Victory Process - SilvacoVictory Process has two modes of operation: • The Advanced structure...

Preview:

Citation preview

• Fast3Dstructureprototypingcapabilityenablesthein-depthphysicalanalysisofspecificprocessingissues

• Supportsdoublesidewaferprocessingsimulation

• Comprehensivesimulationsupportforcompoundmaterials,includingvariablecompositions

• Comprehensivesetofdiffusionmodels:Fermi,twodim,single-pair,andfive-stream

• Comprehensivefullflowstressanalysis,includingstressinducedbylatticemismatch,thermalmismatch,depositionandphysicaloxidation

• ExtremelyaccurateandfastMonteCarloimplantsimulation

• Efficientmulti-threadingoftimecriticaloperationsofimplantation,diffusion,oxidation,andphysicaletchinganddeposition

• Multi-particlefluxmodelsforphysicaldepositionandetchingwithsubstratematerialredeposition

• Openarchitectureallowseasyintroductionandmodificationofcustomerspecificphysicalmodelsforetching,depositionandannealing

• Seamlesslinkto3Ddevicesimulatorsincludingstructuremirroring,adaptivedopingrefinementandelectrodespecification

• Parametrizedlayoutspecificationaspartofthesimulationflow

• Convenientmeshspecificationbasedonlayoutfeaturesaswellasmanualmeshadaptationwithinthesimulationflow

• Easytolearn,powerfuldebugmodeanduserfriendlySUPREM-likesyntax(Athenacompatibility)

• Convenientcalibrationplatformandfastprocesstestingwith2Dmode(noneedtorun3Dforcalibration)

Victory Process is a general purpose layout driven 1D, 2D and 3D process and stress simulator including etching, deposition, implantation, diffusion, oxidation and stress simulation capabilities.

Victory Process

3D Process Simulator

• Automaticswitchingfrom1D,2Dand3Dmodeaswellasstructuremirroringduringprocesssimulationtooptimizesimulationtime

VictoryProcesshastwomodesofoperation:• TheAdvancedstructureeditor mode, also called cell mode, is for fast proto-typing of 3D structures, such as image sensors, SRAM cellsorFinFETs,wherestructureoutputmeshingalgorithmsareoptimizedforloadinginto3Ddevicesimulatorsforsubsequentelectricalcharacterization.

• Processsimulatormode, is a full feature, level set based 1D, 2D and 3D process and stress simulator, more suited to process based analysis, such as complex ion beam milling experiments and stress dependent oxidation analysis etc.

Thisbrochurefirstshowsexamplesandfeaturesthatarecommontobothmodesofoperation,suchasimplantation,diffusion,epitaxyand stress analysis and then describes features that are exclusive only to the advanced structure editor mode or to the advanced process simulator mode.

Features Common to Advanced Structure Editor and Process Simulator ModesComprehensiveLayoutHandling

• Specificationoflayoutswithinthesimulationflowwithacomprehensivesetofprimitives,enablescomplexparametrizedlayouts

• HandlespredefinedlayoutsingdsaswellasSILVACOnativemaskformat• Allowsmodificationofpredefinedlayouts(shift,resizeandbooleanoperations)

MaskfeaturescreatedwithintheinputdeckofVictoryProcess.

Booleanoperationsofmasklayersbymeansoftheinputdeck. Transformationofmasklayersbymeansoftheinputdeck.

StressHistorySimulation

• Simulationofthefullstresshistoryofallprocessingstepsbutalsoallowsforsinglestepstressanalysis• Accountsformultipleprocessinginducedstresssourcesincludingdepositioninducedintrinsicstress,

lattice mismatch stress, thermal mismatch stress and oxidation induced stress• Accountsforstressfeedbackonoxidation• Handlesgradedcompoundsubstratesaswellasgradedepitaxalcompoundlayers

Geometryandstressprofileofa3DFinFETinvertercell.

AnalyticalIonImplantation

• ExperimentallyverifiedPearsonanddualPearsonimplantmodels• Extendedimplantmomentstableswithenergy,dose,tilt,androtationvariations• Supportforuserspecificimplantationprofilesaswellasmomenttables• Fullymulti-threadedwithruntimereductionalmostlinearly proportionalwith number ofCPUs

MonteCarloImplantation

• Veryaccurateiondistributionsinbothcrystallineandamorphousmaterialsformingarbitrarygeometriesand multi-layer structures

• Accuratelycalibratedforwiderangeofenergiesstartingaslowas200eVandspanningtothehighMeVrange

• Accountsforallcompleximplantationeffectssuchasreflections,re-implantationandshadowingevenindeep trenches and voids

• Handlesarbitraryimplantdirections

• Applies3Dbinarycollisionapproximationwhichpredictschannelingnotonlyintoprimarychannelbutinall possible secondary channels and crystallographic planes

• Providestimeefficientandcosteffectivesolutionsforimportanttechnologyissuessuchasshallowjunctionformation,multipleimplantsandpre-amorphization,HALOimplants,retrogradewellformation,andwellproximityeffect

• Fullymulti-threadedwithruntimereductionalmostlinearlyproportionalwithnumberofCPUs

Implantattilt50degreesandtwistalongstructure’sdiagonal.5milliontrajectoriescanbesimulatedinafewminutesonan8

core machine.

Implantattilt50degreesandtwistalongstructure’sdiagonal.Allgeometricaleffectsaretakenintoaccount.

Diffusion • FermiandTwodimdiffusionmodelcompatiblewithAthena/SSuprem4• Fickdiffusionmodelfornon-semiconductormaterials• Simulationofmultipledopantdiffusion• Accountsforsolidsolubility,dopantactivation,andsegregationatmaterialinterfaces• Fullymulti-threadedequationassemblerandlinearsolverprovidesubstantialspeedimprovementon

multi-core computers• Simulationoftransientenhanceddiffusioneffects• Three-streamandfive-streamdiffusionmodels• Pointdefecttrappingandclusteringmodels• Impuritysegregationatallmaterialinterfaces• Impurityactivationandsolidsolubility• DiffusionincompoundsemiconductorslikeHgCdTe,InP,SiGe,SiGeCtakingintoaccountcomposition

dependencies• Simulationofthere-distributionofthematerialcompositionincompoundsemiconductorslikeHgCdTe• Discontinousmaterialinterfacemodelforheterostructuredevices• Simulationofoxidationmediateddiffusion• Simulationofflashannealingaswellaslaserannealingwithuserdefinedtemperatureprofileswhich

can vary in time and space.

Boron distribution in a complex structure after analytical implant and Fermi diffusion. ComparisonofFermiand3-streamdiffusionmodelin the presence of interstitial super-saturation.

Re-distributionoftheHgCdTecompositionduetoannealingatvarioustemperatures-CadmiumandMercuryaswellas the dopants are diffusing simultaneously.

Epitaxy

OpenMaterialDatabase

• Epitaxialgrowthofsingleatomicaswellascompoundmaterial• Accountsfordopingre-distributionduringepitaxy• Handlesgradedcompositionduringepitaxy• Supportforcomplextemperatureprofiles

• Fullaccesstoallmaterialandmodelingdata• Supportsuserspecificmaterialdatabasesandwellassimulationspecificmaterialdatabases• Definitionofsimulationspecificmaterialsbyinteritance• Functionallayerofthematerialdatabaseenablesconvenientmodificationaswellasextensionof

material models• Interfacetoopenannealingmodellibraryforadvancedmaterialmodeldevelopment• AllVictoryProductsshareonematerialdatabase

OpenModelingInterfaceCapabilities

• Definitionofmodelspecies• Definitionofmodelparameters• Definitionofreactionfunctions• ConfigurationofthePDEsystem

DeviceMeshingInterface

• Supportforvariousmeshtypes• Extensiverefinementcapabilitiesforallmeshtypesincludingglobalrefinement,interfacerefinement,junctionrefinement,shaperefinement

• Supportsaspectratioalignedan-isotropicmeshing• Structuremodificationbymirroring,croppingandslicingoperations

Advanced Structure Editor Mode

FastGeometricalEtchandDeposition

• Unstructuredmeshtorepresentthestructure• Idealizedisotropicanddryetchingandplanarization• Selectiveetchingorremovalofmaterialsregions• Idealizedconformalanddirectionaldeposition• MaskLayout-basedProcessing-JustlikeinaFab

Optical–CIS,CCD,SolarCells

Amongthemanydesigncriteriaforsolarcells,thedesignofthetopmetalcontactimpactsthecellefficiency.Thearealdensityofthetopcontactmodifiesthemagnitudeofthecelloutputpowersignificantly.

Acceptor3.4e17/cm3isosurfacebeneaththehexagon metal contacts.

Adaptive 3D Delaunay mesh used for the solar cell simulation.

Largestandsmallesthexagongridtopcontactforthe1mm2Siliconsolarcellinvestigatedinthisstudy.

Solarcellefficiencywiththeredtraceforthesmallesthexa-gons(circumcircleradiusorsidelengthaof104μm),green(a=225μm)andblueforthelargesthexagon(a=945μm)

Showingtherelationshipbetweenthemaximumoutputpowerand the metal coverage ration R.

FinFETExample 3DFinFETsimulatedincludingquantumcorrectionandenergybalance.

3DFinFETnetdopingdistribution.

IDVGcharacteristics,simulatedusingVictoryDevice,showingthedifferencewhenenergybalanceand

quantumcorrectionareused.

IDVDcharacteristics,simulatedusingVictoryDevice,showingthedifferencewhenenergybalanceand

quantumcorrectionareused.

SiCTrenchIGBTExample

3DtrenchSiCIGBTsimulationshowsa~350Vincreaseinbreakdownvoltageforaroundededgetrenchwhencompared to a sharp edge trench.

Electricfielddistributionina3DIGBT withsharpedgetrench.

Electricfielddistributionina3DIGBT withroundededgetrench.

ComparisonusingVictoryDeviceof3DIGBTBVsimulationresultswithsharpandrounded

trench edges.

3D Mixed mode short circuit simulation including thermal effect.

Electron current density distribution at device failure pointt=5.57μs.

Short-circuitwaveformsforthe3D8-cellIGBTarraywithawidthof40μm.

Short-circuitwaveformsforthequasi-3D8-cellIGBTarraywithawidthof1μm(b)Cross-sectionalviewsofspatialevolutionof

electron current density for selected points in time shortly before device burn-out.

3DCurrentCrowdinginMultipleCellsIGBT

3DTCADMixed-ModesimulationofcurrentfilamentsinIGBTmulticellarrayundershort-circuitcondition.

CMOSImageSensorExample

TCADsimulationofthefullCMOSimagesensorcell,includingtwopasstransistors.

3DNetDopingdistributionina3DCMOSImageSensor.

ComparisonofsensoroutputvoltagesimulationusingVictoryDevicewithoutandunderillumination.

Electron concentration calculated using Victory Device during darkrecoverytimesimulation.

CMOSImagesensorlayout.

OxidationModels• Oxidationcanbesimulatedinempirical,fullphysical,orhybridmode• Empiricalmodeisappliedforverythinoxidationlayers• Deal-GroveandMassoudmodelsareusedinempiricalmode• Fullphysicalmodesimulatesoxidanttransport,reactiononSi/SiO2interface,viscousflow,material

deformation, and stress formation• Automaticswitchingbetweenempiricalandfullphysicalmodedependingonoxidethickness• Empiricalmodeisusedinplanarregionswithcoarsemeshallowinglayerthicknessessmallerthanmeshsizetoberesolved

• Fullphysicalmodeisusedinregionswithfinemesh• Stressdependentoxygentransportandinterfacereaction• Accountsfororientationdependence,dopingdependenceandambientconditions• Fullymulti-threadedwithruntimereductionalmostlinearlyproportionalwithnumberofCPUs• OxidationofcompoundsemiconductorslikeSiGealsoinheterostructuredevices

Process Simulator ModeInprocessmode,thestructureisrepresentedimplicitly,asastackofmateriallayers“sandwiched”betweensurfaces,eachsurfacedefinedimplicitlyonthehierarchyofCartesianmeshes.

STIlineroxidation

Simulationisstableforcomplexstructures(Multi-layerconcept).

Withoutstress:localoxidationofaquartersectionofaninvertedpyramid shape using the default linear viscous model.

With stress: non-linear oxidation of the inverted pyramid section takingintoaccountstressdependentreactionanddiffusion.

Stress occurs in corner regions. Retardation of the oxide growthduetostressbecomesmoresignificantclosertothe

apex due to the convergence of the corners.

Bufferedfieldoxidation

PhysicalEtch

PhysicalEtchingandDepositionModulecontainsacomprehensivesetofmodelscoveringawidevarietyoftopologyevolutionprocessesused in semiconductor fabrication and in hard coating for media and tribological applications.

• Selectiveetching• Isotropic,anisotropic,anddirectionaletching• Crystalorientationdependentanisotropicetching(e.g.,siliconinKOH)• Plasmaetchingwithmaterialredeposition• Accountsforparticletransporteffectsandparticleandreactorproperties• Multi-particleetchingmodelslikeionenhancedchemicaletchingfordeeptrenchetchinginmemory

technology• Fullymulti-threadedparticlefluxcalculationswithruntimereductionalmostlinearlyproportionalwithnumberofCPUs

OpenModelInterfaceCapabilities

IonMilling(IM)andIonBeamDeposition(IBD)

• Staticandrotatingbeams• Selectiveswitchingofrotatingbeamsonandoffincludingredepositionofmultiplealloymaterials• Highlycollimatedanddivergentbeamsforionbeametchingandionbeamdeposition• Capabilitytosimulatere-depositoneffects• Configurablematerialspecificyieldfunctionsandre-emissionefficiencies• Accountsforshadingeffects• Empiricalyieldmodeltakingintoaccountprocessingconditionslikeionenergy,beamcurrent,ionmass,ioncharge

• Userdefinablemodelsforetchrates,conformity,anisotropy,andstickingcoefficients• Userspecifiedtechnologicalmodels(e.g.,etchrateversusgasflow)• Userdefinablesurfacereactionmodels• Userdefinableparticletransportcharacteristicsthroughfluxmodels• Allmodelsaccountforballistictransport• Automaticselectionoftransportmode• Transportandreactionofmultipleparticles

PhysicalDeposit • Conformal,non-conformal,anddirectionaldeposition• Sputterdeposition• Ionassistedsputterdeposition• Accountsforparticletransporteffects• Fully multi-threadedparticlefluxcalculationswithruntimereductionalmostlinearlyproportionalwithnumberofCPUs

Resultofionmillingsimulationwithredeposition.

Bosch process etchcycle:7secondsdepositioncycle:5seconds28cycleshavebeensimulated

Highaspectration(1:30)trenchetchingwiththeionenhancedchemicaletching(IECE)model.

1Dand2Dsimulationcapabilitiesareavailableinprocessmode.CanbeconsideredasadirectreplacementforAthena,withmostlycompatiblesyntaxforlegacyinputfileconversion.

1Dand2DMode • VerysimilarsyntaxallowseasymigrationfromAthenaandT-Suprem• AutomatedinputdeckconversionwithinDeckbuild• Level-setbasedetch,depositandoxidation,improvesstabilityforcomplexstructureshapes• 1D/2Dsimulationallowsquickcalibrationandprocessprototypingbeforefull3Dsimulation• Openmodelinginterfaceandmaterialdatabaseallowcustommodeldevelopmentforstandardandnew

materials and dopants• SeamlesslinktoAtlasandVictoryDevice• Multi-threading for most time consuming process steps

28nmMOSFETexample

3DVerticalLOCOSPowerMOSFET

This example demonstrates 2D process simulation for 28nm NMOS transistor with STI (Shallow TrenchIsolation).ThegoalofthisexampleistodemonstratesgenericcompatibilitywithAthena.

Thisexampleshowsa3DcurvedcornerverticalLOCOSMOSpowerdevicecreatedbyasimplifiedprocessflowinVictoryProcess.ThestructureisthenexportedtoVictoryDeviceforelectricalsimulation.

2Dprocesssimulationresultsafter20processstepsincludingetching,deposition,ionimplantationanddiffusion/oxidation.

GeometryoftheverticalMOSFET. Impactionizationratenearbreakdown. IVcurveuptobreakdown.

HEAdquArtErS

4701 Patrick Henry drive, Bldg. 2

Santa Clara, CA 95054 uSA

Phone: 408-567-1000

Fax: 408-496-6080

JAPAn jpsales@silvaco.com

EurOPE eusales@silvaco.com

KOrEA krsales@silvaco.com

tAiwAn twsales@silvaco.com

SingAPOrE sgsales@silvaco.com

CAliFOrniA sales@silvaco.com

408-567-1000

MASSACHuSEttS masales@silvaco.com

978-323-7901

tExAS txsales@silvaco.com

512-418-2929

WWW.SILVACO.COMRev031616_19

Victory ProcessMaskLayout

InputDeck

OpenModelFiles

OpenMaterialDatabase SimulationStatus

Victory Process inputs/OutputsRun-timeOutput

ExtractionFile

StructureFiles(.str)