13
Motion Control of Differential Wheeled Robots with Joint Limit Constraints J. Gonzalez-Gomez, J. G. Victores, A. Valero-Gomez, M. Abderrahim Robotics Lab Carlos III University of Madrid, Spain 2011 IEEE International Conference on Robotics and Biomimetics Dec/2011 The Mövenpick Resort and Spa Karon Beach, Phuket, Thailand Speaker: Prof. Mohamed Abderrahim

Motion Control of Differential Wheeled Robots with Joint Limit Constraints (Slides)

Embed Size (px)

DESCRIPTION

The motion of wheeled mobile robots is inherently based on their wheels' rolling capabilities. The assumption is that each wheel can rotate indefinitely, backwards or forward. This is the starting point for all motion control mechanisms of wheeled robots. In this paper, a new motion capability of differential mobile robots with limited wheel rotation capabilities is presented. The robot will be able to travel any distance and change its direction of movement even if its wheels can not rotate within more than a certain range of angles. The proposed solution is based on the bio-inspired controller principles used for modular and legged robots, in which oscillations are generated for achieving motion. A total of two oscillators, one per wheel, are enough to generate well-coordinated rhythms on the wheels to control the robot motion. The kinematics of this new type of mobile robot motion is presented, and the relation between the oscillator's parameters and the trajectory is studied. Experiments with real robots will demonstrate the viability of this new locomotion gait.

Citation preview

Page 1: Motion Control of Differential Wheeled Robots with Joint Limit Constraints (Slides)

Motion Control of Differential Wheeled Robots with Joint Limit Constraints

J. Gonzalez-Gomez, J. G. Victores, A. Valero-Gomez, M. Abderrahim

Robotics Lab

Carlos III University of Madrid, Spain

2011 IEEE International Conference on Robotics and Biomimetics

Dec/2011The Mövenpick Resort and Spa Karon Beach, Phuket, Thailand

Speaker: Prof. Mohamed Abderrahim

Page 2: Motion Control of Differential Wheeled Robots with Joint Limit Constraints (Slides)

Outline

1. Introduction

2. Swing principle

3. Kinematics

4. Experiments

5. Conclusions and future work

2011 IEEE International Conference on Robotics and Biomimetics

Motion Control of Differential Wheeled Robots with Joint Limit Constraints

Page 3: Motion Control of Differential Wheeled Robots with Joint Limit Constraints (Slides)

Rolling principle

● Rolling behaviour is inherent to wheels

● Wheels are assumed to rotate indefinitely in any direction

● All kind of known wheels rely on it:

Standard wheel Castor wheel Swedish wheel

Whegs Rotatory legs

Page 4: Motion Control of Differential Wheeled Robots with Joint Limit Constraints (Slides)

Limited wheels

Wheels that cannot turn freely due to constraints

Limit 1 Limit 2

Limited by shape

Ex. Broken wheel

Limited by the environment

Ex. A Robot in a narrow path

Robot

Robot

Rot. angle

Page 5: Motion Control of Differential Wheeled Robots with Joint Limit Constraints (Slides)

Locomotion with limited wheels

● Imagine a robot with a broken wheel...

● Is it possible to achieve locomotion with limited wheels?

● The rolling principle cannot be applied

● Another locomotion principle is necessary...

● Improving the fault-tolerance of robots in critical missions

● Recovering the robot if wheels break

● Study and Develop new “locomotion gaits” with wheels

The problem:

Applications:

Page 6: Motion Control of Differential Wheeled Robots with Joint Limit Constraints (Slides)

Our contribution: the swing principle

● Differential robots with limited wheels can travel any distance in some directions if applying the swing principle

● Swing principle: Oscillating the wheels within the angle limits

φ1=A sin(2πTt+ϕ0)+O

φ2=Asin (2πTt+Δϕ+ϕ0)−O

Oscillations:

Parameters: Amplitude (A), Offset (O)

Period (T), Phase difference ( )Δϕ

Page 7: Motion Control of Differential Wheeled Robots with Joint Limit Constraints (Slides)

Kinematics

● {Yi, Xi}: Global frame

● {XR,YR}: Robot frame

● (x,y, ): Robot position and orientation

● r: Wheel's radius

● l: Distance from the wheels to the com

θ

● Forward kinematics:

x=π r AT

(C (0)+C (Δ ϕ))cos θ

y=π r AT

(C (0)+C (Δ ϕ))sinθ

θ=r2 l

(A S (0)−AS (Δ ϕ)+2O)

C ( x)=cos (2π nT

+ϕ0+ x)

S ( x)=sin (2π nT

+ϕ0+ x)

Page 8: Motion Control of Differential Wheeled Robots with Joint Limit Constraints (Slides)

Locomotion gait and trajectory

● The robot moves sideways

● Step: distance travelled per cycle

● When the step is maximum

● The step is proportional to the amplitude (A)

● The period determines the mean speed along the x axis

Δϕ=90

Page 9: Motion Control of Differential Wheeled Robots with Joint Limit Constraints (Slides)

Trajectory orientation

● The robot can also move in different directions

● The trajectory orientation depends on the offset (O)

● Limitations:

● The robot cannot move in all the directions

● Increasing O implies decreasing the Amplitud (A)

● When A=0, there is no locomotion

Page 10: Motion Control of Differential Wheeled Robots with Joint Limit Constraints (Slides)

Experiments (I)

● A robot prototype with limited wheels has been designed and built

● Wheels limited by shape

● Servos with mechanical limits

● IR led on the top for tracking the trajectory

Page 11: Motion Control of Differential Wheeled Robots with Joint Limit Constraints (Slides)

Experiments (II)

● Real trajectory performed by the robotVideo

Page 12: Motion Control of Differential Wheeled Robots with Joint Limit Constraints (Slides)

Conclusions

● Swing principle: A new locomotion principle for robots with limited wheels has been proposed

● It is based on wheels' oscillatory movement

● Despite the limited wheels, the robots can travel any distance in some directions

Future work

● Test the swing principle with bio-inspired oscillators, such as CPGs (Central Pattern Generators)

● Application to tracked robots

● Application to climbing slopes

● Application to wheelchairs

Page 13: Motion Control of Differential Wheeled Robots with Joint Limit Constraints (Slides)

Motion Control of Differential Wheeled Robots with Joint Limit Constraints

J. Gonzalez-Gomez, J. G. Victores, A. Valero-Gomez, M. Abderrahim

Robotics Lab

Carlos III University of Madrid, Spain

2011 IEEE International Conference on Robotics and Biomimetics

Dec/2011The Mövenpick Resort and Spa Karon Beach, Phuket, Thailand

Speaker: Prof. Mohamed Abderrahim