Superior de Ing. Industriales (UPM)

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

1.8 Hydraulic System

1.8.1 Manufacturer

1.8.2 Type of motor

1.8.3 Type of pump

1.8.4 Capacity l/min

1.8.5 Max. system pressure Bar

1.8.6 Oil volume L

1.8.7 Type and quality of oil

1.9 Braking System

1.9.1 Manufacturer

1.9.2 Type of primary brake

1.9.3 Type of secondary brake

1.9.4 Activation of primary brake

1.9.5 Activation of secondary brake

1.9.6 Configuration of mechanical brake(s)

1.10 Control & Monitoring System

1.10.1 Manufacturer

1.10.2 Cooling System

Please add a complete description of control and monitoring system

1.11 Generator

1.11.1 Manufacturer

1.11.2 Number Nos

1.11.3 Type

1.11.4 Rated capacity kW >= 1000

1.11.5 Rated current A

1.11.6 Rated voltage V

1.11.7 Rated frequency Hz 50

1.11.8 Rated rotational speed Rpm

1.11.9 Rated slip (if any) %

1.11.10 Vector group

1.11.11 Stator impedance

1.11.12 Rotor impedance

1.11.13 Protection classification

1.11.14 Power factor at rated power (without compensation

min. 0.84

1.11.15 Efficiency at rated power min. 0.93

1.11.16 Insulation class F

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 107 -

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

1.11.17 Vibration category N

1.11.18 Maximum admissible instantaneous power (200 m average)

kW

1.12 WEC Switchboard

Low-Voltage Switchgear

1.12.1 Manufacturer

1.12.2 Type

1.12.3 Applicable standards

1.12.4 Number of phases Nos 3

1.12.5 Number of busbars Nos 1

1.12.6 Rated voltage kV

1.12.7 Rated frequency Hz 50

1.12.8 Rated current busbar and incoming feeders A

1.12.9 Rated current outgoing feeders A

1.12.10 Rated short-time withstand current (1 s) kA

1.12.11 Rated peak withstand current of main circuits

kA

1.12.12 Degree of protection

Circuit Breaker (if applicable, otherwise give specification on the WEC protection system)

1.12.13 Manufacturer

1.12.14 Type

1.12.14 Applicable standards

1.12.16 Drive

1.12.17 Rated continuous currents for bus-coupler and incoming feeders

A

1.12.18 Rated sym. short-circuit breaking current (1 s)

kA

1.12.19 Rated short-circuit making current kA

1.12.20 Operating time of thermal release at 10 times rated current

s

1.12.21 Rated voltage kV

1.12.22 Protection devices, at least over current and short circuit

1.13 Capacitor Banks / Power Factor

Correction

1.13.1 Manufacturer

1.13.2 Type

1.13.3 Rated capacity kVAr

1.13.4 Number of units Nos

- 108 - Escuela Técnica Superior de Ing. Industriales (UPM)

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

1.13.5 Resulting cos phi at rated capacity min. 0.96

1.13.6 Resulting cos phi at 75% of rated cap. min. 0.96

1.13.7 Resulting cos phi at 50% of rated cap. min. 0.96

1.13.8 Resulting cos phi at 25% of rated cap. min. 0.90

1.13.9 Resulting current at rated capacity A

1.14 Earthing/Grounding/Bounding

1.14.1 Description of E-G-B

1.15 Lightning Protection

1.15.1 Description of overall lightning protection concept

1.16 Tower

1.16.1 Manufacturer

1.16.2 Total number of offered towers nos

1.16.3 Type tubular steel

1.16.4 Number of segments per tower nos

1.16.5 Length of individual segments m

1.16.6 Height m

1.16.7 Maximum diameter of segments at each flange

m

1.16.8 Material

1.16.9 Design/Type Certificate

1.16.10 Access to nacelle/climbing system

1.16.11 Dimensions ready for mounting m

1.16.12 Weight ready for mounting t

1.16.13 Dimensions packed for transport m

1.16.14 Weight packed for transport t

1.16.15 Specification of corrosion protection (standard)

1.16.16 Specification of corrosion protection (offered for the El Zayt site conditions)

1.16.17 Specification of coating and painting and the thickness of individual and total layers (as for El Zayt site conditions)

1.17 Rubber materials, sealing systems, filters and hydraulic components

1.17.1 All Material designed and appropriate for the El Zayt site conditions

1.18 Rectifier and inverter system (if used)

1.18.1 Manufacturer

1.18.2 Type

1.18.3 Number of systems Nos

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 109 -

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

1.18.4 Rated apparent power kVA

1.18.5 Rated active power kW

1.18.6 Rated current A

1.18.7 Rated Voltage V

1.18.8 Standards and codes being considered

1.18.9 Dimensions (length, width, height) m

1.18.10 Total weight t

1.19 Air navigation lamps to be installed on selected WECs

1.19.1 Manufacturer

1.19.2 Type

1.19.3 Number of systems 4

1.20 Machine bed resp. machine carrier

1.20.1 Manufacturer

1.20.2 Type

1.20.3 Material

1.20.4 Weight t

1.20.5 Specification of corrosion protection (standard)

1.20.6 Specification of corrosion protection (for El Zayt site conditions)

1.21 King pin (if used)

1.21.1 Manufacturer

1.21.2 Type

1.21.3 Material

1.21.4 Weight t

1.21.5 Specification of corrosion protection (standard)

1.21.6 Specification of corrosion protection (for El Zayt site conditions)

FOR SCHEDULE 1:

Kindly list any additional parts or items, which the Bidder considers necessary for the completion of facilities to the true intent of the Contract

- 110 - Escuela Técnica Superior de Ing. Industriales (UPM)

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 2

REMOTE CONTROL AND MONITORING, SYSTEM; DATA ACQUISI TION

2.1 Remote Control and Monitoring System

2.1.1 One Computer incl. Modem with appropriate backup and data storage system for Employer’s site office and another one for site training

Please specify

2 Suitable to pro-vide the required control and monitoring functions and to deal with the software

2.1.2 Monitor 2 17”/Color

2.1.3 Printer 1 LaserJet

2.1.4 Software for Remote Control and Monitoring System and data acquisition

Please add detailed description of the RCMS in the Technical Specifications

2

2.1.5 UPS, Type

Full load run time 30 min

2.2 Communication Cable

2.2.1 Please specify type and quality of data communication cable between WECs and RCMS and between Substation and RCMS

2.3 Remote Monitoring System

2.3.1 Computer, including modem for NREA Headquarters - Please specify

1 Suitable to pro-vide the required monitoring functions and to deal with the software

2.3.2 Monitor 1 17”/Color

2.3.3 Printer 1 LaserJet

2.3.4 Software for Monitoring and data acquisition

Please add detailed description

2

2.3.5 UPS, Type

Full load run time 30 min

FOR SCHEDULE 2:

With all necessary parts and/or additional items which the Bidder considers necessary for the completion of work to the true intent of the Contract

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 111 -

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 3

CIVIL WORKS

3.1 Foundation calculation and design

Describe the services for foundation calculation and design according to the Technical Specifications

3.2 Foundations

Please, include a sketch-drawing of the WEC foundations with major design parameters, being the basis for the foundation cost estimate as per the “Schedule of Particulars and Prices”. The foundation design shall tentatively be based on geo-technical prospecting results as given in the “Technical Specifications”, Chapter “Civil Works” and shall consider locally available materials only

Nos

3.3 Roads (wind park internal) and Shunting Area

Construction of roads and of shunting areas complete and ready for operation of the Wind Park according to the layout of the Bidder and to “Technical Specifications”, Chapter 5:

Upper aggregate base: 9 cm; 0/16 mm.

Aggregate sub-base: 30 cm; 0/32 mm. or similar for 12 tones axle load

As per the layout of the Bidder:

• length of road 4 m width

• length of road 7 m width incl. enlargement for passing

m

• additional shunting area for erection m

• Additional areas, if required m2

3.4. Power and Control Cable Trenches

Construction of Power and Control Cable Trenches, including cable laying and refilling of cable trenches, complete and ready for Wind Park Operation according to the layout of the Bidder and to “Technical Specifications”, Chapter 5:

• with one Power & Control Cable

• with two Power & Control Cables m

• with three Power & Control Cables m

• with n Power & Control Cables m

• Only n Power Cables m

• Only n control Cables m

3.5 Pipeline Crossing of Access roads

According to “Technical Specifications” m

3.6 Pipeline Crossing of Cables m²

- 112 - Escuela Técnica Superior de Ing. Industriales (UPM)

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

According to “Technical Specifications”

3.7 Foundations for transformer stations and site preparation

No.

According to Technical Specifications

3.8 Construction yard and site office

Please describe proposed arrangements incl. construction yard facilities for construction works according to “Technical Specifications”, Chapter “Civil Works”.

The site office shall consist of one meeting room, 2 offices each for NREA and the Consulting Engineer, 3 to 4 offices for the Contractor’s personnel, adequate sanitary facilities, office furniture, el. Power supply and airconditioning.

The description should be done in a free form outside this table

FOR SCHEDULE 3:

With all necessary parts and/or additional items which the Bidder considers necessary for the completion of work to the true intent of the Contract

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 113 -

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 4

ELECTRICAL WORKS

4.1 Transformer Station – General

4.1.1 Manufacturer

4.1.2 Type suitable for cli-ma¬tic conditions at the El Zayt site

4.1.3 Type of casing

4.1.4 Total number of transformer stations offered for the El Zayt Wind Park

Nos as No of WECs

4.1.5 Degree of protection of the station IP 65

4.1.6 Dimensions ready for mounting m

4.1.7 Weight ready for mounting t

4.1.8 Dimensions packed for transport m

4.1.9 Weight packed for transport tt

4.2 Transformer Station – Transformer

4.2.1 Manufacturer

4.2.2 Type Oil immersed or sealed

4.2.3 Rated capacity kVA

4.2.4 Rated voltage (low voltage side) kV As of generator’s

4.2.5 Voltage (high voltage side) kV 22+/- 5%

4.2.6 Rated frequency Hz 50

4.2.7 Vector group DyN5

4.2.8 Rel. short-circuit voltage % 4-6

4.2.9 No-load losses W

4.2.10 Short-circuit losses W

4.2.11 Tap changer – number of steps 3

4.2.12 Tap changer – ratio of each step % +/- 5

4.2.13 Specifications of Buchholz relay for oil immersed transformers for high temperature protection (if applicable)

4.2.14 Type of protection to be described According to type of transformer

4.3 Transformer Station - Low Voltage Side

Low-Voltage Switchgear

4.3.1 Manufacturer

4.3.2 Type

4.3.3 Applicable standards

4.3.4 Number of phases Nos 3

4.3.5 Number of busbars Nos 1

4.3.6 Rated voltage kV

4.3.7 Rated frequency Hz 50

- 114 - Escuela Técnica Superior de Ing. Industriales (UPM)

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

4.3.8 Rated current busbar A

4.3.9 Rated current incoming feeders A

4.3.10 Rated current outgoing feeders A

4.3.11 Rated short-time withstand current (1 s) kA

4.3.12 Rated peak withstand current of main circuits

kA

4.3.13 Degree of protection

Low Voltage Fused Load Switch (preferred) or Circuit Breaker

4.3.14 Manufacturer & Type suitable for El Zayt site conditions

4.3.15 Applicable standards

4.3.16 Rated Voltage kV according to generator

Rated current A

4.3.17. Rated symmetrical short-circuit breaking current (1 s)

kA according to generator

4.3.18 Opening Time

4.3.19 Rated short circuit making current kA according to generator

4.3.20 Status signal transmission to control room

Fuse

4.3.21 Type

4.3.22 Applicable standards

4.3.23 Rated voltage kV

4.3.24 Rated current kA

4.3.25 Time limiting characteristic t=f(i)

4.4 Transformer Station – High Voltage Switch Gear

4.4.1 Manufacturer

4.4.2 Type suitable for El Zayt site conditions

4.4.3 Number of phases Nos 3

4.4.4 Number of busbars Nos 1

4.4.5 Number of ring cable connections Nos min 2

4.4.6 Rated voltage kV 22

4.4.7 Rated lightning impulse withstand voltage to earth

kV 125

4.4.8 Rated lightning impulse across isolating distance

kV 145

4.4.9 Rated frequency Hz 50

4.4.10 Rated currents of busbar A

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 115 -

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

4.4.11 Rated currents of incoming/outgoing feeder A

4.4.12 Rated short-time withstand current (1 s) kA Min. 12.5

4.4.13 Rated peak withstand current of main circuits

kA Min. 31.5

4.4.14 Protection class Min. 4x

4.4.15 Applicable standards

Circuit breaker

4.4.16 Manufacturer & Type suitable for El Zayt site conditions SF6

4.4.17 Applicable standards

4.4.18 Rated current A

4.4.19 Rated symmetrical short-circuit breaking current (1 s)

kA Min. 12.5

4.4.20 Rated short-circuit making current kA Min. 31.5

4.4.21 Opening time ms

4.4.22 Rated voltage kV

4.4.23 Status signal transmission to the control room

Switch disconnections of outgoing cabling between transformer stations

4.4.35 Type

4.4.36 Applicable standards

4.4.37 Rated voltage kV

4.4.38 Rated current A

4.4.39 Rated short time withstand current kA

4.4.40 Rated short time making current kA

4.5 Measuring

Every WEC provided with two-way kWh-meter or two one-way kWh-meter

4.6 Earthing/Grounding/Bounding

Please add a description of E-G-B System

4.7 Lightning Protection

Please add a description of overall lightning protection concept in Volume II part 4

4.8 Protection against Climatic Impact

Please add a description of overall protection of the transformer station against climatic impacts

4.9 Low Voltage Cabling (WEC Switchboard – Transformer Station)

4.9.1 Manufacturer

- 116 - Escuela Técnica Superior de Ing. Industriales (UPM)

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

4.9.2 Type armoured

4.9.3 Applicable standards

4.9.4 Number of cores

4.9.5. Number of parallel cables between WEC switchboard and transformer station

4.9.6 Total length assumed necessary by the Bidder for the El Zayt Wind Park

m

Conductor

4.9.7 Material copper

4.9.8 Cross section mm2

Insulation

4.9.9 Material PVC

Max. temperature conductor before short circuit

Deg.C 70

4.9.10 Max. temperature conductor after short circuit

Deg.C 160

Electrical Data

4.9.11 Nominal voltage kV

4.9.12 Max. admissible cont. working voltage kV

4.9.13 Current carrying capacity A

4.9.14 Specific resistance of conductor at 20°C Ohm / km

4.9.15 Specific reactance of conductor Ohm/ km

4.9.16 Capacity under short circuit kA

4.9.17 Operational conditions (load factor) % 100

4.10 High Voltage Cabling (Transformer Station- El Zayt sub-station)

4.10.1 Manufacturer

4.10.2 Type armoured

4.10.3 Applicable standards

4.10.4 Number of cores 1

4.10.5 Total length assumed necessary by the Bidder for the El Zayt Wind Park

m

Conductor

4.10.6 Material Copper

4.10.7 Cross section mm2 to keep voltage drop below 3%

Insulation

4.10.8 Material Cross-linked polyethylene

4.10.9 Max. temperature conductor before short circuit

Deg.C 90

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 117 -

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

4.10.10 Max. temperature conductor after short circuit

Deg.C 250

Electrical Data

4.10.11 Nominal voltage kV 22

4.10.12 Max. admissible cont. working voltage kV 24

4.10.13 Current carrying capacity A

4.10.14 Specific resistance of conductor at 20°C Oh m/ km

4.10.15 Specific reactance of conductor Ohm/ km

4.10.16 Operating capacity MicroF/km

4.10.17 Capacity under short circuit kA

4.10.18 Operational conditions (load factor) % 100

4.10.19 Rated voltage kV Min 18/30

4.11 High voltage cable connections

4.11.1 Manufacturer

4.11.2 Number of plugs for incoming feeders min 6

4.11.3 Type

4.11.4 Rated current A plug in

4.12 Main Feeder Circuit Breaker

4.12.1 Total Number Nos As nos of main feeder

4.12.2 Manufacturer

4.12.3 Type SF6

4.12.4 Applicable standards

4.12.5 Rated voltage KV

4.12.6 Rated current A

4.12.7 Rated short-circuit breaking current kA

4.12.8 Rated short-circuit making current kA

4.12.9 Rated short-time withstand current (3 s) kA

4.12.10 Motor operating mechanism (DC, with batteries and recharger)

4.12.11 Protective relay (at least overcurrent and overload).

4.12.12 With interlocking system

4.13 Two ways kWh - meters (to be installed on each main feeder)

4.13.1 Manufacturer

4.13.2 Type

4.13.3 Applicable standards

4.13.4 Measurement Three-Phase

4.13.5 Connection Transformer

- 118 - Escuela Técnica Superior de Ing. Industriales (UPM)

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

4.13.6 Accuracy Class 0.5 S

4.13.7 Interfaces

Two ways kVArh - meters (to be installed on each main feeder)

4.13.8 Manufacturer

4.13.9 Type

4.13.10 Applicable standards

4.13.11 Measurement Three-Phase

4.13.12 Connection Transformer

4.13.13 Accuracy Class 0.5 S

4.13.14 Interfaces

Alternative: one two ways kWh/kVARh meter (to be installed on each main feeder)

4.13.15 Manufacturer

4.13.16 Type

4.13.17 Applicable standards

4.13.18 Measurement Three-Phase

4.13.19 Connection Transformer

4.13.20 Accuracy Class 0.5 S

4.13.21 Interfaces

FOR SCHEDULE 4:

With all necessary parts and/or additional items which the Tenderer considers necessary for the completion of work to the true intent of the Contract (Information in free

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 119 -

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 5, PART OF ATTACHMENT 3

SPARE PARTS, MATERIALS AND SPECIAL TOOLS

5.1 Spare Parts and Materials

5.1.1 (according to Volume II, Part 2, Technical Specifications, Chapter 13)

The Bidder shall list separately the spare parts, consumables and materials, to be delivered with the Plant which he considers necessary to cover the Defect Liability period

However, the acceptance of the listed volume shall not release the Contractor from the obligation to deliver additional equipment/spare parts on his own cost as required by the Contract

5.1.2 Set of wide range walky talkies Nos. 5 (min 20 km range)

5.2 Mandatory spare parts (Minimum):

5.2.1 Set of spare rotor blade as specified in Schedule No1

Nos 4

5.2.2 Spare generators (if asynchroneous generator), No. depends on rated power Pn of WECs

Nos 5 (Pn <= 1000 kW)

4 (Pn >1000 kW)

5.2.3 Spare gear boxes (if applicable) Nos 6 (Pn <=1000 kW)

5 (Pn >1000 kW)

5.2.4 Spare yaw systems Nos 6 (Pn <=1000 kW)

5 (Pn >1000 kW)

5.2.5 Spare transformers (oil immersed type) Nos 6 (Pn <=1000 kW)

5 (Pn >1000 kW)

Spare transformers (seald type) 10 (Pn <=1000 kW)

8 (Pn >1000 kW)

5.2.6 Spare HV fuses Nos 60 (Pn <=1000 kW)

42 (Pn >1000 kW)

5.2.7 Approved safety belts Nos 20

5.2.8 Complete turbine controllers Nos 6

5.2.9 Spare circuit breakers, SF 6, 36 kV Nos 3

5.2.10 Spare MV cables of each type Nos 3% of construction volume

5.2.11 Spare LV cables of each type Nos 3% of construction volume

5.2.12 LV switches for transformers Nos 5% of construction volume

5.2.13 Buchholz relays for transformers (if applicable)

Nos 5% of construction volume

5.2.14 Spare insulators (bushings) for transformers for LV and MV for transformers

Nos each 3% of construction volume

- 120 - Escuela Técnica Superior de Ing. Industriales (UPM)

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

5.2.15 Spare plug in for each size of cables Nos 5% of construction volume

5.3 Special Tools for standard installation, operation, maintenance and repair of Plant to remain with the Employer

5.3.1 The Bidder shall list the tools to be de-livered with the Plant, which he considers necessary for standard installation, operation, maintenance, and repair of the Plant.

5.3.2 Gas charger equipment for SF6 circuit breaker with all auxiliaries and ancilliaries

Nos 1 set for each type of SF6 circuit breaker

5.3.3 Vibration measuring kit, portable, dust resistant, operating up to 50 °C

Nos 1 set

Monitoring functions: general vibration condition, rolling bearing condition, data collection for up to 1000 measuring points, headset jack for acoustic noise assessment,

Storage and display of up to 4 measuring values per measuring point for straight forward condition assessment,

Simple PC trend/graphic software with data base for WIN 98/NT/2000/XP via USB serial adapter

5.4 Equipment for regular cleaning/maintenance of rotor blades.

3 sets

Please specify recommended cleaning procedure and describe the required equipment as well as the cleaning intervals

5.5 Installation Crane

The Bidder shall specify the crane (incl. its origin) he will use for the installation and its origin

5.6 Wind Measurement Installations and Power Performance Testing

5.6.1 Complete measurement mast in hub height incl.

2 suitable for power performance testing according IEC 61400-12

• 3 calibrated anemometer

• wind vane

• temperature and pressure sensor

• all accessories for installation, power supply and protection

• logger system, cabling and connection (or other means of data transfer) to RCMS in the control room

Please provide a detailed description and technical data

5.6.2 Services of an accredited Institute for 1

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 121 -

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

Power Performance Testing

5.7 Supply of Project Cars

Passenger Car for paved roads 3 Toyota Corolla, 4 doors, 4 cylinders, aircon, 90 Octan Petrol

option

Pickup cars for the construction site 3 Toyota Hilux, double cabin, 4 doors, aircon, diesel, 4 wheel drive

option

5.8 Fire extinguishers for each WEC Nos. 2

5.9 Mobile transformer oil treatment plant Nos. 1

5.10 Cars for O&M Nos. 1 option

FOR SCHEDULE 5:

With all necessary parts and/or additional items which the Bidder considers necessary for the completion of work to the true intent of the Contract

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 6

PACKING AND TRANSPORT

6.1 Packing and Transport

Please, list the main items and groups of delivery and describe packing and mode of transport. Please, give details on cargo agent, shipping company and insurance.

The description can be done in a free form outside this table.

6.2 Local Transport Arrangements

Please, give specifications for local transport arrangements (dimensions/-capacities: crane for unloading plant, trailers, roads, bridges etc.).

The description can be done in a free form outside this table.

FOR SCHEDULE 6:

With all necessary parts and/or additional items which the Bidder considers necessary for the completion of work to the true intent of the Contract

- 122 - Escuela Técnica Superior de Ing. Industriales (UPM)

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 7

PLANNING AND DESIGN OF THE WIND PARK

7.1 Draft Lay-Out

Please, attach a draft lay-out of the wind park based on the map attached to the Bidding documents

7.2 Estimate of Average Annual Electricity Generation

Please, give an estimate of the average annual electricity generation of the wind park based on the guarantied power curve and availability and the proposed wind park lay-out

MWh

Wind conditions:

• the Weibull parameter given in the Technical Specifications

• the wind conditions as provided as WasP lib-file

7.3 Detailed design of the Wind Park

Please, describe in detail scope of design services (including Design Liason Meeting) for the Wind Park with regard to wind potential, access roads, shunting areas, location of foundations, routing of power and control cable trenches according to “Technical Specfications”, Chapter 5

7.4 Topographical Survey 1:1,000

Topographical Survey services corresponding to “Technical Specifications”, Chapter “Civil Works”

7.5 Geo-technical Investigations

Please, describe in detail the services corresponding to “Technical Specifications”, Chapter “Civil Works”

Geo-technical investigation according to acknowledged international standards at each proposed WEC site, minimum depth of boreholes 12 m

FOR SCHEDULE 7:

With all necessary parts and/or additional items which the Bidder considers necessary for the completion of work to the true intent of the Contract

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 123 -

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 8

TECHNICAL INSPECTION

8.1 Quality control in the works & completeness & damage inspection at the site

Please, describe corresponding procedures

The description can be done in a free form outside this table.

8.2 Technical inspection of the WEC nacelles at the factory by Employer’s inspectors (2 people) and/or Consultant prior to shipments for each up to five lots for periods of seven days including travel days

8.3 Technical inspection by Employers’ personnel of other major locally manufactured components such as transformers or cables, etc. at factory prior to delivery.

FOR SCHEDULE 8:

With all necessary parts and/or additional items which the Bidder considers necessary for the completion of work to the true intent of the Contract

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 9

TRAINING

9.1 Training

Please, give a description of execution of the different training measures specified in the Technical Specifications

The description can be done in a free form outside this table

FOR SCHEDULE 9:

With all necessary parts and/or additional items which the Bidder considers necessary for the completion of work to the true intent of the Contract

- 124 - Escuela Técnica Superior de Ing. Industriales (UPM)

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 10

INSTALLATION; TESTING AND COMISSIONING

10.1 Installation, Testing and Pre-Commissioning,

Please, describe supply and services corresponding to the Technical Specifications

The description can be done in a free form outside this table.

Please, reconfirm names of project managers, site managers, electrical and civil engineers proposed in the P/Q documents/Alternatively nominate equivalent ones and enclose the CVs

10.2 Description of Erection Procedure

Please, describe in detail the proposed erection method and respective equipment.

The description can be done in a free form outside this table.

10.3 CONSTRUCTION INSURANCE

(Construction and erection insurance all risk + third party insurance, insurance of reliability runs until Operational Acceptance as per the Appendix “Insurance Requirements” in the Bidding Documents)

FOR SCHEDULE 10:

With all necessary parts and/or additional items which the Bidder considers necessary for the completion of work to the true intent of the Contract

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 125 -

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 11

O&M AND THREE-YEAR DEFECT LIABILITY PERIOD

11.1 Three-Year Defect Liability Period

Services and materials to be delivered according to the requirements of the Contract

Please give a short description of the execution and organisation of maintenance and other services during the Defect Liability Period

11.2 Guarantee Inspection at the end of the Three-Year Defect Liability Period

Please propose three different renowned independent expert institutes

11.3 Operation and Maintenance Services

Provide the necessary personnel for O&M services during the 3-year Defect Liability Period. The manufacturer shall bear full responsibilities for a proper functional guarantee according to form 17, Vol II – Section 2. For that purpose, the manufacturer shall propose a skilled team to ensure minimum availability, rapid repair of failure, training on the job, preventive maintenance and control of all required parameters.

FOR SCHEDULE 11:

With all necessary parts and/or additional items which the Bidder con-siders necessary for the completion of work to the true intent of the Contract

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 12

TECHNICAL DOCUMENTATION

12.1 Technical Documentation

To be delivered as outlined in the Technical Specifications

FOR SCHEDULE 12:

With all necessary parts and/or additional items which the Bidder considers necessary for the completion of work to the true intent of the Contract

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 14

DELIVERY PERIOD OF SPECIFIC SPARE PARTS

14. Delivery Period of specific spare parts

Please specify the maximum delivery time for the specified spare parts including transport to El Zayt site:

- 126 - Escuela Técnica Superior de Ing. Industriales (UPM)

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 1

WIND ENERGY CONVERTERS (WECS)

Individual rotor blade weeks max. 6

One set of rotor blades weeks max. 6

Rotor hub weeks max. 6

Main shaft respectively axle pin weeks max. 6

Gear box weeks max. 6

Generator weeks max. 6

Complete rectifier and inverter system weeks max. 6

Transformer weeks max. 6

Machine bed or machine carrier weeks max. 6

ITEM No. DESCRIPTION UNIT REQUIREMENT STATUS

SCHEDULE OF PARTICULARS No. 15

SPARE PARTS, MATERIALS AND SPECIAL TOOLS (AFTER TER MINATION OF THE DEFECT LIABILITY PERIOD)

15.1 Spare Parts and Materials

The Bidder shall list separately the spare parts, consumables and materials necessary for the operation of the wind park after termination of the warranty period for the operating time of 20 years in total. He shall specify the quantities of items and the average intervals for exchanges of parts or consumables

15.2 Tools (only additionally to schedule 5)

The Bidder shall list the tools which he considers necessary for standard installation, operation, maintenance, and repair of the Plant during the complete operation period (20 years)

FOR SCHEDULE 15:

With all necessary parts and/or additional items which the Bidder considers necessary for the completion of work to the true intent of the Contract

5.2.1.6 REVISIÓN DEL PDGC

Cualquier cambio necesario al PDGC debe realizarse por la Dirección del Proyecto y acordada con las partes involucradas. Dichos cambios deben registrarse, así como la fecha en que se produce y el responsable del cambio.

5.2.1.7 REGISTRO Y ARCHIVO

Estos cambios se llevarán archivarán en una hoja al comienzo del documento para facilitar la localización de los mismos:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 127 -

LISTA DE DISTRIBUCIÓN

Nº HOJA

TIPO DE CAMBIO FECHA / RESPONSABLE

5.2.1.8 PLAN DE GESTIÓN DE LA CONFIGURACIÓN

Se debe registrar la documentación generada a lo largo del proyecto. Una forma de hacerlo es crear un documento de trabajo que se vaya actualizando diariamente con los cambios realizados a cada tipo de documento. Una estructura sencilla podría ser la siguiente:

5.2.2 PLANIFICACIÓN DE LA CALIDAD

Uno de los aspectos más relevantes es el control de la calidad. Para garantizar la calidad del proyecto se emplean listas de calidad como las que se aportan en capítulos más adelante, se utilizan para verificar que se hayan llevado a cabo los procedimientos aprobados por la empresa de acuerdo a los estándares recogidos en normativas y buenas prácticas del sector. En función de la complejidad del proyecto, las listas de control pueden ser más o menos complejas.

Dentro de la documentación de calidad que se debe recoger y documentar enumeramos la siguiente que no puede faltar:

1 Listado de maquinaria/equipamiento empleado

TÍTULO

TÍTULO CÓDIGO FECHAAUTOR

REVISIÓNFECHA

REVISIÓN ESTADO

Plan Dirección de Proyecto Aprobado

Nombramiento Director Pendiente

Parque eólico Fecha última actualización:

- 128 - Escuela Técnica Superior de Ing. Industriales (UPM)

2 Listado de equipos de pruebas de laboratorio, medición, inspección, etc.

3 Cartas de calibración

4 Relacion de ensayos de calidad

5 Descripción de cada prueba de calidad

6 Documento de transferencia de los trabajos

7 Lista de productos empleados

8 Matrices de trazabilidad

Se muestra a continuación un ejemplo de lo más relevante indicado en la lista anterior:

2 Listado de equipos de pruebas de laboratorio, medición, inspección, etc.

4 Relacion de ensayos de calidad

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 129 -

- 130 - Escuela Técnica Superior de Ing. Industriales (UPM)

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 131 -

6 Documento de transferencia de los trabajos

- 132 - Escuela Técnica Superior de Ing. Industriales (UPM)

7 Lista de productos empleados

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 133 -

8 Matrices de trazabilidad

5.2.3 PROYECTO BÁSICO DE CONSTRUCCIÓN

Se recuerda que en este caso se ha aportado un diseño general junto a unos requisitos técnicos como documento para la licitación. Se ha recibido una propuesta técnica y económica ganadora que constituye en sí un proyecto básico por lo que no es necesario solicitar uno adicional. De no ser el caso, se ha de llevar a cabo un proyecto básico de construcción.

Con la adjudicación del contrato es el momento de realizar los proyectos de ejecución, para lo cual se llevarán a cabo los estudios geotécnico, topográfico y micrositing del parque.

5.2.4 ANÁLISIS DE RIESGOS

Como cualquier proyecto de esta entidad deben preverse todos aquellos riesgos que son susceptibles de aparición y que, aunque deconocidos, han sido objeto de afectación en proyectos pasados, los cuales fueron recogidos en lecciones aprendidas de otros proyectos. También se puede recurrir al juicio de expertos para la creación de este estudio.

5.2.4.1 RISK MANAGEMENT OBJECTIVES

Main objectives in risk management are:

- 134 - Escuela Técnica Superior de Ing. Industriales (UPM)

Identify possible problems.

Anticipate preventive actions and, when it is not possible to avoid them, minimize their consequences.

5.2.4.2 RESPONSABILIDADES

All personnel involved in the Study will be responsible for informing about the possible risks concerning their areas of competence. The Contract Manager will also be the Risk Manager (RM) for this Study and, therefore, he will be responsible for implementing this RMP in coordination with the rest of the Plans created; like the Quality Management Plan, Configuration Management Plan and Project Management Plan.

5.2.4.3 IDENTIFICACIÓN DE RIESGOS

Risks related to the Study have been identified through brain-storming sessions. All personnel involved in the Study attended these sessions that were chaired by the Risk Manager.

Risk Manager will be in charge of identifying new risks in the future and, in this respect, the RM will call those he considers to attend brain-storming sessions in order to research for new risks that could arise.

5.2.4.4 ESTUDIO DE IMPACTO

The objective of assessing the risk impact is to control the further evolution of the risk and establish reasonable measures for each one of them in order to optimize the effort spent in the mitigation actions taken and the level of impact on the project.

The level of impact can be classified according to these three perspectives:

Quantitative: When it is possible to establish a figure for both likelihood and impact. It is the preferable one for being the most objective. Not always is possible depending on the complexity of the risk identified.

Qualitative: We use that way when it is difficult to establish a numeric value in terms of likelihood or impact. Is more subjective but, in the other hand, is applicable to any risk. Usually, impact levels are divided in categories like low, medium, high or very high, for example.

Mixed: Is a combination of the above mentioned ones. Probably, it is the most used one because is also applicable to any risk (independently of its nature) and there are limited subjectivity in this way of evaluation.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 135 -

Other important consideration when assessing the impact of risks is to fix the different aspects that will be evaluated. This proposed methodology only takes into account the following ones in order to be accurate but simple enough:

Likelihood: measure in terms of percentage of the possibility of a certain risk to appear during the project execution. Levels from 1 to 3 are associated to different probability ranges in order to establish fixed categories.

Impact on Time: This impact measures the effect in terms of delays that a certain risk has. Specific delays ranges in terms of days are associated to different levels (from 1 to 3) to easy deal with this kind of impact.

Impact on Cost: Similar to the previous described ones, but in this case, a certain range in terms of money is associated to each level (from 1 to 3).

Impact on Requirements: this aspect is the most difficult to evaluate due to the fact that is very difficult some time to express in an objective way what is the real impact of not being compliant with one specific requirements. Sometimes the impact could be so high that it automatically implies the failure of the whole project (this is for example, what will happen in the case of this project if the obtained data is not accurate). A common practice is to give more importance or weight to those ones that are essential for a certain project. The proposed methodology also considers establishing a comparison with the other two (cost and time) for each risk.

5.2.4.5 RISK CLASSIFICATION PARMETER

In order to be able to compare risks between them and be able to decide which actions could be applied to each case is important to obtain an indicator of how critical each risk is. This is called Risk Classification Parameter (RCP).

This indicator is defined according to the following formula:

RCP= Likelihood * Maximum Impact among (Cost, Time or Requirements)

RCP are classified by its value as follows:

High: 6 or 9

Medium: 3 or 4

Low: 1 or 2

- 136 - Escuela Técnica Superior de Ing. Industriales (UPM)

5.2.4.6 ACTIONS AND FOLLOW -UP

Mitigation actions to be taken and their follow-up will depend on the value of the RCP of each risk assessed, as follows:

Low RCP (1 or 2)

Mitigation Actions: Not needed

Follow-up: Monitor and ensure that RCP keeps bellow 3

Medium RCP (3 or 4)

Mitigation Actions: Not needed

Follow-up: Monitor and ensure that RCP keeps bellow 6

High RCP (6 or 9)

Mitigation Actions: Actions to reduce RCP to an acceptable level should be proposed and included in the Risk Register.

Follow-up: Monitor and control the implementation of actions and the evolution of the RCP..

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 137 -

5.2.4.7 RISK REGISTER

The following table will be used to register and monitor the risks throughout the Study:

IDENTIFICATION ASSESSMENT

MITIGATION ACTIONS

(Only when RCP = 6 or 9) COMENTS

RISK SOURCE L IMPACT

RCP ACTION RCP TARGET

T C R

Remarks:

L= Likelihood

T= Time

C= Costs

R= Requirements

RCP target= Expected RCP as a result of the mitigation action

- 138 - Escuela Técnica Superior de Ing. Industriales (UPM)

Applying the methodology described before, these are the risks associated to the project:

IDENTIFICATION ASSESSMENT MITIGATION ACTIONS

(Only when RCP = 6 or 9)

COMENTS

RISK SOURCE L

IMPACT

RCP ACTION RCP TARGET

T C R

Desplazamientos diarios al parque. Seguridad en carretera.

Seguridad 2 2 1 1 4

Seguridad y salud en obra Construcción 2 2 2 1 4

Transporte de mercancías por mar.

Shippment 2 3 3 1 6

Envío de spare parts en distintos envíos.

Preparar plan contingencia.

4 Contratar seguros adicionales

Atentados terroristas. Politicos 1 3 3 1 3

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PA RQUE EÓLICO EN EGIPTO

Fco. Javier Santos Barrero - 139 -

IDENTIFICATION ASSESSMENT MITIGATION ACTIONS

(Only when RCP = 6 or 9)

COMENTS

RISK SOURCE L

IMPACT

RCP ACTION RCP TARGET

T C R

Calor. Geográficos 3 1 1 1 3

Cultura de Seguridad y Salud.

Organización 3 1 2 1 6

Concienciación a subcontratas.

Aumento personal involucrado.

3 Trabajar con objetivos positivos.

Subestación. EETC 2 3 2 2 6 Trabajar conjuntamente con la empresa de red eléctrica. Seguimiento del contrato.

4

Servidumbres Organización 2 2 2 2 4

Aspectos políticos/militares.

políticos 2 2 2 2 4

Aumento de precios económicos 3 1 2 1 6 Protección seguros. 4

- 140 - Escuela Técnica Superior de Ing. Industriales (UPM)

IDENTIFICATION ASSESSMENT MITIGATION ACTIONS

(Only when RCP = 6 or 9)

COMENTS

RISK SOURCE L

IMPACT

RCP ACTION RCP TARGET

T C R

materias primas. Almacenamiento.

Cláusulas contrato.

Riesgo divisa (para los pagos en moneda local).

económicos 3 1 3 1 9 Seguros de cambio. 4

Dificil protección salvo con la contratación de un Seguro.

Disponibilidad de todos los miembros del equipo del proyecto.

Organización 3 2 1 1 6 Preactivar recursos adicionales

3

Mantener informados a éstos con el estado del Proyecto.

Riesgo de quiebra empresa constructora o subcontrata.

Construcción 1 3 3 1 3

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PA RQUE EÓLICO EN EGIPTO

Fco. Javier Santos Barrero - 141 -

IDENTIFICATION ASSESSMENT MITIGATION ACTIONS

(Only when RCP = 6 or 9)

COMENTS

RISK SOURCE L

IMPACT

RCP ACTION RCP TARGET

T C R

Durante fase licitación: riesgo de presión externa empresas relacionadas.

Organización 3 1 1 1 3

Exceso de carga Software 2 3 2 1 6 Solicitar información adicional de coordinación con otros trabajos de construcción.

4

Valorar todos los trabajos indirectos afectados. P.e. planta hormigón

Concurrencia nula. Organización 2 3 2 3 6

Valorar adecuadamente los requisitos solicitados.

Estudio previo de Mercado.

4

Riesgos de Impacto ambiental

Externa 1 3 3 3 3 Oleoducto, que discurre paralelo a la finca, la red eléctrica de Alta Tensión y la aparición de una línea

- 142 - Escuela Técnica Superior de Ing. Industriales (UPM)

IDENTIFICATION ASSESSMENT MITIGATION ACTIONS

(Only when RCP = 6 or 9)

COMENTS

RISK SOURCE L

IMPACT

RCP ACTION RCP TARGET

T C R

eléctrica directa de Media Tensión propiedad de la refinería de petróleo existente en Ras Ghareb junto con la aparición de wadis (cauce seco de río, susceptible de inundarse en época de lluvias) han sido tenidos en cuenta durante la operación de replanteo de la finca, donde se ha asegurado que con la nueva distribución en planta de los aerogeneradores se mantienen las distancias de seguridad apropiadas a las instalaciones y se han reposicionarán los aerogeneradores cuya localización inicial se situa en un wadi

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 143 -

5.3 GESTIÓN DE LA CONSTRUCCIÓN

Entre los productos o salidas que obtenemos de la gestión de la construcción están los siguientes:

- Entregables: Es el producto o resultado verificable que deb producirse para terminar un proceso, fase o proyecto.

- Información de desempeño del trabajo: Conforme avance el proyecto, la información sobre las actividades del mismo se recopila de manera sistemática. Esta información puede relacionarse con diversos resultados de desempeño como por ejemplo, el estado de los entregables, el avance del cronograma o los costos incurridos.

- Solicitudes de cambio: Cuando se detectan problemas durante la ejecución del trabajo del proyecto, se emiten solicitudes de cambio que pueden modificar las políticas o los procedimientos, el alcance, el coste, el cronograma o la calidad del proyecto. Otras solicitudes de cambio incluyen acciones preventivas o correctivas para impedir un impacto negativo posterior en el proyecto.

- Actualizaciones al Plan Director del Proyecto: Entre los elementos del plan para la dirección del proyecto que pueden actualizarse, se encuentran:

o El plan de gestión de requisitos

o El plan de gestión de cronograma

o El plan de gestión de costos

o El plan de gestión de calidad

o El plan de gestión de RRHH

o El plan de gestión de las comunicaciones

o El plan de gestión de riesgos

o El plan de gestión de las adquisiciones

o Las líneas base del proyecto.

- Actualizaciones a los documentos del proyecto: Entre los que se pueden actualizar, se incluyen: los de requisitos, lo registros del proyecto, registro de riesgos y de interesados.

5.3.1 DIRIGIR Y GESTIONAR LA EJECUCIÓN

Es el proceso que consiste en ejecutar el trabajo definido en el plan de dirección del proyecto para cumplir con los objetivos del mimo. Las actividades que abarca son las siguientes:

Realizar actividades necesarias para cumplir con los requisitos del proyecto.

Crear los entregables del proyecto

- 144 - Escuela Técnica Superior de Ing. Industriales (UPM)

Reunir, capacitar y dirigir a los miembros del equipo asignado al proyecto

Obtener, gestionar y utilizar los recursos, materiales, herramientas, equipos e instalaciones

Implementar los métodos y normas planificados.

Establecer y gestionar los canales de comunicación del proyecto, tanto externos como internos al equipo del proyecto

Generar los datos del proyecto, tales como los costes, cronograma, avance trabajos, de calidad con el fin de facilitar las proyecciones.

Emitir las solicitudes de cambio y adaptar los cambios aprobados al alcance, a los planes y al entorno del proyecto.

Gestionar los riesgos e implementar las actividades de respuesta a los mismos.

Gestionar a los vendedores y proveedores.

Recopilar y documentar las lecciones aprendidas e implementar las actividades aprobadas de mejora del proceso

5.3.2 ASEGURAMIENTO DE LA CALIDAD

Uno de los preceptos fundamentales de la gestión moderna de la calidad establece que la calidad se planifica, se diseña y se integra (y no se inspecciona). Por lo general, el costo de prevenir errores es mucho menor que el de corregirlos cuando son detectados por una inspección.

La documentación que se genera durante el proyecto deberá ser clasificada de forma que se pueda tener un acceso a ésta de la manera más intuitiva posible. Por esta razón, se suele convenir tanto con la Propiedad como con la Contrata las formas en que vienen haciéndolo habitualmente, bien sea conjunta o independientemente.

Analizada la situación, si es posible se mejora y, al final se determina un criterio para su almacenamiento.

En este caso, se hace uso de una herramienta web donde poder intercambiar, almacenar y acceder a la información en tiempo real. Esta herramienta se configura para dar acceso a los principales interesados, en este caso, las tres partes principales, Propiedad, Contrata y Consultor, dado que se trata de un sitio web cuya finalidad es mantener a todos informados de los sucesos que acontecen y se registren permanentemente para posterior consulta. Todos tienen permisos de lectura, modificación y borrado de documentos, así mismo, se pueden configurar alarmas en forma de correo electrónico cada vez que se produce un movimiento en el sitio, como por ejemplo una descarga de un documento. También se puede sincronizar con el ordenador para que cuando se tenga conexión a internet, la aplicación vuelque la información periódicamente y así poder tener una copia de seguridad offline.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 145 -

5.4 SEGUIMIENTO Y CONTROL

Realizar el control de calidad es el proceso por el que se supervisan y registran los resultados de la ejecución de actividade de calidad, a fin de evaluar el desempeño y recomendar cambios necesarios. El control se lleva a cabo durante todo el proyecto. Los estándares de calidad incluyen las metas de los procesos y del producto del proyecto. Los resultados del proyecto incluyen los entregables y los resultados de la dirección de proyectos, tales como el desempeño de costos y cronograma. Esta actividad de control permitirá identificar las causas de una calidad deficiente del proceso o del producto y recomendar acciones para eliminarla.

El equipo de dirección debe tener un conocimiento práctido del control estadístico, especialmente en lo relativo al muestreo y la probabilidad, para ayudar a evaluar las salidas del control de calidad.

Supervisar y controlar los trabajos de ejecución consiste en supervisar, analizar y regularizar el avance del proyecto para cumplir con el objetivo de desempeño que se describe en el Plan de Dirección del Proyecto.

El seguimiento aporta información sobre la salud del proyecto y permite identificar aquellas áreas que requieran una atención especial y eventuales mejoras.

El control sirve para determinar las acciones correctivas o preventivas que sean necesarias, y que supongan cambios en el plan de acción.

Con este proceso:

• Se compara el progreso del trabajo del proyecto con respecto a lo planificado.

• Se evalua ese progreso para determinar la implementación de acciones correctivas y/o preventivas.

• Se identifican nuevos riesgos, además de seguir de cerca los riesgos existentes.

• Se mantiene durante la ejecución del proyecto información precisa del producto.

• Se proporciona la información necesaria para elaborar los informes de estado.

• Se obtiene información de proyecciones para actualizar información de coste y cronograma.

• Se supervisa la implementación de cambios.

.2.3 CONTROL ALCANCE

A nivel de alcance no sólo debe darse seguimiento al cumplimiento de los requisitos técnicos expresados en la documentación contractual, si no que también se debe velar por los medios

- 146 - Escuela Técnica Superior de Ing. Industriales (UPM)

de producción empleados para la obtención de cada uno de los productos intermedios y finales. Esto implica un extenso conocimiento de los procesos de ejecución de la contrata los cuales deben estar claro antes del comienzo de los trabajos.

Se ha visto anteriormente cómo controlar a través de la matriz de verificación los requisitos técnicos.

Los procesos de cada empresa pueden variar sutilmente, pero generalmente todas los tienen documentados y se pueden revisar previamente a la ejecución con alguna excepción puntual, posiblemente en el ámbito de fabricación, donde pueden ser confidenciales por motivos de conservación del secreto de patente.

A continuación, se propone una estructura de desglose que contemple todas las materias según la cual ordenar la documentación generada durante el proyecto. En ella se pueden organizar los procesos que deben revisarse de acuerdo al desglose de trabajos o EDT llevado a cabo en el apartado 5.2.1.2.1 del presente documento. Como se puede comprobar, su estructura difiere de aquella de la EDT pues sigue un criterio de clasificación por asuntos o materias, lo cual tiene el inconveniente de la duplicidad de documentación al poderse dar el caso de que un documento pueda encajar en dos carpetas diferentes. Una posible solución a este respecto podría ser mantener actualizado un índice de contenido de carpetas, si bien, a nivel de archivos, se recomienda ordenarlos cronológicamente. Además, se recomienda llevar un archivo fotográfico de toda la obra, lo cual puede llevarse a cabo creando una carpeta de fotos en el interior de cada materia. Téngase en cuenta, que a nivel de calidad es extenso el registro fotográfico que se irá realizando, por ejemplo, todas las probetas de hormigón tomadas, así como la foto de su rotura.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 147 -

- 148 - Escuela Técnica Superior de Ing. Industriales (UPM)

En general, para cada paquete de trabajo se deben redactar los siguientes documentos:

Un documento que recoja el estado de cada subactividad y la fecha en que se completó.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 149 -

Un documento de planificación de trabajos semanales, que tendrá un uso a nivel organizativo de los recursos. El cronograma existente se debe ir actualizando con los trabajos a nivel de semana con cierto margen de antelación para poder planificar los trabajos y así estudiar ritmos de trabajo.

Sin perjuicio de la forma de clasificar explicada anteriormente, a continuación, se describen todos los procesos relevantes que se deberán monitorizar durante la ejecución del proyecto siguiendo el orden cronológico descrito en el desglose en paquetes de trabajo para una mejor comprensión, si bien, se recomienda su clasificación por materias según se ha detallado anteriormente. También se incluirá, para aquellas actividades relevantes, el documento de trabajo que se puede emplear para hacer un correcto seguimiento del trabajo.

.2.3.1 GESTIÓN DE EJECUCIÓN

Para la gestionar la ejecución, es necesario tener una visión global del progreso de los trabajos, lo cual se puede representar en un diagrama como el que se muestra a continuación, donde recoger el estado de completitud de las actividades principales, así como el esquema de conexiones eléctrico, de comunicaciones y control del conjunto:

Deben llevarse a cabo reuniones de progreso. En ellas es práctica habitual y de utilidad recoger todo lo acontecido, por lo que durante la reunión debe asignarse una persona para que

B B B Date: 27/11/2017 H H H Wind Farm

T2 T2 T2 Overal Control chart

T1 T1 T1M M M

B B BH H HT2 T2 T2 Circuit 1 B Blades 33 FOT1 T1 T1 Circuit 2 H Hammer 40

MCC M M M Circuit 3 T2 T2 42 PowerCircuit 4 T1 T1 55Circuit 5 M Materials 49 MCC MCC Ready

B B B B Circuit 6H H H H Circuit 7T2 T2 T2 T2 Circuit 8 LegendT1 T1 T1 T1 Circuit 9M M M M

B B B B B BH H H H H HT2 T2 T2 T2 T2 T2T1 T1 T1 T1 T1 T1M M M M M M

B B B B B B B BH H H H H H H HT2 T2 T2 T2 T2 T2 T2 T2T1 T1 T1 T1 T1 T1 T1 T1M M M M M M M M

B B B B B B B B B BH H H H H H H H H HT2 T2 T2 T2 T2 T2 T2 T2 T2 T2T1 T1 T1 T1 T1 T1 T1 T1 T1 T1M M M M M M M M M M

B B B B B B B B B BH H H H H H H H H HT2 T2 T2 T2 T2 T2 T2 T2 T2 T2T1 T1 T1 T1 T1 T1 T1 T1 T1 T1M M M M M M M M M M

B B B B B B BH H H H H H HT2 T2 T2 T2 T2 T2 T2T1 T1 T1 T1 T1 T1 T1M M M M M M M

B B B B B B B B BH H H H H H H H HT2 T2 T2 T2 T2 T2 T2 T2 T2T1 T1 T1 T1 T1 T1 T1 T1 T1M M MCC M M M MCC M M M M

49 50 51

58 59 60

3429 30

43 44

22 23

35 36 37 41 42

25 31 32 33

24

55 56

7

12

38 39 40

45 46 47

18 19 20

28

1611

2726

52 53

17

54 57

1 2 3

5 64

8 9 10

13 14 15

21

48

- 150 - Escuela Técnica Superior de Ing. Industriales (UPM)

realice la minuta de la reunión. Por norma general, la minuta deberá recoger los siguientes aspectos respecto al contenido:

Asuntos aprobados en reunión que difieren del proyecto.

Asuntos aprobados en reunión que no difieren del proyecto.

Asuntos generales según la agenda.

Asuntos fuera de agenda.

Respecto al formato de la minuta en un momento avanzado de obra podría ser el siguiente:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 151 -

WMxx-18 - Weekly Meeting Agenda

WIND FARM PROJECT

Date: March xxth 2018 Time: 12:00

Location: Gulf El Zayt

Attendees:

AGENDA: 1.Electrical works status.

CIRCUITS EXCAVATION COPPER CABLE FIBER (between

wtg)

13/03/2018 13/03/2018 13/03/2018 13/03/2018

C1 100 100 100 100 C2 94 100 54,2 100 C3 100 100 85 100 C4 90 100 75 75 C5 100 100 100 100 C6 100 100 100 100 C7 100 100 100 100 C8 100 100 100 100 C9 100 100 100 100

98,2

90,5

90,1

88,9

1.1 Switchgears. 2. Substation status. 2.1 Energization status. 3.Assembly activities.

Status of deliveries

Status of Assembly works

Towers 60/70 Blades 50/70 Nacelles 60/70 Hammer 58/70 Hub 60/70 T2 59/70 Blade 54/70 T1 60/70

3.1 Blades Status. 3.2 Commisioning 5. Others

- 152 - Escuela Técnica Superior de Ing. Industriales (UPM)

En este tipo de reuniones es importante actualizar la tabla de actualizaciones de los documentos importantes, así como las nuevas incorporaciones, su estado final y la fecha límite. Una tabla de este estilo:

Recuérdense los trabajos de obra civil en el siguiente esquema para poder relacionar posteriormente cada subcapítulo del que se hable:

CIMENTACIONES: Se deben monitorizar todas las actividades en que se divide la preparación de la cimentación, lo cual puede quedar recogido para cada una de las cimentaciones (es decir en tantas carpetas como turbinas haya) el siguiente contenido:

Ref. Subject Status Due Date Descriptionok week 31

ok week 32

ok week 27

Pending week 32

ok week 31

Pending week 35

Pending week 33

ok week 31

Pending

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 153 -

o Excavaciones

o Hormigón de limpieza

- 154 - Escuela Técnica Superior de Ing. Industriales (UPM)

o Posicionamiento en planta

o Nivelación

Signature

APPROVED

Date

Signature

2. BLINDING CONCRETE

WIND FARM:

Date

BLINDING CONCRETE TURBINE NUMBER

START DATE

Minimum real thickness

Thickness according to the footing plan

REFERENCE FOOTING PLAN:

Thickness of terrain improvement

Type of concrete used according to footing plan

Signature

PERFORMED

Attached document to justify terrain improvement

Terrain improvement method (if applicable - cyclopean concrete, piles, etc.)

CHECKED AND APPROVED

Date

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 155 -

o Refuerzo armadura inferior

o Refuerzo armadura superior

Correct number of bars

Bars correctly secured

COMMENTS:

Installation start date

Date

APPROVED

Signature Signature

Date

Signature

Date

LOWER REINFORCEMENT

Wires

CHECKED AND APPROVED

Spacers(material, number and dimensions)

MONITORING EXECUTION

Diameter and length of bars according to exploded view

FOOTING PLAN

TURBINE NUMBER

PHOTO OF FINISHED LOWER REINFORCEMENT:

PERFORMED

Separation between bars

Hooks

Inspection date

Cover (distance from ground, formwork)

INFORMATION ABOUT MATERIALS

Type of certification of steel (Aenor, etc.)

WIND FARM:

5. LOWER REINFORCEMENT

Installation finish date

- 156 - Escuela Técnica Superior de Ing. Industriales (UPM)

o Encofrado

o Vertido de hormigón

WIND FARM:

6. UPPER REINFORCEMENT

TURBINE NUMBER

FOOTING PLAN

UPPER REINFORCEMENT

PHOTO OF COMPLETED FRAME

INFORMATION ABOUT MATERIALS

Type of certification of steel (Aenor, etc.)

Spacers(material, number and dimensions)

Installation finish date

Inspection date

Signature

Date

Diameter and length of bars according to exploded view

COMMENTS:

Separation between bars

Hooks

Wires

Cover (distance from ground, formwork)

Correct number of bars

Bars correctly secured

MONITORING EXECUTION

Installation start date

APPROVEDCHECKED AND APPROVED

Date

Signature

Date

Signature

PERFORMED

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 157 -

o Acabado superficial – Puesta a tierra

VIALES Y PLATAFORMAS

MONITORING EXECUTION AT FARM

Start date and time

Daytime temperature (and humidity if applicable)Number of vibrators (including reserve)

Pitting surface before pouring concrete

Cracks or fissures present*

State of formwork (clean, without remains of materials, etc.)

Number of test samples

MONITORING EXECUTION OF PEDESTAL

Signature Signature

PERFORMED

DateDate

Waterproofing or chemical attack treatmentsSurface finish

Start date

CHECKED AND APPROVED

Concrete curing time

Concrete curing procedure (water, curing product, geotexile, etc.)

Curing product (Antisole (Sika), MasterKure (Basf), etc.)

Concrete execution sequence

MONITORING CURING

Mix temperature (average values found)

Name of Concrete Plant and CapacityConcrete Plant Certifications

Distance between Concrete Plant and Wind Farm

Abrahms cone (average values found)

LABORATORY MONITORING

8. POURING CONCRETE

Number of Pumps (including reserve)

WIND FARM:

POURING CONCRETE

CONCRETE SPECIFICATION

TURBINE NUMBER

End time

Type of concrete, type of cement and additives

Signature

APPROVED

Date

PERFORMED CHECKED AND APPROVED APPROVED

Signature

Date

Signature Signature

Date Date

Cable cross-section and type

GROUNDING SYSTEM

Specification

Weld type (aluminothermic, Cadwell, etc.)

Use of additional elements

9. FOOTING FINISH

Resistance measurement

FOOTING FINISH

WIND FARM:

TURBINE NUMBER

Density and Humidity Values

Resistance achieved

End date

Grade for pumping out water in the pedestal area

FILLING THE FOOTING

Start date

25cm tiersCompacting method:

Final compaction value (Proctor, load plate test, etc.)

- 158 - Escuela Técnica Superior de Ing. Industriales (UPM)

Se muestra a continuación una check list tipo que puede servir para dar seguimiento durante la ejecución de los viales y plataformas, válida para la sub-base y la base.

La siguiente tabla muestra un registro del nivel de compactación de los viales a través de la prueba del cono de arena realizado cada 500m de vial. Se recomienda identificar la muestra, el vial y el punto kilométrico, además de los datos recogidos del análisis y el resultado final.

Otra prueba típica que debe realizarse en la plataforma para la sub-base y la base es una placa de carga (load plate en inglés) para estimar la curva resistencia-deformación del terreno midiendo el asiento del terreno ante la aplicación de una carga puntual. Por ejemplo:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 159 -

ELECTRICIDAD

Infraestructura eléctrica y ejecución: Consistirá en una revisión de la ejecución de la infraestructura necesaria para la instalación de electricidad. Se recomienda hacer un check-list para revisar y comparar los aspectos importantes de ejecución con lo dispuesto en el proyecto y de acuerdo a la normativa aplicable. Como es habitual, se deberá registrar el tramo inspeccionado, la fecha de la inspección y el responsable de la inspección.

- 160 - Escuela Técnica Superior de Ing. Industriales (UPM)

Celdas de protección: Se deberá llevar a cabo una inspección visual general que recoja, por lo menos, los siguientes aspectos:

Además, deben revisarse los siguientes aspectos mecánicos y de protección contra la entrada de polvo, específico de este caso por su situación a la intemperie y especial adversa climatología a la que estarán sometidos:

INSPECCIÓN VISUAL DE LA PROTECCIÓN CONTRA ENTRADA P OLVO

.2.4 CONTROL CRONOGRAMA

Control semanal de la calidad

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 161 -

OBRA CIVIL

- 162 - Escuela Técnica Superior de Ing. Industriales (UPM)

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PA RQUE EÓLICO EN EGIPTO

Fco. Javier Santos Barrero - 163 -

- 164 - Escuela Técnica Superior de Ing. Industriales (UPM)

CONSTRUCCIÓN Y MONTAJE

En el montaje, dada su afectación por la climatología, se recomienda llevar una planificación semanal actualizada para los diferentes trabajos, se sugiere un formato de este estilo en el cual se recoge en columnas la semana de trabajo, la posición en la que se va a trabajar indicado por el número de la turbina y, por filas, la actividad a realizar, según el siguiente formato:

Como se puede comprobar, es importante señalar la componente meteorológica y los eventos importantes que afecten al rendimiento, como por ejemplo en este caso, el comienzo del Ramadán y la incorporación de una grua.

WEEK 21

24/05/2017

Meteo Stop (estimated)

22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

L M X J V S D L M X J V S D L M X J V S D L M X J V S D L M X J V S D

Rot+nac 51 45 46 47 48 49 50 51 38 39 4 5

Chim T1 53 54 55 56 57, 48 49 58, 50

Chim T2 52 53 54 55 56 57 58

Hammer 52 53 54 55 56 57

Rotor 53 54

Hummer 1 2 3 4 5 6

Rotor 1 2

22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

L M X J V S D L M X J V S D L M X J V S D L M X J V S D L M X J V S D

5

46 48

47 49

ASS

EMB

LY

Week 23 Week 24 Week 25

PLAN

Posic.

Meteo

Accum

Week 21 Week 22

T2 (position)

T3 (position)

PLAN

T1 (position)

Week 21 Week 23 Week 24 Week 25

Hub (position)

Nacelle (position)

Blades (position)

UN

NLO

AD

S

Supplies 1 (noses)

Supplies 2 (HTK)

Week 22

Ramadan night shiftAs semblies(Main crane)

Pre-assemblies(T1 +hubs)

Bla des out of ca ge.

RamadanAs semblies(Main crane)

Pre-assemblies(T1 +hubs)

Bla des out of ca ge.

Incorporation 2nd main

crane LR1400 Ton (approx).As semblies

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 165 -

En este diagrama programado en Excel se representa el esquema de conexión eléctrica del parque junto al grado de avance de los trabajos. Se representan varias unidades de trabajo unitarias o actividades por turbina pues una característica general de este tipo de proyectos es que los trabajos de construcción de una turbina se repiten para el resto. Esto va a simplificar la gestión pues se repetirán las actividades de construcción de una turbina tantas veces como turbinas haya en el parque.

Véase en detalle la leyenda para apreciar la cantidad de información que se puede obtener acerca de las actividades llevadas a cabo para una turbina y lo fácilmente visualizable que es con este tipo de esquemas una vez familiarizado con la leyenda y tipo de anotación. Nótese que este esquema es personalizable para proyecto.

- 166 - Escuela Técnica Superior de Ing. Industriales (UPM)

El tipo de información recogida en este informe de progreso es el siguiente:

Assembly progress

Pre-assembly progress

Main components storage

Trabajos mecánicos

Pictograma Almacenaje palas en obra

CHIMNEYS

HUB on GROUND 9 15,00%

1 1,67%

HAMMERS 0

ROTOR UP 0 0,00%

0,00%

MCC 0 0,00%

COVER SHEET 0 0,00%

0,00%204h TEST 0

PROPERTY GATE 0 0,00%

T2 - SECTION 2 27 45,00%

T1 - SECTION 1 27 45,00%

N - NACELLE 14 23,33%

T3 - SECTION 3 27 45,00%

H - HUB 18 30,00%

TOTAL TRANSPORT 34,00%

B - BLADES 6 10,00%

P- TORQUING 0 0,00%

T- BLADES TENSIONING 0 0,00%

U- POWER CABLE UP 0 0,00%

M- CONTROL WIRING 0 0,00%

H- HUB CABLING 8 13,33%

0 0,00%

A- GENERATOR ALIGNM. 0 0,00%

SAFETY LINES 0 0,00%

F- FLANGE PAINT

0 0,00%ELEVATORS

Possible blades out of cage.Blades out of cage.Blades ready for assembly

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 167 -

.2.5 CONTROL CALIDAD

CIMENTACIONES

La siguiente estructura de carpetas se podría mantener para clasificar los trabajos de calidad relativos a las cimentaciones:

Registro ejecución cimentaciones: Es de utilidad registrar la siguiente información indicada en la tabla para un mejor control del estado de ejecución de las cimentaciones dadas las características propias del hormigón y la necesidad de controlarse los primeros días de vida.

- 168 - Escuela Técnica Superior de Ing. Industriales (UPM)

Libro control documental: A nivel de control documental se recomienda llevar también un registro de las fechas en que quedan validadas las diferentes actividades de forma que se pueda revisar el cumplimiento con los procedimientos y revisar su estado con facilidad, en este ejemplo se muestra el control completo del proyecto, que incluye obra civil, electricidad y montaje, en él se monitorizan los tests obligatorios o el checklist de calidad respectivos. Se muestra para un grupo de turbinas pero debe ser extensible a la totalidad y se recomienda hacer un sumatorio en la última columna de procesos completados.

WTG Excavation Blinding Concrete Steel RingsSTEEL

REINFORCEMENT AND FORMWORK

POURING CURING REMARKS

1 1) Date:28-Nov 1)Date: 06-dec 1)Date:19-Jan1) Date: 6-Feb 2) Performance - OK3) QC- OK

1) Date: 7-Feb 2) Performance - OK3) QC- OK

14 -Feb. Test 7 days: OK28-Feb. Test 21 days:OK07-Mar. Test 28 days:OK

1) Consultant requests a dif ferent disposition of shear bars.2) Adittional shear bars are mounted3) One concrete truck is rejected due to cone test failure.4) Steel Laboratory test results -OK1) Superficial cracks. Monitoring evolution next days

2 1)Date:21-Jan 1)Date: 24-Jan 1)Date: 26-Jan1) Date: 9-Feb 2) Performance - OK3) QC- OK

1) Date: 9-Feb 2) Performance - OK3) QC- OK

16-Feb. Test 7 Days :OK02-Feb: Test 21Days:OK09-Mar: Test 28Days:OK

1) New Procedure of shear bars is performed2) Consultant requests concrete cone test all trucks;3)Foundation Backfilled

3 1)Date:21-Jan 1)Date: 24-Jan 1)Date: 26-Jan1) Date: 11-Feb 2) Performance - OK3) QC- OK

1) Date: 11-Feb 2) Performance - OK3) QC- OK

18-Feb. Test 7D: OK04-Mar. Test 21 D: OK11-Mar. Test 28 D: OK

1) Review casting procedure. Apply concrete in a regular w ay

4 1)Date:28-Nov 1)Date:19-Dec 1)Date: 19-Jan1) Date: 13-Feb 2) Performance - OK3) QC- OK

1) Date: 19-Feb 2) Performance - OK3) QC- OK

26-Feb: Test 7d OK12-Mar: Test 21d OK

1)Shear bars close to the ring need to correct verticality and anchorage2) RC Pouring execution procedure validated

51) Date: 19-Feb. PerformedLoad Plate Test

1)Date 22-Feb. PC 1)Date 23-Feb. 1) Date: 28-Feb 2) Performance - OK3) QC- OK

1) Date: 01-Mar 2) Performance - OK3) QC- OK

09-Mar. Test 8D: OK23-Mar. Test 22D: OK29-Mar. Test 28D: OK

1) Load Plate Test execution validated2)Steel reinforcement w ell executed. Minor corrections on shear bars distance. High density of shear bars at the exterior perimeter.3)Crashing Cubes Test 7 days done 1 day after due to problems in the measure machine already f ixed.

6 1)Date:28-Nov 1)Date: 07-Dic 1)Date: 19-Jan1) Date: 18-Feb 2) Performance - OK3) QC- OK

1)Date: 21-Feb2)Performance ok3)QC-OK

28-Feb: Test 7d OK14-Mar: Test 21d OK21-Mar. Test 28d: OK

7 1)Date:28-Nov 1)Date: 19-Dic 1)Date: 19-Jan1)Date:20-Feb2)Performance-Ok3)QC-OK

1)Date: 28-Feb2)Performance ok3)QC-OK

07-Mar. Test 7D: OK21-Mar. Test 21D: OK

1)Steel reinforcement w ell executed. Minor corrections on shear bars2)Temperature data loggers into the foundation

8 1) Date:28-Nov 1)Date: 15-Dic 1)Date: 26-Jan1)Date:01-Mar2)Performance-Ok3)QC-OK

1)Date: 03-Mar2)Performance ok3)QC-OK

02-Mar. Test 7D: OK09-Mar. Test 21D: OK30-Mar. Test 28D: OK

1)Steel reinforcement w ell executed. Consultant proposes small modif ication on shear bars distribution in order to improve foundation shear strength, and also improve compliance w ith distances.

9 1)Date: 28-Nov 1)Date: 19-Dic 1)Date: 26-Jan1)Date:01-Mar2)Performance-Ok3)QC-OK

1)Date: 04-Mar2)Performance OK3)QC-OK

11-Mar. Test 7D: OK25-Mar. Test 21D: OK01-Apr. Test 28D: OK

1)Steel reinforcement w ell executed. Consultant proposes small modif ication on shear bars distribution in order to improve foundation shear strength, and also improve compliance w ith distances.

10 1)Date: 28-Nov 1)Date: 19-Dic 1)Date: 26-Jan1)Date:05-Mar2)Performance-Ok3)QC-OK

1)Date: 05-Mar2)Performance OK3)QC-OK

13-Mar. Test 7D: OK27-Mar. Test 21D: OK03-Apr. Test 28D: OK

1) Date 4/03 unloading tow ers.

11 1)Date: 28-Nov 1)Date: 19-Dic 1)Date: 26-Jan1)Date:05-Mar2)Performance-Ok3)QC-OK

1)Date: 06-Mar2)Performance OK3)QC-OK

14-Mar. Test 7D: OK28-Mar. Test 21D: OK04-Apr. Test 28D: OK

1) Steel reinforcement w ell executed. 3 shear bars missing2) Date 6/03 unloading tow ers.

12 1)Date: 28-Nov 1)Date: 19-Dic 1)Date: 26-Jan1)Date:06-Mar2)Performance-Ok3)QC-OK

1)Date: 11-Mar2)Performance OK3)QC-OK

18-Mar. Test 7D: OK03-Apr. Test 21D: OK

1) Steel reinforcement w ell executed. 1 shear bars missing. Correct f ixing shear bars2) 13/03 unloaded tow ers.

13 1)Date: 28-Nov 1)Date: 19-Dic 1)Date: 26-Jan1)Date:05-Mar2)Performance-Ok3)QC-OK

1)Date: 08-Mar2)Performance OK3)QC-OK

15-Mar. Test 7D: OK29-Mar. Test 21D: OK05-Apr. Test 28D: OK

1) Steel reinforcement w ell executed. 1 shear bars missing. Correct f ixing shear bars

14 1)Date: 28-Nov 1)Date: 14-Jan 1)Date: 26-Jan1)Date:08-Mar2)Performance-Ok3)QC-OK

1)Date: 09-Mar2)Performance OK3)QC-OK

16-Mar. Test 7D: OK30-Mar. Test 21D: OK05-Apr. Test 28D: OK

1) Steel reinforcement w ell executed. 3 shear bars missing. Correct f ixing shear bars

15 1)Date: 28-Nov 1)Date: 14-Jan 1)Date: 26-Jan1)Date:11-Mar2)Performance-Ok3)QC-OK

1)Date: 12-Mar2)Performance OK3)QC-OK

19-Mar. Test 7D: OK02-Apr. Test 21D: OK

1) Steel reinforcement w ell executed. Correct f ixing shear bars & distance betw een horizontal bars

16 1)Date: 28-Nov 1)Date: 19-Jan 1)Date: 19-Feb1)Date:12-Mar2)Performance-Ok3)QC-OK

1)Date: 13-Mar2)Performance OK3)QC-OK

03-Apr. Test 7D: OK1) Steel reinforcement w ell executed. Correct 1 missing bar2) Thermocouples installed

FOUNDATIONS

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 169 -

WTG 60 WTG 59 WTG 58 WTG 57 WTG 56 WTG 55 WTG 54 WTG 53 WTG 52

1 Excavation

2 Open Pit Inspection 28-11-16 28-11-16 28-11-16 28-11-16 28-11-16 28-11-16 28-11-16 28-11-16 28-11-16

Geotechnical Report 28-11-16 28-11-16 28-11-16 28-11-16 28-11-16 28-11-16 28-11-16 28-11-16 28-11-16

Replacement (Y/N) N/A Y N/A N/A Y N/A N/A N/A N/A

Geotechnical Replacement Report N/A 20-12-16 N/A N/A 20-12-16 N/A N/A N/A N/A

Modified Proctor and Sand Cone Test N ok -21-1-17 N N ok 01-02-17 N N N N

Load Test N/A N/A N/A N/A ok-19-02-17 N/A N/A N/A N/A

Excavation Validation 28-11-16 21-01-17 28-11-16 28-11-16 19-02-18 28-11-16 28-11-16 28-11-16 28-11-16

QC Register

4 Cleaning Concrete 06-12-16 24-01-17 07-12-16 19-12-16 22-02-17 07-12-16 19-12-16 15-12-16 19-12-16

5 Steel ring placement and levelling 19-01-17 26-01-17 19-01-17 19-01-17 16-02-17 19-01-17 19-01-17 26-01-17 26-01-17

Steel reinforcement (Lower & Upper) Y Y Y Y Y Y Y Y Y

Steel documentation (Batch, Certificates) Y Y Y Y Y Y Y Y Y

Steel Tests (Y/N). If Yes-> Results Y-OK Y-OK Y-OK Y-OK Y-OK Y-OK Y-OK Y-OK Y-OK

Steel QC Register Y Y Y Y Y Y Y Y Y

8 Formworks & PVC Ducts Y Y Y Y Y Y Y Y Y

ReinforcementValidation 06-02-17 09-02-17 11-02-17 13-02-17 28-02-17 18-02-17 20-02-17 01-03-17 01-03-17

Reinforcement QC Register (CheckList) Y Y Y Y Y Y Y Y Y

Reinforced concrete Pouring 07-02-17 09-02-17 11-02-17 19-02-17 01-03-17 21-02-17 28-02-17 02-03-17 05-03-17

Test Results OK OK OK OK OK OK OK OK OK

Concrete QC Register Y Y Y Y Y Y Y Y Y

11 Surface coating 23-02-17 23-02-17 23-02-17 01-03-17 18-03-17 05-03-17 11-03-17 14-03-17 14-03-17

12 Earthing system 27-02-17 27-02-17 27-02-17 28-03-17 03-04-17 28-03-17 03-04-17 03-04-17 03-04-17

Earthing QC Register Y Y Y Y Y Y Y Y Y

13 Backfilling 02-03-17 01-03-17 08-04-17 04-04-17 04-04-17

Foundation Validation ok ok ok ok ok ok ok ok ok

3

Foundations Civil Works Progress

6

10

Access Road Axis 0 Axis 9 Axis 8 Axis 7 Axis 6 Axis 5 Axis 4 Axis 3

Setting Out

Materials Tests for subbase and base

1 Removal of Top Layer 21-1-16 28-11-16 5-12-16 19-12-16 21-1-16 22-1-16 23-1-16 24-1-16

Subgrade (Top Firm) 19-12-16 19-12-16 26-1-17 3-1-17 16-2-17

Subgrade Validation 6-1-17 6-1-17 26-1-17 6-1-17 18-2-17

QC Register 6-1-17 6-1-17 26-1-17 26-3-17 23-3-17 2-4-17 16-4-17

Subbase (15cm) 6-1-17 6-1-17 26-1-17 29-3-17 28-3-17 4-4-17 1-5-17

Modified Proctor and Sand Cone Test 12-1-17 12-1-17 20-2-17 3-4-17

Load Test (every 500m) 12-1-17 12-1-17 20-2-17 15-3-17 3-4-17

Base (25cm)

Modified Proctor and Sand Cone Test 20-4-17 28-3-17 29-3-17

Load Test (every 500m) 20-4-17 28-3-17 29-3-17

Road Validation

4

Road docs progress

0

2

3

- 170 - Escuela Técnica Superior de Ing. Industriales (UPM)

Open pits: Consistirá en una inspección visual de la excavación después de compactada. Básicamente se revisará la limpieza general, el nivel de compactación general revisando que no haya material suelto. Así mismo, se debe comprobar que el espesor de cada capa necesaria para mejora del terreno es el necesario y ha sido compactada adecuadamente.

Material de mejora. Se muestra un documento de trabajo típico de este tipo de revisiones en el que se recogen los siguientes datos de muestras tomadas en la excavación: identificación, ubicación, volumen de arena desalojada, contenido en agua, densidad aparente, densidad seca, grado de compactación y estado final.

9 to Subs. WTG 60 WTG 59 WTG 58 WTG 57 WTG 56 WTG 55 WTG 54 WTG 53 WTG 52 9 to 8

1 Excavation

1.1 Excavation Validation

2 Copper cable instalation

2.1 Copper cable Validation

3 Cable MV instalation

3.1 Cable MV Validation

4 Fiber Optic instalation

4.1 Fiber Optic Validation

5 Sand bed preparation

5.1 Sand bed Validation

6 Back filling

6.1 Back filling Validation

1

2 Corrugated tube installation

3 Kiosk instalation

3.1 End line configuration (Type 1)

3.2 Intermediate configuration (Type 1)

3.3 Intermediate confluence configuration (Type 2)

3.4 Main feeder (Type 2)

3.5 Main feeder confluence (Type 2)

4 Pluggins and connections

4.1 Copper cable connection - Earthning

4.2 Cable MV

4.3 Fiber Optic

1.1 Transformer

1.2 Substation connections

1.1 SCADA system

1.2 Control connections

Switchgears Works Progress

Trenches Works Progress

Substation

Control service area

Foundations

WTG 60 WTG 59 WTG 58 WTG 57 WTG 56 WTG 55 WTG 54

1 Unloading Towers 49

2 Unloading Blades 46

3 Unloading Hub 46

4 Unloading Nacelle 48

5 Preparation of Nacelles 40

6 Hub assembly on ground 40

7 Bottom Section Erection 44

8 Intermediate Section Erection 22

9 Top Section Erection 17

10 Nacelle Erection 17

11 Blade by blade assembly 11

12 Ready MCC 1

13 Quality inspection

14 Returning materials (blade cage disassembly)

15 Elevators assembling

16 PRE-Commissioning

17 Commissioning

UN

LOA

DS

CO

MM

.P

RE

-A

SS

AS

SE

MB

LY

TOTALELECTRICAL LINE 9

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 171 -

Nivel final excavación

Resistencia hormigón. Se podrá recoger copia del albarán de entrega del hormigón identificándose los siguientes datos: el lote, la cimentación donde se empleará, el volumenn y la resistencia.

Acero. Se debe identificar las coladas para cada diámetro con la cimentación en la que se emplea.

- 172 - Escuela Técnica Superior de Ing. Industriales (UPM)

Nivelación de la virola. Se recogerán datos de nivel de la virola antes y después del vertido y los puntos donde se han tomado. Habrá que valorar la diferencia de nivel entre los dos momentos.

Control vertido

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 173 -

Resultados rotura probetas. Hay que documentar los resultados de laboratorio para las roturas a los 7, 21 y 28 días. Un ejemplo sería:

Resistividad del terreno. Consiste en recoger el valor de la resistividad del terreno únicamente en las diversas tomas que se realicen y el método/equipo empleado.

Control de temperaturas. Durante el proceso de curado del hormigón, hay una restricción de temperaturas pues se debe mantener por debajo de 70ºC y no existir una diferencia de más de 20ºC entre diversos puntos de medición. Para su evaluación se

WTG AREA CONCRETE DATA KG CEMENT WATER A/C

H.LIMPIEZA C15

ESTRUCTURA C30/37 385 180 0,20

S4 S3

125-200 130-170 1 2 3 4 5 6 7 8

1

2

3

1 50 14805 9 9 11:00 11:10 0:10 200 17,0 26

2 136 14806 9 18 11:11 11:20 0:09 200 18,5 26

3 137 14807 9 27 11:21 11:30 0:09 200 18,6 26 * * * * * *4 44 14808 9 36 11:31 11:43 0:12 200 18,5 26

5 50 14809 9 45 11:45 11:56 0:11 200 18,5 26

6 136 14810 9 54 11:57 12:07 0:10 200 19,3 26

7 137 14811 9 63 12:08 12:17 0:09 200 18,5 26

8 53 14812 9 72 12:18 12:26 0:08 200 19,5 26

9 44 14813 9 81 12:27 12:36 0:09 200 19,0 26

10 50 14814 9 90 12:37 12:47 0:10 200 19,0 26

11 136 14815 9 99 12:48 12:57 0:09 200 19,5 26

12 137 14816 9 108 12:58 13:06 0:08 200 19,0 26

13 53 14817 9 117 13:07 13:15 0:08 200 18,6 26

14 44 14818 9 126 13:16 13:25 0:09 200 19,0 26

15 50 14819 9 135 13:26 13:34 0:09 200 19,0 26

16 136 14820 9 144 13:35 13:46 0:11 200 19,5 26

17 137 14821 9 153 13:47 13:56 0:09 170 20,0 26

18 53 14822 9 162 13:57 14:06 0:09 170 20,5 26

19 44 14823 9 171 14:07 14:15 0:08 170 20,0 26 * * * * * *20 50 14824 9 180 14:16 14:26 0:10 170 20,0 26

21 136 14825 9 189 14:27 14:38 0:11 170 20,0 26

22 137 14826 9 198 14:39 14:52 0:13 170 19,0 26

23 53 14827 9 207 14:53 15:03 0:10 160 19,4 26

24 44 14828 9 216 15:04 15:17 0:13 170 18,5 26

M3 TOTAL

TIME OF

EXECUTION

HOURS

AVERAGE TIME

FOR ARRIVAL

AVERAGE

CONSISTENCE

AVERAGE

TEMPERATU

RE

MEDIA DE CONSISTENCIA

216,00 4:17 200,00 168,75 19,1

SAMPLE WEATHER

WIND FARM

DELIVERY

NOTE

TIME START

LOADING

M3

ACUMM3

Nº SAMPLESCONSISTENCE-SLUMP

TEMPERATURETIME

LOADING

MIN

TIME FINISH

LOADING

NUMBER

PLATE

CONTROL CONCRETE

Nº OF SAMPLES

TRUCKS/SERIE SAMPLES TOTAL SAMPLES

HORMIGON C15

HORMIGON C30/37

Lean concrete

Lean concrete

Lean concrete

WORKING BY 5 TRUCKS (9 M3)

Truck 53 Small welding for gas tank.

Truck 53 Start work.

- 174 - Escuela Técnica Superior de Ing. Industriales (UPM)

colocan diversos termopares para su control, embebidos en el hormigón, a media altura y equidistantes. Como se muestran en la siguiente planta y alzado, representados por unos puntos:

Control de fisuras. Consistirá en una inspección visual y un registro del siguiente estilo.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 175 -

Control hormigón en laboratorio

CONCRETE POURING DATE

TEMP. CONTROL FOR CURING DATE TEMP.1 TEMP.2 TEMP.3

CONCRETE CRACKS / DAMAGES CONTROL

WIND FARM:

WIDTH (MM)

LENGTH (CM)

DEPTH (MM)

TURBINE NUMBER TURBINE TYPE TOWER HEIGHT

REPARATION APPROVALFISSURES / DAMAGES CONTROL

FISSURE I.D DATE

DAMAGES IN CONCRETE ID TYPE REPARATION MATERIAL USED REPARATION PROCEDURE APPROVAL

PERFORMED CHECKED AND APPROVED APPROVED

Date Date Date

Signature Signature Signature

- 176 - Escuela Técnica Superior de Ing. Industriales (UPM)

Batch number Test sample reference Concrete age Test date Breaking stress Average Breaking stress (x)

282828282828282828282828282828282828282828282828

Concrete age x(N) x(1) rn X K228 0 0 0 0

3 batches or less 4 batches 5 batches 6 or more batchesK2 1,02 0,82 0,72 0,66

REMARKS TO THE ACCEPTANCE REPORT:

9. STATISTICAL CONTROL OF THE CONCRETE PEDESTAL

NOKOK/NOK acceptance of the concrete strength

of the foundation

Acceptance criteria of the concrete strength

during the construction phase: OK if the fck est. of the pedestal at 28 days≥fck.

fck:

fck estimated at 28 days: 0

X - K2*rn ≥ fck

rn = x(N) - x(1)

12 0

11 0

10 0

9 0

8 0

7 0

6 0

5 0

0

4 0

3

1

WINDFARM: WTG NUMBER :

0

2 0

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 177 -

Caracterización de las canteras. En este caso el material de aporte para la construcción de los viales se ha extraído de zonas aledañas pues continene las características mínimas para ello. Estas canteras deberán identificarse en un plano, enumerarse y crear una tabla que relacione cada una de ellas con el uso que se le va a dar.

Batch number Test sample reference Concrete age Test date Breaking stress Average Breaking stress (x)

282828282828282828282828282828282828282828282828

Concrete age x(N) x(1) rn X K228 0 0 0 0

3 batches or less 4 batches 5 batches 6 or more batchesK2 1,02 0,82 0,72 0,66

REMARKS TO THE ACCEPTANCE REPORT:

0

9. STATISTICAL CONTROL OF THE CONCRETE SLAB

OK/NOK acceptance of the concrete strength

of the foundation

Acceptance criteria of the concrete strength

during the construction phase: OK if the fck est. of the slab at 28 days≥fck.

fck:

fck estimated at 28 days: 0

X - K2*rn ≥ fck

rn = x(N) - x(1)

12 0

11 0

10 0

9 0

8 0

7 0

6 0

5 0

4 0

3 0

1 0

WINDFARM: WTG NUMBER :

2 0

Top firm Sub Base Base Top firm Sub Base Base Top firm Sub Base Base

QUARRY 09

QUARRY 08

QUARRY 07

QUARRY 06A&06B

ROAD 00

ROAD 01 ROAD 02P.K. 7611 a P.K. 9119

- 178 - Escuela Técnica Superior de Ing. Industriales (UPM)

Se suelen llevar a cabo los siguientes test de caracterización del material.

Acero Corrugado. Este acero se empleará en la cimentación para la elaboración de hormigón armado. Se recomienda lo siguiente:

o Identificar todo el acero que llega a la obra por diámetro, colada, peso y número de probetas enviadas a laboratorio.

o Recoger los ensayos aportados por el suministrador de acero

o Realizar ensayos propios sobre cada diámetro y colada. Los ensayos deberán contener un análisis químico, un ensayo a tracción y uno de doblado-desdoblado.

El resultado se suele expresar en forma de tabla como sigue:

Cable. El suministrador aporta junto con el material un certificado de ensayos de diveros tipos rutinarios durante la fabricación del cable, como por ejemplo, la resistencia de aislamiento, tensión en seco entre electrodos (hot test), control dimensional, ensayo de alargamiento en caliente del aislamiento (hot set test) o continuidad, etc. Este tipo de ensayos se pueden presenciar. Algunos se llevan a cabo sobre la totalidad de la producción y otros sobre una muestra aleatoria. Por ejemplo:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 179 -

Un informe de un ensayo HI-POT TEST, para una prueba de continuidad sería así:

Protecciones eléctricas. Las siguientes pruebas rutinarias a los cuadros de mando y protección se deben llevar a cabo por parte del fabricante.

- 180 - Escuela Técnica Superior de Ing. Industriales (UPM)

Fibra óptica.

REGISTRO de PUNTOS de INSPECCIÓN

Nº CARACTERÍSTICA REQUISITO RESULTADO OBSERVACIONES

1 Construcción Cable Óptico

ET.91.534 OK Ver Ficha Técnica adjunta

2 Aspecto General

Las cubiertas están libres de poros, grietas, abultamientos y otras imperfecciones. Su aspecto es suave con brillo y tonalidad uniforme.

OK

3 Total Fibras 12 OK

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 181 -

4 Tipo Fibra Óptica G.652D OK ETW.04.003

5 Identificación Fibras Ópticas / Código Colores

Código colores OK

Rojo – Verde – Gris – Amarillo – Azul – Natural – Blanco – Marrón – Violeta – Naranja – Rosa – Negro

6 Diámetro Recubrimiento Secundario (mm)

0.9 OK

7 Diámetro Subcables (mm)

N.A. OK

8 Diámetro Exterior (mm)

12.9 ± 0.5 OK Media Ø (4 medidas) = 12,92 mm

9 Color Cubierta Exterior

Negro OK RAL 9015

10 Marcación de la cubierta

Standard OK MARCAJE METRO A METRO

11 Atenuaciones Ópticas ETW.04.003 OK Ver certificado atenuaciones en la tabla inferior

12 Bobinas / Embalaje

Embalajes / bobinas de madera y pallets en buen estado.

OK

- 182 - Escuela Técnica Superior de Ing. Industriales (UPM)

FABRICACIÓN

Respecto a la fabricación es habitual llevar a cabo una inspección a los centros de trabajo de los principales componentes, que serían los siguientes:

También podría hacerse una visita a cada uno de los envíos a realizar en el puerto de origen.

En estas inspecciones, la revisión general a efectos de calidad podría ser la siguiente:

Generators

DESCRIPTION STATUS

Generator Main Characteristics

Manufacturer xxxxxxx

Rated Capacity 2070 kW

Type Doubly-fed with coil rotor and slip rings

Rated Current Stator:1532A - Rotor:615A

Voltage 690V

Rated Frequency 50Hz

Rated rotational speed 1680rpm

Rated slip 12%

Efficiency at rated power ER: >0,97 // Offer: >94%

Insulation class ER: F or H(180º) //Offer: C or H

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 183 -

Vibration category ER: N // Offer: 1,2 mm/s

Maximum adm instant power 2070 kW

Additional Characteristics ER: high salt and dust concentration in

the air; high temperature and also air

with strongly fluctuating moisture

contents

Operational Temperature

Corrosion

Degree of protection ER: be at least IP 64 except if the

supplied WTG’s are direct drive WTG’s

Quality Control Docs

Manufacturer

Constructor

Genset Tests

Manufacturer

Constructor FAT Document for each WTG

Notes

El Generador incluido en la

certificación clase A, certificado por

TÜV, es de 2000KW Rated Power.

IP54

Blades

- 184 - Escuela Técnica Superior de Ing. Industriales (UPM)

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 185 -

Hub

- 186 - Escuela Técnica Superior de Ing. Industriales (UPM)

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 187 -

Nacelles

- 188 - Escuela Técnica Superior de Ing. Industriales (UPM)

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 189 -

- 190 - Escuela Técnica Superior de Ing. Industriales (UPM)

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 191 -

- 192 - Escuela Técnica Superior de Ing. Industriales (UPM)

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 193 -

- 194 - Escuela Técnica Superior de Ing. Industriales (UPM)

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 195 -

- 196 - Escuela Técnica Superior de Ing. Industriales (UPM)

MONTAJE

Se deben revisar los componentes de las turbinas y en especial la documentación de cada una de ellas, donde se recogen los datos concretos de las pruebas que se realizan a todos los componentes y se registra su trazabilidad. También conviene recoger los procedimientos de calidad del contratista para revisar que se está trabajando conforme a sus estándares, por ejemplo, modo de transporte, de acopio, de ensamblaje, uso de maquinaria auxiliar, equipos en obra, etc. En obra, conviene revisar el estado de los siguientes elementos:

Acopio: Quizá uno de los aspectos más importantes es el estado del material en la obra, su llegada a obra (desperfectos en el transporte, fijación elementos, entrada de agua, etc), acopio y protección, puesto que pueden pasar meses desde su llegada hasta su instalación y podría estar sometido a un desgaste sobre el terreno para el que no está diseñado, como por ejemplo la corrosión. Además se deben revisar que los apoyos empleados son aquellos diseñados pues podrían estar sometidos a tensiones estructurales no previstas.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 197 -

Características del Rotor

Torres

o Premontaje de las celdas

o Montaje de los elementos auxiliares de izado

- 198 - Escuela Técnica Superior de Ing. Industriales (UPM)

o Montaje tramos

o Instalación celdas y base

o Preparación elementos conexión entre tramos y protección hueco torre o Escaleras acceso

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 199 -

o Continuidad puesta a tierra

o Continuidad bandeja y escalera acceso

- 200 - Escuela Técnica Superior de Ing. Industriales (UPM)

o Línea de vida

Nacelle

o Fijación y protección de elementos internos.

o Corrosión o entrada de agua

o Colocación baliza

o Instalación estación meteo

o Preparacion para conexión

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 201 -

o Montaje ventilación

o Izado: Importante la nivelación (inclinación no superior al 1%)

o Ensamblaje

- 202 - Escuela Técnica Superior de Ing. Industriales (UPM)

Rotor y palas o Descarga o Preparación palas

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 203 -

o Preparación rotor

- 204 - Escuela Técnica Superior de Ing. Industriales (UPM)

o Instalación sistema hidráulico bloqueo

o Unión palas

Instalación Blade rotating pump

Nacelle yaw box

Hydraulic brake installation on the brake callipers of the high speed shaft

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 205 -

o Operaciones finales: colocación luminaria, sensores inductivos

Alineación generador

Operaciones de cableado: Con especial atención a las distancias con los elementos laterales para los cables de fuerza, radios de giro, estado del aislamiento o sujeciones.

Una tabla resumen de los procesos que deben considerarse en la fase de montaje son los siguientes:

OPERATION DESCRIPTION PROCESS subPROCESS CATEG.

OP UNL BS TOWER: Dimensions and weights of lower tower sections

01- TOWER SECTIONS

LOWER SECT. UNLOAD

OP UNL BS GATHER: Storage of lower tower sections.

01- TOWER SECTIONS LOWER SECT. UNLOAD

OP MOVE GROUND AND SWITCH DELIV : Location of switch-gear and ground cabinet prior erection

01- TOWER SECTIONS LOWER SECT. ERECTION

OP ASS TK LFT UP BS TOWER: Mounting lifting tools at upper flange of lower section.

01- TOWER SECTIONS

LOWER SECT. ERECTION

OP ASS BS TOWER: Hoisting, mounting and pre-tightening of lower sections.

01- TOWER SECTIONS LOWER SECT. ERECTION

OP FIX BS TOWER: Tightening of the joint between the lower section and the foundation

01- TOWER SECTIONS

LOWER SECT. ASSEMBLING

OP ASS PLAT-0 SWITCH AND GROUND: Installation "0" platform. Positioning of switchgear and ground.

01- TOWER SECTIONS

LOWER SECT. ASSEMBLING

OP ASS GND INSIDE TOWER: Ground cabinet installation (anchoring).

01- TOWER SECTIONS LOWER SECT. ASSEMBLING

OP PREP BS-MS BOLTS: Preparation of joint bolts between the lower section and foundation.

01- TOWER SECTIONS LOWER SECT. ASSEMBLING

OP UNL BS TOWER 1H: Unloading lower section with single crane.

01- TOWER SECTIONS LOWER SECT. UNLOAD

OP UNL BS TOWER 2H: Unloading lower section with double crane.

01- TOWER SECTIONS LOWER SECT. UNLOAD

OP ASS TK LFT DOWN STANDAR BS : Mounting lifting tool at bottom flange of the lower section.

01- TOWER SECTIONS LOWER SECT. ERECTION

OP ASS ACCESS LADDER ESTÁNDAR : Mounting external access ladder.

01- TOWER SECTIONS

LOWER SECT. ASSEMBLING

OP ASS BS EARTH CABLE-SHELL BS: Mounting grounding cables between lower and foundation

01- TOWER SECTIONS

LOWER SECT. ASSEMBLING

OP UNL MS TOWER 1H: Unloading interm section with single crane.

01- TOWER SECTIONS INTERM. SECT. UNLOAD

OP UNL MS TOWER 2H: Unloading interm section with two cranes.

01- TOWER SECTIONS INTERM. SECT. UNLOAD

OP UNL MS TOWER: Dimensions and weights of lower tower sections.

01- TOWER SECTIONS INTERM. SECT. UNLOAD

OP ASS TK LFT UP MS TOWER: Mounting lifting tools at upper flange of interm section.

01- TOWER SECTIONS INTERM. SECT. ERECTION

OP ASS MS TOWER: Hoisting, mounting and pre-tightening of intermediate sections.

01- TOWER SECTIONS INTERM. SECT. ERECTION

OP ASS LADDER AND TRAY MS TOWER: Mounting internal ladder and cable tray connectors.

01- TOWER SECTIONS INTERM. SECT. ASSEMBLING

OP FIX MS TOWER: Tightening of the joint between the lower and the intermediate sections.

01- TOWER SECTIONS INTERM. SECT. ERECTION

OP PREP MS-TS BOLTS: Preparation of joint bolts between the lower and the intermediate section.

01- TOWER SECTIONS INTERM. SECT. ERECTION

OP UNL MS GATHER: Storage of intermediate tower sections.

01- TOWER SECTIONS

INTERM. SECT. UNLOAD

OP ASS BRAIDED CONNECTORS MS: Mounting grounding cables between lower and intermediate sections

01- TOWER SECTIONS INTERM. SECT. ASSEMBLING

- 206 - Escuela Técnica Superior de Ing. Industriales (UPM)

OP ASS TK LFT DOWN STD MS TOWER: Mounting lifting tool at bottom flange of the intermediate section.

01- TOWER SECTIONS INTERM. SECT. ERECTION

OP UNL TS TOWER 1H: Unloading upper section with single crane.

01- TOWER SECTIONS UPPER SECT. UNLOAD

OP UNL TS TOWER 2H: Unloading upper section with double crane.

01- TOWER SECTIONS

UPPER SECT. UNLOAD

OP UNL TS TOWER: Dimensions and weights of lower tower sections.

01- TOWER SECTIONS UPPER SECT. UNLOAD

OP UNL TS GATHER: Storage of upper tower sections.

01- TOWER SECTIONS

UPPER SECT. UNLOAD

OP ASS TK LFT UP TS TOWER: Mounting lifting tools at upper flange of upper section.

01- TOWER SECTIONS UPPER SECT. ERECTION

OP ASS TK LFT DOWN STD TS TOWER: Mounting lifting tools at bottom flange of interm section.

01- TOWER SECTIONS UPPER SECT. ERECTION

OP ASS TS TOWER: Hoisting, mounting and pre-tightening of upper sections.

01- TOWER SECTIONS UPPER SECT. ERECTION

OP FIX TS TOWER: Tightening of the joint between intermediate and upper sections.

01- TOWER SECTIONS UPPER SECT. ERECTION

OP PREP NACELLE BOLTS TOWER : Preparing bolts for the joint upper section and nacelle

01- TOWER SECTIONS UPPER SECT. ERECTION

OP ASS SAFETY LINE TOWER: Mounting definitive safety line.

01- TOWER SECTIONS UPPER SECT. ASSEMBLING

OP ASS BRAIDED CONNECTORS TS: Mounting grounding cables between upper and intermediate sections

01- TOWER SECTIONS UPPER SECT. ASSEMBLING

OP ASS LADDER AND TRAY TS TOWER: Mounting internal ladder and cable tray connectors.

01- TOWER SECTIONS UPPER SECT. ASSEMBLING

OP UNL NACELLE 1H: Unloading nacelle. 02- NACELLE NACELLE UNLOAD OP UNL HT TEMPERATURE SYSTEM: Unloading high temperature kit (HT)

02- NACELLE NACELLE UNLOAD

OP CHECK NACELLE: Previous inspections prior nacelle erection. 02- NACELLE NACELLE UNLOAD

OP PREP ASS BEACON STD: Mounting standard beacon.

02- NACELLE NACELLE ASSEMBLING

OP PREP ASS HT ANEMO VANE: Mounting instrumentation elements in HT. 02- NACELLE NACELLE ASSEMBLING

OP PREP MAIN SHAFT DOWN: Preparation of main shaft prior nacelle erection 02- NACELLE NACELLE ASSEMBLING

OP PREP ASS PROTECTIONS HT: Mounting upper HT module (over nacelle roof). 02- NACELLE NACELLE ERECTION

OP PREP ASS AIR NACELLE: Mounting of nacelle front HT air inlet. 02- NACELLE NACELLE ASSEMBLING

OP PREP ROUT CONNECT MOT HT: Routing and connection of HT cable motors. 02- NACELLE NACELLE ASSEMBLING

OP LFT NACELLE: Preparation of nacelle hoisting. 02- NACELLE NACELLE ERECTION

OP ASS NACELLE: Hoisting and nacelle assembly. 02- NACELLE NACELLE ERECTION

OP FIX NACELLE: Tightening of the joint between upper section and nacelle. 02- NACELLE NACELLE ASSEMBLING

OP UNL HUB 1H: Unloading hub. 03- ROTOR HUB UNLOAD OP UNL BLADE CONT 1H: Unloading blades container with single crane. 03- ROTOR BLADES UNLOAD

UNL BLADE CONT 2H: Unloading blades container with two cranes.

03- ROTOR BLADES UNLOAD

OP PREP BLADE: Blades preparation before assembly. 03- ROTOR BLADES ASSEMBLING

OP PREP TK 12KNm TURN GEAR: Mounting 12KN turning gear prior blade by blade procedure.

03- ROTOR HUB ASSEMBLING

OP PREP TK 19KNm TURN GEAR: Mounting 19KN turning gear prior blade by blade procedure. 03- ROTOR HUB ASSEMBLING

OP PREP HUB BLADE TO BLADE: Preparation of hub for blade by blade procedure.

03- ROTOR HUB ASSEMBLING

OP ASS HUB: Turning over, erection and connection of hub (blade by blade procedure). 03- ROTOR HUB ERECTION

OP ASS BLADE TO BLADE: Erection and mounting of blades in blade by blade procedure.

03- ROTOR BLADES ERECTION

OP FIX BLADE TO BLADE: Tensioning of blade bolts in blade by blade procedure. 03- ROTOR BLADES ASSEMBLING

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 207 -

OP PREP HUB BLADE ON SITE: Hub preparation prior erection. 03- ROTOR HUB ASSEMBLING

OP PASS BLADE ON SITE : Mounting blades in complete rotor procedure (rotor on ground).

03- ROTOR BLADES ASSEMBLING

OP FIX BLADE ON SITE : Tensioning of blade bolts in complete rotor procedure. 03- ROTOR BLADES ASSEMBLING

OP PASS TK AUX CRN HUB TIP BLADE: Preparation of tiling crane at the tip in complete rotor procedure.

03- ROTOR ROTOR ERECTION

OP PASS TK AUX CRN HUB R28 : Preparation of R28 crane in complete rotor procedure.

03- ROTOR ROTOR ERECTION

OP ASS ROTOR ON SITE : Turning over, erection and connection of complete rotor. 03- ROTOR ROTOR ERECTION

OP ASS LIGHT TRANSMISION: Installation of blades lightening transmission.

03- ROTOR ROTOR ASSEMBLING

OP ASS FINAL OPERATIONS HUB : Final operations after rotor assembly. 03- ROTOR ROTOR ASSEMBLING

OP PASS TK GENERATOR : Alignment tool assembly during generator alignment in nacelles . 04- ALIGNMENT NACELLE ALIGNMENT

OP PASS CHECK WI ND : Procedure to check wind speed during generator alignment. 04- ALIGNMENT NACELLE ALIGNMENT

OP ALI GN GENERATOR : Description of readings and corrective adjustments during generator alignment.

04- ALIGNMENT NACELLE ALIGNMENT

OP ASS GENERATOR : Description of final steps during generator alignment. 04- ALIGNMENT NACELLE ALIGNMENT

OP CHECK RI ALIGNMET GENERATOR: Document for the generator alignment records (final measures).

04- ALIGNMENT NACELLE ALIGNMENT

OP ASS KTR 6 LINK COUPLING: Assembly descriptions for KTR couplings. 04- ALIGNMENT NACELLE ALIGNMENT

OP PREP CABLI NG : Safety measures to take into account during the wiring works. 05- CABLING GENERAL ASSEMBLING

OP CONECT AT TOP : Connection of power cable at nacelle transformer. 05- CABLING POWER CABLE ASSEMBLING

OP CONECT AUX CAB DTC GROUND : Connection of auxiliary cables at ground cabinet. 05- CABLING CONTROL CABLE ASSEMBLING

OP ROUT HUB : Routing of cables and hoses inside hub. 05- CABLING CONTROL CABLE ASSEMBLING

OP CONECT HUB : Connection of cables and hoses inside hub. 05- CABLING CONTROL CABLE ASSEMBLING

OP ROUT MV GROUND TOP 60M: Hoisting and routing of power cable from foundation to transformer area.

05- CABLING POWER CABLE ASSEMBLING

OP ROUT AUX CAB GND TOP 60M: Routing of auxiliary cables inside the tower and ground area.

05- CABLING CONTROL CABLE ASSEMBLING

OP CONECT LIGHT&SOCKET-A40 BOX: Connection of power and light cables in intermediate A40 boxes.

05- CABLING CONTROL CABLE ASSEMBLING

OP CONNECT LIGHT&SOCKET-QUICK PLUG: Connection of power and light cables by means of fast sockets.

05- CABLING CONTROL CABLE ASSEMBLING

5.5 CIERRE

Para la conclusión del proyecto, se debe efectuar la puesta en marcha o commissioning de la planta de energía para lo cual se deberán seguir los requisitos indicados en el pliego. Para cumplir con la aprobación y formalizar el traspaso o “hand over” deberán cumplirse:

1 Listado completo de entregables.

2 Listado completo de certificados.

3 Revisión de la turbina.

- 208 - Escuela Técnica Superior de Ing. Industriales (UPM)

4 Comprobación del sistema de control SCADA.

5 Verificación de la curva de potencia del aerogenerador.

6 Prueba de disponibilidad técnica individual o “reliability test”, que suele durar un tiempo determinado (240h p.e.).

7 Checklist revisión global.

8 Spare parts

1. Listado completo de entregables

Debe haberse completado el dossier de entregables indicado en el apartado “5.2.1.2.1 Listado de Entregables” del presente documento.

2. Listado completo de certificados

Al finalizar la obra se deben haber recopilado todos los certificados y toda la documentación de calidad que debe incluir entre otros:

- Certificado de clase de la turbina

- Certificado de la cimentación

- Pruebas FAT (documentación de cada nacelle)

- Registro de trazabilidad (materiales, piezas, equipos, etc)

- Pruebas y ensayos de laboratorio

- Certificados de calidad de los materiales

- Procedimientos de calidad satisfactorimente superados

- Resultado pruebas finales de puesta en marcha

- Documentación as-built

3. Revisión de la turbina

Implica la revisión de todo el parque para comprobar la calidad de los acabados. Para ello se debe preparar una lista de aspectos a revisar para evitar omisiones y así procedimentar la revisión.

Un ejemplo de lista de revisión puede ser la siguiente:

Commisioning Check-list

Topic Comments Accepted

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 209 -

(Y/N)

1.-Swich Gear Kiosk Doors

Kiosk Paint

Kiosk Sealing Kiosk Locks

Kiosk Cleaning Swicthgear statuts Marking of Connections to other WTGs

Cables Status

Kiosk Foundation Others

2.-Tower Outside and acces door

Warning boards insrtalled

Tower bolts Fastened Paint damages

Shell plates status Stair case

Level for first step Turbine Number Door works smoothly and sealing is tight

Door filters installed

Door lock working Others

2.-Service Lift

Condition

Door Operation Sharp edges in lock

Instruction are shown Warning bords installed

Others

3.-Tower Base

Warning boards Information boards

Fire fighting Lower panel conditions

Grounding of panels

- 210 - Escuela Técnica Superior de Ing. Industriales (UPM)

Ladder condition

Saffety wire system Light in tha base

Paint condition Oil drain container

Tube for oil drain container Cleaning

Others

3a.-First Plattform

Bolts Hook Points

Ladder

Safety wire Swing door

Floor Elctrical System

Light Cables

Others

3a.-Second Plattform

Bolts Hook Points

Ladder

Safety wire Swing door

Floor Elctrical System

Light Cables

Cable Hang off

Others

3a.-Top Plattform Bolts

Hook Points

Ladder to Nacelle Safety wire

Door Floor

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 211 -

Sealing of the floor

Protection of power cables Cables

Light Others

4.- Blades

4a.-Blade A

Bolts Surface

Seal to hub cover Helicopter tape

Lightning connectos

Others

4a.-Blade B Bolts

Surface Seal to hub cover

Helicopter tape

Lightning connectos Others

4a.-Blade C

Bolts

Surface Seal to hub cover

Helicopter tape Lightning connectos

Others

5.-Hub and Spinner

Access way to the hub Bolts

paint Spinner

Othes

6.-Pitch System

Lubrication of pitch bearing Bottles for grease excess

- 212 - Escuela Técnica Superior de Ing. Industriales (UPM)

Leakages of hydraulics

Cylinders sealing status Lightning connectors

Others

7.-Main Shaft and Main Bearing Main Bearing automatic lubrication condtion

Main bearingBottles for grease excess

Main shaft cover Rotor arrestor system

Others

7.-Gearbox

Main gear outer Main gear support cracks or rubber dust

Shrink coupling

Others

8.-Oil System

Main gear oil level Main gear oil filters

Metal Particules on the magnet Oil samples taken Main gear oil cooler operation and leakage

Hoses

Others

8.-Connecting Shaft H.S. brake leakage

H.S. brake leakage H.S. brake pad wear Flexible coupling check for cracks, wear (dust)

Others

9.-Generator Generator slip ring system

Wear of slip ring pads

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 213 -

Generator wear automatic lubrication working

Generator rubber support

Cooling system dust Others

10.-Yaw System Grease of teeth

Yaw ring smooth surface

Yaw drives Yaw breakes lining wear

Lubrication Lightning system slipring

Others 11.-Hidraulic System

Hydraulic oil level

Leakages Cleaning

Others 12.-Cooling System

Hoses

Leakages Cleaning Mechanical activation of hatch and nacelle base

Others 13.-Air conditioner System

Hoses

Fixing to external unit Others

14.-Nacelle Clean (sand)

Waste/parts inside nacelle Nacelle crane

Nacelle crane boom

Nacelle crane hatch in floor Cables

Others 15.-Electrical System

Grounding of cables

Wear protection of cables Panel door sealing

Panel doors locks

- 214 - Escuela Técnica Superior de Ing. Industriales (UPM)

Emergency buttons

Light Anemometer

Wind vane Ultrasonic sensor

Grounding and lightning system Clean (sand)

Others

15.a-Frequency converter Frequency converter cooler

15.b-Transformer Transformer

Transformer hatches

Cable for switch Switch failsafe

Transformer coil fiting Main cale connection

Others 16- Safety

Firefighting equipment installed

Rescue Equipment Escape route marking

Access routes to nacelle top Hooking point for work on nacelle top

Others

16- Nacelle outer Hatch

Hook points Anemometer

Wind vane Ultrasonic sensor

Air conditioning unit

Grounding Others Turbine operation

To be noted for the operation: Weather conditions, sequence of operation, noise level, vibration level

Operation Test Observations Accept Service Lift Normal start up

Normal stop down

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 215 -

Emergency stop

Yawing Air conditioner

Nacelle Crane Locking the rotor

Además, se debe registrar un listado de defectos. Se recomienda aportar una foto de cada defecto para facilitar su localización y valorar su magnitud.

Punch List Item Photo and corrective action

xx.xx

Photo

ID Number Location

Observation

Corrective action

4. Comprobación del sistema de control SCADA

# Requirements Comply Comments Operational capabilities

1 SCADA functionalities are doubled so no single fault in the works / equipment will cause loss of data recording from individual WTG’s running or ready to operate. Neither shall any single fault cause loss of on-line communication with more than one WTG.

2 Local data storage capacity in WTG controllers allows 3 months of data recordings to exact same data detail level as comprising for the general Server data storage.

3 The control system has been designed based on in an Industrial PLC technology

4 Signal namespace shows: 4.1. General overview of turbine status

(Producing, Available / Idling, Free of Failures / Errors, In Service, Paused, Stopped, Actual Power Generation, etc).

4.2 Diagnosing faults and events for efficient preparation of corrective and effective maintenance.

4.3 All failure notifications for: Turbines, Farm controllers, LAN, SCADA equipment, PC’s,

- 216 - Escuela Técnica Superior de Ing. Industriales (UPM)

Printers etc.

5 It is delivered with efficient and correct documentation, definition and explanation of signals / errors / failures.

6 Full compatibility between SCADA software and standard Windows programs exists.

# Requirements Comply Comments 7 Allows Remote control and monitoring via Web

browsers, directly or via VPN secured channels, facilitating not less than ten (10) operators using the system simultaneously.

8 •••• Allows Management of user control and monitor privileges, e.g. via login and password.

9 •••• Interface screens include mimics on various portions of the turbines such as blades, nacelle, gear, brake, generator, controllers etc. as appropriate for information overviews.

10 •••• Allows complete farm overview with current operational information, as a minimum comprising all failures of the complete wind park and individual WTG’s including grid failures (status message, number, type, failure date and time and total failure duration) Status of each WTG and WTG communication lost.

11 Allows visualizing grid, turbine, generating, service and failure operation times (in hours) of WTG in hours as monthly, yearly and cumulative values.

12 It reflects electrical generation of WTG in kWh (monthly, yearly, and cumulative).

13 •••• It reflects all phase voltages and currents.

14 •••• It reflects wind speed in m/s (present, classified monthly distribution, monthly average).

15 •••• A failure protocol for at least the last 3 months (type, start of failure, and end of failure) is available.

16 •••• It reflects Power output/input (active, reactive, cos phi, voltage, current).

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 217 -

17 •••• Temperature at nacelle, gearbox, generator, and ambient can be monitored.

# Requirements Comply Comments 18 •••• The following data is measured, displayed and

stored as 10-min mean values:

−−−− Active power output of each WTG and the complete wind park in Kw.

−−−− Electricity generation of each WTG and the complete wind park in kWh.

−−−− Self-consumption of each WTG.

−−−− Wind speed and wind direction (as distribution and time series) at each nacelle anemometer and wind vane.

−−−− Ambient temperature measured at each WTG by a temperature sensor.

−−−− Voltage and current of each WTG related to failure messages.

−−−− Temperatures of generator (stator and rotor), gearbox and sensitive.

−−−− Electric devices of each WTG and the related maximum permissible temperature values.

−−−− Manual stop and start of each WTG, record of the stop periods (time, duration and number).

−−−− Stop and re-start of each WTG due to ambient temperature range limits, record of the stop periods (time, duration and number) and ambient temperature.

−−−− Stops due to wind speed beyond the cut-off wind speed, record of the stop periods (time, duration and number).

−−−− Stops due to wind speed below cut-in wind speed, record of the stop periods (time, duration and number).

19 •••• Alarm panels and alarm acknowledgement facilities. There is in place a management procedure to ensure transparency of alarms being attended and action initiated.

# Requirements Comply Comments

- 218 - Escuela Técnica Superior de Ing. Industriales (UPM)

20 •••• Do alarms include recommendations for immediate actions, and have correct references to O&M documentation, so SCADA alarms will support corrective O&M activities at a maximum of efficiency?

21 •••• Is in place a way to Secure WTG so it´s stopped if alarms are ignored for a predefined time period?

22 •••• Are WTG’s operation parameters secured, so it can be re-installed in individual WTG’s in case of WTG controller break-downs, software failures, WTG controller parameter changes performed in the WTG etc.?

Data acquisition from main Power String Is the monitoring system able to display and store the following data from the two-way meter in main Power String to the substation, and display instantaneous values of: 23 −−−− Active power (kW) delivered (+) / drawn (-

).

−−−− Reactive power (kVAr) delivered (+) /drawn (-).

−−−− Phase currents and voltages.

−−−− Power factor cos phi.

−−−− Cumulative Values to be displayed and stored.

−−−− Energy delivered (+MWh).

−−−− Energy drawn (-MWh).

−−−− Reactive energy (MVArh).

On-line data viewing The user shall be able to monitor the wind farm current status through either a graphical user interface(GUI) showing a map based representation of the wind farm or a series of tables summarizing turbine, meteorological station and grid station status. 24 Does the SCADA display an "easy-to-read"

summary of the wind farm status and performance at any time, along with more detailed information about individual machines?

# Requirements Comply Comments

Automatic acoustic and visual alarms An automatic acoustic and visual alarm should be raised at the monitoring computer at the NREA Control Building in case of any abnormal operating condition

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 219 -

25 −−−− Failures and emergency stops.

−−−− Manual stop and start.

−−−− Stops due to wind speed beyond the cut-off wind speed.

−−−− Stops due to increase of the ambient temperature beyond its permissible limit.

Display of instantaneous values The SCADA shall permanently display instantaneous values as top text in all menus.

26 −−−− Last active error.

−−−− Number of WTGs connected to the grid.

−−−− Wind speed (m/s).

−−−− Total active power (MW).

−−−− Total reactive power (MVAr).

−−−− Power factor.

27 Data acquisition system do provide for easy processing of statistical data:

−−−− Power curve(s) comparison over a selected time period. This power curve is indicative only and does not respond to the guaranteed power curve.

−−−− Availability of each WTG and the complete wind park.

−−−− Daily, monthly any yearly averages or distributions.

# Requirements Comply Comments

Database functions Data shall be stored in an industry-standard open-database format.

28 •••• Does the Scada system comply with the requirements, in what relates to Database functions, as stated?

5. Verificación de la curva de potencia del aerogenerador

Las fases de que consta la preparación del ensayo son las siguientes:

- 220 - Escuela Técnica Superior de Ing. Industriales (UPM)

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 221 -

Se debe indicar que el procedimiento para el cálculo de la curva es la siguiente:

- 222 - Escuela Técnica Superior de Ing. Industriales (UPM)

6. Prueba de disponibilidad técnica individual o “reliability test”, que suele durar un tiempo determinado (240h p.e.)

La evaluación de la disponibilidad se realizará sobre un ensayo de funcionamiento durante 240h ininterrumpidamente durante el cual se debe garantizar una disponibilidad del 95% según lo siguiente:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 223 -

Se debe disponer previamente del listado completo de alarmas del sistema para tener conocimiento de cuáles se consideran como turbina disponible y cuales no, ya que alguna podría dispararse durante la prueba y debe tenerse en cuenta ese tiempo en el cálculo, según la ecuación mostrada anteriormente.

7. Checklist revisión global

Consultant DATE

WTG

Component/Test Element to Check Value OK/NOK Remark

ELECTRICAL TEST

GRID CONNECTION

Voltage Measurement (Top Cabinet)

690 V (+/- 10%). Out of this voltage range the voltage protection will trip

Possible to check this value in WindOne Software

Power Factor 0,95

Possible to check this value in WindOne Software

Frequency 50 Hz. Out of this range check the protection ??

Possible to check this value in WindOne Software

EMERGENCY TEST

- 224 - Escuela Técnica Superior de Ing. Industriales (UPM)

EMERGENCY BUTTON TEST

On the main shaft (emergency push button), on the yaw platform (emergency push button) on the top controller (emergency push button),on the ground controller (emergency push button),in the nacelle cabinet (MV switchgear trip)

Push buttons one by one. Check the system enters emergency mode disconnecting KR919.

The system must go into emergency mode and there will thus be no voltage on the contact power supplies, 690V power supply for the motors, nor the emergency solenoid valves (blades feathered), and the brake will be applied immediately.

UPS CHECK (Emergency Battery)

Check connections and terminal strips and the UPS

The red LED lights up when a drop in grid voltage is detected. The green LED lights up when the Battery charge has exceeded 95% of the total charge.

EMERGENCY CIRCUIT TEST (In emergency Mode)

Emergency circuit for the nacelle Cabinet

Emergency Series Trip due to Battery Failure

Release and reconnect the terminal. The alarm triggers a battery failure.

Check on TouchScreen

Vibration Sensor

Activate the vibration sensor

Check on TouchScreen

Smoke Sensor

Enable the smoke sensor (Spry Aerosol on the smoke sensor) and the alarm will be displayed on the screen.

Check on TouchScreen

Switchgear Trip (Check also the fire protection Trip)

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 225 -

HUB EMERGENCY CIRCUIT TEST

Blades (hydraulic system)

Disconnect the pressure switch from one Blade. The turbine switches to emergency mode.

FIRE PROTECTION SYSTEM

SWITCHGEAR TRIP LOGIC

Switch 1 (Fault to earth)

Trips the Switchgear whenever there is a fault to earth

Switch 2 (Arc Detector)

Trips the Switchgear whenever an arc is detected in the transformer compartment

Switch 3 (Transformer fuse)

Trips the Switchgear if any of the transformer fuses melt

Switch 4 (PLC Alarms)

2 Alarms (First one trips the wind turbine if smoke is detected. Second one is set by PT 100 sensors in the transformer windings)

BRAKING SYSTEM TEST

HYDRAULIC SYSTEM

Oil level in the hydraulic unit

The level must be within the sight glass lines

Hydraulic pump test (Start and Stop the motor pump)

When the pressure drops to 180 bar the start the pump and the pressure increase to 200 bar.

Difference in Pressure (gauge pressure-screen pressure)

4 bar. Check on TouchScreen

Brake pressure Test

25.5 +/- 0.5 bar

- 226 - Escuela Técnica Superior de Ing. Industriales (UPM)

Safety valve Test

225 +/- 0.5 bar. If the maximum pumping time of the unit is exceeded, the system will switch to emergency mode.

Yaw Brake (Within “auto yaw” check the yaw brakes are applied and released)

Pressure drops from 180-200 to 8 bars.

Check for leaks in the brake system

Brake Lever Test (Check for mechanical and electrical operation)

Use a pressure gauge fitted to connector that measure a pressure of 25,5 bar. Check that the brake can pe applied from the touchscreen

BRAKE THERMISTOR Brake Thermistor signal

Disconnect the cable and check the signal from 1 to 0

Check in digital screen

Component/Test Element to Check Value OK/NO Remark

YAW SYSTEM TEST

YAW

Ring and Yaw sensor (Lubrication Check)

Check Yaw sensor cams in the software

SONIC/ANEMOMETER Sonic and Anemometer Test

Verify data shown (wind speed and direction) on the screen. Both measurements have to be in the same order.

PITCH SYSTEM TEST

HUB Oil Leak Level Sensor

Remove the leak sensor connector and check that the signal changes (from 1 to O)

Check in digital screen

PITCH SYSTEM

Sine Test.(Check also the position of the Lightning Transmission)

From 83º until -3º (Check also the minimum gap of 8 mm between the blade conductor band and the hammer)

GEARBOX LUBRATION SYSTEM

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 227 -

GEARBOX

Auxiliary oil filter Pump (Gearbox oil temperature must be no more than 50ºC)

The pressure gauge works in the green line

Gearbox oil pump (Gearbox oil temperature must be at least 50ºC)

With cold oil the motor protection relay will be tripped. Start and Stop the pump

Oil Circuit Pressure (Generator at 1200 rpm an the oil temperature must be 40ºC)

Reduce the rpm until the led signal switches of (write down the values). Accepted range (0.4-0.6 bar)

TEMPERATURE SENSOR TEST

TEMPERATURE SENSORS (PT Sensors)

Generator D.E. bearing temperature Check for coherent

value: Possible faults in sensor reading: 1) infinite or zero resistance on the sensor. The screen display must mark a value of 200ºC. 2) The disappearance of the measuring signal. 3) A different value to that of the resistance indicated in the table.

Check in digital screen

Generator N.D.E bearing temperature

Gearbox oil Temperature

Gearbox bearing temperature

Transformer temperature (3)

HIGHT TEMPERATURE SYSTEM (COOLING)

NACELLE COOLING

4 Motorized Fans

From left to right check the four extractors located on the top rear part

Check in digital screen

Side LockGates

Check the two motorized gates are opened and closed

Check in digital screen

GEARBOX OIL 3 Motorized Fans

Check 3 fans. The air should exit toward the generator

- 228 - Escuela Técnica Superior de Ing. Industriales (UPM)

TRANSFORMER 6 Motorized fans

Use the touchscreen to check the drop in temperature.

Check in digital screen

CONVERTER CABINET COOLING Fans

Refrigeration test: low and hight

Check in digital screen

OVERSPEED TESTS

RMP TEST RPM Enter a value of rpm and apply a gear

Touchscreen from the ground cabinet

ELECTRICAL OVERSPEED

Electrical speed

At 1900 +/- 50 rpm the wind turbine enters in emergency mode

Touchscreen from the ground cabinet

VIBRATION LEVELS

TOWER FREQUENCY Natural tower frequencies

The data collected from the accelerometer must be within the ranges of the tables

PREDICTIVE MAINTENANCE SYSTEM (SMP)

SMP SYSTEM SMP-8C

Check the connection and the accelerometer signals (6). Check the status OK (led illuminated) . Check that is connected to PLC

Top Cabinet

BEACON SYSTEM OPERATION

BEACON SYSTEM Night beacons

Check the beacon`s solar cell

WindOne REMARKS DURING RELIABILITY TEST (240 H)

8. Spare parts

Al final del proyecto se deben entregar un número acordado de componentes entre los que se incluyen los principales, así como una lista de consumibles para cubrir las necesidades del parque durante un tiempo determinado. En este caso 3 años.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 229 -

LISTADO DE PIEZAS Y COMPONENTES

Components Quantity TOTAL Price Unit Price

Saftey belt 20 25.796,00 € 1.289,80 €

P1 ASSEMBLYYAWSTD/HT 5 240.000,00 € 48.000,00 € CONVERT. CAB. ING 50/60HZ ST/HT 1P V3.3 GABEL 1 79.000,00 € 79.000,00 €

HV Switch gear 3 110.877,00 € 36.959,00 €

Main shaft 2 57.720,00 € 28.860,00 €

GENERATOR 4 247.615,68 € 61.903,92 €

GEARBOX 5 910.260,00 € 182.052,00 €

TRANSFORMER 8 317.216,64 € 39.652,08 €

BLADE 4 377.732,72 € 94.433,18 €

ANTI-PARASITE FILTER 150 889,50 € 5,93 €

CIRCUIT BREAKER 1.6-2.5A 150 4.680,00 € 31,20 €

FAN 150 3.673,50 € 24,49 €

ANTI-CAVITATION NON-RETURN VALVE 75 8.679,00 € 115,72 €

ACCUMULATOR 3.5L 19 17.147,88 € 902,52 €

ELECTRICALLY OPERATED VALVE 16 6.720,00 € 420,00 €

BALL VALVE 12 319,20 € 26,60 €

SEALING RING 6X1 20 33,60 € 1,68 €

SEALING RING 20X2 4 20,00 € 5,00 €

SEALING RING 25X2 3 23,19 € 7,73 €

SEALING RING 30X3 5 52,25 € 10,45 €

SEALING RING 38X3 22 259,60 € 11,80 €

O-RING SEAL 21.89X2.62 15 1,65 € 0,11 €

O-RING SEAL 24.99X3.53 4 1,28 € 0,32 €

O-RING SEAL 31.34X3.53 4 2,08 € 0,52 €

O-RING SEAL 47.22X3.53 5 4,00 € 0,80 €

O-RING SEAL 2-228 3 4,08 € 1,36 €

MOTOR PROTECTION 0.63- 1A 15 427,05 € 28,47 €

AUX. CONTACT BLOCK NA 15 102,30 € 6,82 €

CONNECTIONS BRIDGE 15 33,75 € 2,25 €

SKYLIGHT LEVER 9 270,00 € 30,00 €

PRIMER 16 13,12 € 0,82 €

ELECTRICALLY OPERATED VALVE 15 4.255,80 € 283,72 €

ELECTRICALLY OPERATED VALVE 15 3.594,00 € 239,60 €

MECHANICAL PUMP 10 5.575,00 € 557,50 €

NON-RETURN VALVE 38 4.397,36 € 115,72 €

MOTOR SIDE COUPLING 15 1.214,40 € 80,96 €

PUMP SIDE COUPLING 10 775,20 € 77,52 €

STAR 15 261,00 € 17,40 €

- 230 - Escuela Técnica Superior de Ing. Industriales (UPM)

BELL 15 2.511,00 € 167,40 €

SENSOR PT100 20 2.275,20 € 113,76 €

ELECTRIC LEVEL SENSOR 12 1.399,20 € 116,60 €

NON-RETURN VALVE 38 6.046,56 € 159,12 €

DIFFUSOR 15 2.220,60 € 148,04 €

VALVE BLOCK 10 46.117,10 € 4.611,71 €

PRESSURE FILTER AND CARTRIDGE 15 11.048,10 € 736,54 €

FILTER CARTRIDGE 10 7.365,40 € 736,54 €

NON-RETURN VALVE 38 2.951,84 € 77,68 €

ACCUMULATOR 15 1.500,00 € 100,00 €

CYLINDER AND BLOCK O-RING SEAL 15 1,65 € 0,11 €

LOAD CONTROL VALVE 10 1.178,40 € 117,84 €

PRESSURE SWITCH 15 3.787,20 € 252,48 €

NON-RETURN VALVE 38 11.790,64 € 310,28 €

BUSBAR BLOCK CONNECTION TERMINAL 8 39,84 € 4,98 €

2.5A POWER SUPPLY 40 11.392,00 € 284,80 €

5A POWER SUPPLY 40 8.151,20 € 203,78 €

10A POWER SUPPLY 42 23.558,64 € 560,92 €

RC FILTER 30 180,60 € 6,02 €

POWER SUPPLY 15 11.188,80 € 745,92 €

CABLE HOLDER 15 65,10 € 4,34 €

JOINT BEARING 15 1.891,50 € 126,10 €

SKYLIGHT HINGE 16 8.615,36 € 538,46 €

CONTINUOUS FILTER 6 7.075,98 € 1.179,33 €

STRIP 38 1,52 € 0,04 €

TAPE GREY 3 12,81 € 4,27 €

ELECTRIC PUMP EXCHANGER 14 26.646,20 € 1.903,30 €

BEARING 2 18.204,54 € 9.102,27 €

BEARING 2 18.204,54 € 9.102,27 €

CLAMPS 15 7,50 € 0,50 €

SNAP HOOK 4 23,36 € 5,84 €

RING 15 19,80 € 1,32 €

E-PROFILE 3 8,67 € 2,89 €

D30 DOUBLE PIPE CLAMP 15 40,95 € 2,73 €

D30 SIMPLE PIPE CLAMP 15 25,20 € 1,68 €

GRIP FOR D22 PIPE 15 23,85 € 1,59 €

LEVEL SENSOR 27 1.666,71 € 61,73 €

AIR FILTER 18 126,00 € 7,00 €

AIR FILTER 15 592,35 € 39,49 €

SOLENOID VALVE 15 4.951,20 € 330,08 €

LEAK TANK LEVEL INDICATOR 9 2.130,57 € 236,73 €

PRESSURE SWITCH 15 1.947,00 € 129,80 €

SAFETY VALVE 15 1.307,40 € 87,16 €

PRESSURE SENSOR 20 3.387,80 € 169,39 €

DISTRIBUTOR VALVE BLOCK WITH FILTER 3 11.774,40 € 3.924,80 €

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 231 -

HYDRAULIC PUMP 4 1.428,88 € 357,22 €

ACCUMULATOR 1.4L 15 3.849,00 € 256,60 €

EXPANSION TANK 15 551,70 € 36,78 €

SPRING 15 387,90 € 25,86 €

VIBRATION DAMPER 15 194,70 € 12,98 €

PT100 WITH 1M SCREEN 75 2.182,50 € 29,10 €

SENSOR PT100 75 2.761,50 € 36,82 €

INDUCTIVE SENSOR 113 3.425,03 € 30,31 €

SIGN 15 99,60 € 6,64 €

VIBRATION DAMPER 113 1.648,67 € 14,59 €

FLANGE SET 15 130,95 € 8,73 €

FRICTION BEARING 15 553,50 € 36,90 €

RUBBER FASTENING PROFILE 4 8,00 € 2,00 €

WASHER 18 13,86 € 0,77 €

HOSE 15 274,05 € 18,27 €

ADHESIVE 75 2.407,50 € 32,10 €

ADHESIVE 75 1.241,25 € 16,55 €

HEXAGONAL HEAD BOLT M12X130 150 139,50 € 0,93 €

HEXAGONAL NUT M30 150 315,00 € 2,10 €

STRUCTURAL NUT M36 150 1.057,50 € 7,05 €

HEXAGONAL HEAD BOLT M16X70 150 99,00 € 0,66 €

HEXAGONAL HEAD BOLT M10X35 150 127,50 € 0,85 €

SHIM 0.2MM 150 112,50 € 0,75 €

SHIM 0.5MM 150 114,00 € 0,76 €

SHIM 0.5MM 150 186,00 € 1,24 €

SHIM 1MM 150 336,00 € 2,24 €

WIDE WASHER M16 150 39,00 € 0,26 €

SPRING COTTER PIN 150 27,00 € 0,18 €

9-12.5A MOTOR PROT. 150 5.956,50 € 39,71 €

CIRCUIT BREAKER 12.5A-16A 60 2.916,60 € 48,61 €

POSITION SENSOR 20 10.692,40 € 534,62 €

SURGE PROTECTION RELAY 60 4.759,80 € 79,33 €

NEEDLE VALVE 8 464,00 € 58,00 €

PRESSURE REDUCTION VALVE 12 890,88 € 74,24 €

HOSE FLANGE 8 44,88 € 5,61 €

BRACKET FOR BRAKE DISC GUARDS 15 209,40 € 13,96 €

WASHER D25 15 102,30 € 6,82 €

FLOOR PL. FOR BLADE COVERING 15 1.466,40 € 97,76 €

BOLT M30X149 15 203,40 € 13,56 €

PLATE L=500 5 32,40 € 6,48 €

SEAL SECURING RING, BEARING 18 20.304,00 € 1.128,00 €

BUSHING 15 5.134,20 € 342,28 €

RUBBER SEAL ON TOWER 15 1.114,35 € 74,29 €

CONTROL SYSTEM SENSOR PLATE 6 13,68 € 2,28 €

PROTECTION 3 1.059,48 € 353,16 €

- 232 - Escuela Técnica Superior de Ing. Industriales (UPM)

COVERING 3 185,40 € 61,80 €

DOOR STAY 15 5.084,40 € 338,96 €

THREADED ROD M24X240 15 136,35 € 9,09 €

THREADED ROD M8X720 15 116,85 € 7,79 €

BALL JOINT FORK 10 3.240,00 € 324,00 €

BLADE LOCKING BLOCK 10 1.360,00 € 136,00 €

ADJUSTMENT FOR PIPE CLAMP 15 101,40 € 6,76 €

EXHAUST PIPE ASSEMBLY 10 18.784,80 € 1.878,48 €

GENERATOR EXHAUST PART 1 10 11.378,80 € 1.137,88 €

GENERATOR EXHAUST PART 2 15 7.707,00 € 513,80 €

FLEXIBLE COUPLING 15 1.734,00 € 115,60 €

PROFILE 15 129,00 € 8,60 €

TURN-COUNTER SENSOR 10 10.800,00 € 1.080,00 €

TRANSFORMER SPACER 15 48,60 € 3,24 €

WASHER D17 15 39,00 € 2,60 €

CABLE WS300 10 307,20 € 30,72 €

CABLE WS312 10 323,60 € 32,36 €

CABLE WS400 15 494,40 € 32,96 €

FUSE HOLDER 15 328,20 € 21,88 €

SELF LOCKING NUT M8 4 0,64 € 0,16 €

HATCH OPENING CHAIN 15 136,35 € 9,09 €

NON-SLIP TAPE FOR SIDES 15 159,60 € 10,64 €

NON-SLIP TAPE FOR REAR 15 108,00 € 7,20 €

LIGHTING 21 3.767,40 € 179,40 €

HEXAGONAL HEAD BOLT M10X45 15 3,90 € 0,26 €

STRAIGHT ADAPTER 6 5,58 € 0,93 €

HEXAGONAL HEAD BOLT M8X35 15 1,80 € 0,12 €

PLASTIC WASHER M8 15 0,75 € 0,05 €

BUSHING FOR BRAKE 60 1.128,00 € 18,80 €

SPRING DISC 60 2.203,80 € 36,73 €

PISTON FOR BRAKE 5 600,00 € 120,00 €

HEXAGONAL HEAD BOLT M8X50 3 0,54 € 0,18 €

SHIM 0.25MM 100 152,00 € 1,52 €

THIN NUT M30 3 6,60 € 2,20 €

THREADED HEAD HYDRAULIC CYLINDER 20 90.672,00 € 4.533,60 €

SWITCH 15 4.989,75 € 332,65 €

PT100 SENSOR, BEARING 1 20 2.346,20 € 117,31 €

HEXAGONAL HEAD BOLT M16X45 150 136,50 € 0,91 €

HEXAGONAL HEAD BOLT M20X100 15 34,20 € 2,28 €

CYLINDER HOLDER 15 4.824,00 € 321,60 €

VALVE BLOCK 10 29.194,40 € 2.919,44 €

GUARD RELAY 15 4.256,70 € 283,78 €

1-CONTACT RELAY COIL 26 176,02 € 6,77 €

RELAY 26 670,28 € 25,78 €

2-CONTACT RELAY COIL 38 164,92 € 4,34 €

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 233 -

CONNECTION BRIDGE 3 38,58 € 12,86 €

CONNECTION BRIDGE 9 115,74 € 12,86 €

AUXILIARY CONTACT 15 73,95 € 4,93 €

CONTACTOR 30 466,50 € 15,55 €

CONTACTOR 15 216,45 € 14,43 €

THERMAL YAW MOTOR 15 319,95 € 21,33 €

HEADER 26 6.167,20 € 237,20 €

MODULE SUPPLY 26 480,22 € 18,47 €

DIGITAL OUTPUTS 26 4.020,38 € 154,63 €

ELECTRONIC FUSE 26 878,80 € 33,80 €

DIGITAL INPUTS 26 2.328,30 € 89,55 €

PULSE METER 26 4.678,96 € 179,96 €

TEMPERATURE READER 26 5.385,12 € 207,12 €

COMMUNICATIONS 26 6.111,04 € 235,04 €

ANALOG INPUTS 26 4.886,96 € 187,96 €

ANALOG OUTPUTS 26 4.916,60 € 189,10 €

CONVERTER 26 1.084,46 € 41,71 €

CONTROL SYSTEM 20 59.289,80 € 2.964,49 €

FIBER OPTIC CONVERTER 38 4.642,84 € 122,18 €

STAY 15 463,80 € 30,92 €

HOSE L=1220 15 5.617,20 € 374,48 €

COVER 101 41,41 € 0,41 €

REMOTE CONTROL CABLE 51 1.510,11 € 29,61 €

BUSHING 3 10,44 € 3,48 €

RADIAL PLATE 4 134,68 € 33,67 €

COUPLING FOR LUBRICATION 15 3,75 € 0,25 €

INTERFACE 16 6.671,68 € 416,98 €

RISK OF BEING TRAPPED SAFETY LABEL 4 3,24 € 0,81 €

FIRE EXTINGUISHER SAFETY LABEL 15 26,55 € 1,77 €

HEXAGONAL HEAD BOLT M10X50 15 3,90 € 0,26 €

ADHESIVE 3 90,00 € 30,00 €

ACTIVATOR ADHESIVE 3 56,01 € 18,67 €

FLANGE 15 56,25 € 3,75 €

MULTIPLEXER CARD 30 33.000,00 € 1.100,00 €

STICKER FOR TRAPEZOIDAL LADDER

SECTION 15

52,50 € 3,50 €

CIRCUIT BREAKER 14-20A 10 2.503,50 € 250,35 €

BATTERY 26 7.117,76 € 273,76 €

BATTERY CHARGER 19 6.359,87 € 334,73 €

4-CONTACT RELAY BASE, SWITCHED 15 561,75 € 37,45 €

MODULE WITH TWO DIGITAL INPUTS 30 768,90 € 25,63 €

HEADER 20 3.402,40 € 170,12 €

INTERBUS OUTPUT 26 2.523,04 € 97,04 €

CONECTOR DSUB8 26 91,00 € 3,50 €

CONTACTOR INTERLOCK 36 311,76 € 8,66 €

- 234 - Escuela Técnica Superior de Ing. Industriales (UPM)

O-RING SEAL 100 91,00 € 0,91 €

METAL RUBBER GASKET 1 1/4" 3 7,08 € 2,36 €

MALE-MALE ADAPTER 15 115,95 € 7,73 €

IN-LINE NON-RETURN VALVE 10 1.608,00 € 160,80 €

ADJUSTABLE ELBOW 1 ¼" 15 312,30 € 20,82 €

HUB CABINET SUPPORT 15 405,00 € 27,00 €

ELASTIC SUPPORT 7 35,98 € 5,14 €

SHEAR PIN D45 15 394,20 € 26,28 €

RAIL ADAPTER 15 169,80 € 11,32 €

3-CONTACT RELAY 20 582,00 € 29,10 €

TIMER 63 1.959,30 € 31,10 €

ACCESS LADDER TO OUTSIDE 15 3.635,25 € 242,35 €

CPU FAN 21 3.651,48 € 173,88 €

CONNECTIONS BRIDGE 16 16,00 € 1,00 €

FLEXIBLE AIR OUTLET TUBE 30 798,30 € 26,61 €

BRAKE INVERSE LOGIC STICKER 3 2,10 € 0,70 €

POWER SYSTEM 30 28.401,60 € 946,72 €

SERVICE CRANE WITHOUT CHAIN 10 39.628,60 € 3.962,86 €

CONTACTOR 20 4.688,60 € 234,43 €

UNINTERRUPTIBLE POWER SUPPLY 26 42.120,00 € 1.620,00 €

LIGHTING 10 648,40 € 64,84 €

FRONT NOSE CONE RING 2 7.829,12 € 3.914,56 €

LONG LOCK BOLT 15 2.328,00 € 155,20 €

ROTOR LOCK SYSTEM 15 6.796,80 € 453,12 €

HOSE L=1500 15 3.360,00 € 224,00 €

HOSE L=1120 15 4.971,60 € 331,44 €

UPS PROGRAMMING CARD 15 2.538,00 € 169,20 €

RESISTOR 15 7.353,15 € 490,21 €

20-25A MOTOR PROT. CIRCUIT BREAKER 15 607,95 € 40,53 €

SENSOR PT100 20 3.268,00 € 163,40 €

O-RING SEAL, CHANNEL P, 22X2 4 11,08 € 2,77 €

O-RING SEAL, CHANNEL T, 26.64X2.64 5 0,50 € 0,10 €

O-RING SEAL, CHANNEL D, 13X2 7 0,56 € 0,08 €

END COVER FOR TERMINAL 15 14,40 € 0,96 €

HOOK WITH SAFETY CATCH 15 1.186,20 € 79,08 €

VARISTOR 6 2.237,52 € 372,92 €

NC CONTACT BLOCK 15 38,85 € 2,59 €

CARD 10 4.008,50 € 400,85 €

O-RING SEAL 39.2X3 15 19,80 € 1,32 €

HYDRAULIC GROUP G8X 50Hz CE WITH

COOLER 4

44.327,64 € 11.081,91 €

BLADE BEARING COVER SEAL 40 494,80 € 12,37 €

OIL 15 642,90 € 42,86 €

CABLE INTERFACE 10 339,80 € 33,98 €

CONTACTOR 40 4.127,20 € 103,18 €

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 235 -

ROTOR LOCK SYSTEM SAFETY STICKER 15 22,50 € 1,50 €

SAFETY SWITCH 1NC+1NA 6 93,30 € 15,55 €

BUS DAMPER 54 399,06 € 7,39 €

THYRISTOR 740A 10 2.969,40 € 296,94 €

DIODE 540A 10 1.795,90 € 179,59 €

125A, 1A CURRENT TRANSFORMER 30 2.379,60 € 79,32 €

2500A, 1A CURRENT TRANSFORMER 30 6.042,00 € 201,40 €

2.1A POWER SUPPLY 15 2.876,40 € 191,76 €

LOAD SWITCH 200A 6 897,30 € 149,55 €

CIRCUIT BREAKER 3P 160A 15 6.662,10 € 444,14 €

CONTACTOR 30V 15 448,50 € 29,90 €

AUXILIARY CONTACT 4NC 6 66,72 € 11,12 €

AUXILIARY CONTACTOR NA 6 179,88 € 29,98 €

CIRCUIT BREAKER 4A 15 415,35 € 27,69 €

METAL BAG 3 2.124,00 € 708,00 €

TWO BUTTON CNTL WITH EMERG.

BUTTON 15

2.672,40 € 178,16 €

BUTTON CONTROL PANEL CABLE 3 55,05 € 18,35 €

FAN 15 2.832,90 € 188,86 €

FAN GUARD 15 1.545,90 € 103,06 €

HOSE L=2635MM 15 1.044,45 € 69,63 €

ANEMOMETER SUPPORT ARM 15 1.104,60 € 73,64 €

NACELLE EXIT STICKER 3 10,41 € 3,47 €

NACELLE EMERGENCY EXIT STICKER 15 54,75 € 3,65 €

DISC SPRING WASHER M16 15 12,30 € 0,82 €

MECHANICAL PUMP 20 16.687,40 € 834,37 €

TRANSFORMER GROUNDING BOLT 3 165,81 € 55,27 €

LIMIT SWITCH SPRING 15 428,25 € 28,55 €

FLAT JOINT, 3 PINS + GROUND 5 3,40 € 0,68 €

HEXAGONAL HEAD BOLT M16X65 3 13,08 € 4,36 €

PUMP MOTOR 0.75KW 10 3.848,40 € 384,84 €

TRANSISTOR MODULE 600A 30 7.200,00 € 240,00 €

DIODE 600A 20 1.898,00 € 94,90 €

CONTACTOR 3P 50A 15 1.737,60 € 115,84 €

AUXILIARY CONTACT BLOCK 15 520,35 € 34,69 €

SURGE ARRESTER SUPPORT TRAFO 2350

KVA 20KV 10

1.800,00 € 180,00 €

CARD 20 1.241,60 € 62,08 €

FLAT WASHER M8 15 2,70 € 0,18 €

NUT M8 15 0,60 € 0,04 €

THREADED ROD L=620MM 15 170,40 € 11,36 €

HEXAGONAL HEAD BOLT M20 15 58,05 € 3,87 €

HEXAGONAL HEAD BOLT M10X40 15 4,65 € 0,31 €

SELF LOCKING NUT M12 15 8,70 € 0,58 €

CAP NUT M8 15 24,60 € 1,64 €

- 236 - Escuela Técnica Superior de Ing. Industriales (UPM)

HOIST LIMIT SWITCH FASTENING STOP 15 349,35 € 23,29 €

RETURN TUBE 15 1.637,40 € 109,16 €

FUSE 120KA 3 2,64 € 0,88 €

FUSE 1A 4 11,00 € 2,75 €

TRANSFORMER 20 4.508,80 € 225,44 €

CONTACTOR 12A 15 663,30 € 44,22 €

SHEATH D20 15 29,70 € 1,98 €

CIRCUIT BREAKER-SECTION SWITCH 16A 15 336,75 € 22,45 €

FLANGE ADAPTATION BLOCK 20 6.488,80 € 324,44 €

MICROSWITCH 34 1.505,52 € 44,28 €

BRUSH CANT05 16 411,36 € 25,71 €

CHAIN GUIDE BASE ACTUATOR 23 205,39 € 8,93 €

GROUND KEY 15 522,15 € 34,81 €

PLATFORM LOAD STICKER

1000KG/5PEOPLE 15

222,90 € 14,86 €

PLATFORM LOAD STICKER 15 222,90 € 14,86 €

PLATFORM LOAD STICKER 15 222,90 € 14,86 €

HOSE, STRAIGHT-ELBOW TERMINALS

L=720MM 6

869,04 € 144,84 €

TOUCH SCREEN 30 39.667,20 € 1.322,24 €

BEARING SEAL (BLADE SIDE) 10 2.244,90 € 224,49 €

BEARING SEAL (ROTOR SIDE) 6 605,28 € 100,88 €

HOIST PLATE 15 1.365,00 € 91,00 €

TRANSITIONAL SUPPRESSOR 3 70,41 € 23,47 €

DIGITAL OUTPUTS 15 3.100,95 € 206,73 €

CARD 15 1.300,95 € 86,73 €

JOINT FOR PRESSURE FILTER 15 567,30 € 37,82 €

HOIST SUPPORT PIN 15 147,30 € 9,82 €

ANALOG INPUTS 20 6.309,00 € 315,45 €

ROOF ANCHOR LUG 16 4.121,60 € 257,60 €

OVERVOLTAGE PROTECTION RELAY 2P 15 1.871,40 € 124,76 €

SKYLIGHT HANDLE 3 90,00 € 30,00 €

KTR COUPLING RADEX 5 34.453,70 € 6.890,74 €

TUBULAR RESISTOR 100KΩ 15 340,05 € 22,67 €

RESISTOR 600W 15 696,45 € 46,43 €

RESISTOR 800W 15 1.469,40 € 97,96 €

RAIL BORNE 3 15,60 € 5,20 €

CIRCUIT BREAKER 3P 320A 10 8.253,70 € 825,37 €

OVERVOLTAGE PROTECTOR 40KA 15 5.019,60 € 334,64 €

CONTACTOR 260A 8 4.004,00 € 500,50 €

TERMINAL COVER 15 221,70 € 14,78 €

TRANSFORMER 7KVA 10 19.920,00 € 1.992,00 €

DRIVERS CARD SIMPLE 24 34.848,00 € 1.452,00 €

DRIVERS CARD DOUBLE 20 41.440,00 € 2.072,00 €

RAIL TERMINAL 1,5MM2 15 35,85 € 2,39 €

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 237 -

FAULT DETECTER CARD 15 11.520,00 € 768,00 €

TUBULAR RESISTOR 4 86,68 € 21,67 €

TUBULAR RESISTOR 20 443,20 € 22,16 €

CARD 10 2.840,00 € 284,00 €

PASSIVE CROWBAR MODULE 20 14.480,00 € 724,00 €

PASSIVE CROWBAR CONTROL CARD 20 23.360,00 € 1.168,00 €

SMART CROWBAR CONTROL CARD 20 66.742,80 € 3.337,14 €

SMART CROWBAR MODULE 15 6.420,00 € 428,00 €

RELAY 6A 32 566,08 € 17,69 €

RELAY HOUSING 1,5 MM2 15 86,25 € 5,75 €

RELAY FIXING CLIP 15 6,45 € 0,43 €

RELAY HOUSING 4C 1,5 MM2 3 22,17 € 7,39 €

RELAY FIXING CLIP 3 2,19 € 0,73 €

RELAY 6A 10 210,80 € 21,08 €

POWER SUPPLY 24V 20 4.194,60 € 209,73 €

TIGHT SUPPORT PLATE CHAIN BAG 15 744,60 € 49,64 €

INNER REINFORCEMENT FOR HOIST BAG 15 338,40 € 22,56 €

CRANE HOIST BAG FRONT SUPPORT 15 449,40 € 29,96 €

CRANE HOIST BAG REAR SUPPORT 15 914,40 € 60,96 €

HEXAGONAL HEAD BOLT M12X40 15 17,70 € 1,18 €

SHACKLE 15 544,80 € 36,32 €

LASHING CHAIN DIAMETER 9 15 361,20 € 24,08 €

LIGHTNING TRANSMISSION SYSTEM 18 2.386,62 € 132,59 €

HINGE 15 210,00 € 14,00 €

BRIDGE CROSS CONNECTOR 3 2,25 € 0,75 €

MOTOR 15 7.476,90 € 498,46 €

TORQUE LIMITER 21000NM 3 9.240,00 € 3.080,00 €

HEXAGON SOCKET BOLT M8X40 15 3.883,20 € 258,88 €

PROTECTIVE SLEEVE 3 128,40 € 42,80 €

CABLE WP99 2 17.064,82 € 8.532,41 €

O-RING DS CHANNEL 13 X 2.0 15 129,60 € 8,64 €

O-RING P CHANNEL 21 X 2.5 15 136,35 € 9,09 €

2500A CIRCUIT BREAKER 10 41.862,80 € 4.186,28 €

BATTERY 15 222,90 € 14,86 €

COMMUNICATION CABLE 15 398,55 € 26,57 €

PROPORTIONAL VALVE 26 72.800,00 € 2.800,00 €

RELAY 6300A 15 11.056,80 € 737,12 €

SPRING LOAD GEAR MOTOR 10 5.260,80 € 526,08 €

UNDERVOLTAGE COIL 3 348,06 € 116,02 €

CLOSING COIL 15 1.836,75 € 122,45 €

OPENING COIL 15 1.397,40 € 93,16 €

OVERVOLTAGE PROTECTOR 25KA 15 1.163,25 € 77,55 €

OVERVOLTAGE PROTECTOR 50KA 15 2.326,50 € 155,10 €

125A FUSE 30 187,50 € 6,25 €

ELECTRIC ROTATING JOINT 10 15.275,00 € 1.527,50 €

- 238 - Escuela Técnica Superior de Ing. Industriales (UPM)

FA POWER CABLE TRAFO RD-DTC-ING

WITH CABLE 185MM2 2

11.700,00 € 5.850,00 €

GENERIC MOTOR 1.5KW 10 2.571,40 € 257,14 €

CONTACTOR 3P 2500A 10 33.955,70 € 3.395,57 €

PREDICTIVE MAINTENANCE SYSTEM 8 23.879,76 € 2.984,97 €

ID PLATE 15 109,50 € 7,30 €

HYDRAULIC ROTARY JOINT 4 20.000,00 € 5.000,00 €

PLATE 2 ROTARY JOINT PROTECTION 15 340,80 € 22,72 €

LAT. PROTECTION PLATE 1 ROTATING

JOINT 15

636,60 € 42,44 €

SHIM 2MM 100 160,00 € 1,60 €

SHIM 5MM 100 604,00 € 6,04 €

BRAKE CALIPER 10 2.600,00 € 260,00 €

BRAKE CALIPER PADS 28 2.066,40 € 73,80 €

TOP COVER FOR BRAKE DISC

PROTECTION 15

230,55 € 15,37 €

BRAKE DISC LOWER COVER 15 186,60 € 12,44 €

UPPER BRAKE CALIPER 20 5.200,00 € 260,00 €

PRE-INSULATED TUBULAR TERMINAL 15 0,75 € 0,05 €

BRAKE CIRCUIT PRESSURE SWITCH 20 2.721,20 € 136,06 €

OIL PRESSURE SWITCH 20 3.251,40 € 162,57 €

BEACON 10 527,60 € 52,76 €

BEACON LAMP 45 624,60 € 13,88 €

FLUORESCENT LAMP 38 129,58 € 3,41 €

PRIMER 8 4,88 € 0,61 €

MOTOR 0.15KW 20 7.177,60 € 358,88 €

OVERSPEED GUARD SYSTEM 15 1.402,65 € 93,51 €

HUB TRAY WITH COVER 15 792,60 € 52,84 €

CONNECTOR 6 83,52 € 13,92 €

RELAY 10 10.033,50 € 1.003,35 €

TERMINAL 20 1,20 € 0,06 €

RELAY 15 2.014,65 € 134,31 €

FUSE TRIP WARNING MICROSWITCH 6 49,92 € 8,32 €

LV Transformer FUSE 2500A 42 11.195,10 € 266,55 €

NEUTRAL MEASUREMENT PROTECTION 15 488,55 € 32,57 €

CONTACTOR 1NA 15 436,80 € 29,12 €

REDUCTION ADAPTER TO 1" 6 68,46 € 11,41 €

FLANGE FOR PUMP 6 274,32 € 45,72 €

ETCHED ELBOW 6 45,00 € 7,50 €

SWIVELLING ELBOW D38 6 305,52 € 50,92 €

SINGLE CONNECTOR FOR 30 PIPE 6 61,62 € 10,27 €

ELBOW WITH REDUCTION TO D30 6 253,32 € 42,22 €

HOSE, STRAIGHT-90º 6 236,46 € 39,41 €

TUBE L=2840MM 10 3.431,20 € 343,12 €

TUBE L=600MM 10 1.950,00 € 195,00 €

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 239 -

TUBE L=2380MM 10 3.114,00 € 311,40 €

TUBE L=2525MM 3 1.175,88 € 391,96 €

TUBE L=1021MM 10 3.184,00 € 318,40 €

TUBE L=1907MM 10 3.364,40 € 336,44 €

STRAIGHT ADAPTER 6 9,30 € 1,55 €

HOSE WITH TERMINALS L=1080 6 508,14 € 84,69 €

HOSE, STRAIGHT-ELBOW TERMINAL 6 255,78 € 42,63 €

ADAPTER FOR REDUCTION TO 1" 6 158,22 € 26,37 €

SINGLE CONNECTOR FOR 25 PIPE 6 40,38 € 6,73 €

SWIVELLING ELBOW 6 68,70 € 11,45 €

HOSE WITH STRAIGHT TERMINAL 6 669,90 € 111,65 €

HOSE WITH TERMINALS 6 722,46 € 120,41 €

TUBE L=440MM 20 1.094,40 € 54,72 €

TUBE L=320MM 20 1.060,00 € 53,00 €

SINGLE CONNECTOR FOR 28 PIPE 6 42,96 € 7,16 €

VALVE 6 238,80 € 39,80 €

FIVE GOLDEN RULES SIGN 130 318,50 € 2,45 €

FIREFIGHTING EQUIPMENT LOCATION 15 35,85 € 2,39 €

TOWER LADDER STICKER 15 35,85 € 2,39 €

STICKER FOR TOWER DOOR 15 35,85 € 2,39 €

INTERMEDIATE HATCH STICKER 15 28,35 € 1,89 €

HEXAGONAL HEAD BOLT M12X30 15 4,65 € 0,31 €

HEXAGONAL HEAD BOLT M10X35 4 0,84 € 0,21 €

PT100 SENSOR, RINGS 20 644,80 € 32,24 €

HV fuses 60 24.489,60 € 408,16 €

BONFIGLIOLI RIGHT YAW GEAR 12 23.490,00 € 1.957,50 €

BONFIGLIOLI LEFT YAW GEAR 4 7.830,00 € 1.957,50 €

LEINE-LINDE ENCODER TORQUE ARM 4 433,32 € 108,33 €

LEINE-LINDE ENCODER DS 861 WITH

CONNECTOR 16 11.938,40 € 746,15 €

CLAMP-B-38-PP-NA-Y7-NA-Y-C4 20 50,60 € 2,53 €

2,5-4A MS325 MOTOR PROT.CIRCUIT

BREAKER 16 484,96 € 30,31 €

WEI_RCMKITP-I-24VDC4CO_8921120000 12 178,44 € 14,87 €

WEI_RCIKITP230VAC 2CO LD-

PB_8897260000 12 211,44 € 17,62 €

Phoenix Relay REL-MR-110DC 21-21 16 114,24 € 7,14 €

ZEROMAX HSS COUPLING

SLEEVEFIX+LIMITER 50 Hz 8 37.368,00 € 4.671,00 € KTR COUPLING RADEX 165 NANA 4-link 50Hz 4 19.440,00 € 4.860,00 €

ULTRA SONIC ANEMOMETER 2D

IMPROVEMENT 10 21.960,70 € 2.196,07 €

THIES WIND DIRECTION TRANSMITTER 12 4.059,36 € 338,28 €

THIES WIND TRANSMITTER 12 3.471,96 € 289,33 €

FAL 24VDC 2.1A LAMBDA DPP50-24 12 580,20 € 48,35 €

FAL 5VDC 5A LAMBDA DPP25-5 12 552,72 € 46,06 €

- 240 - Escuela Técnica Superior de Ing. Industriales (UPM)

FAL 15VDC 10A LAMBDA LS150-15 12 536,16 € 44,68 €

230V 127W IP44 FAN 16 2.127,04 € 132,94 €

CABLE WS240A 8 254,08 € 31,76 €

CABLE WS240B 8 577,60 € 72,20 €

CABLE WS240C 8 715,20 € 89,40 €

CABLE WS250B 8 1.152,64 € 144,08 €

CABLE WS250C 8 1.501,12 € 187,64 €

CABLE WS251A 8 1.202,56 € 150,32 €

CABLE WS251B 8 647,76 € 80,97 €

CABLE WS251C 8 1.455,04 € 181,88 €

KEYS BOX ACCESS TO TRAFO 10 785,40 € 78,54 €

ROT SWITCH L=296 ABB RHE_1SDA054929R0001 4 102,96 € 25,74 €

AMB_EBP_W2E200-HH38-01 12 1.042,56 € 86,88 €

230V 15W VF85 RAL 7035 FAN 12 679,20 € 56,60 € TIMER 4-230V CA-CC 2CM OMRON H3DK-M2 18 765,18 € 42,51 €

230V 127W IP44 FAN 12 1.595,28 € 132,94 €

TEMP_STEGO_KTO011_01140.0-00 12 149,88 € 12,49 € 0ºC+60ºC THERMOSTAT N.O. KTS 01141.0-00 12 149,88 € 12,49 € TRANSFORMADOR DE CORRIENTE 2500A, 1A 8 777,20 € 97,15 € TRA_2000A/0.5A HLC_LEM_LF2005/S/SP33 8 1.585,44 € 198,18 €

CCU INGECON WIND G9X 2.5KHZ VECT AS3179 15 83.674,95 € 5.578,33 €

BRAKE DISC-MACHINED 4 7.599,04 € 1.899,76 €

GLUAL ROTATING UNION 6 25.500,00 € 4.250,00 €

G9X ELECTRIC ROTATING JOINT STD

COBHAM 8 10.387,04 € 1.298,38 € YAW MOTOR LAFERT AMBZ 100L BA6 50HZ C4H 8 4.305,04 € 538,13 €

Relief valve RV10-10C-05 10 762,00 € 76,20 €

H-1SC-8-TLML15-TLML4515-NA-NA-C4-

1973 3 55,68 € 18,56 €

GENERIC THERMOSTAT DIN 1

NC_CONVERTER 10 107,80 € 10,78 €

CAPACITOR 1P 800Vac 1x33.4µF 50/60Hz 12 783,72 € 65,31 €

INT_ABB_MS132 10-

16A_1SAM350000R1011 4 111,92 € 27,98 €

INT_ABB_S803S-SCL63-

SR_2CCS803901R0599 4 807,08 € 201,77 €

IGBT + ADAPTOR CARD ASSEMBLY 30 49.512,00 € 1.650,40 €

GENERIC IND 0,06MH 50HZ 3P 800A

LL003 3 2.732,49 € 910,83 €

GENERIC IND 0,4MH 50HZ 3P 250A

LL001 3 2.493,15 € 831,05 €

HEATING RESISTOR 400W 8 284,00 € 35,50 €

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 241 -

GENERIC 1350V 6600UF 85º CAP

CCBUS1-2-3 3 3.384,63 € 1.128,21 €

BEKA HYDRULIC- BLADES 6 25.959,88 € 4.326,65 €

FEMALE THREAD COUPLING 1/4-BSPP 1/4-BSPP 36 43,20 € 1,20 €

BEKA HYDRAULIC - MAIN SHAFT 10 14.059,54 € 1.405,95 €

BEKA HYDRAULIC - GENERATOR 10 11.760,15 € 1.176,02 €

BEKA HYDRAULIC - YAW PLATES 10 12.738,46 € 1.273,85 €

BEKA HYDRAULIC - YAW DRIVE 10 23.665,69 € 2.366,57 €

Blocqstop 3 3.662,08 € 1.220,69 €

Botonera control tirak 3 997,48 € 332,49 €

Interruptor con Bloqueo S100 4 1.483,51 € 370,88 €

Luz de seguridad interior 4 1.473,17 € 368,29 €

Interruptor Bloqueo S19.3 230V ST 4 1.478,46 € 369,62 €

Contactor de inversión K1/K2 3 262,25 € 87,42 €

LUZ SEGURIDAD INFERIOR AVANTI 45502002 3 418,94 € 139,65 €

LUZ SEGURIDAD SUPERIOR AVANTI 45502001 3 241,43 € 80,48 €

Transformador 40VA 690V-230V Tirak 4 323,88 € 80,97 €

SIRGA CON GUARDACABO 67M 8MM 10 2.139,69 € 213,97 €

Contactor K3 4 326,89 € 81,72 €

Contactor de control K10 3 113,08 € 37,69 €

CUENTAHORAS P3 AVANTI ELEVADOR(45502096) 3 166,71 € 55,57 €

Transformador interlocks 690/400V to 230V 20 1.014,46 € 50,72 €

TRANSFORM. 400-230V 60VA AVANTI455020 4 275,08 € 68,77 €

Switch S18 ST detección plataforma 3 209,68 € 69,89 €

Caja parada de emergencia 3 184,48 € 61,49 €

Relé F6 Bontronic 3 210,65 € 70,22 €

Rectificador U1 PME 500-S 3 155,72 € 51,91 €

Contactores auxiliares para K1 y K2 3 40,89 € 13,63 €

Wireguide (Avanti) 6 188,77 € 31,46 €

Volante completo X-400 3 72,92 € 24,31 €

Contacto auxiliar K3 3 18,69 € 6,23 €

Palanca accionadora freno de emergencia 3 60,88 € 20,29 €

Piloto verde Tirak 4 64,92 € 16,23 €

CONECTOR HEMBRA 690V 16A 3 42,09 € 14,03 €

Wirefix (Avanti) 4 54,52 € 13,63 €

Fusible F1 cilíndrico 160mA 250V 10 2,62 € 0,26 €

Fusible cerámica 1A 6,3x32 700V 50 49,23 € 0,98 €

Switch S110 Detección Cabina Plataforma 3 222,97 € 74,32 €

Contactor 7,5kW 230V 3 297,74 € 99,25 €

FUSIBLE CERAMICA 1A 6,3X32 700V 6 162,92 € 27,15 €

BASE REVESTIMIENTO LAMPARA AVISO 3 138,51 € 46,17 €

- 242 - Escuela Técnica Superior de Ing. Industriales (UPM)

SEJUETA CABLE 5-16 D8 FINCADO 6 4,98 € 0,83 €

Cable 4x1,5 3ph+gr. 690V 67mts 3 1.418,95 € 472,98 €

BLACK PLASTIC CUP 30x30mm AVANTI15550023 50 64,62 € 1,29 €

BOTTLE FOR BLADE BEARING BREATHER OIL 200 920,00 € 4,60 €

AUXILIARY CONTACT CA5-01 1NC 173 278,53 € 1,61

ADJUSTABLE THERMOSTAT DIN 1 CM CONTACT 20 694,00 € 34,7

BRAKE PAD WITH THERMISTOR

ASSEMBLY 86 6.176,52 € 71,82

4.665.439,53 € 793.834,46 €

LISTADO DE CONSUMIBLES

Designation Qty per year per WTG

QTY for 3 years

Unit of measure UNIT PRICE

TOTAL PRICE

SHELL RHODINA BBZ GREASE CAN of 18 KG 0,50 90,00 CAN 638,64 € 57.477,60 €

KH7 DEGREASER 286,00 859,00 UN 3,20 € 2.747,08 €

GENERIC SPIN-ON FILTER GEARBOX 2,00 364,00 UN 39,04 € 14.210,56 €

GEARBOX GENERIC OIL (ISO VG 320) To be changed on year 3th

18164,00 L 10,71 € 194.536,44 €

BRUSH GENERATOR 2MW 16,00 3300,00 UN 56,80 € 187.440,00 €

KLUBERPLEX GREASE AG 11-462 2,00 364,00 KG 30,86 € 11.233,04 € PLASTIC BOTTLE FOR GEARBOX OIL SAMPLES (TEKNIKER) 2,00 364,00 UN 0,02 € 7,28 €

SIMPLE HOSE CLAMP 0,40 73,00 UN 1,07 € 78,11 €

HOSE 0,20 37,00 UN 29,20 € 1.080,40 €

HOSE BRAKE W.TERM.EO2 0,20 37,00 UN 29,63 € 1.096,31 €

HOSE TANK 1"W.TERM.EO2 0,20 37,00 UN 107,27 € 3.968,99 €

HOSE 90º-45º 0,20 37,00 UN 192,47 € 7.121,39 € PRESS HOSE 1"TERM.EO2 RECTO-ROSCADO 0,20 37,00 UN 98,86 € 3.657,82 €

HOSE 1" W.TERM.EO2 CODO 45? RECTO 0,20 37,00 UN 104,84 € 3.879,08 €

FEDT SHELL STAMINA HDS2 0,20 100,00 KG 12,24 € 1.224,00 €

Latex Gloves - Box 100 Units 2,14 389,00 UN 7,25 € 2.820,25 € CELLULOSE ROLL MINI TORK P 120 M 1 LAYER 15,00 2725,00 ROLL 2,05 € 5.586,25 €

BAG FOR COLLECTING BLADE GREASE

108,00 12350,00 UN 0,02 € 247,00 €

Rubbish Bag 85 x 105 (Roll of 20 units) 1,00 182,00 ROLL 3,18 € 578,76 €

Rubbish Bag 52 x 60 (Roll of 20 units) 1,00 182,00 ROLL 1,09 € 198,38 € PU SEALING ADHESIVE SAUDAFLEX 40FC WHITE 0,70 128,00 UN 5,23 € 669,44 €

CAP FOR GREASE NIPPLE M6 7,00 1272,00 UN 0,07 € 89,04 €

GREASE NIPPLE M6 0,60 109,00 UN 0,25 € 27,25 €

GREASE NIP RG STRAIGHT 2,00 364,00 UN 0,48 € 174,72 €

Grease Nipple M8 2,00 364,00 UN 0,22 € 80,08 € GREASE KLUBERPLEX BEM 41-132 400GR 1,00 182,00 CAN 16,98 € 3.090,36 €

SKF LG W M1 GREASE 5,00 1173,00 UN 15,33 € 17.982,09 €

BRONZE HYDR.CAP 1-4 2,00 364,00 UN 0,70 € 254,80 €

RECUP. FLANGE 291 X 7.6 MM - M 24,00 4360,00 UN 0,09 € 392,40 €

CABLE TIE 510X12.7MM PRT5EH-CO 14,00 2543,00 UN 0,54 € 1.373,22 €

CABLE TIE 292X4.8MM PLT3S-C0 54,00 9809,00 UN 0,05 € 490,45 €

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 243 -

AIR BREATHER FILTER MAHLE 852519 SM-L 2,00 364,00 UN 11,37 € 4.138,68 €

O-RING D7.59X2.62 VITON 0,60 109,00 UN 0,36 € 39,24 €

BRONCE BSP MALE-MALE ADAPTER 0,60 109,00 UN 0,89 € 97,01 € PI 200-PI450-PI3130 SMX 10 SERIES FILTERING ELEMENT

1,00 182,00 UN 37,06 € 6.744,92 €

PI 200-PI450-PI2130 SMX3 SERIES FILTERIN 1,00 182,00 UN 39,45 € 7.179,90 €

G52 BASE FILTER ELEMENT 1,00 182,00 UN 155,47 € 28.295,54 €

O-RING 171,04 x 3,53 Off-line filter 2,00 364,00 UN 1,05 € 382,20 € 3 MICRON FILTER WASHER Off line filter 1,00 182,00 UN 2,23 € 405,86 €

3 MICRON FILTER WASHER metal off line filter 1,00 182,00 UN 17,35 € 3.157,70 €

4 MICRON FILTER WASHER metal II off line filter 1,00 182,00 UN 5,44 € 990,08 €

SMOKE SENSOR TESTING GAS BOTTLE 1,00 182,00 UN 27,55 € 5.014,10 €

MCL FILTER KL121R WITH ADAPTOR G1_INCH GEARBOX 1,76 320,00 UN 276,35 € 88.432,00 €

Filter roll 0,20 64,00 UN 20,20 € 1.292,80 €

Air filter for main door 1,00 364,00 UN 13,47 € 4.903,08 €

Air filter for elec cabinet 112x112 12,00 4360,00 UN 0,57 € 2.485,20 €

Air filter for elec cabinet 220x200 11,00 3996,00 UN 0,75 € 2.997,00 €

Filter roll 1,00 364,00 ROL 2,73 € 993,72 €

Total 681.361,62 €

6. CONCLUSIONES

El proceso es largo, la inversión es elevada y muchos los interesados, directa o indirectamente. Se trata de una planta de producción de energía y como tal, suele tener una componente estratégica, aunque se ha impuesto su uso como producto de inversión. En cualquier caso, se trata de proyectos de gran envergadura, como aproximación podríamos decir que, en la actualidad, tiene un coste de 1 M€/MW, con un elevado componente tecnológico y gran complejidad de ejecución. Por tanto, se debe procedimentar al máximo para minimizar los errores, aprendiendo de la experiencia en la ejecución de proyectos pasados, como la divulgada en este trabajo.

Conviene conocer las limitaciones del presente estudio, pues no se pretende que sea una herramienta para valorar la viabilidad económica ni se incluye el contenido técnico del proyecto, entendido como los cálculos, el diseño o el presupuesto ni tampoco se evaluan las certificaciones necesarias.

Se trata de, conocidos los procesos, saber cómo gestionar toda esta información, para poder aportar un buen servicio de consultoría y apoyo técnico. Para ello, hay que saber desglosar y procedimentar las actividades de forma que sean medibles y controlables. Si bien, se han excluido algunos de los documentos por su elevada extensión, de los cuales se puede aprender mucho, tales como los estudios de impacto social y medioambiental o el estudio de conexión a la red, etc. se han incluido tablas ejemplo y gráficas para ilustrar la forma en que se debe recoger la información de cada actividad, de modo que se pueda seguir mejorando el proceso de gestión a partir de los conocimientos aquí recogidos.

- 244 - Escuela Técnica Superior de Ing. Industriales (UPM)

7. REFERENCIAS

http://www.nrea.gov.eg/Technology/WindFuturePlan

https://energyegypt.net/tag/nrea/

PMBOK Guide and Standards

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 245 -

8. ANEXO I – SECTION 1 TECHNICAL SPECIFICATIONS

- 246 - Escuela Técnica Superior de Ing. Industriales (UPM)

Table of Contents

Volume II. EMPLOYER’S REQUIREMENTS ¡Error! Marcador no definido. Section 1. TECHNICAL SPECIFICATIONS 1. Scope of Supply 1.1. Works Included in the Contract 1.2. Facilities outside this Contract 1.3. Applicability 1.4. Materials 1.5. Design and Manufacture 1.6. Interchangeability 2. General and Site Data 2.1. Geographical Location 2.2. Climatic Conditions 2.3. Wind Conditions 2.4. Power Supply System 2.5. Geotechnical Conditions 2.6. Earthquake Risks 2.7. Frame Conditions for Civil Works 2.8. Transport Considerations 3. Standards 4. Design and Construction 4.1. Wind Energy Converters 4.2. Mechanical, Aerodynamic, and Hydraulic Components 4.2.1 WTG Components and Systems 4.2.1.1.1. General Design Requirements 4.2.1.1.2. Blade bearings 4.2.1.1.3. Pitch Control Mechanisms 4.2.1.1.4. Hub / Nose Cone 4.2.1.1.5. Blades 4.2.1.1.6. Foreign Objects 4.2.1.1.7. Blade Vibrations 4.2.1.1.8. Blade Replacements 4.2.2 Nacelle 4.2.2.1. Climate Control 4.2.2.2. Crane System 4.2.2.3. Environmental Requirements - Nacelle 4.2.3 Drive Train 4.2.3.1. Main Bearings 4.2.4 Gearbox 4.2.4.1. Basis for Approval 4.2.4.2. General Design Requirements 4.2.4.3. Detailed Design 4.2.4.4. Bearings 4.2.4.5. Gear wheels and pinions 4.2.4.6. Gear housing 4.2.4.7. Lubrication System 4.2.4.8. Test and Commissioning 4.2.5 Couplings and Turning Gear 4.2.6 Mechanical Brake

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 247 -

4.2.7 Generator 4.3. Transformer 4.4. Yaw System 4.5. Tower 4.5.1 Nacelle Base Frame 4.5.2 Access, Emergency Routes & other HSE topics 4.5.3 Emergency Escapes 4.5.4 Falling Arrester System 4.5.5 Safety Signs and Instructions 4.5.6 Turbine Protection 4.5.6.1. Over speed Protection 4.5.6.2. Breaking 4.5.6.3. Maintenance Locks 4.5.6.4. Environmental Protection 4.5.6.5. Corrosion Protection 4.5.6.6. Over voltage Protection 4.5.6.7. Fire Protection 4.6. Visual Appearance 4.6.1 Colours 4.6.2 Logo’s 4.6.3 Aviation lights 4.7. Security Systems 4.8. Scada and Communications Systems 4.8.1 WEC Control System 4.8.2 SCADA 4.8.2.1. Data acquisition from main Power String 4.8.2.2. On-line data viewing 4.8.2.3. Automatic acoustic and visual alarms 4.8.2.4. Display of instantaneous values 4.8.2.5. Database functions 4.8.2.6. Documentation 4.8.2.7. Maintenance and evolution of the system 4.8.2.8. After sales support and licenses 4.8.2.9. Security requirements 4.8.2.10. Data back up 4.8.3 LAN 4.8.4 Telephones 4.8.5 UPS 4.8.6 Control Room Building 4.8.7 Availability Supervision System 4.8.8 Data access 4.8.9 Data requirements 4.8.10 Simulator for test 4.8.11 Conditional Monitoring System (CMS) 4.8.12 Meteorological Measurement Masts 4.9. Power System 4.10. Rubber Materials, Sealing Systems, Filters and Hydraulic Components 5. Civil Works 5.1. General 5.2. Material

- 248 - Escuela Técnica Superior de Ing. Industriales (UPM)

5.3. Detailed Topographical Survey and Geo-Technical Survey 5.4. WEC Foundations 5.5. Roads and Shunting Area Preparation at the WEC Sites 5.6. Laying of 22 kV Transmission, Low Voltage and of Control Cables 6. Electrical Works 6.1. MV Installations / Delimitation 6.2. General Requirements 6.3. Electric Generator 6.4. Capacitor Banks 6.5. WTG LV / MV Transformers 6.6. WTG MV Power Control and Protection System 6.7. Switch Gears 6.8. Low voltage installations in WTG’s 6.9. Wiring in WTG’s 6.10. Grounding / Earth of Metallic Parts 6.11. Connecting to electrical infrastructure 6.12. Protection Settings 6.13. Protection against lightning and over-voltage 6.14. Management of Electrical Safety at Work 6.15. Transformer Station (if applicable) 6.16. Medium Voltage Cabling 6.17. Grid connection up to and inside Gulf of El Zayt substation 7. Technical Documentation to be supplied by the Contractor 7.1. Technical Documentation for Planning and Design to be provided by the Contractor 7.2. As Built Drawings to be provided by the Contractor 7.3. Technical Documentation for Installation, Operation, Maintenance, and Service to be provided by the Contractor 7.4. Technical Documentation for Training 7.5. Catalogues of Spare Parts, Materials, Consumables, and Tools to be provided by the Contractor 8. Planning and Design of Wind Park 8.1. Wind Park Optimisation and Micro-Siting 8.2. Design Liaison Meetings 9. Packing and Transport 9.1. Protection and Packing for Dispatch 10. Installation 10.1. General 10.2. Facilities on Site 10.3. Crane and other Tools for Erection of Plant 10.4. Installation 10.5. WTG Erection 10.5.1 Planned Methods for WTG Erection 10.5.2 Personnel / Supervisor / Fitter Requirements 10.5.3 Crane Requirements 10.5.4 WTG Pre-Assemblies 10.5.5 WTG Erection 10.5.6 WTG Mechanical Completion / Commissioning 10.5.7 WTG Electrical Completion / Commissioning 10.5.8 WTG SCADA Installation 10.5.9 WTG Initial Grid Connection

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 249 -

10.5.10 WTG Commissioning Inspection 11. Inspection, Testing and Acceptance 11.1. Quality Control of Materials and Components 11.2. Technical Inspection at the Factory 11.3. Completeness and Damage Inspection 11.4. Pre-Commissioning Testing and Inspection 11.5. Commissioning and Operational Acceptance 11.6. Evaluation of Operation during Defect Liability Period 12. Training of Employer’s Staff 13. Spare Parts, Tools and Materials 13.1. Spare Parts and Tools 13.2. Materials 13.3. Equipment for Power Curve Measurement 14. Defect Liability Period and Related Services 14.1. O&M Plans and Schedules 14.2. O&M Manuals 14.3. Maintenance 14.3.1 Scheduled O&M activities 14.3.2 UnScheduled O&M activities 14.3.3 WTG Updates / Retrofits 14.4. Spare Parts Storage 14.5. Spare Parts, Consumables, Tools etc. 14.6. Training seasons content 14.7. WTG Availability 14.8. Availibility Penalties 14.9. Power Curve Verification 14.10. Serial defect clause 14.11. End of Warranty and O&M Agreements 15. Schedule for Major Components and Spare Parts Combined with Price Escalation Clause 16. Time Schedule for Carrying out the Project Work

17 Special Requirements…………………………………………………………………………….

List of Tables

Table II-1 Sector-wise frequency distribution 259

- 250 - Escuela Técnica Superior de Ing. Industriales (UPM)

1. SCOPE OF SUPPLY

1.1. WORKS INCLUDED IN THE CONTRACT

The Facilities to be delivered under the contract consist of (but are not limited to) the delivery of all equipment and goods and the execution of all activities necessary for the successful installation, commissioning, and operation and maintenance during the Defect Liability Period of the wind plant. The works required under this contract shall be designed and executed by the Contractor on a turn-key basis. The scope of work and the responsibility of the Contractor ends at the 22 kV cable terminations at the cubicles of the 22/220 kV Gulf of El Zayt substation including the connections to the existing installations in co-ordination with EETC/NREA. The Contractor shall make himself acquainted with the conditions in the Gulf of El Zayt Substation and assure a proper interfacing with the existing installations. The scope of work for the road construction ends at the interfaces with existing roads as are the connection of the access road to the coast road Suez – Hurghada and the connection of the internal wind park roads with the existing wind park roads in the South. The Facilities consist of but are not limited to the following:

Planning and Design

−−−− Planning and design of a wind park with an installed capacity of about 120 MW, with an installed unit capacity of minimum 1000 kW each, including foundations, towers, (remote) control and monitoring systems, training programs, wind park internal roads and one access road, internal cabling, connection to Gulf of El Zayt Substation for unattended operation.

−−−− Planning and application of an adequate erection procedure for the offered WEC taking into consideration the limited locally available equipment and material.

−−−− Training of Employer`s staff in Egypt and at manufacturers premises.

Supply of Plant and Equipment as defined below

−−−− Supply of pitch controlled WECs including towers, (remote) control, monitoring, safety and measuring devices, and with adequate protection against climatic impact and designed to withstand the specified loads due to the site conditions and certified accordingly.

−−−− Supply of transformers and transformer stations, switchgears, low and medium voltage cables and all other material required for the complete electrical installation and interconnection of the wind park to the Gulf of El Zayt substation.

−−−− Supply of monitoring, data acquisition, remote control and monitoring system including communication cables between WECs and central control room.

−−−− Supply of a monitoring mast and specified hardware equipment for power performance testing as specified including communication cables between measuring station and central control room.

−−−− Supply of foundation auxiliaries such as foundation bolts, templates, or ear thing components.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 251 -

−−−− Provision of all equipment and tools necessary for the complete installation and commissioning.

−−−− Supply of all spare parts, equipment & tools necessary for the safe operation and maintenance.

−−−− Supply of all required drawings, technical specifications and documentation, certificates, service and maintenance instructions/information, and insurances as specified.

Civil Works

−−−− Detailed geo-technical investigation of the soil conditions.

−−−− Detailed topographical survey of the road corridors for detailed planning.

−−−− Construction of WECs' foundations with adequate protection against climatic impact including all necessary civil works, such as excavation, backfilling, earthing, etc.

−−−− Detailed planning and construction of the wind park internal roads to the individual WEC sites and preparation of the erection sites.

−−−− Excavation and backfilling of cable trenches as well as construction of any necessarypipeline crossing of the cabling.

−−−− Site clearance and preparation prior to installation and after termination of the erection and commissioning prior to taking over.

−−−− Site clearance of the complete wind park site after termination of the erection and commissioning of the wind park prior to taking over (clearing of the site and removal of wastes)

−−−− Supply of required certificates, Technical Documentation & planning documents and of as built drawings as specified.

−−−− In the backfill materials within a distance of 100 mm below and above the lowest/highest

−−−− Section of the cable, stones bigger than 30 mm in diameter are not acceptable.

−−−− Refilling shall be done with appropriate material in layers of 15 cm thickness, cach time properly compacted

Electrical Works

−−−− Delivery and installation of WEC transformer and switchgears.

−−−− Low-voltage power cabling between WEC and transformer station including all accessories and protection equipment.

−−−− Medium-voltage power cabling between transformer stations and Gulf of El Zayt sub-station including all accessories, measurement and protection equipment.

- 252 - Escuela Técnica Superior de Ing. Industriales (UPM)

−−−− Connection of the cable terminations to the 22 kV cubicles of the Gulf of El Zayt substation under supervision of NREA/EETC engineers.

−−−− Installation of earthing and lightning protection system at each WEC.

−−−− Installation of WEC control system.

−−−− Installation of remote control and monitoring system as well as data acquisition.

−−−− Supply of all required drawings, technical specifications and documentation.

Technical Inspection

−−−− Technical inspection of Plant at the factory of the Contractor and quality assurance.

−−−− Technical inspection and quality assurance of all services and components provided by local sub-contractors at the factory.

Packing and Transport

−−−− Seaworthy packing and marking of complete Plant.

−−−− Transport of complete Plant and equipment to the Gulf of El Zayt Wind Park Area including all related services.

Training of Employer’s Personnel

−−−− Training abroad in installation, operation, maintenance and repair at Contractor’s premises (including preparation of training documents).

−−−− Training in operation, maintenance, and repair during and after installation and commissioning of Plant in Egypt (including preparation of training documents).

−−−− Training on the job during the Defect Liability Period on Site.

Installation

−−−− Completeness and damage (open package) inspection of Plant prior to installation.

−−−− Provision of adequate erection procedure.

−−−− Erection of complete WECs.

−−−− Provision of all necessary facilities for the installation works at site, including water and electricity.

Testing, Commissioning and Operational Acceptance

−−−− Testing and commissioning and Operational Acceptance in co-operation with the Employer of Facilities.

Supply of Spare Parts and Consumables

−−−− Supply of spare parts, materials, and consumables for undisturbed operation during the Defect Liability period.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 253 -

−−−− Refilling of the stock at the end of the Defect Liability Period by all spare parts as per consumption rate during the Defect Liability Period, materials, and consumables used within the Defect Liability period.

Defect Liability Period, Service, and Guarantee Inspections

−−−− Operation and Maintenance (O&M) of the Facilities.

−−−− 3 years-Defect Liability period services as to assure the guaranteed availability of the wind park.

−−−− Guarantee inspection of the WECs at the end of the Defect Liability Period by an acknowledged independent expert institute to be agreed with the Employer paid under the Contract to conduct the following but not limited:

∗∗∗∗ Conformity with functional guarantees (guaranteed power curve and availability) and respective compensation measures.

∗∗∗∗ Replacement spare parts and materials used during the Defect Liability period. Refilling of spare parts and consumables will depend on the actual rate of consumption during the warranty period.

∗∗∗∗ Vibrations & end-scope measurements tests, oil analysis, drive terrain and find out the root cause of the failure.

∗∗∗∗ As a technical reference for any technical binding issue (if any), between the contractor and the owner.

Supply of Technical Documentation

−−−− Specification of subsystems and general drawing of the WEC.

−−−− Design explanations and basic installation drawings.

−−−− Electric diagram of WEC, specification of grid connection and lightning protection requirements.

−−−− Installation instructions and principal block diagramed for control and protection of the WEC.

−−−− Drawings and documentation of the tower.

−−−− Calculation document for foundation and foundation drawing.

−−−− Detailed design drawings of the complete wind park.

−−−− Quality assurance manuals and documentation (factory inspections).

−−−− Handling, transport and storage instructions for Plant and Equipment.

−−−− Installation manual.

−−−− Operation, maintenance, service and repair manuals.

- 254 - Escuela Técnica Superior de Ing. Industriales (UPM)

−−−− Test procedure manual.

−−−− Design certificates based on IEC I or GL I or equivalent.

−−−− Detailed description of the remote control and monitoring system.

−−−− As-built documentation and plans.

−−−− Guarantee inspection report.

1.2. FACILITIES OUTSIDE THIS CONTRACT

Works outside the Contract for the Gulf of El Zayt Wind Park Project consist of the following:

Personnel

−−−− Provision of personnel for operating the Facilities after completion (after completing the Defect Liability Period).

Facilities

−−−− Provision of storage area during construction.

−−−− Provision of storage facilities for spare parts and materials during Defect Liability period.

−−−− Provision of a control room in the service area and of an office space at headquarters for the installation of the Remote Control and Monitoring System and the Remote Monitoring System.

−−−− Provision of a telephone line for data transfer between the central wind park control room on-Site and the monitoring station at NREA headquarters in Cairo.

Works

−−−− Supervision of connecting the wind park to the cubicles at Gulf of El Zayt Substation (in co-operation with EETC).

Supplies

−−−− Extension of the Gulf of El Zayt Substation by 1 * 125 MVA and making available of the 22 kV cubicles for wind park connection (in co-operation with EETC).

1.3. APPLICABILITY

The following clauses shall specify general mechanical, electrical and instrumentation requirements and standards of workmanship for equipment and installations. These general specification clauses shall apply where appropriate except where particularly redefined in the individual sections of the specification.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 255 -

1.4. MATERIALS

All materials incorporated in the manufacturing of Plant shall be the most suitable for the duty concerned, shall be new and of first class commercial quality, free from imperfection, selected for long life and minimum maintenance, and comply in every respect with the applicable standards. All materials shall be designed to withstand the stresses imposed by the working and the ambient conditions without distortion or deterioration affecting the efficiency and reliability of the respective equipment.

1.5. DESIGN AND MANUFACTURE

The Plant shall be designed and manufactured in all respects to conform with latest current engineering practice, in order to assure and guarantee specified performances. The WECs must be designed in accordance with latest recommendations and standards issued by IEC as well as other standards specified in this specification. The essence of the design shall be simplicity and reliability in order to ensure that the equipment will allow a long trouble-free service with low maintenance costs. The level of technology shall be up to date. All equipment supplied shall be designed to meet the needs for satisfactory operation under all site specific variations of wind, ambient climate (subtropical, maritime, possibility of lightning), and grid conditions.

1.6. INTERCHANGEABILITY

The Contractor shall ensure that all equipment of similar type and performing similar duties shall be supplied by a single manufacturer and that component parts are as far as possible interchangeable in order to limit the stock of spare parts which the Employer will be required to hold. The major parts of the WEC shall correspond to the type and make indicated in the P/Q documents. If a Contractor has qualified for one alternative of the major parts also this alternative can be supplied. However, the major parts of the WEC and the transformers shall be of one type only.

2. GENERAL AND SITE DATA

2.1. GEOGRAPHICAL LOCATION

The project area is located on the Red Sea coast about 200 km south of Suez and 7 km west of the Ras Shukheir area at Gulf of El Zayt. The project area starts at a distance of about 7 km from the sea and extends about 1.3 - 3.0 km inland. The coastal road passes between the wind park area and the coast line. Running from here, a new access road to the wind plant area is still under construction with the following coordinates:

NUMBER

COORDINATES

NORTHING EASTING

1 28º 08’ 39.5’’ 33º 10’ 19.1’’

2 28º 08’ 44.3’’ 33º 10’ 40.2’’

- 256 - Escuela Técnica Superior de Ing. Industriales (UPM)

3 28º 07’ 52.7’’ 33º 11’ 28.7’’

4 28º 07’ 34.4’’ 33º 11’ 54.2’’

5 28º 07’ 18.6’’ 33º 12’ 28.7’’

6 28º 07’ 14’’ 33º 13’ 4.9’’

7 28º 06’ 58.8’’ 33º 13’ 47.7’’

8 28º 06’ 46.7’’ 33º 14’ 32’’

9 28º 06’ 42.7’’ 33º 14’ 37.6’’

10 28º 06’ 25.3’’ 33º 14’ 47.9’’

11 28º 05’ 43’’ 33º 15’ 5.8’’

12 28º 05’ 28.8’’ 33º 15’ 8.7’’

13 28º 05’ 15.3’’ 33º 15’ 11.4’’

14 28º 05’ 13.9’’ 33º 15’ 8.2’’

15 28º 05’ 11.8’’ 33º 14’ 57.5’’

16 28º 06’ 53.6’’ 33º 14’ 10.6’’

17 28º 06’ 56.7’’ 33º 13’ 58’’

The landscape at the Site is desert and with no vegetation, the topographical maps of a scale of 1:5,000 indicating the wind park area as well as zones to be excluded from sitting are submitted within the Bidding documents in the present Volume II. For more details please refer to Volume II – Section 5: “Geotechnical and Topographical Studies” report. According to the location, special climatic conditions will have to be considered such as sand storms and high salt content. The salt concentration is described by the category ISO 12944-2, C5M (very high) The area was cleared from mines by the Egyptian military in recent years; a certificate on mine clearance is available. To the south-west the wind park area is directly adjacent to the NREA/JICA wind plant (220 MW) and at the north-west by the NREA/KfW wind plant (200 MW). It is also adjacent to the East with the General Petroleum Company (GPC's concession areas). These are the coordinates of the wind plants adjacent:

NREA-JICA 220 MW NREA-KFW 200 MW

EASTING NORTHING EASTING NORTHING

33° 08' 54.3" 28° 06' 6.40" 33° 6'8.50" 28° 9'59.00"

33° 09' 14" 28° 05' 27.5" 33° 8'54.30" 28° 6'6.40"

33° 09' 21.01" 28° 03' 24.24" 33°10'34.10" 28° 7'36.09"

33° 13' 45.25" 28° 03' 23.11" 33° 9'55.99" 28° 8'24.00"

33° 16' 35.55" 28° 03' 2.65" 33°10'58.48" 28° 9'2.70"

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 257 -

NREA-JICA 220 MW NREA-KFW 200 MW

EASTING NORTHING EASTING NORTHING

33° 15' 09.24" 28° 04' 42.03" 33° 9'16.79" 28°11'11.15"

33° 15' 07.25" 28° 05' 3.53"

33° 13' 25.99" 28° 03' 58"

33° 10' 34.10" 28° 07' 36.09"

The Gulf of El Zayt 22/220 kV substation is currently under implementation by EETC to mainly serve the three north-west NREA/KfW wind plant (200 MW), there are enough space to install the required equipments of 220 MW JICA project and 120 MW Spanish project. Below are the coordinates of the substation and the service area which are currently under construction and located within the present project area:

SUBSTATION SERVICE AREA

NORTHING EASTING NORTHING EASTING

28º 07’ 21.4’’ 33º 10’ 35.1’’

28º 05’ 17.41’’ 33º 14’ 37.23’’

28º 07’ 25’’ 33º 10’ 41.1’’

28º 05’ 24.06’’ 33º 14’ 45.25’’

28º 07’ 16’’ 33º 10’ 39.2’’

28º 05’ 12.54’’ 33º 14’ 57.72’’

28º 07’ 19.6’’ 33º 10’ 45.5’’

28º 05’ 05.89’’ 33º 14’ 49.66’’

2.2. CLIMATIC CONDITIONS

The Contractor shall consider the following climatic conditions for the planning, design and selection of all components: •••• Air temperatures observed at two met masts the 1st mast GOZ1 at the site, where, its data

is available since 2009, and the 2nd mast GOZ4, about 8 km north- west of the project site, its data is available since 2009.

−−−− Annual average temperature: 23.1 °C.

−−−− Average temperature in January: 14.0 °C.

−−−− Average temperature in July: 31.0 °C.

−−−− Extreme maximum temperature : 43.2 °C.

−−−− Extreme minimum temperature: 2.7 °C.

−−−− Annual average air pressure: 992.8 hPa *).

- 258 - Escuela Técnica Superior de Ing. Industriales (UPM)

−−−− Extreme minimum air pressure: 982.4 hPa *).

−−−− Extreme maximum air pressure: 1004.9 hPa *).

−−−− Annual average air density: 1.162 kg/m3 *).

−−−− Extreme minimum air density: 1.109 kg/m3 *).

−−−− Extreme maximum air density: 1.214 kg/m3 *).

−−−− Annual average relative humidity: ~ 48 % **).

−−−− Maximum daily precipitation: 0 – 2 mm ***).

*) Is based on 2008 and 2009 data from the ItalGen N Metmast at 40.2 m above ground level.

**) Is based on assumption from Hurghada internet data since no humidity sensors are installed on the Met-masts.

***) Can be exceeded approximately once every 10th year in connection with severe thunder storms.

•••• Precipitation.

−−−− Maximum daily precipitation: 35 mm.

•••• General weather.

−−−− Main wind direction: North-West.

−−−− Estimated extreme wind speed (10 min mean in 50 m a.g.l.): 32.7 m/s.

−−−− Average wind speed (10 min mean in 50 m a.g.l.): 10.49 m/s.

−−−− Frequency of storm (wind speeds above 17 m/s): < 1%.

−−−− Turbulence intensity: 10%.

With regard to air temperature and relative humidity the Contractor shall consider desert and maritime conditions for his design. The salt concentration is described by the category ISO 12944-2, C5M (very high). The Contractor is obliged to take all required measures to assure the trouble-free operation with the specified parameters, under the above mentioned conditions. Special attention shall be paid to sandstorms and high salt content in the air. All delivered equipment has to be especially protected (for example with multiple coats of special paint) against corrosion.

2.3. WIND CONDITIONS

Wind measurements carried out by NREA at the Gulf of El Zayt by the nearest mast (GoZ1) to the wind park area: at the position E 124273.6 m, N 893092.2 m Egypt green belt, old Egyptian 1907, or (28°07’18.12” N, 33°12’47.88’’ E) WGS 84.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 259 -

The following table gives the result of the GoZ1 mast at 47.5 m height during the period 1st Jan2007 to 24th Dec 2009.

Table 8-1 Sector-wise frequency distribution

On the basis of the above given measurement and using the wind atlas model the onsite wind potential was calculated. The wind atlas (*.lib file) as well as an orography and roughness map (*.map files) suitable for the WAsP program are provided with the Bidding Documents (Volume II – Section4): I- Data file for WAsP (*.map). II- Wind data for WAsP (*.lib). The following table shows the expected wind potential of the extreme sites for different heights.

- 260 - Escuela Técnica Superior de Ing. Industriales (UPM)

HEIGHT v [m/s] E [W/m²] A[m/s] k

50

max (exposed site)

10.7 1050 12.0 3.13

min (shaded site)

8.6 528 9.6 3.22

60 Max 10.9 1101 12.2 3.16

Min 9.1 625 10.1 3.22

70 Max 11.1 1154 12.4 3.17

Min 9.6 720 10.6 3.24

Based on the WAsP calculation, a preliminary proposal for a sitting of a typical WEC types on a Map of a scale of 1:5,000 is submitted with the Bidding Documents, included in Volume II – Section 3 named General Design. These should serve the Bidder to propose an optimized sitting for the offered WEC. Moreover, these documents shall serve as a base for detailed planning in case of contract award.

2.4. POWER SUPPLY SYSTEM

Basic Information about Grid

The single bulk power supply point for the entire coastal region is the 22/220 kV Gulf of El Zayt substation, to which is presently connected one 220 kV double circuit line. This transmission line from Ain Sukhna to Gulf of El Zayt has a length of about 280 km. The main parameters are:

−−−− Bundle conductors 2x400 mm2 aluminium alloy.

−−−− Earth conductors single 1x185 mm2 aluminium alloy.

−−−− No phase transposition was applied.

The Gulf of El Zayt substation (under construction by EETC) and equipped with two 4*125 MVA transformers. This capacity will be reserved for wind parks of a total capacity of 420 MW for (KfW -EIB-EC) & JICA projects with enough spare room to place the step-up transformer needed for the present project.

According to the Egyptian standards the present Gulf of El Zayt substation was designed for a symmetrical fault level of 25 kA/1s (22 kV), 40 kA /1s (220 kV).

The wind park will be connected to the future 22 kV switchyard in the expanded substation. A number of fully equipped cubicles (incoming feeders) will be installed. The basic electrical design parameters of this 22 kV switchyard are taken from the Bidding Documents. The Contractor shall be responsible to verify the specifications and to consider the as built situation of the substation for his detailed design.

In addition to the site conditions (topography, climate, etc.), the basic electrical design parameters given in the table below have been established for electrical equipment:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 261 -

Rated voltage 220 kV 22 kV 690 V 400 V

Power system

Basic insulation level, (IEC 71-1, 1993)

Nominal voltage, (Operational voltage)

220 kV 22 kV 690 V 400 V

Highest voltage for equipment, Um (r.m.s. value)

245 kV 24 kV 1000 V 1000 V

Standard short-duration, 50 Hz withstand voltage, to earth

460 kV 50 kV 8000 V 8000 V

Standard lighting impulse withstand voltage to earth

530 kV 60 kV IEC 61024

IEC 61312

IEC 61400

IEC 61024

IEC 61312

IEC 61400

Standard short-duration, 50 Hz withstand voltage, across isolating distance

1050 kV 125 kV IEC 60664 IEC 60664

Standard lighting impulse withstand voltage, across isolating distance

1200 kV 145 kV IEC 61024

IEC 61312

IEC 61400

IEC 61024

IEC 61312

IEC 61400

Apparatus and overhead line

Minimum creepage distance, insulators and bushings

7700 mm

770 mm 35 mm 35 mm

Minimum clearance, phase-phase 2750 mm

790 mm

Short circuit performance

Short-time withstand current, (rms) for 1 s

40 kA 25 kA min. 22 kA min. 22 kA

Peak withstand current 100 kA 63 kA min. 55 kA min. 55 kA

System earthing YN D yn yn

The new 22kV switchgear will be designed as a single bus bar and metal clad type. The wind park will be connected to the line feeders consisting of three pole SF6 circuit breakers with a rated current of 1600A.

Load Development

For the time being the only consumer supplied from the Gulf of El Zayt substation is the NREA service area with offices, storage and staff houses. Future connection of further consumers, such as the beach resorts along the red sea coast, which are presently under construction, and the Gulf of El Zayt village may be implemented.

- 262 - Escuela Técnica Superior de Ing. Industriales (UPM)

Interface Concept

For each WEC an own transformer station shall be used to transform directly from LV to 22 kV.

The 22 kV wind park internal and external connection shall be carried out through cables.

Grid Parameters to be considered

The following major grid characteristics should be taken into consideration for the design of the power system of the wind farm WECs:

−−−− Transformer capacity at the Gulf of El Zayt Substation Expansion by additional: 1*125 MVA to serve this wind farm, in the same time a JICA financed wind park of 220 MW and a 200 MW financed by KfW-EIB-EC will be all managed to connect on the same substation.

−−−− The value of the maximum short-circuits current (3-phase-symmetrical fault) at Gulf of El Zayt substation and 22 kV-level is 25 kA/1s duration.

It has to be emphasized that the design of the WECs must be adapted to the above particular grid conditions in the project area, such as low load, short-circuit power, other wind parks connected, long transmission line etc. The Contractor has to consider the grid compatibility of the WEC according to Attachement 3 “Wind Farm Grid Connection Code” and the respective electrical parameters. Major aspects are:

−−−− Short-circuit power requirements during start-up of WEC under high wind and low load conditions.

−−−− Maximum currents during various operating conditions.

−−−− Behavior of WEC in situation of loss of load or grid failure in the local system (rotor over speed) respectively start-up of wind park after grid failure.

−−−− Behavior under frequency variations of more than +/- 1.0 Hz.

−−−− The maximum voltage drop between the most distant transformer station and the Gulf of El Zayt Substation for the highest generation shall not be more than 1.5% (22 kV).

−−−− The maximum voltage drop between the WEC and the step up transformer station 0.69/22kV (LV side) for the highest generation shall not be more than 1.0% for the longest cable.

−−−− The installation conditions for the LV and HV cables should be at least: max. two/three cables in parallel in a dry soil (2.5 °C /m/W) at a maximum temperature of 35 0C.

−−−− The earth system resistance to earth at each WEC and transformer station should not be higher than 5 ohm.

−−−− The WECs shall have their own lightning protection.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 263 -

The Contractor has to assure that all necessary measures are taken for trouble-free operation of the WECs and grid stability under these conditions.

The Contractor has to assure that all necessary measures are taken for trouble-free operation of the WECs and grid stability under these conditions.

2.5. GEOTECHNICAL CONDITIONS

The area is located in a zone with undifferentiated quaternary deposits, such as alluvial fans, wadi deposits, sand, gravel or recent coastal deposits. The area is crossed by several Wadis Where 10 boreholes were investigated in the feasibility study done by barlovento / MCE MISR Consulting Engineers in May 2010. Therefore geo-technical investigations will have to be carried out at each of the definite WEC locations in order to secure a safe foundation. As the selected contractor will be responsible for the final, optimised wind park configuration (e.g. depending on the selected rated capacity, optimisation of generation by micrositing) and for the turn key implementation, these detailed geo-technical investigations, followed by an expert open pit inspection must be part of the supply and service contract. Within the framework of this conceptual design geotechnical investigations were carried out at 10 representative sites, in order to generally assess the conditions in the area itself. The results shall serve as a basis for the conceptual design of the wind park and for general information of the Bidders in the Tender procedure. The investigations were carried out by the Feasibility Study, Cairo, in July 2011. The boreholes were drilled to a depth of 10 m. A copy of the report is enclosed as Appendix-1. The locations of the 10 drilling locations as well as their surface elevation are indicated as BH1 to BH10 in this report (Appendix -1). The main results of the preliminary investigations can be defined in (Appendix -1).

2.6. EARTHQUAKE RISKS

After a stronger earthquake about 20 years ago / since 1992, a new earthquake code was introduced in Egypt. According to this code the earthquake forces are expressed as an additional rotating load. The corresponding code is contained under chapter 8 of the Egyptian Code for Loads and Forces on Structures and Buildings, latest edition. According to this code Gulf of El Zayt is located in earthquake risk Zone 3.

2.7. FRAME CONDITIONS FOR CIVIL WORKS

Availability of construction material

The underground conditions at the site do not allow an extraction of materials for foundation construction at or near the site. Materials may be obtained from the following sources:

−−−− Sand: from Cairo or Suez.

−−−− Water: Although a water pipeline from the Nile to to Hurghada, the Contractor shall make his own arrangements for fresh water supply.

−−−− Crushed stones (Fraction I and II); from Ayn Sukhnah.

- 264 - Escuela Técnica Superior de Ing. Industriales (UPM)

−−−− Steel; from Suez or Cairo; High Tensile Steel rebars in conformity with ASTM A 615-G60: Proof Stress ≅ 400 N/mm2; Tensile Stress: 600 N/mm2; almost equivalent to BSt 420 S according to German Standards; Standard length of steel bars: 12 m; Diameters range: 6 / 8 / 10 / 12 / 16 / 18 / 22/ 25 / 28 / 32 / 35 / 38.

−−−− Seawater Cement: from Suez.

−−−− Pit run gravel: from Cairo, Hurghada or Suez.

−−−− Suitable graded sand/gravel material for the construction of the aggregate base is available at some spots in the area and may be used under the condition that a proper quality assurance programme according to accepted international standards would be established.

−−−− Ready mix concrete from Ain Sukhna (DECOM SUEZ GULF Co.).

−−−− Electricity: Electricity is not available at the service area (under construction by NREA). In any case, mobile generators will be required at the wind park site. Otherwise the contractor, at his own cost. may use his a mobile Diesel/ Generator for such service.

Construction Yards

For the construction works a central construction yard with all facilities for construction manage-ment, accommodation for personnel, storage and handling of construction material will have to be temporarily established on an area to be agreed with NREA. Such an area could be inside the Project Area or more near to the NREA Service buildings. In addition smaller mobile construction yards will be shifted according to the progress of road and foundation construction.

2.8. TRANSPORT CONSIDERATIONS

The Contractor will be responsible for the complete transport of Plant to the Gulf of El Zayt Wind Park Site. Transport is possible via shipping to the harbour of either Alexandria or Suez and further transportation by road, however, it is recommended to use the route via Alexandria harbour which is supposed to be faster and less costly. The access road to the Wind Park Area from the coast road Suez –Hurghada as well as the internal wind park roads are to be constructed by the contractor within the turn-key contract. The internal wind park roads may be connected with the wind park roads of the KfW project if required, The final design will have to be carried out by the Contractor according to his final micro-siting of the WECs, which is conducted in the previous feasibility study "as mentioned before" in appendixes 4, 5 and 6.

3. STANDARDS

The Plant shall be designed and manufactured and the Services shall be carried out in accordance with accepted standards from acknowledged national or international organisations, of which English versions are available. Examples for such standards are: •••• IEC: International Electrotechnical Commission.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 265 -

•••• DIN-VDE: Deutsches Institut für Normung e.V. - Verband Deutscher Elektrotechniker e.V. (German Institute for Standardisation - German Association of Electrical Engineers).

•••• ISO: International Organisation for Standardisation.

•••• EN: Eurocode.

•••• DIN: Deutsches Institut für Normung e.V. (German Institute for Standardisation).

•••• UNE: Una Norma Española.

•••• AASTHO/ASTM: American Association of State Highway and Transportation Officials / American Society for Testing and Materials (For road construction).

In particular the following general standards and codes or equivalents shall be considered: •••• Concerning wind energy in general.

IEC WT 01 IEC System for Conformity Testing and Certification of Wind Turbines

IEC 1400-1 Safety requirements

IEC 1400-10 Sound measurements methods

IEC 1400-12 Wind Turbine Power Performance Testing

IEC 1400-21 Measurement and assessment of power quality characteristics of grid connected wind turbines

ISO 9000/9001 Quality assurance system

IEC 60204-1:1997 Safety of machinery – Electrical equipment of machines, requirements

IEC 60204-11:2000 Safety of machinery – Electrical equipment of machines. Requirements for HV equipment for voltages above 1 000 V a.c. or 1 500 V d.c. and not exceeding 36 kV

IEC 60721-2-1:1982 Classification of environmental conditions – Part 2: Environmental conditions appearing in nature. Temperature and humidity

IEC 61400-21:2001 Wind turbine generator systems – Part 21: Measurement and assessment of power quality characteristics of grid connected wind turbines

ISO 76:1987 Rolling bearings – Static load ratings

ISO 281:1990 Rolling bearings – Dynamic load ratings and rating life

ISO 2394:1998 General principles on reliability for structures

ISO 2533:1975 Standard Atmosphere

ISO 4354:1997 Wind actions on structures

ISO 6336 Calculation of load capacity of spur and helical gears

Any other internationally accepted codes, rules or procedures concerning wind energy generation, of which an English version can be made available by the Contractor

•••• Materials and construction.

- 266 - Escuela Técnica Superior de Ing. Industriales (UPM)

Any internationally accepted Codes or Standards, of which an English version can be made available by the Contractor

•••• Corrosion protection.

ISO 12944, part 1 to part 8

Corrosion protection of steel structures by protective paint systems

ISO 9223 – ISO 9226 Corrosion of metals and alloys

Any equivalent or additional internationally accepted Codes or Standards, of which an English version can be made available by the Contractor

•••• Electric components.

IEC 227 Testing of cables, wires and flexible cords; bending behaviour

IEC 245 Same as IEC 227

IEC 287 Application of cables and flexible cords in power installations; recommended values for current-carrying capacity of cables for fixed installations with rated voltages up to 18/30 kV

IEC 364 Electrical installation of building

IEC 529 Degrees of protection provided by enclosures

EN 55011 Suppression of radio disturbances caused by electrical appliances and systems

•••• Earthing and Lightning protection.

IEC 364-5-54 Installation of earthing systems

IEC 1024-1 Protection of structures against lightning; part 1: general principles

IEC 61024-1:1990 Protection of structures against lightning – Part 1: General principles

IEC 61312-1:1995 Protection against lightning electromagnetic impulse – Part 1: General principle

IEC 61400-24: 2002 Wind turbine generator systems – Part 24: Lightning protection

Wherever National Standards shall be applied for major plant and equipment or installation services the Contractor must be prepared to submit an English version of these Standards to the Employer and give relevant explanations whenever required.

4. DESIGN AND CONSTRUCTION

4.1. WIND ENERGY CONVERTERS

General Requirements

The WECs shall be of the manufacturer’s standard type as nominated and accepted in order to ensure the availability of standard spare parts for at least 20 years.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 267 -

The Contractor shall provide a Type Certificate (issued by an accredited certification institute) for the whole WEC system (including tower) compliant with IEC 61400-1 (Ed.2 or latest) Standards for the environmental conditions provided by the met-mast GOZ1 The following data extracted from the General Design Document (Volume II – Section 3) indicates the following design parameters along with a recommendation for the severe conditions of this region:

−−−− wind speed 10-minute average = 10.49 m/s

−−−− Weibull value (k) = 3.89

−−−− Vref = 26.20 m/s

The Contractor shall provide a Certificate, issued by an independent sworn expert, that the turbine design including tower and foundation is sufficient to withstand also loads due to earthquake risks at the site.

Specific requirements regarding corrosion protection.

The following measures should be clarified and verified with the specific Type certificate:

−−−− Soil contains significant amounts of salts (chlorides) and all painted or surface treated metallic parts shall therefore meet a corrosion protection class C5M for all outside parts and C4 for all inside parts according to relevant standards.

−−−− The protection of materials, components and equipment has to be assured which are already protected against direct atmospheric exposure, such as solar radiation, rain and dust by covers or metal claddings.

−−−− All electrical components including their housings have to be protected against the aggressive climatic impacts.

−−−− Determination of the painting and coating systems.

−−−− Verification and approval of the materials and coating materials.

−−−− Determination of the layer structure for surfaces with direct or indirect atmospheric exposure.

The WECs shall be complete with all parts and components necessary for normal operation, connected to the Gulf of El Zayt substation as the main distribution grid station through adequately sized transformers.

Doors and other covers or lids giving access to parts or installations of the WEC shall be accessible only by the use of keys or tools.

Equipment not designed for outdoor operation and installed at the tower bases must be protected against sun, sand storm, rain, and sea spray by a shelter or a shed. For components and items which cannot be protected by covering components and / or coatings, appropriate materials shall be used.

- 268 - Escuela Técnica Superior de Ing. Industriales (UPM)

Main Design Criteria

The WECs including towers, foundations transformer stations and cabling must be designed to have a minimum life time of 20 years, operating continuously under the climatic conditions of the Site. Both, loads under normal operating conditions, which are important for the fatigue of the materials, and loads under extreme conditions, must be considered. It is the responsibility of the Contractor to document that the WECs including towers, foundations transformer stations and cabling are expected to have a life time of minimum 20 years, e.g. by the presence of the required certificates.

Should there be special components in the WEC including towers, foundations transformer stations and cabling which do not have the mentioned lifetime, they should be listed.

The turbine shall be designed for the following conditions:

Wind conditions

Hub height

Average annual wind speed

based on 10 min average

50 m a.g.l.

10.49 m/s

Annual average value of turbulence intensity (%) (at 40 m a.g.l.)

10%

Extreme wind speed (5 s gust) in 50 years occurrence in 50 m a.g.l.

50 m/s

Extreme wind speed (10 min average value) in 50 years occurrence in 50 m a.g.l.

26.20 m/s

Humidity up to 70%

Temperature range for design

Temperature range for operation

-10°C up to 50°C

-5°C up to 45°C

Loads due to corrosion Proposed category to be considered is ISO 12944-2, C5M (very high)

Loads due to earthquakes

Egyptian code for Loads and Forces on Structures and Buildings, latest edition, Chapter 8. According to this code Gulf of El Zayt is located in earthquake risk Zone 3

Loads due to sand and dust Desert climate, occurrence of sand storms for several times of a year possible

Ground water, high concentration of salt Appropriate surface protection of foundation and cables, earthing system and reinforcement

Loads due to wind park internal influences The Contractor`s proposed wind park configuration has to be considered

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 269 -

WEC Type

The WEC shall be of a type, which fulfills the following main requirements:

−−−− Horizontal axis, three (3) blades.

−−−− Grid connected WEC.

−−−− Pitch controlled.

−−−− Tubular steel tower giving a minimum lower tip height of 20 m a.g.l and a maximum upper tip height of 100 m a.g.l.

−−−− Rated capacity > 1000 kW per WEC.

−−−− The proposed wind turbine is designed for a temperature operation up to 45 °C without derating.

−−−− Low voltage ride through capability.

−−−− Fault ride through capability.

−−−− Unity power factor generator.

−−−− Certified according to the IEC 61400-1 ed.”2 or latest.

Guaranteed Performance

The Contractor guarantees the availability of the overall wind park according to (Form 17 – Volume I – Section 2) to the Contract and to the offered guaranteed Power curve.

4.2. MECHANICAL, AERODYNAMIC, AND HYDRAULIC COMPONENTS

4.2.1 WTG COMPONENTS AND SYSTEMS

4.2.1.1.1. GENERAL DESIGN REQUIREMENTS

Hub, nose cone and blades shall be accessible directly (without leaving nacelle) from WTG nacelle.Offered WTG’s shall be pitch regulated turbines and all parts of the blade pitching system shall be easily accessible for repair and/or replacement. The same will count for the nacelle yaw system.

Rotor and yaw locking devices are mandatory requirements Nacelle, hub and tower shall be designed as 100 % water and dust tight. Air cooled and filtered over pressurized nacelle conditions shall be considered in order to keep nacelles free of dessert dust and sand.

Lubricated parts (oil or grease) in the WTG shall be safely protected against spill in or outside the WTG. Automatic greased bearings shall have appropriate and sufficient sized grease collectors / tanks installed at lubrication drain channels.

Oil collecting pans is not allowed.

- 270 - Escuela Técnica Superior de Ing. Industriales (UPM)

4.2.1.1.2. BLADE BEARINGS

Contractor shall design blade bearings for automatic lubrication.

The WTG control system shall ensure that blade bearings are exercised with specified / pre-defined intervals in order to maintain and secure sufficient lubrication film thickness at all times during operation.

Malfunctions in blade bearings, lubrications system or lubrication strategy shall be recorded and controlled by WTG controller and SCADA system.

4.2.1.1.3. PITCH CONTROL MECHANISMS

Each blade shall preferably be controlled separately by its own pitch mechanism which shall work independently.

Pitch mechanisms shall be designed as fail safe systems and pitch mechanisms shall be an integrated part of the WTG’s normal, safety and emergency stop systems.

Blade pitching system shall be designed to facilitate following functional requirements:

•••• All moving / rotating parts are automatic lubricated.

•••• Normal, safety and emergency stops under all conditions.

•••• Monitored and recorded operation including fail safe sensors / transmitters.

•••• Fail safe function under all conditions.

•••• Individual adjustment, regulation and independent pitching for each blade.

•••• Individual adjustment, regulation and setting of blade angle for each blade.

Blades shall be delivered with clear markings / signs and easy access to check and verify precise setting of the blade angle at zero degrees (0°) operating position.

Pitch mechanisms shall be designed with mechanical locking devises which are easy to install and which will ensure safe working conditions in the hub and blades at service or inspections.

Control parameters of relevance to functionality and safety of the pitch mechanisms shall be continuously monitored and recorded and shall as a minimum and not limited to include:

•••• Test sequences, including time required for start-up of the WTG.

•••• Test of sensors / transmitters during start and stop sequences.

•••• Pressures in safety / emergency systems.

•••• Charging of batteries (if relevant).

•••• Blade angles, or tip positions.

All parts shall be easy to access for safe repairs and/or replacements.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 271 -

Pitch control mechanisms shall not reduce effectiveness of the lightning protection system installed in the WTG and the pitch control mechanisms are not allowed be integrated parts of the lightning protection systems.

4.2.1.1.4. HUB / NOSE CONE

Nose cone parts shall be securely fixed to the hub. Nose cone colour and texture shall match WTG blade colours.

Nose cone shall provide sufficient water, humidity, dust etc. protection / coverage for all hub internals. Nose cone must be capable of safely supporting the load of both a maintenance technician and their equipment during access at service and inspections.

4.2.1.1.5. BLADES

Structural and dynamic blade properties shall be proven and tested by calculations and by means of full scale static and dynamic load testing of complete blades identical with the blade type included as part of the Contract.

Tests shall include any equipment installed in or on the blade, such as lightning protection cables, receptors, blade vibration dampers etc.

All tests shall be conducted according to IEC standards and must be certified as part of the WTG type approval.

All critical parts or portions of the blades shall be easy to access for inspections and repairs.

The blades must be protected against erosion on the leading and tailing edge. Efficiency of the applied protection must be proven before blade manufacturing commences, either by means of well documentedreferences or laboratory tests.

Materials that are susceptible to corrosion shall not be used in blade production.

Blades shall be designed and produced with sufficient drainage and must not contain pockets where free water or other fluids can accumulate and occur.

Blades shall be designed and fitted with suitable lightning protection systems with sufficient numbers of outside receptors in order to protect the complete length of the blade.

4.2.1.1.6. FOREIGN OBJECTS

Manufacturing processes of the blades shall secure that foreign objects, tools, loose parts or surplus adhesives are not left inside the blades. Any foreign objects left within the blade during service or inspections shall not be able to pass directly from the inside of the blade root end into the hub or pitch control mechanisms.

Blade design shall ensure that any drainage holes at the blade tip can not be blocked by loose or left materials inside the blade.

- 272 - Escuela Técnica Superior de Ing. Industriales (UPM)

4.2.1.1.7. BLADE VIBRATIONS

Blades shall be designed so edge- or flap wise vibrations during stand still or normal operation won’t intentionally harm or damage the blade construction or other parts of the WTG.

Contractor shall before Contract Commencement date provide Employer and The Engineer with all relevant details including wind speeds, operational modes, yaw positions or any other relevant information on operating modes and/or weather conditions under which blade vibration cannot be avoided all including normal, safety or emergency stops.

In particular Contractor shall state any conditions under which the rotor cannot safely be parked without increased risk of vibration situations.

4.2.1.1.8. BLADE REPLACEMENTS

Contractor is only allowed to deliver interchangeable parts, this includes the WTG blades. It shall be possible to replace one WTG blade without significant modifications.

For this to be possible the WTG blades must each be manufactured with the same:

•••• Geometrical and aerodynamic design.

•••• Rigidity.

•••• Flange, holes and bolt connection tolerances.

•••• Weight (including distribution).

•••• Controlled Centre of Gravity (balancing).

Contractor shall ensure that single blade replacement procedures are included in the O&M manual.

4.2.2 NACELLE

Nacelle shall be designed as a closed and tight compartment which shall provide effective protection against any outside condition.

Contractor shall consider installing a nacelle cooled and filtered air over pressuring system in the WTG’s in order to secure dessert and dust free conditions inside the nacelles.

Contractor shall ensure that the equipment is manufactured, shipped, installed and commissioned safely isolating the equipment from any vibrations.

Contractor shall prove that equipment that inevitably is exposed to vibrations before and after the equipment is put into commercial operation is designed to withstand the vibration spectrum to which it is exposed.

Nacelle cover and other internal parts shall to the widest extent be manufactured by use of inflammable materials.If the above is unavoidable a fire protection precaution of exposed areas must be established.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 273 -

Fire fighting in the nacelle must be handled separately and shall be agreed with Employer and The Engineer.

If noise reducing materials are used, such materials shall as well be inflammable.

In order to minimize potential risks of fatal fires the nacelle shall be designed to withstand a small local fire. Especially the nacelle cover shall be designed as fire resistant.

Nacelle layout shall ensure that service; repair and O&M tasks can be executed in safe and healthy working conditions which don’t require ventilation by opening nacelle hatches.

Nacelle shall be designed to have sufficient space to allow routine service, inspections and O&M tasks without major preparations and design shall allow personnel safe and easy access from the tower ladder to the nacelle.

All access and escape routes shall fulfil national and international HSE requirements, rules and regulations.

Transparent hatch materials shall be UV resistant and replaceable from the inside of the nacelle.

All equipment required to allow access and a safe working environment for the purposes of maintenance shall be provided.

Nacelle shall be equipped with appropriate lighting in compliance with statutory requirements for indoor, working spaces, access and escape route illumination requirements.

Nacelle shall be equipped with at least one hatch / skylight of a suitable size so that service personnel can determine the current weather conditions without opening any hatches.

Hatches / skylights shall have sizes that accommodate a safe outside evacuation or decent of injured personnel from nacelle.

Robust, closed and safe protection shields / covers shall be fitted around rotating WTG parts in the nacelle.

HSE signs warning about rotating parts shall be clearly displayed and located at and around hazards.

4.2.2.1. CLIMATE CONTROL

WTG controllers and SCADA system shall continuously monitor and control the climate (temperatures, humidity, aerosols, metallic dust, dust etc.) within the nacelle and record all data.

Contractor shall secure an appropriate climate control system is installed in each WTG and which is capable of executing regulations of nacelle temperatures, relative humidity and dust levels in order to secure correct operation conditions of the WTG and equipment hereof.

SCADA system shall ensure monitoring, warning and alarms based on clogged filters in the climate control system / equipment. The climate control system shall be powered and operated through the main electrical system of the WTG but should also be installed on a

- 274 - Escuela Técnica Superior de Ing. Industriales (UPM)

separate electrical service loop which allows the climate control system to be running during service, inspections and O&M tasks.

The climate control system parameters shall be controlled and operated by the WTG controller or SCADA system and WTG’s should not be put into operation before correct climate control parameters are reached.

Power consumption calculations for the WTG Climate Control System shall include dust, parasitic etc. loads of the air conditioners (including lost efficiency) as part of the financial project evaluation.

Ducting associated with climate control system should be made of rigid duct connections duly secured to remove potential vibrations.

Apertures through nacelle walls or ceilings e.g. used for cables, bolted joints etc. shall be sealed securely against incoming water.

A potential nacelle / tower ventilation system shall be designed to prevent precipitation, dust, sand, birds, insects etc. from entering the nacelle.

In order to protect interior nacelle parts and corrosion protection system of the nacelle all unused holes shall be plugged either with suitable plastic plugs in bolt holes or by insertion of hot galvanized bolts in threaded holes – in both cases shall holes be grease filled before plugging.

Through holes in nacelle cover must be secured against incoming water by use of coloured plugs (same colour as nacelle cover) applied with UV resistant silicone sealing.

Any pipe fittings or end caps shall be corrosion protected and packed with PTFE tape.

4.2.2.2. CRANE SYSTEM

Nacelle shall preferably be designed and out fitted with a permanent overhead crane for lifting internal components and relevant parts of the main components during service, inspection, O&M and repairs.

Contractor shall provide chain hoists for lifting materials, tools, etc. into the nacelle internally and externally of the tower.Permanent nacelle overhead crane (if integrated) shall be capable of lifting and moving the largest components such as the gearbox, generator, transformer, yaw gears, motors etc. – largest parts might be in disassembled sections.

Preferably should sections of the nacelle floor be removable for lowering / hoisting equipment from the ground with the permanent nacelle crane.

Contractor shall ensure that the O&M Manual describes how all major components of the WTG can be safely lowered by use of permanent nacelle cranes and shall as well describe any transport requirements for main components.

The above shall be anchored in approved WI’s.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 275 -

It shall in general be possible to retrofit the WTG gearbox and generator without use external cranes. Contractor shall in particular provide a thorough description describing how the WTG gearbox and generator will be exchanged as a single unit.

For WTG’s in the kW range where internal overhead nacelle cranes aren’t available due to design other precautions such as easily removable roofs or hatches etc. shall be designed / prepared in order to facilitate potential replacement of main components in the designed lifetime of the WTG.

Permanent nacelle cranes and any chain hoists must be designed for the site specific environment and conditions and shall be resistant to any effects of dust and sand. Permanent crane and chain hoists shall be permanently connected to the electrical system with separate service switches.

Chain hoist chains shall be collected in a metal box just below the chain hoist itself. When not in use, permanent nacelle crane and / or any chain hoists shall be safely parked and locked in designated positions which remove any potential interference to the normal operation of the WTG.

All permanent installed lifting equipment shall be fully tested and certified according to national and international requirements, rules and regulations and shall be clearly marked with Safe Working Load (SWL), operating power, frequency etc. Where installed permanent nacelle cranes, chain hoists or other lifting equipment are used during construction of the Plant, they shall individually be refurbished and reach an "as new" condition at Contractors expense all before TOC and handing over to Employer.

All installed or delivered components shall have clear and visible lifting points applied or by other methods be prepared for lifting.

4.2.2.3. ENVIRONMENTAL REQUIREMENTS - NACELLE

Complete nacelle including all structural parts or equipment installed in the nacelle shall be designed and arranged so all materials and substances that conceivably may contaminate the surrounding environment of the WTG remains inside the nacelle cover under any condition.

The nacelle layout shall also allow easy and safe collection of such substances for environmentally correct disposal thereof. If closed or inaccessible compartments / cavities of the nacelle structure inevitably will collect escaped or drained fluids such compartments / cavities shall be designed or fitted with marked suction pipes through which suction tubes can be passed for removal of such fluids.

Closed or inaccessible compartments / cavities in the nacelle must not be left un-drained and all of such compartments / cavities shall have outlets to designed collection chambers.

Nacelle shall be designed so that any lubrication oil leakage is contained in the lubricated structure and subsequently be can drained of for disposal.

The WTG shall incorporate secondary containments to prevent spill or leaking fluids from the plant, components and equipment directly to the surrounding environment.

The containment shall be designed to contain 110% of the largest potential single spill and facilitate a safe collection and removal of any spilled fluids for disposal.

- 276 - Escuela Técnica Superior de Ing. Industriales (UPM)

Major changes in lubrication oil levels or changes in lubrication pressures shall be monitored and recorded by the WTG controller and / or the SCADA system. Huge trend changes or drops shall immediate initiate a safety stop of the WTG.

4.2.3 DRIVE TRAIN

The WTG drive train consists depending upon design of main bearing(s), main shaft, gearbox (if proposed WTG is based on drive train including gearbox), mechanical braking system, drive train locking devises, HSS couplings, potentially turning gear and generator.

Hydraulics / pitch tubes passing the centre of the entire drive train from nacelle to hub and rotating contactors installed on low speed shafts could potentially be directly associated with the drive train components.

Contractor shall ensure that all components in the drive train as a system, on component level and internal sub component / item level are designed, assembled, installed and checked according to correct alignment requirements in order to prevent premature failures resulting from unexpected stresses arising from incomplete aligning.

Contractor shall ensure that the designers and manufacturers of the individual drive train components and associated components and in particular bearings, shafts, pedestals, bearing housings, gearbox, brake systems, couplings, generator, suspensions etc. are fully involved in the integrated design of the drive train in order to secure that all design, assembly and installation tolerances are kept.

Contractor shall furthermore ensure that all interface tolerances and installation procedures between different items of equipment / components are fully specified within the procurement documentation between Contractor and equipment / component suppliers.

Contractor shall furthermore ensure and document that all equipment / components are installed strictly in accordance with manufacturer’s requirements / tolerances.

The drive train shall be 100 % protected against harmful lightning current passages.

4.2.3.1. MAIN BEARINGS

Main bearing assembly / installation, housing design, lubrication system, lubrication strategy, sealing system etc. shall be approved by the bearing supplier. Main bearings shall be lubricated automatically either by use of grease or oil.

Excess bearing grease which inevitably is driven out of a grease lubricated main bearing shall be collected in an environmentally safe manner which easily can be disposed.

Oil lubricated main bearings will not be accepted as leaking.

Closed grease collector pans (tanks) must be appropriately fastened to the nacelle main frame structure.

All matters relating to lubrication, bearings, environment as well as operation and maintenance of the main bearings shall be reviewed in Design Reviews.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 277 -

Potential CMS or swarf sensors and lubrication system shall be protected by robust protective covers securing that they won’t be damaged by service technicians and others entering the inside of the nacelle.

4.2.4 GEARBOX

There’s no limitation for this specific project related to WTG drive train designs including / excluding gearboxes and the following (“Coupling and Turning Gear”) are therefore only linked to WTG designs including gearboxes.

4.2.4.1. BASIS FOR APPROVAL

Gearbox including oil lubrication system and sub systems shall be an integrated part of the type approval of the WTG. Gearbox shall be designed in accordance to the IEC/ISO FDIS 81400-4 (Ed. 1) and ISO 6336 (Ed. 1) standards or other equivalent recognised standards.

Used design standards shall be cited in all cases, requirements, calculation basis, documentation etc. Gearbox shall be type approved by recognized certifying body.

All delivered gearboxes shall be of identical designed “plug and play” types and gearboxes shall be interchangeable between delivered WTG’s.

All parts of the gearbox exposed to fatigue loads, must be designed and dimensioned for both ultimate and fatigue strengths.

Gearbox shall be the latest design and mrk. version.

4.2.4.2. GENERAL DESIGN REQUIREMENTS

Gearbox shall be designed to operate throughout the twenty (20) years designed lifetime of the WTG. Gearbox shall be designed for safe and easy “up tower” exchange possibilities of all components, such as low, intermediate and high speed bearings and gear wheels in all helical positions of the gearbox.

Contractor shall list all gearbox components that are irreplaceable “up tower” in the Operation and Maintenance Manual.

O&M manual shall clearly list which major components / items that can undergo an “up tower” repair and to which extent. Contractor shall list and explain in written how repairs or replacements of “up tower” irreplaceable major components / items are dealt with in respect of replacements and repairs.

4.2.4.3. DETAILED DESIGN

Used gaskets shall be approved by the gasket / seal supplier for the specific use. All gaskets / sealing shall be compatible, tested and approved for use with applied gearbox oil.

Gearbox and lubricating system shall as a minimum and not limited to be applied with following equipment:

- 278 - Escuela Técnica Superior de Ing. Industriales (UPM)

•••• Ball valves at lubrication system connection points to the gearbox.

•••• Bottom valves for drainage and oil sampling according to ISO 4021.

•••• Upraised filter blocks securing dry filter replacements during service.

•••• Full flow oil filters (10 – 15 micron) with differential pressure gauges monitored by the SCADA system.

•••• Offline filter (max. 3 micron filters).

•••• Gearbox oil level sensors monitored by the SCADA system.

•••• Permanent swarf magnets in the oil sump / tank.

•••• Swarf magnets / sensors monitored by the SCADA system. It shall be possible to disassemble and inspect magnets / sensors.

•••• PT100 sensors at lubrication oil inlets and outlets.

•••• Inspection holes for visual and bore scope inspections of teeth and bearings.

•••• Air breather including filters.

•••• Cooling system (air or water based).

•••• Fastening / fixation points for tools and “up tower” repairs of the gearbox.

Oil filter designs, filtration efficiency and method shall ensure that only scheduled service filter replacements are required.

Bearing applications in the entire gearbox shall be designed and prepared for easy accessible inspections with minimum 4 mm bore scope probes.

Above shall be documented and verified by gearbox manufacturer before gearboxes are approved for “build in” in the WTG’s.

Employer and his represented consultants shall be offered the opportunity to verify the above requirement at gearbox manufacturer’s production facilities.

4.2.4.4. BEARINGS

In order to ensure high level of quality and reliability, all bearings must be produced to the highest quality standards. Raw material cleanliness, forging and hardening methods, manufacturing methods, grinding / polishing procedures and methods, test methods, storage and conservation methods shall all match highest quality requirements in the business, be recorded and stored in the manufacturers Quality Program vault and shall be documented during due diligence meetings.

Bearing life times must be calculated in accordance with DIN/ISO 281 (version Dec. 2000) including lubrication conditions (a-DIN-method) or similar acknowledged standards. Method for determining the a- DIN-factor must be as specified by DIN/ISO 281(version Dec. 2000).

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 279 -

Contractor shall provide evidence and documentation which proves that bearing manufacturers approve the specific bearing application and to ensure that the correct bearing specification has been chosen for the application.

Each bearing application shall be evaluated with respect to the operational conditions, including load variations, lubrication, speed variations, and any other relevant technical issues.

Used software for bearing calculations shall be informed.

Plastic type roller cage types are allowed for large scale bearings but shall in general not be used for bearing applications with high rotation speeds and heavy accelerations or de-accelerations around the loaded zone.

Smearing phenomena’s in unloaded zone, at entrance to loaded zone or in loaded zone is not allowed. Spinning raceways on pins or in bores are not allowed. Raceways shall be fixed either by clamping or mechanical locking.

Uses of spherical roller bearings are not allowed.

Creeping bearing outer rings resulting in outer ring spinning is not acceptable unless the creeping only has released a minor fretting corrosion and consequently stopped again.

Growth of bearing inner rings caused by release of retained austenite or other causes resulting in inner ring spinning is not acceptable unless the growth only has released a minor fretting corrosion and consequently stopped again.

4.2.4.5. GEAR WHEELS AND PINIONS

In order to ensure high level of quality and reliability, all internal gearbox parts must be produced to the highest quality standards.

Raw material cleanliness, forging and hardening methods, manufacturing methods, grinding / polishing procedures and methods, test methods, storage and conservation methods shall all match highest quality requirements in the business, be recorded and stored in the manufacturers Quality Program vault and shall be documented during due diligence meetings.

Gearbox manufacturer / Contractor shall through extensive Finite Element Modelling (FEM) analyses ensure that stresses on teeth deflections in gear shafts and pinions don’t result in increased loads on any gear wheels or pinions.

Gearbox manufacturer / Contractor shall through the design and FEM analyses ensure that inappropriate axial loads aren’t transferred to the bearings.

All shafts and pinions shall be designed for easy bearing replacement without damaging shafts, pinions, bearings or bores.

4.2.4.6. GEAR HOUSING

Gearbox housing shall be designed to facilitate oil flows through the casing in order to secure adequate lubrication of all working parts inside the gearbox.

- 280 - Escuela Técnica Superior de Ing. Industriales (UPM)

Contractor shall during the design phase take into consideration the possible inclination of the gearbox in the WTG and through design avoid lubrication pockets inside the gearbox.

Gearbox shall be designed with sufficient inspection covers for easy and accessible inspections of all gear wheels and bearings including planetary gears and bearings.

Inspection covers shall not have a size, weight and design that introduces HSE hazards to service / inspection personnel.

Gearbox shall internally be designed to facilitate inspections of all gear wheel / pinion surfaces, gear wheel / pinion contact patterns and bearings by use of bore scopes.

Above implies that all internal and external lubrication pipes are designed, lead and guided in a way which doesn’t generate inconveniences for gearbox inspections.

Gearbox shall be designed with a suitable air breather including filter with exchangeable filter insert. Air breathing filter shall be easy accessible for service and inspection activities. Air breathing filter shall be protected against clogging so that no unintended over-pressure or under-pressure arises inside the Gearbox during operation.

Air breathing filter shall due to humidity control be blocked during shipping and storage.

Gearbox shall be designed with a permanent magnet at the oil sump.

FEM analyses of gearbox housing shall be performed and documented in order to verify that there are no unintentional deflections or fluctuation modes in the gearbox housing.

The analyses shall include gearbox front plate and torque arms and deliver expected loads to gearbox stays / suspensions.

The FEM model and analyses shall include nacelle structure interfaces and take into account the flexibility and structural integrity of the nacelle base frame.

4.2.4.7. LUBRICATION SYSTEM

Bearings and gear wheel contact surfaces shall have a force-fed lubrication. Gearbox manufacturer shall document that conditioned oil (filtered and cooled etc.) is supplied in a suitable way and in the right amounts to the different lubrication points.

Efficiency of the lubrication system shall be proven over the whole power span of the gearbox.

The lubrication oil circuit can be designed and delivered with two different types of oil pumps, of which one can be mechanically driven by rotation of the low speed shafts or an electrically driven pump.

Electrical driven pumps are to be preferred.

The lubrication system shall be designed to avoid air bobbles in the oil.

The lubrication system shall also be designed to ensure an effective lubrication of the gearbox during long-term power drops and low temperatures.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 281 -

Lubrication system and gearbox housing shall be designed with an electrical oil level sensor, which is monitored and will initiate alarm by the SCADA system if the oil level drops below required level. Contractor shall in the O&M Manual list oil sampling schedules as a part of operations and maintenance activities.

The above shall include a list of parameters to be checked, the accuracy to which these are measured and the expected remaining lubrication oil life time.

4.2.4.8. TEST AND COMMISSIONING

As part of the analyses leading to the site specific certification the gearbox design shall be evaluated against a representative load spectrum provided by the WTG manufacturer in accordance with IEC 61400-1 (Ed. 3).

Gearbox design shall be validated and verified through a 200 hour 200 % overload tests (back to back), gearbox manufacturer’s standard full load assembly test and through demonstration of satisfactory operating WTG track records.

Gearbox manufacturer shall document correct gear teeth load patterns by use of blue dye.

4.2.5 COUPLINGS AND TURNING GEAR

High Speed Shaft (HSS) couplings in the transmission system shall be designed to operate throughout the 20 years designed lifetime of the WTG. Specific parts of the HSS couplings may be under influence of tear and wear and will therefore be subject for replacements. Service life of such HSS coupling elements shall though be of a minimum of five years.

HSS coupling parts shall separately be dismountable, serviceable and it shall be possible to replace individual coupling elements without misaligning the adjacent machine parts.

Above shall be described in details in the O&M manual including required WI’s.

In order to increase HSS coupling lifespan alignment and adjustment of machine parts must be easy and suitable to allow minimum requirements of the HSS coupling to be met.

Failure or breakdown of the HSS coupling shall not consequently result in loss of the connection between the mechanical braking system and rotor.

The drive train / gearbox shall be equipped and delivered with an integrated turning gear used for safe gearbox inspection, single blade replacements etc.

Turning gear shall be possible to operate by single staff and turning gear must be capable of turning the rotor in both clock- and counter clockwise directions.

It shall be possible to effectively lock the turning gear into both the engaged and disengaged positions.

Above shall be described in details in the O&M manual including required WI’s.

- 282 - Escuela Técnica Superior de Ing. Industriales (UPM)

4.2.6 MECHANICAL BRAKE

WTG shall be designed with a mechanical brake that safely can park the WTG under all conditions. The brake system conditions such as brake pad wear, temperature, pressure, position etc. shall be continuously monitored by the SCADA system.

The mechanical brake shall be enveloped by a closed compartment which secures brake pad dust not to be spread in the nacelle as well as hot / glowing brake pad debris.

4.2.7 GENERATOR

The generator shall be suitable for operation in the full range of climatic conditions which it is expected to experience on the project site.

The generator shall be supplied from a reputable and recognized generator manufacturer this includes the WTG manufacturer’s own production is such are available and proven to be sufficient approved and licensed according to relevant standards and certifying bodies.

Generator shall include an over speed protection and all generator bearings shall be lubricated with a continuous applied grease lubricating system.

4.3. TRANSFORMER

Each WTG shall be equipped with a step down/step up transformer located inside the nacelle or tower or outside.

In case of kW range turbines or external positioned WTG transformers are offered by Contractor a protected and safe designed “kiosk” transformer environment including foundation shall be included in Contractor’s bid.

Electrical requirements for the WTG transformers are defined in Section “WTG LV / MV Transformers”.

4.4. YAW SYSTEM

Yaw system shall be designed and operated as electro-mechanically but shall also be designed for manual mechanical operation in service situations.

Yaw system shall be monitored by the WTG Controller / SCADA system which handles and secures cable un-twisting procedures.

It shall be possible from the service panel on the WTG Controller or via the SCADA system remotely to position the nacelle in random positions at service.

Yaw system shall be designed to be easy serviceable and maintained with a very limited number of parts and without dismounting the nacelle.

Yaw system including yaw gears, shall be designed as self-lubricating as an “inboard” system. Any excess grease and oil from the parts of the yaw system shall be collected in an environmentally safe way inside the WTG and shall be easy to dispose.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 283 -

If electrical, hydraulic or other features are required to maintain yaw locking devices then Contractor shall detail how the yaw locking devices are maintained in the event of any such devices fails to function.

Yaw system shall be designed for safe accesses to inspect all parts in the WTG yaw system. It shall be possible to lock the yaw system mechanically in an easy and safe way which secures that the nacelle can be safely locked and fixed in all service situations independently of the yaw brakes and yaw motors in the WTG.

4.5. TOWER

Tower shall be a tubular tower manufactured as a closed tubular steel structure which means that water, dust, sand, insects, fauna etc. shall not be capable of penetrating the tower structure.

The tower shall be fitted with internal ladders, falling arrester system, rest platforms and lighting. According to required HSE standards including safety lighting which automatically shall be turned on during grid and internal power drops.

Further details on health and safety requirements are to be detailed in the Health and Safety Plan.

Platforms shall be designed to support the weight of any reasonable components that may be placed on them during either the construction or maintenance of the WTG.

Requirements for structural design of the tower and associated certification requirements are contained in Wind Study Report.

Tower design shall include all necessary joint fasteners including those required for connections between WTG foundation and the WTG nacelle.

It shall be possible for all components installed in the tower to be replaced either through the access door. If use of a crane or a cantilever arrangement is needed for getting replacement components in or out of WTG access door then tower designs shall be prepared for such arrangements.

Tower shall include a service lift (closed basket) / elevator in each WTG. Service lifts shall be capable of transporting at least 2 persons including tools and a minimum weight of 250 kg. The service elevator shall be equipped with a manual operation system to be used in case of enenergy loss the system shall allow user of the elevator to be lowered slowly and safely to the bottom of the tower.

Contractor shall ensure that delivered service lifts / elevators are fully acceptable and certified according to National and International HSE requirements, standards, regulations, rules, legislations etc.

Contractor shall ensure that all re-certifying procedures linked to the service lifts / elevators are maintained throughout the warranty and O&M periods.

Service lifts / elevators shall be newly re-certified at expiry of warranty and O&M periods.

- 284 - Escuela Técnica Superior de Ing. Industriales (UPM)

4.5.1 NACELLE BASE FRAME

Employer may require a Quality audit to be performed at Contractor’s or sub supplier’s production facilities in respect of inspection and testing of the WTG main foundation castings. Contractor shall provide full support to Employer in completing the Quality audits and surveillances. In particular Contractor shall demonstrate that the casting process has been thoroughly validated to support any revisions to the design and manufacturing of the cast element and moulds.

Welding repairs shall not be allowed to cast elements.

Contractor shall provide clear demonstration that material properties of raw materials, cast material, mould materials etc. meets Contractor’s specified requirements.

4.5.2 ACCESS, EMERGENCY ROUTES & OTHER HSE TOPICS

Access stairs and ladder out- and inside the tower shall comply with National, International HSE requirements, standards, regulations, rules, legislations etc.

It shall be possible to enter the nacelle from inside the tower top, irrespective of nacelle and rotor position.

It shall be possible to enter service and inspect the top of the concrete foundation from elevated tower entrance platforms in the tower base in case such are provided.

Contractor shall provide all platforms, galleries, ladders, stairways, and handrails etc. which are necessary for a safe and convenient access, operation, inspection and maintenance of the Plant.

A minimum of three intermediate rest areas/platforms shall be provided over the full height WTG towers.

All components shall be designed to last for the twenty (20) years design life of the WTG with a minimum required maintenance and preferably designed in aluminium.

Direct and inside access connection between nacelle and hub / nose cone is mandatory design requirements.

There shall be safe ways of access from the nacelle to the meteorological instruments on the nacelle top, irrespective of nacelle and rotor positions.

Certified 22 kN anchor points (yellow coloured) and safety rails for lanyards shall be provided at all locations outside the nacelle where maintenance personnel may require access.

Appropriate signs shall indicate attachment points and include brief instructions. Format of the instructions shall be designed according requirements in relevant standards.

The nacelle floor shall be designed with suitable openings to allow hoisting of complete or disassembled components in and out of the nacelle with the minimum possible preparation.

Nacelle hatches shall be designed for outside opening possibilities for emergency access.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 285 -

Doors, hatches and other openings in the WTG shall be designed for locking in both open and closed positions. Fixing / locking methods shall be designed to hold them open at all wind speeds during which access to the WTG, tower or nacelle roof is permitted including a gust mark up.

Doors and door locks shall be designed so no persons accidentally may be captured inside the tower or nacelle.

Door handles and locks fitted to the tower doors shall be designed so they can’t be forced open from outside.

Door locks shall be properly protected (enclosed) against wind, weather and other site conditions.

All door locks shall be part of a unique and general project site key system where door locks have individual codes but will be un-lockable by a central key code.

Hatches in the nacelle shall be designed as water and dust tight.

Tower platform, nacelle and hub hatches shall be a part of the safety circuit of the WTG through a fail safe safety switches securing that open hatches will initiate a normal, safety or emergency stop of the WTG.

Furthermore, open hatches shall through the fail safe safety switches and WTG controller secure that WTG’s can be started / put into operation.

Hatches in walking zones shall be avoided. Other use of any hatches / escape hatches is subject to The Engineer's review and documentation of adequate safety measures protecting against accidents in connection with an open hatch is required.

4.5.3 EMERGENCY ESCAPES

Each nacelle shall be delivered with a complete emergency descent device (including stretcher) suitable to allow all personnel to descend safely either to the internal platform at the bottom of the tower or from the outside of the nacelle.

Contractor shall provide detailed and clearly understandable user instructions in Arabic and English for the required evacuation equipment.

Contractor shall as a part of the “on site” training introduce the equipment for Employers service teams as well as educate them in correct use of the equipment.

Emergency escape anchor points shall be clearly identified, be coloured (e.g. yellow-black) to contrast with the general back-grounds, and shall be clearly marked with the SWL for which they have been designed.

It shall be possible to evacuate an injured person from all sections / locations of the tower and nacelle.

Winch mechanism, additional equipment, slings, ropes etc. required to descent personnel shall be delivered by Contractor and available in each nacelle.

- 286 - Escuela Técnica Superior de Ing. Industriales (UPM)

4.5.4 FALLING ARRESTER SYSTEM

Each tower shall be fitted with internal falling arrester systems for the full height of the tower. Falling arrester system shall be designed with harness / slider attaching points to the front of the person climbing the ladder. Sliders shall be a one way self-supporting unit preventing the slider to slide downwards. Used and supplied harnesses shall always be a full-body type.

HSE Signs / Instructions shall be installed adjacent to the base and top of the ladder. Instructions shall include maximum weight which the energy absorbing mechanism included within the fall arrest system is designed to arrest, maximum number of personnel using then falling arrester system / ladders at a time etc.

4.5.5 SAFETY SIGNS AND INSTRUCTIONS

Safety signs covering as minimum following languages: Arabic and English shall be displayed at locations in the WTG determined and set out by internationally accepted standards and best practice guidelines, and shall beside this comply with National and International requirements, rules, regulations and legislation.

Following mandatory instructions shall be included at the base of the tower, such that they will be observed immediately by anyone entering the tower:

•••• No smoking sign.

•••• Instructions about required and mandatory Personal Protection Equipment (PPE) –e.g. harness, hard hat, goggles etc.

•••• Reminder to service personnel securing WTG’s to be switched to local control at entrance and to remote control again when leaving the WTG.

•••• Danger of death / electric shock notification / signs if power systems are opened or touched when energized.

•••• Danger of death / electric shock notifications / signs shall be located adjacent to the generator, transformers and all associated MV equipment, including the MV cables, switch gears, warning of the presence of high voltage electricity and stating that only authorised personnel are permitted to access such equipment.

•••• All signs and notifications shall as a minimum be printed in Arabic and English.

4.5.6 TURBINE PROTECTION

WTG control system shall have an incorporated protection system, which shall secure safe operation and a safe shot down of the WTG in the event of component and / or system failures and guide the WTG to a fail-safe mode state.

4.5.6.1. OVER SPEED PROTECTION

WTG shall be safely and actively protected against rotor over-speed at any wind speed condition.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 287 -

Demonstration and test of the over-speed protection system shall be provided and executed by Contractor during the start up / commissioning procedures.

4.5.6.2. BREAKING

Emergency brake shall operate independently of normal control parameters as far as practicable and shall be designed as a fail safe system.

Braking system shall be designed technically in such way that a safe all condition rotor deceleration doesn’t cause transient vibrations through the WTG drive train or in the rotor itself.

If the emergency brake is designed as a disc brake it shall not be activated at ordinary safety or normal operational stops before the brake disc / high speed shaft (HSS) reaches rpm’s below 400 rpm’s.

Regular / scheduled system tests and self aligning procedures securing that the emergency brake operates failure free under all conditions shall be a part of the normal operation parameters of the WTG.

4.5.6.3. MAINTENANCE LOCKS

WTG shall have mechanical maintenance locks installed for service, inspection and O&M purposes which shall prevent the rotor and yaw system to rotate or move within specified service wind speed limitations and for the twenty (20) years designed WTG lifetime.

4.5.6.4. ENVIRONMENTAL PROTECTION

WTG design shall be able to protect the WTG components without any effects to the components themselves in a period of at least three continuous months with complete loss of electrical power.

If the above is invalid for the proposed WTG then Contractor shall clearly state before the Contract effective date the exact duration with a 100 % loss of electrical power that the proposed WTG can withstand without undesirable effects to the WTG components.

If, during a period of grid drop / loss, WTG drive trains are allowed or recommended to rotate Contractor shall before the Contract effective date describe the means by which lubrication supplies are maintained to all rotating components in the WTG together with details of how “no grid” lubrication supplies can be monitored, checked, verified together relevant testing requirements.

Contractor shall inform proposed method to ensure that electrical supply is provided, either individually or jointly, to WTG back up systems in the event of a total loss of electrical power from the grid for a period that exceeds the WTG power back up capabilities.

4.5.6.5. CORROSION PROTECTION

Design of a corrosion protection system for structures shall take appropriate considerations of all relevant environmental and other factors, including but not limited to, water level

- 288 - Escuela Técnica Superior de Ing. Industriales (UPM)

variations, salt / acid concentrations in soil / environment, atmospheric conditions and other effects of pollution.

Corrosion protection in general and painted coatings shall be suitable for twenty (20) year designed lifetime with minimum maintenance.

In this respect “minimum maintenance” means repairs solely linked to surfaces impacted by personnel traffic.

Corrosion protection system shall ensure electric potential of all parts are separated ensuring that galvanic corrosion is prevented. If the above mentioned electrical separation is impossible Contractor has to prove how galvanic corrosion is stopped or made impossible.

Contractor shall sand blast, prime and coat all steelworks in accordance to EN ISO 12944-(1-8).

Shot blasting and use of shop primed steel sheets is not allowed.

All coating materials shall be applied in strict accordance with painting manufacturers instructions, monitored and documented as a part of the QA / QC system of the WTG manufacturer.

Design and specification of all coating systems shall cover local environmental conditions recorded and experienced on the El Zayt Site and region.

Contractor shall repair and remedy any defects or damaged surface protection or paintwork in accordance with the manufacturer’s WI’s and recommendations, prior to handover of the works to the Employer (before TOC will be signed).

4.5.6.6. OVER VOLTAGE PROTECTION

The electrical WTG protection system shall meet all IEC requirements and shall be designed to protect electrical components effectively for design fault currents.

4.5.6.7. FIRE PROTECTION

Appropriate portable fire extinguishers of and satisfactory first aid kits shall be installed at the bottom and top of each tower. Contractor shall provide technical details of fire fighting equipment and first aid kits.

4.6. VISUAL APPEARANCE

4.6.1 COLOURS

•••• Nacelle: RAL 7035.

•••• Hub: RAL 7035.

•••• Tower: RAL 7035.

•••• Embedded parts: RAL 7035.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 289 -

•••• Blades (two per WTG): RAL 7035.

•••• Blades (one per WTG): RAL 9011.

The black coloured (RAL 9011) blade option (one per WTG) is an ornithologist requirement. All WTG’s shall be delivered identical in terms of colour applications out- and inside the WTG’s and installed components inside the WTG’s.

4.6.2 LOGO’S

WTG’s shall be equipped with Employers logo on one side and Contractors logo on the other side of the nacelle cover.

Employer will issue final logo layout timely before equipment will be shipped from manufacturing facilities.

No other outside logo’s are neither required nor allowed.

4.6.3 AVIATION LIGHTS

WTG’s shall (as a MANDATORY OPTION) be delivered with white coloured stroboscopic aviation lights with lowest intensity matching requirements of national Egyptian or international aviation authorities.

4.7. SECURITY SYSTEMS

A complete system of interlocking and safety devices shall be provided as required for the safety of the operators and for the trouble-free continuous operation of the wind park, protecting: •••• Operation and maintenance personnel.

•••• Mechanical and electrical equipment from damage.

•••• The perfect state when starting up and shutting down the wind park and all parts of the Plant and also the correct sequence control when starting and stopping the latter.

All interlocking and safety devices shall operate preventively and shall not interfere with correct circuits in operation. The WECs must have security systems against vibration, over-speed, and electrical overloading. Four of the WECs in the wind park shall be equipped with air navigation lamps on the top, the selection of the WECs will be made by the Project Manager.

Braking Systems

The WECs must be equipped with two independent braking systems which guarantee that the WEC can be stopped under all load conditions (including loss of load respectively grid failure) and with the rotor RPM as high as nmax. The braking system must operate according to the fail-safe principle.

- 290 - Escuela Técnica Superior de Ing. Industriales (UPM)

At least one of the brakes should work on the basis of an aerodynamic principle acting directly on the rotor. In case not, one mechanical braking system shall brake the low-speed shaft.

4.8. SCADA AND COMMUNICATIONS SYSTEMS

SCADA and Communication Systems within Contractor's scope of supply includes a complete SCADA system for efficient monitoring, data recording and WTG control, necessary LAN networks for SCADA systems and general purposes (e.g. access to Internet form SCADA system), WTG installed telephones for O&M purposes, PC’s and printers in control room building and as further set out in below sections.

4.8.1 WEC CONTROL SYSTEM

The WEC control system together with the power system must fully protect the mechanical and electrical installations of the WEC against failure or breakdown, and at the same time ensure maximum overall electricity generation under given wind conditions. The WEC control system has to be designed for automatic, unattended operation under the Gulf of El Zayt site conditions. The main control board must be designed individually for each WEC and shall be installed at the base of the WEC. The system shall, as a minimum, be able to shut down, display and give alarm under the following conditions: •••• Activation of emergency stop.

•••• Grid failures, e.g. frequency failure, voltage failure, excess current, phase sequence failure, phase asymmetry.

•••• Rotor over speed.

•••• Generator over speed.

•••• Temporary accepted overload Pt (Pr + 25%) is exceeded.

•••• Maximum momentary accepted overload Pa (Pr + 50%) is exceeded.

•••• Excessive wind speed.

•••• Excessive temperature (e.g. generator, gear box oil, control panel, ambient).

•••• Brake system failure.

•••• Vibrations of the nacelle.

•••• Yaw failure.

•••• Twisted cables.

•••• Control system failure.

•••• Power system failure.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 291 -

•••• Hydraulic system failure.

•••• Overheating of the transformer in the compact stations (first stage: alarm, second stage disconnection of the LV fused load switch or circuit breaker and MV “SF6 circuit breaker”).

The system shall be able to display and give alarm in case of Anemometer and wind vane failures. The Control system shall restart the WEC automatically after a shut-down caused by grid failure, after untwisting of cables, after disappearance of excessive wind speeds, after disappearance of excessive system temperatures as a result of excessive ambient temperatures, and after disappearance of temporary and momentary overload. The WEC shall have to be restarted manually in case of all other shut-down situations. An additional control board (top-box control board) shall be available in the nacelle. It must be designed for carrying out the essential operations during functional, maintenance, and repair checks. An emergency-switch-off for manual operation must be available at least in the nacelle (top-box-control board) and at the main switchboard or control board at the base of the WEC. The turbine controller shall either be protected against the loss of program or the operator shall be in the position to reinstall the program in case of program failure. The turbine controller should indicate whether it is sending/receiving data from the Remote Control and Monitoring System (RCMS) in order to identify potential communication errors.

Monitoring Functions

The monitoring system as part of the WEC control system shall, as a minimum, display the following:

−−−− Status of each WEC.

−−−− Operation times of WEC in hours as monthly, yearly and cumulative values:

∗∗∗∗ grid OK hours,

∗∗∗∗ turbine OK hours,

∗∗∗∗ generating hours,

∗∗∗∗ service hours,

∗∗∗∗ failure hours.

−−−− Electricity generation of WEC in kWh (monthly, yearly, cumulative).

−−−− All phase voltages and currents.

−−−− Wind speed in m/s (present, classified monthly distribution, monthly average).

−−−− Failure protocol at least for the recent 3 months (type, start of failure, end of failure).

−−−− Power output/input (active, reactive, cos phi, voltage, current).

−−−− Rotor speed.

- 292 - Escuela Técnica Superior de Ing. Industriales (UPM)

−−−− Temperature at nacelle, gearbox, generator, ambient.

If certain values cannot be measured directly, the contractor may propose an alternative way of deriving the data at the central monitoring computer.

4.8.2 SCADA

SCADA functionalities shall be doubled so no single fault in the works / equipment will cause loss of data recording from individual WTG’s running or ready to operate. Neither shall any single fault cause loss of on-line communication with more than one WTG. Local data storage capacity in WTG controllers shall allow 3 months of data recordings to exact same data detail level as comprising for the general Server data storage. The control system shall be designed based on in an Industrial PLC technology that suits the extreme Gulf El-Zayt environmental conditions.The SCADA system shall provide and facilitate functionalities as follows: •••• An all-inclusive signal namespace:

−−−− General overview of turbine status (Producing, Available / Idling, Free of Failures / Errors, In Service, Paused, Stopped, Actual Power Generation etc).

−−−− Easy in attending diagnosing faults and events and for efficient preparation of corrective and effective maintenance.

−−−− Include all failure notifications for: Turbines, Farm controllers, LAN, SCADA equipment, PC’s, Printers etc.

−−−− Efficient and correct documentation, definition and explanation of signals / errors / failures, full compatibility between SCADA software and standard Windows programs etc.

•••• Remote control and monitoring via Web browsers, directly or via VPN secured channels, facilitating not less than ten (10) operators using the system simultaneously.

•••• Management of user control and monitor privileges, e.g. via login and password.

•••• Interface screens shall include mimics on various portions of the turbines such as blades, nacelle, gear, brake, generator, controllers etc as appropriate for information overviews.

•••• Complete farm overview with current operational information, as a minimum comprising:

−−−− All failures of the complete wind park and individual WTG’s including grid failures (status message, number, type, failure date and time and total failure duration.

−−−− Status of each WTG.

−−−− WTG communication lost.

•••• Operation times of WTG in hours as monthly, yearly and cumulative values:

−−−− grid OK hours,

−−−− turbine OK hours,

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 293 -

−−−− generating hours,

−−−− service hours,

−−−− failure hours.

•••• Electrical generation of WTG in kWh (monthly, yearly, cumulative).

•••• All phase voltages and currents.

•••• Wind speed in m/s (present, classified monthly distribution, monthly average).

•••• Failure protocol at least for the recent 3 months (type, start of failure, end of failure).

•••• Power output/input (active, reactive, cos phi, voltage, current).

•••• Rotor speed.

•••• Temperature at nacelle, gearbox, generator, ambient In addition, the following data has to be measured, displayed and stored as 10-min mean values:

−−−− Active power output of each WTG and the complete wind park in Kw.

−−−− Electricity generation of each WTG and the complete wind park in kWh.

−−−− Self consumption of each WTG.

−−−− Wind speed and wind direction (as distribution and time series) at each nacelle anemometer and wind vane.

−−−− Ambient temperature measured at each WTG by a temperature sensor.

−−−− Voltage and current of each WTG related to failure messages.

−−−− Temperatures of generator (stator and rotor), gearbox and sensitive.

−−−− Electric devices of each WTG and the related maximum permissible temperature values.

−−−− Manual stop and start of each WTG, record of the stop periods (time, duration and number).

−−−− Stop and re-start of each WTG due to ambient temperature range limits, record of the stop periods (time, duration and number) and ambient temperature.

−−−− Stops due to wind speed beyond the cut-off wind speed, record of the stop periods (time, duration and number).

−−−− Stops due to wind speed below cut-in wind speed, record of the stop periods (time, duration and number).

•••• Alarm panels and alarm acknowledgement facilities, managing transparency of alarms being attended and action initiated.

- 294 - Escuela Técnica Superior de Ing. Industriales (UPM)

•••• Alarms shall include recommendations for immediate actions and have correct references to O&M documentation, so SCADA alarms will support corrective O&M activities at a maximum of efficiency.

•••• Secure WTG to be stopped if alarms are ignored for a predefined time period.

•••• Secure WTG’s operation parameters to be re-installed in individual WTG’s in case of WTG controller break-downs, software failures, WTG controller parameter changes performed in the WTG etc.

4.8.2.1. DATA ACQUISITION FROM MAIN POWER STRING

The monitoring system shall be able to display and store the following data from the two-way meter in main Power String to the substation: Displayed instantaneous values: •••• Active power (kW) delivered (+) / drawn (-).

•••• Reactive power (kVAr) delivered (+) /drawn (-).

•••• Phase currents and voltages.

•••• Power factor cos phi.

•••• Cumulative Values to be displayed and stored.

•••• Energy delivered (+MWh).

•••• Energy drawn (-MWh).

•••• Reactive energy (MVArh).

4.8.2.2. ON-LINE DATA VIEWING

The user shall be able to monitor the wind farm current status through either a graphical user interface(GUI) showing a map based representation of the wind farm or a series of tables summarising turbine, meteorological station and grid station status. The SCADA shall display an "easy-to-read" summary of the wind farm status and performance at any time and shall also be able to display more detailed information about individual machines. The monitoring system shall be able to process the data and to sort the data necessary for the presentation. The GUI must provide a top-level view of the wind farm with facilities to link to particular groups or units. Units should be represented by icons identifying the unit type and name and conveying the equipment status as the user scans the wind farm. A geographical map as a backdrop showing electrical and communication connections, site contours, vegetation, buildings and roads as appropriate would be advantageous. Commands should be instantly available on selecting a unit or group of units from the map. Direct links should be available from the GUI icons to the corresponding tabular summary screens.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 295 -

A single top level tabular screen should show the complete site status at a glance. Clearly defined areas of the screen should show turbines, meteorological stations, grid stations and current events. The turbine status should show turbines on line, faulted, stopped crew present, power and energy outputs. The meteorological status should show the site mean wind speed, direction, temperature, and pressure. The grid status should show the grid power and energy output for the wind farm and position of circuitbreaker. Current site events should be clearly shown with event code, event description, response status and times. There should be easy access to detailed information screens on individual turbines, meteorological stations and grid stations. It would be advantageous for the user to have a choice between a 'snapshot' screen and a 'dynamic' screen. A snapshot screen shows the status of each unit on the wind farm at the time the screen was requested. A dynamic screen continuously updates the information from the wind farm while the screen is in view. At all times 10-minute average data values should be stored in the working database for further analysis. Configuration information for any unit on the wind farm and the system should be displayed by simple selection of that unit. It should be possible to attach free form notes to past events to aid later analysis. A snapshot screen shall be easily printed.

4.8.2.3. AUTOMATIC ACOUSTIC AND VISUAL ALARMS

An automatic acoustic and visual alarm should be raised at the monitoring computer at the NREA Control Building in case of any abnormal operating condition e.g.: •••• Failures and emergency stops.

•••• Manual stop and start.

•••• Stops due to wind speed beyond the cut-off wind speed.

•••• Stops due to increase of the ambient temperature beyond its permissible limit.

4.8.2.4. DISPLAY OF INSTANTANEOUS VALUES

The SCADA shall permanently display the following instantaneous values as top text in all menus: •••• Last active error.

•••• Number of WTGs connected to the grid.

•••• Wind speed (m/s).

•••• Total active power (MW).

•••• Total reactive power (MVAr).

•••• Power factor.

The data acquisition system must provide for easy processing of statistical data such as:

- 296 - Escuela Técnica Superior de Ing. Industriales (UPM)

•••• Power curve(s) comparison over a selected time period. This power curve is indicative only and does not respond to the guaranteed power curve.

•••• Availability of each WTG and the complete wind park.

•••• Daily, monthly any yearly averages or distributions.

4.8.2.5. DATABASE FUNCTIONS

Data shall be stored in an industry-standard open-database format. Any ODBC compliant database can be used. Data shall be time stamped and all clocks will be automatically synchronized to the central computer clock. The data to be stored shall include meteorological reference data time stamped to compare to the turbine data. Database querying of historical information, via ODBC, per secured VPN channels. Server / Database shall include all WTG signals and allow / facilitate storage of not less than 15 months of operation, comprising status signal changes and measurements recorded at resolutions applied for on-line purposes (e.g. 10 s or 10 min averages, as appropriate), and, control and alarm acknowledgement transactions. In-process interfacing of OPC servers (DA 2.05 or later), within the works, exposing, the complete signals namespace of the works, for Employer's possible future OPC clients to retrieve on-line information; It shall be possible to download easily data to third party software (e.g. Access, Excel) for further analysis, or to additional specific tools (for availability calculation etc.). The stored data shall be able to be used for both on-line and later analysis of the power curve(s), wind analysis, wind farm performance, voltage and current deviations, power factor, electrical loss factor, total wind farm energy statistics. The database shall be capable of being searched with a range of data access query functions provided. Ideally these should be implemented as SQL commands. It should also be possible to store specific query functions for later use. A detailed definition of the database structure shall be provided by the Contractor (tag name, origin, address, domain, nature, scale factor, high limit, low limit, alarm level etc.). Updates of the database should be recorded, documented and sent to Owner without delay and latest with the next monthly operation report. As far as events are concerned, it would be advantageous that the SCADA can provide an open classification criteria for further maintenance and availability analysis. Owner wants to be able to sort wind farm data according to his own events classification. The returned data shall be capable of graphical or tabular presentation. The data shall also be capable of being exported to external analysis programs in appropriate formats, e.g. CSV, Excel etc. in order to ensure compatibility with the Owner’s tools. In no case does the Owner want to modify the database structure. The use of a relational database that allows external systems to access information directly via SQL commands and ODBC links is preferred. The user should be able to view and interrogate the ten-minute data and events database and show the events for any unit for any time period. The more common selections should be catered for in drop down menus such as: •••• View turbine and wind farm event data with options to select turbine or group of turbines,

include events from grid stations, meteorological masts, select time range and list all events or select type of event.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 297 -

•••• Scroll through 10-minute data records for a selected turbine.

•••• Compare time series data for up to 10 selected turbine signals.

•••• Trend any selected signal from turbines, metering stations.

As far as data downloads are concerned, the remote computer of the Owner shall be able to collect data from the local computer. These downloads shall be realized automatically according to a calendar day, hour, data to download etc. They shall be recorded in a log so as to detect any problems during the download operation. Nevertheless, if the download function cannot be realized automatically, an alternative solution will be for the Contractor to implement a local query on the database. This query can be a manual one. It shall be launched and managed by the Contractor staff. The results will be several files which should be transmitted once a month with the monthly report.

4.8.2.6. DOCUMENTATION

The SCADA (including remote computers) shall be supplied with three sets of comprehensive, complete and up-to-date documentation relevant to all the hardware and software supplied (documents and DVD/CD-ROM). All documentation shall be provided in English language. This will include: •••• A comprehensive user manual explaining the operation and use of all the functions.

•••• Detailed descriptions of the underlying theory and calculations employed especially with regard to availability and power curve measurements.These shall include complete details of any data processing carried out by the turbine controllers.

•••• Detailed description of the last and up to date database.

•••• A complete electrical wiring diagram showing connections to the controller and the Communications links.

•••• Hardware manuals for all hardware and computers systems.

•••• An administrator manual for system administration and configuration including backup and set-up procedures.

•••• Quality control, installation and commissioning documentation including detailed test procedures.

4.8.2.7. MAINTENANCE AND EVOLUTION OF THE SYSTEM

The Contractor shall include with the SCADA all equipment’s (tools, stock of replacement parts etc.) which are necessary for scheduled and unscheduled maintenance. A list will be submitted to the approval of Owner. All tools (soft and hard) that are necessary for reload modification or correction of the parameters and programs (database, algorithm etc.) shall be provided.

- 298 - Escuela Técnica Superior de Ing. Industriales (UPM)

Every incident and maintenance operation of the plant shall be reported in the monthly report. A detailed maintenance plan for the SCADA shall be provided by the Contractor and at the end of the warranty period, the latest version of all software related to control and monitoring system should be provided.

4.8.2.8. AFTER SALES SUPPORT AND LICENSES

The SCADA system vendor must be able to offer a support contract for the operational life of the system Details of all licenses required for the lifetime of the project and associated costs shall be supplied.

4.8.2.9. SECURITY REQUIREMENTS

The SCADA must be run on a secure operating system and be customized to meet the requirements of the particular site. Access to the program and control functions must be by password with various levels of access such as: •••• View real time status and access historical data.

•••• View real time status, allow commands and access historical data.

•••• View real time status, allow commands, and access historical data and set-up configuration access.

•••• Full system administration access.

Each defined level should provide access to a limited set of functions that can be configured when the system is implemented. Remote access must also be controlled by password and must not compromise the operation of the wind Farm. Local command will override remote commands.

4.8.2.10. DATA BACK UP

Full data back up facilities shall be provided based on movable hard disk or tape drives as appropriate. An automatic backup system shall be provided with the SCADA. Files and directories to be saved shall be listed and documented. A clear separation between database and the executable programs shall be used. In case of the SCADA Database being corrupted, a set-up procedure shall be provided for local and remote computers. Database copies shall be kept on site in a secure storage place. These copies shall be well documented. Each year a copy shall be sent to the Owner's head-office.

4.8.3 LAN

Contractor shall provide a complete LAN system covering and supporting:

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 299 -

•••• Any purpose of the work / equipment, interconnecting any relevant item of his works.

•••• Redundant and self-recovering single fault by IEEE 802.1d spanning tree algorithm or OSPF to RFC 2740 as applicable, or equivalent.

•••• Including network monitoring SNMP/RMON 1-3+9, alarming any single network unit fault to the SCADA system.

•••• Including a network fault finding tool for diagnosis and capacity monitoring.

•••• All management and configuration, such as IP addresses and further.

•••• Providing Employer a VLAN, for TCP/IP over Ethernetm, for connection of portable equipment such as laptops, accessible at RJ45 ports, at adequate speed for reasonably foreseeable purposes, downlink 10/100 Mbps with autosense, at locations and minimum numbers as follows:

−−−− Two (2) in each turbine.

−−−− Two (2) in the SCADA facility at the Control Room building said pairs shall be redundant, not relying on same single network unit.

Contractor shall in a timely manner document all details needed for Employer's or other Contractor’s installations. Employer or other Contractor’s provides following: •••• Ground fibre cables between WTG’s, to and in Control Room Building as per

Contractor’s minimum requirements.

•••• Fibre network will allow each turbine to be connected to two routers/backbone switches of the works in the Controller Room Building, by a closed-loop, two-fibre system, i.e. 4 fibres + spares in each fibre cable, topology dependent upon number of turbines e.g.: Employer will prepare a detailed fibre cable network design which shall be subject to Contractor's approval.

•••• External Internet access for Contractor's exclusive use, options, methods and net speed will be chosen by Employer upon guidance from Contractor.

4.8.4 TELEPHONES

Supplier shall provide a telephone system for verbal communication in relation to wind farm management, as follows: •••• Two telephone in each turbine, one at the tower bottom and one in the nacelle.

•••• One telephone at the Technical Building.

•••• Telephones shall be VoIP and provide good speech recognition, with appropriate background noise suppression.

•••• At Employer's discretion:

−−−− Either a PABX, connecting to two Employer provided external ISDN2.

−−−− Connections at the Technical Building, facilitating internal calls and direct dial-in.

- 300 - Escuela Técnica Superior de Ing. Industriales (UPM)

−−−− Or –out from any telephone within the wind farm, facilitating not less than four simultaneous calls.

−−−− Or an interface to a conventional PSTN technology based internal telephone.

−−−− System of the Great Belt Link, in which case Employer will facilitate direct dialthrough to any of the said telephone locations.

4.8.5 UPS

Equipment shall include uninterruptible power supplies so SCADA, LAN or telephone functionalities will remain working for not less than 2 hours after loss of internal or external grids. Upon return of internal or external grids all equipment shall automatically restore all functionalities.

4.8.6 CONTROL ROOM BUILDING

A separate control room will accommodate central items of the works, such as database servers, SCADA servers, farm controllers, backbone switches, UPS’s and further to an extent corresponding to 4 panels in a row, 1 x 1 m in footprint, height 2 m, accessible from both sides with a free working path of not less than 1.2 m. In the Control Room Building other contractors will provide regular 220 V AC supply, four 13 A fused spurs. The indoor climate will be kept at +10 to +35 deg. Celcius, relative humidity below 85%, provided that the local works / equipment consumes less than 1 kW, whenever the internal and external grids are available; at other times, only climate shielding is provided. Contractor shall deliver two (2) brand new stationary PC’s of newest designs, Quad Core CPU, and CPU speed >2,66Mhz including two (2) 27 inch LED backlighted monitors based on S-IPS or S-MVA panel technology and both designed for Digital Video Interface (DVI). Contractor shall deliver two (2) brand new laser colour printers (A4 and A3) together with the above mentioned PC’s. The SCADA should be PC based and utilize a pre-emptive multitasking operating system such as Windows 7 or UNIX, LINUX, or equivalent. SCADA system should have a good track record in similar sized wind farms and environments. SCADA system must be upgradeable and have the same operational life as the wind farm. Software packages necessary for operating the SCADA systems shall be included.

4.8.7 AVAILABILITY SUPERVISION SYSTEM

Owner will implement an Independent Availability Supervision System, to which Contractor shall accept to provide data as specified below and further detailed agreement.

4.8.8 DATA ACCESS

The system is going to be installed on an on-site server (19" rack or tower server). From this server there should be access to all data, that is, no extra cabling or other physical equipment should be needed.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 301 -

Access to turbine data can be either direct or via the SCADA system. Data should be online and accessible 24/7. Well described APIs / protocols are needed. These should cover all data providing systems in turbines/farm server, substation, external meteorological equipment etc. Since the system is used for monitoring only, all access to other systems can be read-only.

4.8.9 DATA REQUIREMENTS

Status log A table of all possible status values is needed for both turbine status and status from substation etc. Each entry should at least have the following values: •••• Status code.

•••• Error level (fatal, error, warning, information etc.).

•••• Description in English.

•••• The actual log should at least include:

−−−− Status code.

−−−− Start time.

−−−− End time (or duration).

Finally the actual status of each turbine, substation etc. should be available. Production data The actual production for each generator should be available online, as well as 10 minute average values. Values of the production counter for each generator should also be available online, as well as totals per day, month and year for historical data. Temperature data All measured temperatures should be available (e.g. out door, in nacelle, gear, bearings etc.). The values are needed online as well as average (e.g. 10 minute). If historical values are available they will be useful too. Wind speed data All measured wind speeds should be available. The values are needed online as well as average (e.g. 10 minute). If historical values are available they will be useful too.

4.8.10 SIMULATOR FOR TEST

During development and test of the data access modules a test environment is needed. This could either be via remote access or via a locally installed simulator.

- 302 - Escuela Técnica Superior de Ing. Industriales (UPM)

4.8.11 CONDITIONAL MONITORING SYSTEM (CMS)

Contractor shall as a mandatory option offer and present a CMS. The CMS shall be customized for the offered WTG and any data signals picked up by the CMS shall be transferred, stored and analysed by the overall park SCADA system. The CMS signals visualised in the Park SCADA system shall indicate by use of colours whether the individual WTG are considered as being in a “healthy”, “suspicious” or “critical” from a CMS vibration perspective. CMS data analyses shall be a fixed part of the reporting executed by Contractor in the warranty period. The CMS shall as a minimum pick up vibrations and acceleration levels measured by a Contractor specified number of sensors in the WTG. Position of CMS sensors shall be visible and marked at WTG drawings and in the Bill of Materials (BoM). Technical description of the CMS shall include purpose of the individual CMS sensor positions, expected data acquisition, expected outcome of analyses etc. CMS data analyses shall as a minimum include estimated remaining lifetimes of: •••• All main components.

•••• Main bearings.

•••• Gearbox bearings.

•••• Generator bearings.

•••• Blade bearings.

•••• Components critical to vibrations.

4.8.12 METEOROLOGICAL MEASUREMENT MASTS

Contractor shall propose a Meteorological Measurement system for measurement of Meteorological data on-site during the lifetime of the Project. One Meteorological system may be utilised temporarily by Contractor for his Power Curve verification. The number, type and height of the masts should be proposed by Contractor, but it should be noted that the combined measured data-sets should give a reasonable indication of the actual overall site conditions. The measured data shall be recorded and presented in real-time by the SCADA system. It shall, as part of planning of the daily Operation and Maintenance of the project, be possible to set alarm-level values for any or several simultaneously measured Meteorological data. Contractor shall in his choice of MetMast consider the specific site conditions and high degree of dust, sand and salt content in the air which probably will require easy access to the MetMast instrumentation for repair and replacement actions.

4.9. POWER SYSTEM

Electric components, such as cables, switchgear, generators, control units and equipment shall be designed according to the accepted international Standards.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 303 -

Generator

The generator shall operate under the following conditions:

−−−− Nominal frequency 50 Hz, operational frequency deviations within the limits of (+2%) and (-3%) of the nominal frequency.

−−−− Voltage deviations of +/- 5% on the 22 kV substation busbar.

−−−− Low voltage ride through capability.

−−−− Fault ride through capability.

−−−− Unity power factor generator.

−−−− Certified according to the IEC class I based on version 61400-1 ed.”2 or latest version.

−−−− The WEC shall be of a type, which fulfils the main requirements stated in item “ WEC Control System”.

Switchboards

Switchboards for the local control systems and power systems should be preferably built into a common panel. Circuits with low voltage (<50 V) must be separated from power circuits (>50 V).

The switchboard shall be designed for a minimum short circuit current capacity corresponding to the maximum possible voltage at the busbars.

Floor mounted switchboards shall include a bottom frame with a minimum height of 50 m. The switchboards shall be provided with a suitable number of cable glands for all incoming and outgoing cables.

Current carrying components shall be able to carry their rated current continuously at the rated voltage without exceeding the permissible temperature rise under the specified conditions.

The switchboards shall be provided with a multi-way copper earthing bar (PE) to which the armouring of cable and/or earth conductors shall be connected. The earthing bar (PE) shall also be connected to the earthing system.

All components mounted inside the switchboard must be installed on mounting plates. Where equipment is to be installed in the front covers/doors the strength of the covers/doors must be maintained.

All the switchboards together with their modules shall have at least minimum clearances in air and creepage paths to the insulation group as specified in the relevant IEC standard.

The busbars shall consist of pure electrolytic copper.

The terminal blocks shall be mounted on a standard mounting rail. All internal wiring shall be made by flexible single core cables of min. 1 sq/mm cross section. The cables shall be arranged in easily opened PVC trunking inside the switchboard.

- 304 - Escuela Técnica Superior de Ing. Industriales (UPM)

Each switchboard shall be provided with 15% spare terminal blocks for control cables.

Each individual component mounted in a switchboard shall be separately labelled according to the corresponding drawings. Terminals for power cables shall be marked with phase-designation. Terminals for control cables shall be labelled according to the corresponding circuit diagrams prepared by the Contractor and approved by the Consultant.

Internal wiring must be numbered in accordance with the circuit diagrams. All front mounted equipment shall be marked with plan identification and functional designation.

The design must consider that the temperature inside the tower can significantly exceed the outside temperature. Either high temperature resistant components (incl. capacitors) must be used or the switchboard must have and efficient and reliable cooling system.

Text on labels and diagrams shall be in English.

Low Voltage Cabling

Power cables must be in accordance with the respective IEC or DIN-VDE standards or other equivalent norms:

−−−− The power cables must be copper conductor with a rated voltage of min. 1000/600 V. Cables shall be laid in one length if possible. T-Joints will not be permitted.

−−−− Monitoring cables will be installed parallel to the power cables and special screening will be necessary.

Earthing/Grounding/Bonding

All electrical frames shall be effectively connected to earth. Earth circuits and the final conductor to the earth electrode shall be of copper. The branch circuits shall be provided with protective conductors.

Ring connectors shall internally be connected by use of minimum four (4) radial conductors equally distributed over the ring circumference of the conductors. Inner ring conductor shall be located / positioned on top of the WTG slab foundation approximately four (4) to five (5) meters from the centre of the tower and second ring conductor shall be located / positioned outside the edges of the WTG slab foundation and at approximately same depth as the foundation base. Earth rods shall be made of copper or stainless steel and ring conductors of copper cable. WTG foundation reinforcement steel shall be sufficient connected to the WTG grounding / earthing bus bar at the foundation top where the outside grounding / earthing system also shall be connected to. The individual WTG grounding / earthing system shall be connected to neighboring WTG grounding / earthing systems by use of copper cables.

At each WEC an earth electrode system must be established. The earth system resistance to earth must be max. 5 Ohm.

The earthing system of WEC must be connected to the earthing system of the transformer station.

The earth electrodes must be designed for the maximum possible short-circuit current.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 305 -

All mechanical components made of metallic materials shall be properly bonded to the consumer's earthing terminal.

Earthing clips made of steel strips with punched holes or similar on site made clips are not permitted; only substantial clamps are permitted.

Bonding leads shall be at least half the size of earthing. Bonding shall also be carried out between earthed metal and extraneous metalwork with which it might accidentally come in contact.

The extraneous metalwork includes:

−−−− Ladders.

−−−− Accessible structural steelworks.

Lightning Protection

The WECs and their installations shall be suitably protected against damage caused by lightning (overcurrent and overvoltage due to lightning).

The WEC installations (e.g. Control System) must be protected against harmful voltage transients.

The Contractor has to submit equipment specification for lightning and over voltage protection of the WEC and its installations in accordance with the requirements of accepted standards.

4.10. RUBBER MATERIALS, SEALING SYSTEMS, FILTERS AND HYDRAULIC COMPONENTS

Particular attention shall be paid to the resistance against environmental influences of the materials used. While selecting the materials for the seals, vibrations elements or synthetic covers, attention has to be paid to a sufficient resistance of the material against the environmental influences (salt, dust, UV radiation, possibly oil). •••• Sealing systems:

−−−− NBR material cannot be used as material for seals. Instead FPM, EPDM or Viton shall be used.

•••• Rubber materials:

−−−− Flexible couplings are to be protected by design measures against damage from lubricants and other similar materials. Exposure of all rubber parts to direct UV radiation must be avoided.

- 306 - Escuela Técnica Superior de Ing. Industriales (UPM)

•••• Hydraulic components:

−−−− The flexible pipe materials have to be suitable for the dynamic loads to be expected. Direct UV radiation to all flexible pipe parts must be avoided.

If filters are going to be applied for air cleaning, taking into consideration the high pollution, the time of exposure has to be indicated.

5. CIVIL WORKS

5.1. GENERAL

The quantities of civil works will depend on the Contractors proposal and shall be determined by the Contractor himself. The Contractor shall avoid siting in Wadis as erosion marks indicate that the bigger Wadis might get flooded from time to time. The Contractor will have to investigate the course of the Wadis more in detail to assure the avoidance of Wadis for the siting of the WECs. The scope of the civil works includes but is not limited to the following: •••• Detailed topographical and geo-technical survey.

•••• Construction of WEC foundations and of transformer station foundations.

•••• Construction of one access road and of internal roads and site preparation for WEC-erection.

•••• Excavation and refilling of cable trenches for 22 kV power and of control cables.

Before Bidding the Bidders must have satisfied themselves of the nature of the materials to be excavated and its effect upon the operations in connection with the excavation, which they may have to carry out, the levels and the slopes thereof, requirements as to piling, timbering and pumping, methods of carrying out the excavation and all other particulars whatsoever, and shall have made allowance in the schedule rates as they deemed to fit to provide for any contingencies with regard to excavations that may arise in carrying out the works and the Contractor will be held responsible to have acted as aforesaid. The Contractor shall be responsible for the design, construction and stability of all slopes, piling, trenches and timbering, and shall make due provisions, when setting out the lines of any excavation for the required slopes, for any piling and timbering in connection with the excavation. During the carrying out or after finalising of the excavation, if by reason of the effect of floods, bad weather, slips or from any cause whatsoever, any sand, mud, weeds or other materials be deposited or accumulated on the excavated areas, such materials shall be removed by the Contractor at his own cost and as directed by the Project Manager (PM) and the Consultant, so that the finished surface of the excavation for construction measures shall be rendered perfectly to the depth required prior to depositing of construction materials thereon. The excavation works shall be completely dry, unless otherwise specified The Contractor shall provide adequate pumping appliances to keep the whole of the works free from water and provide for all necessary temporary drainage. No sumps will be permitted within the area of permanent works without the written approval by the PM and the Consultant. Due notice shall be given by the Contractor to the PM and the Consultant when he considers that any excavation bed has been properly and finally prepared, so that they make the necessary inspection at the first favourable opportunity for approval.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 307 -

All cost and charges whatsoever, in connection with carrying out the excavation in accordance with the contract, including the provisions of all main and subsidiary and all temporary works also all pumping, dewatering and draining, formation of steps between slopes and whatever else that may be necessary for the proper and satisfactory carrying out of work, are to be taken as being included in and covered by the schedule prices and rates for excavation. Soil shall be transported to a place which will be chosen by the PM. The Contractor shall submit a detailed account of the calculations and of the detailed design with a complete set of working drawings for the foundations and the roads within 10 weeks after entering into force of the contract. However, the certification of the foundation design shall be delivered within 4 weeks after coming into force of the contract.

5.2. MATERIAL

General

All materials used in the works shall be of the best of their kind, and shall conform in quality and treatment to the conditions specified in the following clauses. The Contractor shall be responsible for arranging and obtaining all the materials (such as gravel, sand, cement, steel reinforcement, etc.) without any support from NREA and without extra charge.

Standard tests should be applied on the steel and submitted to Employer´s Engineer.

The Contractor shall submit samples of all materials, fittings and parts which he proposes to incorporate in the works, for approval and shall not use any of the same unless and until so approved.

In case the Contractor does not submit, for the approval of Employer's Engineer the names of well-known first class firms for the supply of the materials, the Employer's Engineer shall have the power to specify any particular merchant or firm for supply of such materials, and the Contractor shall, obtain such materials from the same firm or manufacturer without extra charge.

Gravel

All gravel being used for concrete making is to be desert gravel or pit run gravel well washed, free from all soluble salts or other impurities. It is to be well graded and is normally to pass a mesh of 30 millimetres and be retained on mesh of 6 millimetres.

When ordered by the PM, gravel shall be sieved and thoroughly wetted at least on day before being used in the concrete mixture.

Sand

Sand shall have a clear sharp angular grit; the grains must be well graded. It shall be free from organic matter and salts or other impurities. In case sand needs washing, this should be thoroughly done at least a day before using such sand in the concrete mortar.

Sand for ordinary work shall pass a mesh of five millimetres, and 75 percent of it shall pass a mesh of 3 millimetres, and it shall be retained on a sieve having 1,600 meshes per square inch. Sand shall be sieved before use in concrete works or mortars.

- 308 - Escuela Técnica Superior de Ing. Industriales (UPM)

Cement

The cement shall be of the best quality of artificial, Seawater Resistant Portland Cement. Locally manufactured cement shall be used, provided that it shall have first passed the tests of the Government chemical Department.

The Contractor shall at his own expense, construct at the site of the work suitable accommodations for storing and protecting all the cement delivered at the site of the work.

This cement store shall be of suitable size, dry and well ventilated, great care being taken that a perfectly dry floor or floors, either of wood or concrete, be provided so as to prevent effectually any dumbness rising to the cement. It shall be stored into covered separate independent compartments.

Each consignment is to be kept in a separate compartment that can be looked. The key of the store and its compartments shall be kept with the PM.

The Contractor has to supply full particulars as to the number of tons of each consignment, date of grinding, result of test, its brans, and further information as may be required by the PM.

No cement shall be used in the works without the permission of the PM. Cement should be delivered to site at least 21 days before it is required for use.

All cement shall fulfil the conditions of the latest standard Specifications for portland cement, cement certified by the chemical Department as not conforming with the above specifications cannot be used on the works and shall have to be removed as soon as possible from the cement store.

The Contractor shall supply all labour and materials for packing samples and shall bear the cost of their despatch to the destination prescribed above.

For foundation the contractor should use cement according to the investigation soil report.

Water

The Contractor shall provide at his own expense all water required for carrying out the work. All water used in the construction of permanent work or in washing or preparing materials to be incorporated therein shall be reasonably clean and free from objectionable quantities of organic matters, alkali salts or other impurities. The contractor shall arrange for filtering the water at his own expense if required by the Employer.

Steel Reinforcement

Reinforcing steel of the specified sizes and packing shall be placed in the concrete, as shown on the working drawings submitted by the Contractor and approved by NREA.

Bars shall be single and joints shall be avoided as much as possible. No welding shall be used and, if joints are necessary, the layers shall overlap for a suitable length according to the specification.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 309 -

The steel shall comply in other respects with the standards and specifications in force for structural steel for bridges and general buildings.

The steel must be cleaned of all scales, dust and loss rust immediately before depositing concrete. Reinforcing bars shall be carefully secured in position by means of steel wires and stirrups.

Ready Mix Concrete

Ready mix concrete may be used under the condition that a period of less than 3 hours from mixing to casting will be assured.

5.3. DETAILED TOPOGRAPHICAL SURVEY AND GEO-TECHNICAL SURVEY

The Contractor shall carry out an detailed Topographical Survey as in (Section 5 - Geothecnical and Topographica Studies) by a scale 1: 1,0000 along the routing of the access road and the internal roads and cables (up to Gulf of El Zayt Substation) and for the micro-sites of WECs. The detailed topographical map shall serve as the basis for the detailed planning and for the documentation as built. The Contractor shall carry out a detailed geo-technical investigation for each WEC site and shall check the results during an open pit inspection by an qualified expert. The attached geo-technical investigation results are to be considered as a general overview only.

5.4. WEC FOUNDATIONS

Based on these results of the geotechnical investigations to be carried out within 4 weeks after entering into force of the contract the Contractor has to design the relevant foundation types being subject for certification. Each type of WEC foundation shall be calculated for the load assumptions according to IEC type class I, GL Class 1 or equivalent and the Egyptian earthquake code using internationally accepted standards such as EN or DIN or equivalent. An English version at least of the essential terms of the Standards must be made available by the Contractor. The foundation design shall be certified by an accepted independent sworn expert. In case that the design will have to be adjusted to consider locally available steel qualities, this adjusted design shall be certified by the sworn expert as well. It is the responsibility of the contractor to assure that the certified foundation will fit with the site specific requirements of the overall WEC system (Nacelle, tower, foundation). In case foundations have to be protected by gabions or stone masonries the stones must have sufficient specific weight (at least 25 kN/m³) and size fractions. The protection shall cover the foundation walls up to 1 m below surface and the upper foundation sides up to a level of 1 m above surface. The Contractor shall consider such measures already in the foundations design and static calculation. Moreover, he shall consider the corresponding extended construction periods in his schedule. The Contractor shall minimise the number of different types of foundations. The WEC foundation shall be built from locally available materials. The Contractor must have satisfied himself before tendering with regard to the availability of proper material. The steel quality shall be of the type high tensile steel with yield strength not less than 400 N/mm² The concrete class shall be of a minimum 28 days strength fck,cube>25 N/mm² for each sample and fck,cube>30 N/mm² for the average of three samples. To avoid any risk from the salt content of the subsoil and groundwater sea water (sulphate) resistant cement shall be

- 310 - Escuela Técnica Superior de Ing. Industriales (UPM)

applied. The content of Sulphate Resistent Portland Cement (SRPC) shall be at least 350 kg/m³ concrete, unless ready made concrete is used. The type of cement and the composition of the concrete or the selection of ready made concrete shall be approved by the PM and the Consultant. The contractor will have to take care that the construction requirements according to the applied internationally accepted standard will be sufficiently explained and maintained during foundation construction and that the corresponding quality assurance and test programme can be carried out with locally available test equipment. The Contractor shall propose a quality assurance program with corresponding checklists for approval by the Employer and the Consultant one month prior to start of foundation construction. No aggregate materials shall be taken from the site. The concrete making or supply facilities must have sufficient capacity to cast foundations within a period of 8 hours. No concrete shall be laid before an order has been obtained by the PM. Concrete shall be used on the work immediately after mixing. Any concrete not laid in place within half an hour after mixing shall not be used in the work and shall immediately be removed from the vicinity. The maximum period for ready mix concrete is 3 hours from mixing to casting. Concrete casting shall follow internationally approved practises. As a maximum two foundations shall be cast per day. In case of a two segment foundation (consisting of foundation plate and pedestal) a break in casting of not less than 1 hour shall be maintained before continuing with the pedestal. The WEC foundation and the transformer station foundation shall be of reinforced concrete. The transformer station foundation shall be carried out according to the Standards as above if the Transformer Station is delivered from abroad or according to Egyptian Standards if locally delivered. Foundations shall be placed on virgin soil or well compacted fill. If excavation has been performed to greater depth than required, sand or gravel shall be placed at bottom of the pit to bring the excavation to the required elevation. Such material shall be placed and compacted in layers not exceeding 100 mm. Excavation pits shall be kept dry during construction. Backfilling of all pits shall not be carried out until the PM and the Consultant have inspected and approved the foundation. Excavated soil may be used as backfill if it is suitable for compaction.Rock and soil not suitable for compaction shall be removed and replaced with a suitable backfill to the satisfaction of the PM/Consultant. Backfill shall be placed in layers approximately 150 mm thick and properly compacted up to 0,10 m below the foundation surface. If the foundation type considers foundation bolts for the connection of the WEC to the foundation the bolts and a sufficient number of corresponding templates shall be delivered from abroad prior to the delivery of the main plant.

5.5. ROADS AND SHUNTING AREA PREPARATION AT THE WEC SITES

The required minimum characteristics of the wind park roads are listed in the Table below. The characteristics may be enlarged according to the requirements of the equipment of the Contractor.

Type Gravel road for a maximum load of 14 t/axle according to the geo-technical site conditions being composed of sub-base and base layer

Width • 7 m (Main access roads) • 4 m (Dead end roads and secondary internal roads); 5.5 m free

Curves • Minimum outer radius: 25 m • Minimum inner radius: 21 m

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 311 -

• Enlargement of the road to at least 5.5 m width; 5.5 m free

Crossing of Wadis Perpendicular to the flow direction; road surface level at Wadi bed level

Areas for passing Enlargement of dead end roads by 3 m to a total width of 7 m at a length of 40 m every 800 m (Enlargement should be part of a shunting area for the erection)

Areas for erection Area according to the specifications of the supply firm; directly annexed to the road; composed of sub-base and base gravel layers for a maximum axle load of 14/t according to the geo-technical site conditions.

Longitudinal slopes • >1% • <7%

Cross slopes > 2% < 20%

Road crests Ground clearance of vehicle: >=15 cm ; straight length of trailer: about 20 m

Turning arrangements at dead end roads

• Minimum outer radius: 27 m • Minimum inner Radius: 21 m (road width enlarged to 7 m)

The Contractor may base his detailed design on the road layout drafted in the Section-3 General Design, shall draft a separate layout of the road access system and shall guarantee that this layout and the given specifications are suitable for the erection and operation of the Wind Park with the proposed type of WEC. The access to the site from the coastal road can be affected via the wind park internal lateral road of a width of about 7 m. In order to allow a direct access to the project wind park area a new access road shall be constructed in a suitable position of the area. The Contractor has to construct this connection to the coastal road as well as the interconnection of the western and eastern lateral roads of wind park area. The construction of the roads shall follow standards usually applied in Egypt. Depending on the selected construction materials and the geo-technical conditions (Sufficient bearing capacity of sub-base) the thickness of all roads is 40 cm divided into two layers, the first layer is the sub-base of thickness 15 cm after compaction, the second layer is the base course of thickness 25 cm after compaction. All layers (sub-base) and base course) shall be tested. In order to allow easy access to the construction site by car at least the sub-base layer of the roads shall be laid and compacted before starting the foundation works. The aggregate base course shall consist of well graded mixture conforming to the following requirements:

AASHTO SIEVES SPECIFIED LIMITS (% PASSING)

25.0 mm 100

9.5 mm 65 – 100

4.75 mm 50 – 85

2.0 mm 35 – 70

0.425 mm 10 – 45

0.075 mm 5 – 15

- 312 - Escuela Técnica Superior de Ing. Industriales (UPM)

The Contractor may propose alternative grading curves for the material, which must be reasonable and controllable with locally available testing equipment, subject for approval by the Employer. The aggregate of base and sub-base of the road material shall be of well graded pit run gravel and shall fulfill the parameters below:

Liquid Limit (AASHTO T89) 25 maximum

Plasticity Index (AASHTO T90) 6 maximum

Sand Equivalent (AASHTO T176)

25 minimum

Loss by abrasion (AASHTO T96)

50 maximum

Max dry density (AASHTO T180)

at least 2.0 g/cm³

Alternatively suitable material may be taken from the site, after having been screened to the required fractions. In this case the material shall be stored near to the excavation site and periodically tested (one sample every 1000 m3 minimum and whenever visual inspection shows change of material) with regard to above listed parameters. The material shall be used for road construction only after approval of the PM and the Consultant: The Contractor shall level the area for road construction according to the planned slopes by excavating the high areas and filling and compacting the low areas. Any soft soil or other material, which the PM and/or the Consultant consider unsatisfactory for the levelling works, shall be excavated and removed from the Site. All banks and slopes perpendicular to the road shall be formed to a gradient not exceeding 1(vertical): 2 (horizontal). The road quality shall be tested with regard to achieved compaction density. As a minimum one test per 500 m2 of road and shunting areas shall be carried out. The tests shall be carried out according to AASHTO 193. The CBR at 100% compaction shall be at least 60%. The test locations will be determined by the PM/Consultant. The testing shall be carried out by the contractor and be supervised by the PM/Consultant. The access road to be constructed to the coast road has to cross four oil gas/pipelines. For the construction of the crossing special standards of the “Petroleum Pipeline Company” have to be observed. Information are given in Appendix 8, “Information on pipeline crossing of roads (Cross and longitudinal sections)”. For the construction of RC pads concrete, cement and steel qualities according to Paragraph 5.4.3 shall apply.

5.6. LAYING OF 22 KV TRANSMISSION, LOW VOLTAGE AND OF CONTROL CABLES

The 22 kV transmission cables shall be laid where possible in the same trench as the control cables. If possible the routing of the cables shall be kept in parallel to the wind park internal roads. The trenches shall have in both cases, one or two 22 kV cables in parallel, a minimum cross section of 1.00 m depth and 0.60 m width. In case of more 22 kV cables in parallel the horizontal safety distance between cables shall be at least 0.20 m. The control cable shall be laid on the same level and in a distance of 0.20 m from the next 22 kV cable. Before cable laying the trench bed will have to be levelled either by making use of existing well graded natural sand soils or alternatively by filling with and compacting of a layer of sand. The 22 kV cable shall lay in a depth of minimum 0.90 m on the sand bed of 0.1 m height. Refilling

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 313 -

shall be done with appropriate material in layers of 15 cm thickness, every time properly compacted. Up to 20 cm above cable crest level refilling material shall be sand. On the sand bed (20 cm above crest level of the cables) a signal band for each of the cables shall be laid. The routing of the cables shall be marked by upright posts (guide marks) with plates latest every 200 m and where required for reasons for change of direction etc. The 22 kV cables from the wind park to Gulf of El Zayt substation may include joints between last WEC to the substation (however, no T-joints are permitted). Crossing of roads: The crossings of roads shall be made through appropriate cement pipes. Crossing of pipelines: According to information received from the ”Petroleum Pipelines Company”, the crest level of LPG pipelines is 1.25 m and that of oil and gas pipelines 1.0 m below surface. The crossing of the pipelines corridor will have to follow the regulations of the “Petroleum Pipelines Company”. No mechanical excavation works are allowed above the pipelines. No excavation shall be done prior to approval by the “Petroleum Pipelines Company”. The crossing of the pipelines shall be affected as follows: •••• Guide marks shall be installed at the start and the end of the crossing.

•••• No repair or maintenance works are allowed without prior permission of the “Petroleum Pipelines Company” and unless under its supervision.

•••• For cables without lead armour and with PVC cover, duct should be of galvanized steel with proper insulation and earthing according to standards and specifications.

•••• For armoured cables (with lead armour and with PVC cover, duct may be of plastic pipes with thickness not less than 5 mm, or cement pipes with proper earthing.

•••• The maximum load of cables shall be reduced according to international standards, taking into consideration the depth of the cables.

•••• In all cases a plain concrete layer shall be applied below and above ducts.

•••• The distance of the invert level of the deepest pipe to cable ducts shall be at least 1.30 m.

•••• The extension of the ducts across pipelines (from both sides) shall be at least 2.5 m.

•••• The distance of junctions shall be at least 75 m from pipelines.

•••• The diameter of the duct shall be two times the cable diameter.

The low voltage (LV) cables shall be laid where possible in the same trench as the control cables. The trenches shall have a minimum cross section of 0.90 m depth and 0.60 m width. The control cable shall be laid on the same level and in a distance of 0.2 m from the next LV cable. Before cable laying the trench bed will have to be levelled either by making use of existing natural sandy soil or alternatively by filling with and compacting of a layer of sand. The LV cable shall be layed in a depth of minimum 0.80 m on the sand bed of 0.1 m height. Refilling shall be done in layers of 15 cm thickness, every time properly compacted. About 15 cm above crest level of the cables a signal band for each of the cables shall be laid. In the backfill materials within a distance of 100 mm below and above the lowest/highest section of the cable, stones bigger than 30 mm in diameter are not acceptable. Refilling shall be done with appropriate material in layers of 15 cm thickness, each time properly compacted. Generally, no junction boxes are permitted for L.V.; for rest of voltages, no junction boxes for distances <400 m shall be used.

- 314 - Escuela Técnica Superior de Ing. Industriales (UPM)

6. ELECTRICAL WORKS

6.1. MV INSTALLATIONS / DELIMITATION

MV installations within Contractor’s scope of supply comprise for each turbine a 22 kV MV switchgear assembly, a 22 kV main transformer, all internal WTG cabling, protective equipment and control & communications interfaces, as further set out by below sections.

6.2. GENERAL REQUIREMENTS

MV installations and related internal turbine facilities shall comply with IEC 60364 (Latest ED.), European Standards, CENELEC harmonisation documents (CENELEC HD 637 S1), IEC standards as applicable and in said order of precedence. Any equipment at medium voltage shall conform to the below specifications: •••• Units.

•••• Nominal Voltage System kV 22.

•••• Highest Voltage kV 24.

•••• 22kV Earthing System.

•••• (EETC’s Substation).

•••• Earthed by

•••• Earthingtransformers.

•••• Power frequency withstand voltage kV 50.

•••• Lightning Impulse withstand voltage kV (peak) 125.

•••• 1.2/50 microsec.

•••• Rated breaking current kA 25.

•••• (Sym/Asym).

•••• Rated short time current 1 sec. kA 25.

•••• Rated making current kA (peak) 63.

•••• p.u. 2,2 Maximum over voltage produced during any capacitive and inductive switching duty.

Locks, signs and any other provision for work on or in the nearby of MV installations shall be included in the supply. Surge arresters shall be provided and installed as needed for the protection of the transformers or any other portion of the MV installations protecting against lightning and switching transients during localoperations. Grounding / earth (potential equalizing) between WTG’s will be carried out using ground cable connections.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 315 -

6.3. ELECTRIC GENERATOR

Unless specified otherwise in the Specification, the rated value and characteristic test of generator and related equipment shall be performed in accordance with one of rules of The latest promulgated IEC,ANSI, JIS, JEM, IEEE and NEMA. In addition to those standards, the following requirements shall be met: •••• Efficiency of generator shall be ≥ 0.97.

•••• Characteristics of the generator(s) and the wind turbine shall be so attuned that, taking into account the control strategy, stable operation is always guaranteed.

•••• Rotor slip of induction (asynchronous) generators shall be attuned to the WTG control strategy selected.

•••• Strongly varying load conditions and the fact that the generator(s) will be operating under partial load for the majority of the time shall be taken into account.

•••• Harmonic stresses and currents and ensuing additional losses shall be taken into account.

The rotor of the generator shall be resistant to being driven at the highest permissible WTG speed. If he highest permissible speed is linked to a maximum permissible time, this time also applies to the generator(s). The degree of protection of the generator(s) shall be at least IP 64 except if the supplied WTG’s are direct drive WTG’s. The cooling air for non-sealed generators shall be conditioned in such a way that the function of the generators is not jeopardized. Generator(s) shall be resistant to the effects of high salt and dust concentration in the air; high temperature and also air with strongly fluctuating moisture contents. Temperature sensors shall be fitted at the most representative place possible (expected hot spots in rotor, stator and bearings), for remote temperature monitoring. Full characteristics of electrical generator shall be supplied with the Bid documentation. Type, Rated Value, Technical documentation, Type approvals, Type Test documents, and drawings shall as a minimum be included in the above mentioned documentation. Generator shall be of induction generator or synchronous generator; its rated value shall match the output of wind turbine. The rated values of generator are as follows: •••• Rated capacity (kW): ≥1000.

•••• Frequency (Hz): 50.

•••• Phases: 3.

•••• Rated Voltage (V): to be defined by the Contractor.

•••• Insulation class: H (180 °C).

•••• Temperature rise: Limit to class H.

•••• Stator coil shall have an excellent designed anti-moisture feature.

- 316 - Escuela Técnica Superior de Ing. Industriales (UPM)

•••• Stator coil shall be made of pure copper with the conductivity rate of the conductor not less than 99%.

End point and connection point of the stator coil shall be highly fixed to cope with the vibration stress resulting from short-circuit. In order to prevent the power cables or control cables (or cords) from being stranded together due to rotation of wind turbine Contractor shall prove that this is controlled professionally and safely by the WTG controller.

6.4. CAPACITOR BANKS

To reduce, in case of asynchronous generators, the generator's demand for reactive power from the grid, the WTGs shall be equipped with capacitor banks. The cut-in and -out of the banks shall be automatically controlled to reach at least the target cos Φ (inductive). The capacitor banks shall be enclosed in a switchboard, be of the oil filled metalized film type, adequate for the rated voltage and frequency of installation and to the operating temperature in tower.

6.5. WTG LV / MV TRANSFORMERS

The voltage of the generator shall be transformed to medium voltage by a transformer with adequate capacity which should be at least 20% more than the WTG capacity. WTG power transformer shall be preferably of cast resin or oil immersed types, shall be properlyprotected. It shall be possible to replace any WTG transformer without dismounting WTG nacelle or tower. MV Power transformer room location shall be adapted to environmental conditions. Refrigeration system of the transformer room is to be designed for the extreme temperatures as well as the dust and sand of the desert. MV Power transformer shall comply with the relevant IEC Standard. It shall have a delta/star connection, with the star connected winding to WTG side. The neutral of low voltage winding shall be earthed to prevent the phase-to-ground voltages from exceeding design limits. Oil-immersed transformers shall be designed as sealed types. As they present risks of fire and escape of oil to the environment and there shall as a minimum be an oil sump located under the transformer, capable of holding at least the oil content of the transformer. Solid cast resin transformers can be prone to failures due to vibration and environmental conditions. Classification according to HD 464 S1 or EN 60726:2003 Standards shall at least comply with: •••• Fire behaviour F1.

•••• Thermal behaviour C2.

•••• Humidity behaviour E2.

Transformers shall be fitted with rollers, clearly marked lifting points and Centre of Gravity (CoG). Transformer connections shall at least be designed for a degree of IP 56 protection. Technical characteristics of the transformers shall be suitable for its connection to the wind farm MVsystem, described in the relevant section of this technical requirement. Full characteristics of WTG LV / MV transformers shall be supplied with the Bid documentation.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 317 -

Type, Rated Value, Technical documentation, Type approvals, Type Test documents, and drawings shall as a minimum be included in the above mentioned documentation. The transformers shall be designed for maximum efficiency and minimum losses. The transformers will be equipped with a thermal protection device which will comprise: •••• 3 thermal detection systems (1 by phase), installed in the active part of the transformer.

The sensors will be placed in a tube to enable them to be replaced if ever necessary.

•••• An electronic converter with two independent monitoring circuits equipped with a changeover switch, one for "Alarm 1" the other for "Alarm 2". The position of the relays will be indicated by different coloured indicator lights. A third indicator light will indicate the presence of voltage.

•••• These three indicator lights will be on the front of the converter. The electronic converter will be installed away from the transformer.

•••• A plug-in terminal block for connection of the sensors to the electronic converter.

These transformers will be of environmental class E3 and of climatic class C2 as defined in IEC

6.6. WTG MV POWER CONTROL AND PROTECTION SYSTEM

WTG shall be designed for remote control and automatic unattended operation with a protection system capable of bringing the WTG to a safe state of operation from any failure situation including Power generation related failures. An interface from the power generating equipment to the SCADA system shall be included in the design. The design shall also provide for complete local control of the WTG. Control and protection system of the WTG shall be designed in accordance with all the requirements given in the IEC Standards 61400. It is recommended that the control and protection systems have a low level of complexity and are being built on standard components in order to increase their reliability and the availability. Both sub-system (control and protection systems) designs shall be based upon a fail-safe philosophy. Special attention shall be paid on reducing impacts from electrically noisy environments and effects of lightning. In particular, over-voltages at terminals of sensors which are monitored by the WTG control sub-system, shall be reduced to values less than designed withstand / immunity levels. In the evaluation of overvoltages the lightning parameters defined for the fixed protection level shall be considered. WTG’s shall be equipped with Arc Detection Systems (ADS) which shall trip the MV main breaker in the case of detected arcs. Locations of ADS sensors shall as a minimum meet following requirements: •••• Two (2) sensors in transformer room.

•••• One (1) sensor in main control panel.

•••• One (1) sensor in generator terminal box.

- 318 - Escuela Técnica Superior de Ing. Industriales (UPM)

WTG start-up after handling an error / warning / alarm etc. should be done either automatically, manually or via remote control / SCADA system. Yaw system power control shall also be performed through the control and protection system. Unwinding of electrical power cable loops shall only take place when the WTG is stopped. However, if the cable loop winding reaches maximum allowed then the WTG automatically shall be shutdown to unwind the power cable loop and automatically restart. It shall be possible to change the various operational parameters from the keyboard at the WTG controller located at the tower base, but only within the safe operational limits of WTG and by use of an appropriate authorization. In general WTG controller parameters shall be controlled by the SCADA system which shall restore any changed parameters at least per every twelfth (12th) hour. The power protection sub-system shall be independent of the control sub-system. The power protection sub-system of the WTGS shall provide an emergency stop circuit of fail-safe type including some of the most important control signals, e.g. over-speed, over-current and vibrations, as well as a suitable number of manual emergency buttons at ground level, in the tower and in the nacelle. Faults or disturbances of the control sub-system shall lead to stop. Finally, the control and power protection system should be able to store in a non-volatile memory the last N faults (N >= 200, to be agreed), along with the time instants of the beginning and the end of their occurrence. This list shall be readable, printable and retrievable both locally and remotely. The Bid documents shall contain a detailed description of the WTG safety system adopted for emergency operations and shut down of the WTG’s. The WTG safety system shall assure execution of all emergency operations in order to put and maintain the WTG’s in safe conditions even in grid loss conditions for at least 48 hours. The system shall, as a minimum, be able to shut down, display and give alarm under the following conditions: •••• Activation of emergency stop

•••• Grid failures, e.g. frequency failure, voltage failure, excess current, phase sequence failure, phase asymmetry

•••• Rotor over speed

•••• Generator over speed

•••• Temporary accepted overload Pt (Pr + 25%) is exceeded

•••• Maximum momentary accepted overload Pa (Pr + 50%) is exceeded

•••• Excessive wind speed

•••• Excessive temperature (e.g. generator, gear box oil, control panel, ambient)

•••• Brake system failure

•••• Vibrations of the nacelle

•••• Yaw failure

•••• Twisted cables

•••• Control system failure

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 319 -

•••• Power system failure

•••• Hydraulic system failure

•••• Overheating of the WTG transformer (first stage: alarm, second stage disconnection of the LV circuit breaker and MV circuit breaker)

•••• The system shall be able to display and give alarm in case of Anemometer and wind vane failures.

The maximum current of the wind turbine shall be limited with a soft starter. The maximum in-rush/starting current shall not exceed 1,2 times the rated current (including capacitor) of the turbine. The reactive power of the wind turbine shall be compensated by the control system to reach a Cos Φ better than 0,97.

6.7. SWITCH GEARS

Contractor shall deliver each turbine with necessary 22kV MV switchgear installations: •••• Switch gears shall be placed outside the windturbine and properly protected against

temperatures and dust.

•••• Switch gears shall have easy access to ingoing and out going cables in order to facilitate O&M activities.

•••• Including one functional unit with a circuit breaker and protective equipment for the clearing of internal turbine faults.

•••• With permanent, built-in disconnecting and earth switches for making dead local MV installations.

•••• Each of the end row turbines shall further have an additional earth switch for making dead cables.

•••• With locks and signs for securing of disconnectors and earth switches.

•••• With partitioning to IP 5X so that local MV equipment may be maintained whilst local ground collector cables remain energised. Class LSC2A according to IEC 62271-200 (Ed. 1) applies to the local breaker functional unit.

•••• With local, manual operating provisions for any function. Remote SCADA operation shall as a minimum comprise circuit breaker opening, eventually as a part of an overall turbine security related stop function. Switch operations shall be independent, manual, without need for auxiliary power, save for earth switch opening which may be dependent.

•••• With a local operator panel with controls and reliable indication of the position of any switch and readily understood mimics, single line diagram and designation codes.

Positions shall also be remotely signalled for monitoring. Voltage indicators shall be applied at the busbar / cable side of the circuit breaker: •••• With alarm functions for the operation of protective functions and efficient and

comprehensive monitoring of the integrity of the MV installation, such as gas pressure and breaker mechanism. Alarms shall be locally and remotely signalled for monitoring.

- 320 - Escuela Técnica Superior de Ing. Industriales (UPM)

•••• With interlocks and lock-outs, preventing any unsafe local operation.

•••• With over-current protection, three-phase and sensitive sum current, both functions with inverse-minimum definite time operation and high stage, connected to current transformers or other type of current sensor within the switchgear.

•••• With bushings at the ground collector cable side, suitable for slip-on (inner cone) cable terminations to EN 50181:1999.

•••• With a central grounding / earth bar, connecting to the overall turbine grounding / earth system, suitable for grounding / earth screens of incomer cables and interconnection grounding / earth cables.

Minimum MV switchgear configuration: •••• Protection of the WTG 22 kV transformer line shall be performed by means of a motor

operated circuit breaker.

•••• For the outgoing power line connecting to the following WTG - a rigid riser of cables shall be used.

•••• For the incoming power line connecting from the preceding WTG, a three position switch disconnector shall be used.

MV Enclosures for electrical equipment shall have at least an IP 54 degree of protection (IEC 60529 (Ed. 2)) and comply with IEC 61400-1 (Ed. 3) and other applicable requirements. Any material other than metal used for enclosures shall be properly selected according to relevant insulation standards. Maximum ambient temperature 40°C.inside the enclosures must be addressed properly. The busbars shall consist of pure electrolytic copper. Each switchboard shall be provided with 15% spare for control cables. Each individual component mounted in the switchboards shall be separately labelled according to the corresponding drawings. Terminals for power cables shall be marked with phase designation. Terminals for communication cables shall be labelled according to the corresponding circuit diagrams prepared by the Contractor. All text must be in English. Full characteristics of WTG LV / MV switch gears shall be supplied with the Bid documentation. Type, Rated Value, Technical documentation, Type approvals, Type Test documents, and drawings shall as a minimum be included in the above mentioned documentation.

6.8. LOW VOLTAGE INSTALLATIONS IN WTG’S

Contractor shall deliver each turbine with following - but not limited to - equipment: •••• 220 V L-N-PE outlets at adequate positions for powering portable equipment, such as

hand tools and laptops.

•••• A CEE socket of adequate current rating, for the easy connection of a portable genset, to be applied at the foundation top outside the turbine when needed for turbine survival powering in case of loss of main grid of longer duration.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 321 -

•••• One 220 V L-N-PE 13A circuit breaker with D-characteristic for additional supply.

LV Enclosures for electrical equipment shall have at least an IP 54 degree of protection (IEC 60529 (Ed. 2)) and comply with IEC 61400-1 (Ed. 3) and other applicable requirements. Any material other than metal used for enclosures shall be properly selected according to relevant insulation standards.

6.9. WIRING IN WTG’S

All power cables, incl. all LV power cables inside or outside the WTG shall be XLPE insulated. Conductor sizes must be at least 50% over-dimensioned in order to lower the temperature loading during the high load summer season. Wiring between components in the WTG electrical system shall comply with the requirements of IEC 61400-1 (Ed. 3) and other applicable standards (e.g. IEC 227, IEC 60245, IEC 60287, etc.). All cables shall be of the non-fire-propagating type, even if bundled (IEC 60332-1 (Ed. 1) and IEC 60332- 3 (Ed. 1)), with reduced emission of smoke (IEC 61034 (Ed. 3)) and corrosive gases (IEC 60754-1/2 (Ed.2)) and reduced toxicity. Cable bushings shall meet the same fire-resistance requirements as above. Wiring shall be enclosed in conduits, ducts, cable trays or other suitable enclosures unless, where permitted by IEC Standards, metallic or non-metallic sheathed cables may be used. Cable bundling shall be performed and executed in a way that ensures proper ventilation around cable bundles and that generated heat therefore is adequately removed. Cable suspensions of cables guided from the nacelle to the tower shall be such that the freely nacelle can make X numbers of revolutions to the left and to the right from the middle position without affecting the cable functionalities and physical condition. Power cables shall be flexible type cables approved by IEC (IEC 227, Part 5: Flexible cables) and be fitted with torsion protection. Cables at the tower base shall be properly steel protected against damages due to bites of rats, other animals or insects. Cable pipes at tower base shall be properly and securely capped / closed around MV cables for potential intruding animals or insects. Complying IEC Standards related to WTG cabling shall be listed in the Bid documentation.

6.10. GROUNDING / EARTH OF METALLIC PARTS

WTG grounding / earthing system shall be designed according to IEC 61400-24 (Ed. 1) Type B arrangement with minimum two (2) ring conductors and minimum two (2) vertical earth rods. Ring connectors shall internally be connected by use of minimum four (4) radial conductors equally distributed over the ring circumference of the conductors. Inner ring conductor shall be located / positioned on top of the WTG slab foundation approximately four (4) to five (5) meters from the centre of the tower and second ring conductor shall be located / positioned outside the edges of the WTG slab foundation and at approximately same depth as the foundation base. Earth rods shall be made of copper or stainless steel and ring conductors of copper cable. WTG foundation reinforcement steel shall be sufficient connected to the WTG grounding / earthing bus bar at the foundation top where the outside grounding / earthing system also shall be connected to.

- 322 - Escuela Técnica Superior de Ing. Industriales (UPM)

The individual WTG grounding / earthing system shall be connected to neighbouring WTG grounding / earthing systems by use of copper cables. Individual WTG grounding / earthing system shall before connecting to neighbouring WTG grounding / earthing systems meet a maximum ground resistance of 5 Ω which is an increased project specific demand / requirement compared to the demands listed in IEC 61400-24 (Ed. 1) where the maximum resistance requirements is set at 10 Ω. Contractor shall record and document the individual WTG grounding / earthing system resistance before any concrete pouring works can be initiated. All metallic parts of the WTG’s shall be electrically ground / earth connected to the overall WTG grounding / earth system in a secure way which allow easy grounding / earth of any machine or electrical part or component. Grounding / Earth solution and installation of any electrical equipment shall be made in accordance with applicable IEC Standards (e.g. 60364-5-54).

6.11. CONNECTING TO ELECTRICAL INFRASTRUCTURE

Contractor shall in the cable connection section of the turbine switch gear provide a 22 kV MV busbar arrangement, consisting of EN 50180:1999 / EN 50181:1999 bushing and plug-in connector arrangement, so all incoming ground cable works can be connected to the substation before turbine electrical commissioning begins. Contractor will provide local MV ground cables connecting the local grid to the turbine switchgear. Contractor shall provide all cable ways / pipes in the foundation to the switchgear, including a cable ladder/support extending down into the foundation cable section. At erection of the WTG the connecting 22 kV MV cable will be located in the foundation cable section. Ground cable shall be protected by plastic coatings / end caps. Contractor shall remove and dispose the 22kV MV ground cable coatings / end caps and permanently install the 22kV MV ground cable at the switch gear cable connection point. Contractor is not allowed nor permitted to energize the 22 kV MV Power Strings before this is agreed by Employer, The Engineer and Contractor under this document.

6.12. PROTECTION SETTINGS

Protective devices shall be Microprocessor-based controllers e.g. circuit breaker, protective relay etc.and shall comply IEC 61850 (Ed. 1) GOOSE: (Generic Object Oriented Substation Event) to: •••• Tripping of switchgear.

•••• Interlocking.

•••• Providing position status of interlocking.

Electrical system of the WTG shall include devices that ensure protection against malfunctioning / short circuits of WTG electrical system, connected power collection system and network. WTG shall restart automatically when normal grid conditions are restored in the external electrical system. WTG generator shall be disconnected from the grid when the speed has dropped below the minimum admissible rotor speed.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 323 -

Contractor shall define all protection settings for efficient protection of all turbine installations, adjust relays accordingly, and, verify settings and function by secondary injection tests before first closure of the MV and LV circuit breakers. Contractor shall timely and not later than 3 months before turbine erection commences, advise protection settings for the purpose of Employer's grading and coordination with electrical infrastructure protection.

6.13. PROTECTION AGAINST LIGHTNING AND OVER-VOLTAGE

Protection of WTG components and systems against lightning / thunder bolts shall have been defined taking into account at least but not limited to following aspects: •••• Protection against damages due to the high current at the attachment point and the current

flowing through the structure to the exit point at the grounding / earth system rods.

•••• Protection against damages due to over voltages generated by LEMP (Lightning ElectroMagnetic imPulse).

•••• Protection against damages due to over voltages generated by indirect lightning.

•••• Protection against static generated currents.

WTG lightning protection system shall at least comply with a Class IV protection according to IEC TR 61400-24 (Ed. 1). The protection level shall also be clearly stated in the Bid documents describing the offered WTG. The statement shall include various Protection Zones assigned to the WTG components according to the IEC TR 61400-24 (Ed. 1) document as well.

6.14. MANAGEMENT OF ELECTRICAL SAFETY AT WORK

Employer will before commencement of site construction works appoint a qualified person to assume the SAP responsibility for the entire wind farm development. Contractor shall until Completion of Works remain liable for all electrical safety in relation to the Works and appoint one qualified person to whom the Senior Authorized Person (SAP)formally will delegate all responsibility in relation to the electrical Works in the WTG’s until and including WTG 22 kV MV switch gears. Responsibility interface boundary between Contractor's assigned SAP and Employer's SAP shall be the MV busbar in the WTG switch gear. Employer's SAP will maintain an overall switching plan of the entire wind farm but the responsibility and exact timing for initial switching of each WTG belongs solely to Contractors SAP. Contractor shall in writing notify time of WTG electrical completion, WTG connections to the local grid, cancellation of WTG connections to local grid etc. Employer's SAP may request Contractor to operate switch gears, subject to notification in writing, whenever needed for electrical infrastructure works. Any LV or Medium Voltage (MV) operation will be subject to request-and-confirm procedures, applying verbal communication via site communication

- 324 - Escuela Técnica Superior de Ing. Industriales (UPM)

6.15. TRANSFORMER STATION (IF APPLICABLE)

Contractor could propose a solution where the transformer is located outside the Wind turbine. In this case, the connection of the WECs to the Main Grid Station of the wind park will be carried out as follows. The WECs’ switchboards should be connected through low voltage cables to adequately sized transformer stations located close to the WECs. Only one WEC shall be connected to one transformer station. The transformer shall be of natural air-cooled oil immersed type with conservator tank or of sealed dry type and shall be constructed in accordance with IEC 76. The transformer shall be suitable for the Gulf of El Zayt site conditions. The high voltage windings shall be provided with tapping from +5% to –5% in 2.5% steps with constant flux variations. The transformer must be fully protected against any potential defect arising in the WEC or in the grid. At the high voltage side a circuit breaker shall be used and a status signal shall be transmitted to the control room. At the low voltage side preferably a fused load switch should be installed. In case of a sealed transformer this shall be equipped at least with a temperature rise relay. For transformer with conservator tank a Buchholz relay is required and a moisture absorption system shall be included. The protection relay shall trip the high voltage circuit breaker and shall actuate a temperature rise signal in the control room. The transformer room should provide sufficient ventilation and protection for the Gulf of El Zayt site conditions (high temperatures, sand and dust) as well as sufficient space for maintenance. The transformer shall have one door for each section. If transformer with conservator tank is used, the housing must be constructed with an internal collecting pit with sufficient capacity to contain all insulating fluid. The solution should be equipped with glands for high voltage and low voltage cables. The bus bar of the transformer stations shall be interconnected to the 22 kV cables by load switch dis-connectors (one switch for each incoming/outgoing feeder). The compact station shall be erected on a reinforced concrete foundation, of which the upper surface is above soil level. The turbines at the main feeder going to the substation should be done through main motorized circuit breakers connected to the SCADA.

6.16. MEDIUM VOLTAGE CABLING

Power cables have to be in accordance with the respective IEC or DIN-VDE standards or other equivalent standards. The power cables must be single core XLPE copper/aluminium conductor with a rated voltage of min. 18/30kV appropriate for underground application under Gulf of El Zayt site conditions. The contractor is responsible for proper design, routing and dimensioning of the cabling and should carry out the required tests and measurements, such as soil thermal resistivity and soil temperature. The final design and all relevant cable specification must be submitted to the PM / Consultant for approval. T-Joints will not be permitted at all. Through joints shall be minimised. Joints between turbines are not permitted. The maximum voltage drop between the most distant transformer station and the Gulf of El Zayt substation should not be more than 1.5% at the highest generation. Monitoring cables will be installed parallel to the power cables and special screening will be necessary.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 325 -

The road or pipes crossings shall be made in appropriate concrete cable ducts.

6.17. GRID CONNECTION UP TO AND INSIDE GULF OF EL ZAYT SUBSTATION

The Contractor shall lay the 22 kV cables (main feeders) up to Gulf of El Zayt substation and connect the cable terminals to 22 kV cubicles under the supervision of NREA/EETC engineers. The Contractor shall agree the mode of utilisation of the cable tunnels (at present under construction) from the outer wall of the substation area to the inside of the building. The 22 kV cables should be painted with anti-fire painting inside the substation. The contractor shall agree the detailed cabling with the Employers site manager in order to minimise the crossings with the connections of the other existing wind parks. The main feeders to the Gulf of El Zayt substation shall be equipped with motorized circuit breakers at the near end of the wind park, equipped with earth fault and over current protective relays. The maximum power capacity for each of the feeder shall be 12 MW. Before or inside the substation each main wind park feeder shall be equipped with two-way kWh and kVArh meters. In addition the instantaneous values of voltage, current, power and power factor shall be measured. The instantaneous values should be transmitted to the control room at the NREA Control Building at the wind park service area. The meters may be installed in the same housing as the circuit breaker. The SS will be equipped with a complete 4 x 125 MVA power transformers including all required components and accessories to serve (200 MW KfW-EC-EIB wind farm & 220 MW JICA wind farm). In addition to a place for a 5th 1x125 MVA power transformer for this project.

7. TECHNICAL DOCUMENTATION TO BE SUPPLIED BY THE CONTRACTOR

All documentation concerning the deliveries under this Contract shall be in English. The technical documentation is considered as a substantial part of the delivery. Late delivery or failure of delivery will be penalised accordingly.

7.1. TECHNICAL DOCUMENTATION FOR PLANNING AND DESIGN TO BE PROVIDED BY THE

CONTRACTOR

Based on the Contractor’s proposal for the micro siting of the WECs and the draft layout of the wind park as part of his bid, its review by Employer and Consultant, and the results of the design liaison meetings, the Contractor will carry out the micro siting and the wind park optimisation to be approved by Employer and Consultant. The results shall be documented in the final layout to be submitted by the Contractor. At the latest 10 weeks after the date of coming into force of the contract the Contractor shall submit four (4) complete sets of technical documentation (technical specifications, descriptions, drawings, installation drawings with all dimensions and loads, detailed account of the calculations and a detailed design with a complete set of working drawings for the foundations (certified by an independent sworn statically expert), cabling and road of the supplied Plant to be approved by the Employer and the Consultant. Only documentation related to a site specific certification, if necessary are accepted later. The acceptance of the technical documentation by the Employer does not in any way release the Contractor from his responsibilities under the present contract.

- 326 - Escuela Técnica Superior de Ing. Industriales (UPM)

21 days prior to the date of the first factory inspection for an item of plant and equipment such as WEC, tower, transformer stations, etc., the contractor shall submit two copies of the detailed factory testing program.

7.2. AS BUILT DRAWINGS TO BE PROVIDED BY THE CONTRACTOR

Prior to Operational Acceptance the Contractor shall submit to the Employer (4) four complete sets of "as built" drawings, showing the complete installation including all alterations and modifications made during installation. The as built drawings must also be included in the Operation and Maintenance Manual. A list of the principal requested drawings and data sheets should contain following items: •••• WEC:

−−−− General arrangement drawings including tower etc.

−−−− Single line diagram (showing all main data).

−−−− Nacelle assembly drawing (showing all components).

−−−− Location and type of control unit including dimensioned drawings.

−−−− Location and type of compact station including dimensioned drawings.

−−−− Switchboard(s) front view.

−−−− Circuit diagram for control panel and electronic circuits.

−−−− Data sheets for electrical system.

•••• Monitoring, data acquisition, and remote control system:

−−−− General arrangement drawings.

−−−− Data sheets for all main components.

−−−− Single line diagram.

−−−− Instrument data sheets.

•••• Transformer Station:

−−−− General arrangement drawings.

−−−− Data sheets for all main components.

−−−− Single line diagram.

−−−− Instrument data sheets.

•••• Grid Connection:

−−−− Single line diagram.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 327 -

−−−− Maps with exact cabling, including depth of cable and location of joints.

−−−− Specification of cable.

•••• Civil Works:

−−−− Foundation drawings.

−−−− Maps with wind park internal and access roads.

7.3. TECHNICAL DOCUMENTATION FOR INSTALLATION , OPERATION, MAINTENANCE, AND

SERVICE TO BE PROVIDED BY THE CONTRACTOR

Six (6) weeks in advance of the first training course outside Egypt the Contractor shall supply two (2) sets of Installation, Operation, Maintenance, and Service Manuals, one for the Employer and one for the Consultant. The manuals shall be in English and shall as a minimum include the following: •••• Description of Plant (general, mechanical and electrical).

•••• Description of WEC control system.

•••• Description of remote control and monitoring system and data acquisition.

•••• Trouble shooting documents for RCMS hardware and software.

•••• Description of installation of Plant.

•••• Description of operation of Plant.

•••• Technical data.

•••• Calibration procedures for sensors (if any).

•••• List of equipment with identification numbers as labelled, manufacturer's name and equipment type, all necessary specification which allows the production of a specific component in case of damage (e.g. rotor blades).

•••• Maintenance and service instructions including routine procedures and timing of preventive maintenance.

•••• Trouble shooting manual for both the mechanical and electrical parts.

•••• Assembling drawings.

•••• Exact spare parts lists.

•••• Manual for repair measures of rotor blades.

•••• Description of the cleaning of rotor blades and its equipment (if offered).

Upon approval by the Employer and the Consultant of the draft manuals the Contractor shall supply twenty (20) sets including sixteen (16) for the Employer’s personnel to be trained at the Contractors’ premises.

- 328 - Escuela Técnica Superior de Ing. Industriales (UPM)

The manuals shall be completed with: •••• Test reports.

•••• Manufacturer’s as built drawings.

•••• Maintenance Manuals shall be highly detailed with step by step explanations.

•••• Upon approval of the respective documents by the Employer and the Consultant.

Documentation for Operation & Maintenance shall be provided focused only in the turbine installed in the project.

All wiring for trouble shooting should be available for the machine in English language. All documentation and wiring should be provided in CDs also.

7.4. TECHNICAL DOCUMENTATION FOR TRAINING

For specific requirements regarding the technical documentation for training, refer to clause12 Training of Employer’s Personnel.

7.5. CATALOGUES OF SPARE PARTS, MATERIALS, CONSUMABLES, AND TOOLS TO BE

PROVIDED BY THE CONTRACTOR

The Contractor shall supply a catalogue of all spare parts and materials necessary for the operation of the Plant. The list shall be a complete part list including all technical data, order numbers, and unit prices (see also clause13). As required in the Bid (Schedule of Particulars No. 5) the Contractor shall have supplied a list of spare parts, consumables, materials, and special tools delivered with the Plant on stock necessary for the proper operation, maintenance, repair and service of the wind park during the Defect Liability Period. The list shall be a complete part list including all technical data, order numbers, and unit prices and the total price for the Plant stock. The Contractor shall supply a list of necessary tools to assemble, erect, maintain and repair the delivered Plant. The tools shall form part of the delivery.

8. PLANNING AND DESIGN OF WIND PARK

8.1. WIND PARK OPTIMISATION AND M ICRO-SITING

Within the scope of the bid the Contractor had to present a draft layout of the wind park including access roads, cabling and grid connection based on the topographical map of the scale 1: 10,000 enclosed as Appendix 1 to the Technical Specifications, in order to achieve the most economic solution according to the specific characteristics of his Plant. A preliminary lay-out as in Appendixes 4 and 5 was supplied on these maps as a draft guideline for the Bidder only. However, the Contractor must respect the areas that will be excluded from construction or is for restricted use as indicated in the maps. In addition, a minimum distance of 3.5 times the rotor diameter between the individual turbines in perpendicular direction to the main wind direction (west to east) shall be kept. The Contractor will have to reconfirm the proposed sites via a field survey in order to avoid micro-sites in restricted or other non appropriate areas. Based on the initial proposal and the

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 329 -

results of the field survey, the Contractor will carry out the wind park optimisation and the micro siting in close co-operation with the Employer and Consultant. The wind park optimisation shall take into account the positions of the WECs, transformer stations, and the Gulf of El Zayt sub-station, in order to assess an optimised overall configuration with regard to the annual electricity generation, accessibility, line losses and costs for low-voltage and medium voltage cables. The final layout including siting, access roads, cabling and grid connection has to be submitted to Employer and Consultant for discussion and approval.

8.2. DESIGN LIAISON MEETINGS

The Contractor and the Employer shall carry out design liaison meetings in order to smooth up the construction work of the Gulf of El Zayt Wind Park Project. The content, time, place, and participants of the design liaison meetings shall be agreed between the parties. The contractor must expect other contractors working at the site and must coordinate co-ordinate the works accordingly. This applies especially to road construction laying of 22 kV cable and connection to the substation as well as to all installation and use of the service area. The Employer has the right to put forward his opinion of improvement, to which the Contractor shall give full consideration.

9. PACKING AND TRANSPORT

9.1. PROTECTION AND PACKING FOR DISPATCH

All Plant shall be adequately protected and packed in containers, racks and/or wooden boxes for the blades for inland and sea transport to the Site. In addition the Plant shall be protected in such a way as to be safe from spoilage and corrosion for at least 12 months after delivery to Site. Items of Plant which are finished painted at the manufacturer’s works such as switch-boards, shall be suitably encased in wood (such as hardboard secured by screws to a wood framework) for their protection before dispatch. Particular care shall be taken in the packing of electrical apparatus. It shall be packed separately in sealed polyethylene or similar approved bags (including free supply of desiccant) taking all precautions to exclude moisture. Packing cases shall be strongly constructed using tongued and grooved boards with internal and external battens. Each packing case shall be durably marked with the contract number and Site address and such other markings as may be directed. The Contractor shall make good to the satisfaction of the Employer/Consultant any deterioration of the protective coatings which may occur during transportation.

10. INSTALLATION

10.1. GENERAL

The Contractor will be fully responsible for the installation of the turn-key plant. Hence he shall provide skilled personnel for the installation and the supervision of the installation by local sub-contractors in order to ensure high quality of works also from the subcontractors.

- 330 - Escuela Técnica Superior de Ing. Industriales (UPM)

Before commencing the installation the Contractor’s personnel shall examine the structure and make arrangements with the Employer so that the Plant may be installed without interfering with any other activities at the site. Before commencing the installation, the Contractor’s personnel shall perform an inspection of the delivered Plant signalising eventual defects due to transport or any other reason, defects which would affect his warranty on the supplied Plant. Any cut-outs, chases, pockets, etc., not detailed on the technical documentation submitted by the Contractor and specified after construction of the structures has commenced, will be paid for by the Contractor. The Contractor must expect erection at Site to be discontinuous and the Contractor shall be deemed to have included suitable allowance.

10.2. FACILITIES ON SITE

Basically the Contractor is responsible to provide all necessary facilities (such as water, electricity, office space etc.). The offices will be completely furnished including working rooms, toilets, meeting room and provide computers, printers as well as connection to the internet. Offices shall have enough capacity to accomodate Contractor´s and Employer´s staff. However, an eventual use of part of the facilities at the NREA service area or the purchase of sanitary water and electricity at the site would be subject to later direct negotiation with NREA. During the construction phase an area for the installation of a central construction yard near to or inside the wind park area will be made available by NREA. During the Defect Liability period, spare parts, tools and materials shall be stored in one of the NREAs’ storage buildings. Details shall be clarified between the Employer and the Contractor during contract negotiations. The Contractor can not expect any tools to be available on Site.

10.3. CRANE AND OTHER TOOLS FOR ERECTION OF PLANT

The contractor has to provide all required erection equipment. The Contractor shall explain the erection method and shall specify the cranes to be used.

10.4. INSTALLATION

All installation must be carried out in a way ensuring easy maintenance and neat appearance. Cables inside the towers and the transformer stations must be run on cable trays and must be numbered at each end for easy identification. Cables in the trays must be fixed by special cable strips. Cables must be laid in one length if possible.

10.5. WTG ERECTION

Before commencing installation activities, Contractor, The Engineer and Employers personnel and representatives shall perform an inspection of delivered Contract Equipment arrived at the project Site in order to find or detect any damages occurred during transport / shipping, by any other reason and which Contractor, The Engineer, Employer or his personnel consider to have impact on the warranty of the Contract Equipment.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 331 -

All WTG installations / erections shall be performed and executed by skilled, trained and educatedpersonnel. Contractor shall guarantee that personnel working at WTG installation / erection activities on equipment delivered for the El Zayt project have got sufficient and required training and education for executing the exact work processes that the individual employee is carrying out. The above counts as well for any HSE requirements stated in the Egyptian law related to the execution of work. Work under suspended loads is strictly prohibited in all situations. Contractor’s on-site project manager or installation responsible person has mandatory obligations in relation to participation in the weekly project progress or ad hoc meetings held on-site.

10.5.1 PLANNED METHODS FOR WTG ERECTION

Contractor shall not later than three months before erection work commences inform The Engineer in details about planned and expected methods to be used for the WTG erections. Contractor is obliged to participate in meetings at Employers facilities in Cairo, Egypt where detailed methods and plans for the erection works shall be presented. Information / presentation shall as a minimum include but not be limited to: •••• Detailed time schedule for the entire erection and commissioning works.

•••• Milestone plan for the entire erection and commissioning works.

•••• Planned number of main cranes, type, lifting capacity, manoeuvrability, maximum operational wind speeds, personnel, availability, origin etc.

•••• Planned number of tail cranes, types, lifting capacity, manoeuvrability, maximum operational wind speeds, personnel, availability, origin etc.

•••• Contractors personnel:

−−−− Number of teams.

−−−− Allocated Site Managers, Supervisors and fitters.

−−−− Home country of the above personnel.

−−−− Task specific teams (mechanical / electrical / commissioning).

•••• Employers personnel:

−−−− Educational / Training requirements to personnel supplied by Employer for erection support and training.

•••• Detailed presentation of erection sequence / work from arrival of equipment until electrical commissioning is completed.

10.5.2 PERSONNEL / SUPERVISOR / FITTER REQUIREMENTS

Contractor shall assign educated, trained and qualified personnel with exact knowledge and experience with proposed WTG in order to secure a fast and smooth implementation of the Project.

- 332 - Escuela Técnica Superior de Ing. Industriales (UPM)

Employer will provide educated, trained and qualified site personnel with knowledge and experience withother WTG types and brands. Employer’s personnel will participate in the WTG erection, mechanical and electrical commissioning and TOC testing in order to gain general knowledge about the proposed WTG. The above shall be regarded as portions of the required training of Employers personnel. Any erection, commissioning or acceptance tests shall be carried out by Contractor’s personnel with participation of Employer’s personnel – but all responsibilities linked to the quality of performed works and test rest solely on Contractor and his personnel. Contractor's personnel shall be responsible for following tasks but not limited to: •••• Preparation for installation.

•••• On site pre-assemblies.

•••• On-site installation and assembly of the Contract Equipment and tower, installation of the earthling and lightning protection system, preliminary testing, preparation and implementation of performance test of the Contract Equipment, instruction to the Buyer's personnel to complete the installation with required accuracy and quality.

The important instructions provided by the Seller shall be delivered and submitted in written English. The Buyer acts on behalf of the Buyer and cooperates with the Seller duringthe process of the installation, commissioning and acceptance test. Employer will reserve his right to at any time to expel or request any of Contractors personnel to be replaced in case of misconduct, unpleasant behaviours, negligence, use of euphoric drugs or alcohol, criminal activities etc.

10.5.3 CRANE REQUIREMENTS

Contractor shall not later than three (3) months after contract award issue The Employer his requirements related to crane pad sizes, carrying capacity of crane pads and site access roads etc. Contractor is obliged to participate actively in optimizing crane pads sizes, layouts and designs in corporation with The Engineer.

10.5.4 WTG PRE-ASSEMBLIES

Contractor shall plan any pre-assemblies for the installation works timely, in corporation with The Engineer and Employers site management, other contractors present at the site and secure that preassembled WTG components doesn’t add inconveniences to other activities, Employer or contractors at site. Any pre-assembled WTG parts or components shall be protected safely against dust, sand, precipitation, temperature, humidity etc. when pre-assembled but not yet installed. Pre-assembled WTG rotors shall be secured / anchored safely to the ground against high wind conditions by use of anchors or ballast blocks. Tower sections stored horizontally at the site shall at all times be found or left totally closed - even though that pre-assembly or preparation works are undergoing in the tower sections – minimum by use of tower tarpaulins.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 333 -

Towers left erected without nacelle shall be stabilized by installing sufficient load blocks equal to the nacelle load on top of the tower or by use of other countermeasures preventing tower oscillations and reduction in tower life time. In general WTG’s erections shouldn’t be initiated if there’s a significant risk of incomplete installations.

10.5.5 WTG ERECTION

Before commencing WTG erection / installation works, Contractor's technical personnel shall examine / inspect the civil works / foundations in close corporation with The Engineer in order to secure that civil works are completed and in a condition that secures a safe and swift WTG erection / installation. Checklist covering the above inspection procedure shall follow each WTG position in Contractor’s QA / QC documentation. Preparation and coordination of all erection / installation works at individual WTG positions rests solely at Contractor. It’s Contractor’s obligation to check and secure that lifting equipment / tools are securely and correct attached to the equipment. Contractor has at all times the overall responsibility for the correct use, stability, maintenance and storage of the lifting equipment / tools. WTG’s or tower sections shall not be climbed if permanent, interim falling arrester systems aren’t installed or double lanyards are used during climbing. It’s not allowed to work inside the tower during the WTG erection except for the erection teams working at the tower section / tower – nacelle connections.

10.5.6 WTG MECHANICAL COMPLETION / COMMISSIONING

Contractor’s mechanical commissioning teams shall immediate after completed WTG erection finalise mechanical commissioning works for the individual WTG’s. The mechanical completion / commissioning shall not be limited to but secure that: •••• All primary construction bolt connections are immediately tightened to required torque

setting.

•••• All rotor and blade bolt connections are immediately tightened to required torque setting.

•••• Permanent falling arrester systems / lift systems are completed.

•••• Secondary construction bolt connections are tightened to required torque setting.

•••• Mechanical completion of the WTG.

•••• WTG prepared for Electrical commissioning.

WTG’s shall be left in idling mode at completed mechanical completion / commissioning. Contractor shall initiate procedures that secure sufficient lubrication of rotating WTG parts / components from the time of mechanical completion / commissioning and until electrical completion / commissioning is finalised and the WTG is in normal operation. Contractor shall secure above mentioned procedures by use of portable power generators in case of non available grid on the project site.

- 334 - Escuela Técnica Superior de Ing. Industriales (UPM)

10.5.7 WTG ELECTRICAL COMPLETION / COMMISSIONING

Contractor’s electrical commissioning teams shall after completed mechanical completion / commissioning finalise the electrical commissioning works for the individual WTG’s. The electrical completion / commissioning shall not be limited to but secure that: •••• Grounding / earth connections installed at the foundation bus bar.

•••• All primary power installations are completed including correct applied torque settings for all cable connections.

•••• Power cables installed at switch gear.

•••• All secondary power supply installations are completed.

•••• All lighting in WTG completed.

•••• All power connections and interfaces checked.

•••• All control / sensor connections and interfaces checked.

•••• SCADA interfaces completed in the WTG.

•••• Communication interfaces completed in the WTG.

•••• Electrical completion of the WTG including preparation for first injection.

•••• Connecting the WTG to the grid.

•••• WTG put in operation.

•••• Executing WTG manufacturer commissioning tests.

•••• Preparing the WTG for TOC testing.

WTG’s shall be left in idling mode at completed electrical completion / commissioning in case that the WTG can’t be left “on grid” and in operation. Contractor shall initiate procedures that secure sufficient lubrication of rotating WTG parts / components from the time of electrical completion / commissioning and until the WTG is in normal operation. Contractor shall secure above mentioned procedures by use of portable power generators in case of non available grid on the project site. WTG’s can not be put in operation / on grid before the complete project SCADA system is commissioned.

10.5.8 WTG SCADA INSTALLATION

Contractor shall splice and install all fibre optic cables in WTG controllers / connection boxes, on site junction boxes or amplifiers and in control room SCADA equipment. Pre-terminated fibre optic cables should be considered as an option in order to save splicing time during installation.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 335 -

Contractor shall participate and provide qualified on site trouble shooting in case fibre optic cables are found failing between the individual WTG’s or between loops and control room building. Contractor shall through his SCADA installations secure that all WTG recordings / data collection are led safely to the SCADA server at the control room building for secure and safe data storage. Contractor shall install all control room SCADA equipment / systems timely before any WTG’s are put in operation.

10.5.9 WTG INITIAL GRID CONNECTION

Contractor’s Senior Authized Person or assigned electrical responsible shall ensure all the (mechanical and electric, etc.) connections have been conducted correctly before the WTG is connected to the grid for the first time. Contractor’s Senior Authorized Person shall in corporation with Employer’s Senior Aauthotized Person safely coordinate first injection of each WTG which in all cases have to comply with agreed schemes for grid connections.

10.5.10 WTG COMMISSIONING INSPECTION

Contractor shall notify Employer, Site Project Manager and The Engineer two (2) weeks in advance when Contractor is ready to carry out a Commissioning Inspection. The purpose of the Commissioning Inspection is to verify that the delivered and installed equipment meets the contract requirements and expectations of Employer. Contractor shall generate and fill in checklists covering the performed Commissioning Inspection. Commissioning Inspection checklists shall be signed by both Contractor and The Engineer before the documents can be regarded as being in force. WTG’s can not be released for TOC tests if the Commissioning Inspection reveals HSE hazards which should be considered as dangerous for the personnel operating the WTG or the WTG itself. WTG’s with minor defects or deviations not affecting the overall HSE of the operating personnel or the WTG itself can enter TOC test immediately if the Commissioning Inspection checklists clearly lists the defects / deviations, corrective actions and deadlines for their completion or remedy.

11. INSPECTION, TESTING AND ACCEPTANCE

11.1. QUALITY CONTROL OF MATERIALS AND COMPONENTS

It is the responsibility of the Contractor that all components are fully tested in accordance with respective standards. Quality certificates for the individual components shall be submitted by the Contractor prior to and during the technical inspection by Employer’s inspectors. Quality certificates do also include certificates (production test certificates, results of type and routine tests according to IEC standards) of the transformers, 22 kV and low voltage panels, and 22 kV and low voltage cables.

- 336 - Escuela Técnica Superior de Ing. Industriales (UPM)

11.2. TECHNICAL INSPECTION AT THE FACTORY

All the Schedules of Particulars shall be completed with the guaranteed particulars and other efficiencies of the equipment offered at the duties specified, and these will be binding and may not be varied except with the consent in writing of the Employer and Consultant. Before shipment or forwarding of major Plant and Equipment to the site it shall be inspected and tested at the factory of the Contractor or of respective Sub-Contractors in the presence of the Employer’s inspectors (two persons at each inspection) and occasionally the Consultant. Their presence does not release in any way the Contractor from any of his obligations under the Contract. The inspection visits will take place prior to the shipment or forwarding of each of the defined delivery lots. A detailed testing programme shall be specified by the Contractor and shall be sent to the Employer and for approval 21 days prior to the inspection at the factory. The test results shall be presented to the Employer and the Consultant. If defects or failures are discovered during the tests the Contractor shall undertake the corrections or improvements without delay as deemed necessary by the Employer. Also major Plant and Equipment, which may be locally produced, such as transformers, cables or WEC towers, will have to undergo an inspection.

11.3. COMPLETENESS AND DAMAGE INSPECTION

An open-package completeness and damage inspection for all Plant supplied by the Contractor will be carried out by the Employer on Site. The open-package inspection will be concluded by a certificate. Should any shortage, defect, damage or cases which are not in conformity with the stipulations of the present contract or the quality standards specified, be found during the inspection, the Employer is entitled to claim replacement, repair or supplement from the Contractor.

11.4. PRE-COMMISSIONING TESTING AND INSPECTION

The site testing of the individual wind turbines and the complete wind farm will be carried out according to a testing plan established by the Contractor. The Contractor will discuss and keep the Client informed about his proposals and ensure that the Client's staff is adequately trained to take over the operation and maintenance of the Wind Park, when it is handed over. This training is dealt with in more detail in clause 12 of Technical Specifications. The testing plan shall be submitted to the Employer 30 days prior to the start of any commissioning. The Contractor will be responsible for the testing of all the Plant and Equipment including its initial operation. He shall carry out checks using competent staff to ensure that all mechanical and electrical connections have been correctly made and that Plant is safe to operate. He shall keep a record of such checks. The results of all site tests carried out by the Contractor in the presence of the Employer and the Consultant shall be submitted to the Employer together with any subsequent analysis.

SCADA – Test on Completion

Contractor shall at completion of the SCADA system installation notify Employer and The Engineer one (1) week in advance that Contractor is ready to commission the SCADA system. In order to Test the SCADA, the whole wind plant must be completed (erected and connected to the grid).

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 337 -

Contractor shall immediate after commissioning of the SCADA system and after first WTG’s are connected to the grid initiate a TOC test of the SCADA system. The SCADA TOC test shall basically secure, show and visualise that the SCADA system is able to collect, manage, store and generate reporting based on all incoming data from the WTG’s.

The SCADA TOC test is basically regarded as an equipment / system functionality test. Contractor shall in connection with the execution of the SCADA TOC test train and educate Employer’s control room / park operators in the SCADA system functionalities and daily usage of the system.

Contractor shall include one SCADA trainer with proven skills and experience with supplied SCADA system for one (1) week (estimated to forty (40) hours) of training for up to twelve (12) control room / park operators.

Besides the above mentioned training session Contractor shall in the following week after above training session include one SCADA trainer with sufficient SCADA experience for back-up and clearing of arisen questionnaires.

Employer will issue a SCADA TOC Test certificate at accomplished satisfactory tests and training.

Tests of individual wind turbine generators after installation at site.

It is the responsibility of the Contractor to demonstrate by suitable tests that each wind turbine and finally the complete Wind Farm will operate satisfactorily and safely. The tests of each wind turbine shall include the following as a minimum:

Demonstration that vibration levels are acceptable and within values specified by the Contractor:

−−−− Load rejection tests and trips from load.

−−−− Demonstration of satisfactory operation of the over speed trips.

−−−− Demonstrations that the braking systems function correctly.

−−−− Demonstration of the satisfactory operation of the yaw drive and brakes.

−−−− The following electrical test: measurement of current and voltage during WEC starts. This test will be carried out for the first 5 WECs commissioned; if all these tests show that the current and voltage levels come within specified and design limits, this test will not be required for later WECs.

The tests include a complete function test. Each complete system shall be tested as a whole under operation conditions to ensure that each component functions correctly in conjunction with the rest of the system. The test includes a visual inspection and a complete test of the electric system, including the monitoring, data acquisition, and remote control system.

If part of the equipment has been damaged, additional tests as required by the Employer must be performed. No tests should endanger the safety of the machine.

- 338 - Escuela Técnica Superior de Ing. Industriales (UPM)

The Contractor shall submit a test protocol of each WEC to the Employer for its approval.

Successfully carrying out of these initial running tests will be documented by the PM and the Contractor as part of the Individual Completion.

Reliability runs

On completion of these initial running tests the reliability of each WEC shall be demonstrated by its operation for a total of 240 hours (each WEC) without defects of any kind that could affect its long term operation. For the operation in this section the WEC has to be connected to the main electrical grid for electricity generation. Grid failures of the main grid (e.g. at Gulf of El Zayt substation, not wind park internal grid) and other events, which are not under the responsibility of the Contractor and which prevent the Contractor in continuously performing the 240 hours reliability period, except for low wind speed, shall be time-wise deducted according to the registered event in the WEC controller resp. the RCMS system.

If any significant defects occur, they shall be remedied immediately by the Contractor and the reliability runs will start again. When the pre-commissioning tests have been satisfactorily completed (including initial running tests plus reliability runs) an Individual Taking Over and Acceptance Protocol and finally the Taking Over and Acceptance Certificate will be issued as defined in the General Conditions of the Contract clause 38.

11.5. COMMISSIONING AND OPERATIONAL ACCEPTANCE

Operational Acceptance will be achieved after successful completion of Power Performance Testing.

11.6. EVALUATION OF OPERATION DURING DEFECT LIABILITY PERIOD

The operation during the Defect Liability period will be evaluated with regard to availability and annual electricity generation according to chapter 14 of Technical Specifications.

12. TRAINING OF EMPLOYER’S STAFF

The Contractor shall carry out training of the Employer’s personnel. All training measures shall be performed in English language. The purpose of this training is that the Employer has sufficient personnel with adequate qualification to operate the wind park in close co-ordination with the supply firm during the Defect Liability period and later on completely on its own. Thus, even minor repair works outside the regular semi-annual maintenance may be carried out independently by the Employer’s operation personnel, if agreed with the supply firm. The training shall include theoretical as well as practical lessons. The training has to include all required information about the turbine technology, manufacturing processes, wind farm management, assembly, installation and operation of turbines and wind farms, troubleshooting, maintenance, service and repair, storage and spare parts management. The training shall be supported by respective documentation, i.e. manuals for operation, maintenance, service, and repair, special training courses, videos. The training shall ensure

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 339 -

that all personnel will be capable to perform the respective activities under their responsibility. For Site training a total of 20 “twenty” persons shall be trained in 2 groups, the participants will be technicians and engineers in the field of mechanics and electricity, who are proficient in English. At least two persons of the trained personnel shall be especially trained in storage and spare parts management. The training shall be performed in three stages: •••• Training at the WEC manufacturers premises prior to the installation of the wind park

(two weeks for 12 “twelve” persons for operation and maintenance, two weeks for 4 “four” persons for planning and design of wind parks and two weeks for 5 “five” persons for control and monitoring system).

•••• Training during the installation and commissioning on site.

•••• Training on the job during the regular semi-annual maintenance and/or repairing work on site.

The Contractor shall provide as part of his bidding documents a complete training programme including time schedule and a brief description of training subjects. Trainers must be fluent in English. Regarding the training at the WEC manufacturers premises the Contractor shall cover the costs for accommodation, allowances, international and local transport and all other costs (insurance, etc.) for the Employer’s personnel participant at the training. Details are provided in the relevant Schedule of Prices. The detailed training programmes shall be structured according to the type of WEC. Basically at least the following training items shall be rendered at the Contractors premises: •••• Operation and maintenance training course (12 persons, 2 weeks).

−−−− Presentation and description of the WEC.

−−−− Operation and maintenance procedures and trouble shooting.

−−−− Safety measures.

−−−− Periodical maintenance.

−−−− Repair and replacement of component techniques.

−−−− Recommendations to assure an economic and more efficient operation.

−−−− Assembly, installation and commissioning.

−−−− How to analysis data from sensors related to condition based monitoring system.

•••• Planning and design of wind parks (4 persons for 2 weeks).

−−−− Wind park design for optimisation of energy output according to wind potential and site conditions (topography and roughness).

−−−− Design procedures covering the wind park layout, grid connection, transformer station and infrastructure on the site.

- 340 - Escuela Técnica Superior de Ing. Industriales (UPM)

−−−− Wind park production and output data evaluation and reporting.

•••• Control and monitoring training course (5 persons for 2 weeks).

−−−− Detailed information on hardware.

−−−− Detailed information on software.

−−−− Operation of the turbine control system, data acquisition, and remote control and monitoring systems.

−−−− Trouble shooting for control and monitoring system.

−−−− Maintenance and replacement of all components.

−−−− Procedures of fibre optics cable terminal connection.

−−−− Reinstallation of software in case of program failure.

The on-site training shall be conducted directly at Gulf of EL- Zayt. A suitable classroom will be made available by NREA. A detailed program shall be proposed by the Contractor including the following major topics: •••• Introduction into commissioning and test procedures.

•••• General information on erection methods and replacing of major components of the WEC.

•••• Practical introduction into the correct use of maintenance manuals.

•••• Trouble shooting.

•••• Practical exercises in general repair and routine maintenance.

•••• Record of maintenance performed.

•••• Spare parts management.

•••• Operation of control, monitoring, data acquisition, and remote control systems.

While the semi-annual training is carried out as an on-the-job training in connection with the regular periodical maintenance visits of the personnel of the supply firm, all the other on-site training activities shall be carried out by especially assigned trainers. During the maintenance, service, and repair visits the personnel of the Contractor will be accompanied by the personnel of the Employer in charge of the wind park operation in order to allow the transfer of practical know-how regarding the operation, maintenance and repair of Plant.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 341 -

13. SPARE PARTS, TOOLS AND MATERIALS

13.1. SPARE PARTS AND TOOLS

The Contractor shall specify and deliver all necessary spare parts including, materials, and special tools and equipment for the complete wind park to that amount he considers as necessary to cover the Defect Liability period and which are necessary for the installation, operation, maintenance, repair and service of the wind park. At the end of the Defect Liability period prior to the return of the performance warranty, the Contractor shall refill and replace all the spare parts, materials, and tools used up during the Defect Liability period. The initial spare part and tool installment shall be delivered together with the main Plant and Equipment. The Contractor shall take special precautions to make sure that spare parts and tools do not corrode, deteriorate or otherwise become useless in a four (4) year storage period. The Contractor shall guarantee that spare parts are available for the life time of the Plant and assure that spare parts will be delivered to Egypt without delays. The spare parts shall be packed and sealed in individual boxes to preserve the parts against damage and corrosion over long storage periods. Each package shall be clearly identified as to its contents in English. In addition to the above spare parts to be provided, allowance must be made, where appropriate, for fuses etc. replaced during the on-Site tests to ensure that on Taking Over, a full set of spare parts is available for operation of the Plant. Any special tool for testing shall be provided. Refilling of spare parts and consumables will depend on the rate of actual consumption during the warranty period. Five sets of special tools for doing any main corrective activities (i.e changing rotor, low speed shaft, gearbox, generator, brake disk and yaw blocks) and another five sets of regular tools for regular maintenance and troubleshooting should be provided. The Contractor shall deliver all tools which are necessary for standard installation, operation, maintenance, and repair of the Plant.

13.2. MATERIALS

A supply of the recommended lubricants and consumable items for the use during the Defect Liability Period such as oil or grease shall be provided by the Contractor. The Contractor shall ensure that used materials (such as oils greases or lubricants) must have an equivalent in the Egyptian market. Any kind of material to be used for repair measures (surface damages) of rotor blades shall be delivered by the Contractor. All consumable shall be refilled at the end of the Defect Liability period before the return of the performance warranty.

13.3. EQUIPMENT FOR POWER CURVE MEASUREMENT

For carrying out the power curve measurement by an independent Expert, the Contractor shall deliver the complete measurement equipment. The contractor shall ensure that the equipment delivered fulfil the quality requirements for the measurement according to the IEC standard. The wind speed should be measured in three different heights, one in hub height. The wind direction should be measured in hub height. Anemometers must be calibrated.

- 342 - Escuela Técnica Superior de Ing. Industriales (UPM)

The measurement mast must be equipped with temperature and pressure sensors, all accessories necessary for safe and reliable operation, logger system and cabling and connection to the RCMS in the NREA control room.

14. DEFECT LIABILITY PERIOD AND RELATED SERVICES

Defect Liability Period starts at the end or works upon completion of the wind plant and Final Certification on Completion is approved by the Employer.

During the Defect Liability period the Contractor is fully responsible for his scope of supply, for the achievement of the guaranteed performance and the guaranteed availability of the wind park stipulated in the Contract. This includes all services, the preventive and regular maintenance, cleaning of rotor blades as specified in Contract, delivery of all tools, equipment, materials and consumables, and the execution of all sorts of repairs of the Plant. The warranty comprises also damages, which are caused by lightning strikes. A description of the service package has to be given in the respective Schedule of Particulars No. 11. Before the Defect Liability period start, Contractor shall present a proposed team for the three years of O&M. This team is to be shown in detail providing CV´s of the staff that shall be specialized in the technology to be installed. The proposal will be under approval of NREA. During the Defect Liability Period scheduled maintenance of the WECs shall be carried out at least every six months. This shall include an investigation of the rotor blades. Any damage or failure shall be reported to the Employer. While regular maintenance will have to be obligatorily carried out by the personnel of the Contractor, minor irregular repairs may be carried out by the personnel of the Employer, if agreed with the Contractor. Employer and Employers O&M personnel on site will maintain the overall daily management responsibilities for the operation of the El Zayt Wind Farm following the TOC and until the expiry of the five (5) year warranty period if not extented. Employer will operate the Wind Farm remotely from the Operation and Maintenance Facility Room (Control Room) . Any interruptions to normal operation, such as warnings, alarms, errors, failures, stops etc. due to faults in the WTG, WTG components or controllers shall be automatically reported on-line by the SCADA to the Operations and Maintenance Facility. Contractor will grant skilled, experienced and educated service personnel available on site minimum twelve (12) hours after receipt of any remotely unsolvable SCADA notification / message which requires unscheduled actions or inspections to be initiated.“Receipt” means in this respect: Notification timestamp in SCADA system or WTG controller.

The final inspection of the WECs shall be carried out by an acknowledged independent expert institute on cost of the Contractor. The expert institute shall be selected by the Employer out of three acceptable institutes proposed by the Contractor in his Bid. The expert report shall be ready before the end of the Defect Liability Period of the Facilities. The Performance Warranty shall be returned on condition that the following is fulfilled: •••• Completion of Defect Liability period.

•••• All specified training performed.

•••• All specified documentation provided.

•••• Conformity with functional guarantees (guaranteed power curve and availability) and respective compensation measures.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 343 -

•••• Replacement spare parts and materials used during the Defect Liability period.

14.1. O&M PLANS AND SCHEDULES

Contractor shall produce and provide an O&M Plan no later than three (3) months before expected TOC which comprehensively sets out strategy and detailed procedures for the O&M setup for the El Zayt wind farm. Employer will operate and secure the daily surveillance of the Plant in accordance with supplied manuals.

14.2. O&M MANUALS

The Supplier shall produce an Operation Manual and a Maintenance Manual that comprehensively describes the instructions and safety regulations for working in and operating, repairing and maintaining the Plant.

14.3. MAINTENANCE

14.3.1 SCHEDULED O&M ACTIVITIES

Scheduled O&M activities apply primarily to standard actions as described in the Contractor’s O&M Manuals.Inspections of main components and parts susceptible to fail or deteriorate in between scheduled O&M services shall be a part of the scheduled O&M activities. Any service activity, inspection etc. carried out during scheduled O&M activities shall be reported to Employer and his representatives immediate at completed inspection. All service activities, consumable consumption, inspections, findings, irregularities etc. shall be reported in Contractors standard report or checklist templates which shall be a part of the O&M Manual. Part / Component / Equipment inspections shall always estimate / conclude on expected remaining lifetime of the inspected Part / Component / Equipment. Scheduled O&M activities shall be carried out according to the agreed O&M Plan and Manual. Scheduled O&M intervals should not exceed a period of six (6) months for the individual WTG. O&M reports shall be delivered every six months. Scheduled O&M activities shall be agreed and planned in details with Employer and his on site O&M personnel in order to minimize production losses but shall be executed within a ÷ 6 / + 1 month interval based on initial O&M Service schedule – meaning that no WTG’s meets scheduled O&M Service activities earlier than six (6) months ahead of and one (1) month later than scheduled O&M Service activities

14.3.2 UNSCHEDULED O&M ACTIVITIES

Unscheduled O&M activities shall be initiated at all sudden errors - which can’t be remotely reset, failures or defects. Unscheduled O&M activities shall be carried out according to the O&M Manual and findings, irregularities etc. shall be reported in Contractor’s standard report or checklist templates which shall be a part of the O&M Manual immediate to Employer at completed activity. Additionally, Contractor shall notify in advance to the Employer with time enough to attend corrective actions to be carried out by the Contractor. Part / Component / Equipment inspections shall always estimate / conclude on expected remaining lifetime of the inspected Part / Component / Equipment.

- 344 - Escuela Técnica Superior de Ing. Industriales (UPM)

Contractor shall within forty-eight (48) hours set up a trustworthy action plan if unscheduled O&M activities results in major repair or replacement activities in the WTG’s.

14.3.3 WTG UPDATES / RETROFITS

WTG updates / retrofits shall be planned in close coordination with Employer and his on site O&M personnel. Updates or retrofits that conflicts with the overall safety of the WTG or O&M Personnel shall be performed without any delays. Updates or retrofits considered as not being in conflict with the overall safety of the WTG or O&M Personnel shall as a general rule be performed together with the scheduled O&M activities. Updates or retrofits shall be covered by WI’s, HSE descriptions / guidelines, checklists, updated O&M Manual etc.

14.4. SPARE PARTS STORAGE

Employer will buy Spare Parts, Main Components, Tools, Lifting equipment, Consumables covering the period of the Defect Liability Period and replace them at the end of this keeping the parts stored locally in his service facilities. The stock will be available for Contractor during the offered Warranty Periods if Contractor grants cost free to re-supply the consumed equipment.

14.5. SPARE PARTS, CONSUMABLES, TOOLS ETC.

Contractor shall as a part of the Service Agreement supply all necessary Spare Parts, Consumables, Tools etc. required for the O&M activities in the Wind Farm and list in detail of all items. Contractor shall use any type of greese and oil available in the local market.

14.6. TRAINING SEASONS CONTENT

Contractor is responsible for content and requirements to pass the training related to all Employer O&M personnel Training Sessions. The above shall be requirements shall be explained and outlined by Contractor to Employer, his representatives and his on site O&M Personnel no later than three (3) months after Contract Award. Contractor shall identify in details what kind of training that has to be included in Training Sessions for Employers on site O&M personnel and at what point in the installation program / schedule the training has to take place in order to gain the highest effect.

14.7. WTG AVAILABILITY

WTG Availability shall be calculated and reported set out in IEC 61400-25 (Ed. 1).The delivered/ proposed and individual WTG’s shall comply with following availability requirements: •••• Before TOC: Minimum 50% in average from first day of connection to the grid

•••• During TOC: Above 85 %

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 345 -

•••• First three (3) months after TOC: 95 %

•••• Until End of Warranty [EoW] or

•••• O&M Agreement: 97 %

Availability below 85 % during TOC trial runs / test will lead to rejection of the WTG. Penalties related to unreached availability demands are listed in section 5.15.11 – “Availability Penalties”. Availability Reports shall be generated directly by the SCADA system and shall be accessible for Employer and his on site O&M Personnel at all times. Availability Reports shall be part of Contractor’s monthly WTG O&M Reporting to Employer and The Engineer. Availability Reports shall as a minimum list following: •••• Latest month Availability per WTG.

•••• Total Availability per WTG.

•••• Latest month Availability per Power String.

•••• Total Availability per Power String.

•••• Latest month Availability for the entire Wind Farm.

•••• Total Availability for the entire Wind Farm.

14.8. AVAILIBILITY PENALTIES

Following penalty scheme will be in force for this specific project. Availability percentages and penalties are to be calculated quarterly per WTG (per every third month) after TOC. Downside / Penalty scheme from TOC and three (3) months onwards:

WTG Availability [A]

Contractor’s Downside / Penalty Deduction in O&M costs per WTG plus a full loss of power compensation

[A] < 93 – 94,99 % 10 %

[A] < 91 – 92,99 % 20 %

[A] < 89 – 90,99 % 35 %

[A] < 87 – 88,99 % 50 %

[A] < 85 - 86,99 % 75 %

[A] < 83 - 84,99 % 50 %

[A] < 81 – 82,99 % 75 %

[A] < 80,99 % 100 %

- 346 - Escuela Técnica Superior de Ing. Industriales (UPM)

Downside / Penalty scheme after above period:

WTG Availability [A]

Contractor’s Downside / Penalty Deduction in O&M costs per WTG plus a full loss of power compensation

[A] < 95 – 96,99 % 10 %

[A] < 93 – 94,99 % 20 %

[A] < 91 – 92,99 % 35 %

[A] < 89 - 90,99 % 50 %

[A] < 87 - 88,99 75 %

[A] < 86,99 % 100 %

Besides Contractors downside penalties Contractor shall reimburse Employer loss of production according to validated current power production tariff between NREA and the utility. Production figures shall be calculated based on calibrated wind data acquired in nearest neighbouring WTG’s or MetMasts. The availability calculations shall be executed per description in Instructions To Tenderers (ITT).

14.9. POWER CURVE VERIFICATION

WTG Power Curves shall be verified according to IEC 61400-12 (Ed. 2) latest eight-teen (18) months after TOC. Full Scale Power curve verification shall be conducted on one randomly selected WTG.

Contractor shall issue Power Curve Verification Report for not less than fifteen (15) WTG’s randomly picked within the El Zayt site to Employer and The Engineer no later than nine (9) months after TOC.

The Power Curve Verification Report input shall based upon power outputs collected by the SCADA system and shall only secure that the “randomly” picked WTG for the Full Scale Power Curve verification isn’t to be considered as a “stand alone” WTG in respect of achieving warranted Power Curve.

Production Calculation Reports shall be generated directly by the SCADA system and shall be accessible for Employer and his on site O&M Personnel at all times.

Production Calculation Reports shall be part of Contractor’s monthly WTG O&M Reporting to Employer and Employers consulting Engineer.

Production Calculation Reports shall as a minimum list following: •••• Latest month production per WTG.

•••• Total Production per WTG.

•••• Latest month production per Power String.

CONSULTORÍA DE UN PROYECTO DE CONSTRUCCIÓN DE UN PARQUE EÓLIC O EN EGIPTO

Fco. Javier Santos Barrero - 347 -

•••• Total Production per Power String.

•••• Latest month production for the entire Wind Farm.

•••• Total Production for the entire Wind Farm.

14.10. SERIAL DEFECT CLAUSE

Employer will reserve his right to raise serial defect clause claims in case that any failing part or component of the WTG exceeds figures in below listed scheme:

Years[Y] after Contractors mechanical commissioning

Serial Defect Percentages [SDP] on park level

During Defect Liability Period 7.5%

5 < [Y] < End of Warranty [EoW] 7,5 %

EoW < [Y] < 10 10 %

10 < [Y] < 15 15%

15 < [Y] < 20 20 %

Employer claim his rights to demand a full / global park replacement of any SDP affected components in case of exceeding SDP according to above scheme. Any costs related to replacing SDP affected components will at any time and solely belong to Contractor.

14.11. END OF WARRANTY AND O&M AGREEMENTS

Contractor is obliged to participate in an Employer Performance Certificate (PC) Inspection at the expiry of the three (3) year Warranty period. Contractor shall notify Employer and The Engineer one (1) month in advance when Contractor is ready to participate in the Employer PC Inspection. The purpose of the Employer PC Inspection is to verify that the delivered and installed equipment meets the contract requirements and expectations of Employer before leaving the warranty period. Contractor shall generate and fill in checklists covering the performed Employer PC Inspection. Employer PC Inspection checklists shall be signed by both Contractor and Employer before the documents can be regarded as being in force. WTG’s can not be released of any Warranty if the Employer PC Inspection reveals HSE hazards which should be considered as dangerous for the personnel operating the WTG or the WTG itself. WTG’s with minor defects or deviations shall be remedied, meet contractual obligations and re-inspected before PC Certificates will be issued by Employer. In case WTG’s have been operated under extended O&M Agreements then Contractor has to notify expiry of current Agreement and issue conditions for prolongation of existing O&M Agreement or renewed / changed conditions. All costs linked to Contractor’s participation and works related to the PC shall be born by Contractor.

- 348 - Escuela Técnica Superior de Ing. Industriales (UPM)

15. SCHEDULE FOR MAJOR COMPONENTS AND SPARE PARTS COMBINED WITH PRICE

ESCALATION CLAUSE

The unit prices of selected spare parts as well as the price escalation clause for the time after termination of the Defect Liability Period are enclosed as Appendix9 to the Contract. The maximum delivery time of specific spare parts to the site and after the termination of the Defect Liability period shall be according to Schedule of Particulars, No. 14.

16. TIME SCHEDULE FOR CARRYING OUT THE PROJECT WORK

Total construction/assembly/commissioning and grid connection shall be completed in a period of time no longer than 21 months. Contractor’s time schedule shall be based on the attached Project Overall Time Schedule and sanctioning due dates shall be reflected in Contractors Time Schedule. Contractors detailed Time Schedule has to be presented for and approved by The Engineer before the detailed Time Schedule will be considered as being in force and valid as a legal document. Contractor’s detailed Time Schedule must be prepared in a form which enables weekly updates of progress and consequence / risk assessments of potential delays. Critical way shall always be highlighted visible in Contractors detailed Time Schedule. Contractor’s detailed Time Schedule shall be prepared in Microsoft Project compatible software. Contractor is in general obliged to maintain the detailed Time Schedule on weekly basis so reality is reflected in the detailed Time Schedule and any new revision or changes to Contractor’s detailed Time Schedule shall mmediate be forwarded to The Engineer. Shall mmediate be forwarded to the Engineer. Contractor shall agree and accept that The Engineer coordinate activities according to Contractor’s detailed Time Schedule with other Contractor’s on site. Activities in Contractor’s detailed Time Schedule and links to other Contractor’s and their activities on site shall be coordinated on weekly progress meetings held on site. Contractors are obliged to participate in the weekly progress meetings with at least one authorized person. Accepted and approved detailed Time Schedules shall unconditionally be followed.

17. SPECIAL REQUIREMENTS

Contractor shall arrange all national authority approvals and secure that approvals are received well before any works are initiated. NREA shall assist the Contractor to obtain the aforesaid approvals. Contractor shall also secure signed approvals of final layouts and designs by Employer before any works emerges. Changes to earlier agreed layouts and designs shall be forwarded to Employer or The Engineer immediately and shall not be considered as being effective before written / signed approval is received from Employer or The Engineer.