Use of EPS in Transportation Systemsbartlett/Geofoam...Use of EPS Geofoam in Transportation Systems...

Preview:

Citation preview

Use of EPS Geofoam in Transportation Systems 

Steven F. Bartlett, Ph.D. P.EAssociate Professor

Department of Civil and Environmental EngineeringIstanbul, Turkey

Geofoam Research Consortium

Geofoam Research Consortium

Jan VaslestadSteven Bartlett David Arellano Jan Vaslestad

Resources

Authors: Stark, Bartlett and Arellano, 2012

www.civil.utah.edu\~bartlett\geofoam

Topics

• EPS Properties • Design and Construction Considerationsg• Applications for Transportation Projects• Performance Monitoring

EPS Manufacturing

raw styrene beads steam expanded (1st steam heating)

block molding (2nd steam heating) block placement

Summary of EPS Geofoam Properties

(EPS19 is the most commonly used density for roadway construction)

Source: ASTM D6817

Expanded‐Polystyrene Block Geofoam

• Typical Block• Typical Block dimensions

– 0.6 x 1.2 x 2.4 m – 0.8 x 1.2 x 4.9 m  

• Density/unit weight16 to 45 7 kg/m316 to 45.7 kg/m3

(Legacy Highway Project, Utah Dept. of Transportation)( g y g y j , p p )

Topics

• EPS Properties • Design and Construction Considerationsg• Applications for Transportation Projects• Performance Monitoring

Material, Design and Construction Considerations

• Material • Density 

• Construction• Bedding Material

• Compressive Resistance (Modulus)• Insect Control Additive• Flame Resistance Additive

i b i

Bedding Material• Compaction• Handling• Block Dimensions

• Moisture Absorption

• Design•Concentrated Loads

• Block Layout & Placement • Cover and UV protection

•Concentrated Loads• Seismic Loads• Drainage / Buoyancy• Protection Against Chemical Degradation

• Quality Assurance/Control• Specifications / Provisions• Testing and Sampling I tiProtection Against Chemical Degradation

• Settlement• Creep• Internal and External Stability

• Inspection• Corrective Action

y• Bearing Capacity• Pavement Design

Compressive Resistance

0.9

1

0.7

0.8

Stress EPS19‐4

0 4

0.5

0.6

d Ve

rtical 

0 2

0.3

0.4

Normalize

d

Design Value

0

0.1

0.2N

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0Vertical Strain (%)

Design Guidance for Transportation Projects

• Current Design Methods / Guidance• Norwegian Public Roads Administration (1987 1992)• Norwegian Public Roads Administration (1987, 1992) • Japanese – EDO (1996, 2001)• Draft European Design Code (1998)

• I‐15 Reconstruction Project  (1998‐2001) • NCHRP 529 and Web Document 65 (2004)• European EPS White Book (2011)p ( )• NCHRP Project 24‐11(02) Phase I Study (slopes) (2011)• Various Research Reports• Technical Papers• Technical Papers

Available from:  www.civil.utah.edu\~bartlett\geofoam

Topics

• EPS Properties • Design and Construction Considerationsg• Applications for Transportation Projects• Performance Monitoring

Primary Uses For Transportation Projects

• Roadway widening y g• Road construction over poor soils• Bridge abutments• Bridge underfill• Bridge underfill• Culverts, pipelines and buried structures• Railway embankment• Light‐weight backfill• Slope stabilization

Roadway Widening 

Roadway Widening (I‐15 Project)

Salt Lake CityUtah, USA

Roadway Widening (I‐15 Project)

Largest geofoam project worldwide100,000 cubic meters of geofoam

Road Widening (I‐15 Project)

Upper Bonneville Clay

Lower Bonneville Clay

Interbeds

Subsurface Profile in Salt Lake Valley

Road Widening (I‐15 Project – Settlement Record)

Primary Settlement

2.5 year duration

Primary Settlement

Roadway Widening (I‐15 Project)

Geofoam Embankment, Salt Lake City, Utah

Roadway Widening (I‐15 Project)

I‐15 Reconstruction ProjectSalt Lake City, Utah

Roadway Widening (I‐15 Project)

Completed Load Distribution Slab

Reinforced ConcreteLoad Distribution Slab

Geofoam for Rapid ConstructionComparison of Construction TimesComparison of Construction Times

35

25

30ConventionalGeofoam

eeks)

15

20

Time (W

e

5

10

struction 

0Preparation Construction Settlement Finish Work Total

Cons

Typical Construction Time from I‐15 Project

Field Testing and Monitoring ROW OF SURVEY POINTS AT FACE OF WALL

25 MM - PVC STAND PIPE

ROW OF SURVEY POINTS ALONG OUTSIDE EDGE OF EMERGENCY LANE

ROW OF SURVEY POINTS ALONG INSIDE EDGE OF MOMENT SLAB

CONCRETE PAVEMENT

ROAD BASELOAD DISTRIBUTION SLAB

LEVEL 7.5

SQUARE PLATE WITH MAGNET RINGLEVEL 6

6.5 TO 7.3 m

GEOFOAM BLOCKS

LEVEL 4

LEVEL 2

HEIGHT VARIES

GRANULAR BACKFILL

LEVEL 0

BEDDING SAND2.5 m

VIBRATING WIRE TOTAL PRESSURE CELL

Field Testing and Monitoring 

Magnet ExtensometerMagnet Extensometer Installation

Field Testing and Monitoring 

Vibrating Wire Total Pressure CellsHotwire Cut Slot for Pressure Cell

Pressure Cell Cast in Bridge Abutment Pressure Cell in Base Sand

Field Testing and Monitoring 

Horizontal Inclinometer

Ground and Pavement Surveys

3300 South Compression of EPSDate

0

1/20

/99

3/21

/99

5/20

/99

7/19

/99

9/17

/99

11/1

6/99

1/15

/00

3/15

/00

5/14

/00

7/13

/00

9/11

/00

11/1

0/00

1/9/

01

3/10

/01

5/9/

01

7/8/

01

9/6/

01

Date

10

20

30m)

LEVEL 6

40

50

60ttlem

ent (

m

LEVEL 4

LEVEL 2

LEVEL 6

6m

60

70

80

Set

LEVEL 0

90

100Level 0Level 2Level 4Level 6

Construction Completed (8/2/99)

Level 6Level 8Load Distribution Slab placedLoad Distribution Slab Curb placedGranular Borrow placedOpen Graded Base placedPCCP Pavement placed

Field Testing and Monitoring 

l i i hSettlement Monitoring 100 South Street

Road Construction Over Poor Soils

Road Construction Over Poor Soils

Flom Bridge – 1972 – Lillestrom, Norway

Road Construction Over Poor Soils

SR‐519 InterchangeSeattle, Washington

Road Construction Over Poor Soils

St. Rosa Road

Private RoadConstructed OverRice Fields

St. Rosa, Philippines

Road Construction Over Poor Soils

Reclaimed Land – Casino Project – Manila Philippines

Road Construction Over Poor Soils

Reclaimed Land – Aruze Project – Manila Philippines

Road Construction Over Poor Soils

Reclaimed Land – Casino Project – Manila Philippines

Bridge Abutments

Bridge Approaches

North Temple Viaduct – Salt Lake City, Utah

Bridge Abutment

Overpass, 5300 S. over UTA TRAXSalt Lake City, Utah

I‐15 Reconstruction,Salt Lake City, Utah

Temporary Bridge Supported on EPS

NorwayGrimsoyveien

y

Temporary Bridge Supported on EPS

Lokkeberg Bridge,Norway

Temporary Bridge Supported on EPS

Lokkeberg Bridge,Norway

Temporary Bridge Supported on EPS

Lokkeberg Bridge,Norway

Temporary Bridge Supported on EPS

Lokkeberg Bridge,NNorway

Permanent Bridge Supported on EPS

EPS blockHjelmungen bru, Norway

Permanent Bridge Supported on EPS

Hjelmungen bru, Norway

Permanent Bridge Supported on EPS

Hjelmungen bru, Norway

Permanent Bridge Supported on EPS

Hjelmungen bru, Norway

Bridge / Tunnel Underfill

Tunnel Infill Tucker Blvd.I 215 at 3300 South Tunnel Infill, Tucker Blvd.,St. Louis, Missouri

I‐215 at 3300 South,Salt Lake City, Utah

Culverts (Light‐Weight Fill)

Culverts (Light‐Weight Fill)

UTA Commuter Rail Widening Over  Unknown locationgExisting Culvert, Corner Canyon, Draper, Utah

Pipeline Protection

W t hWasatch Fault

Wasatch Fault at Little Cottonwood Canyon

Pipeline Protection

Pipeline Protection

Wasatch Fault – Salt Lake City Segment

Pipelines (Light‐weight Cover Over Faults)

LDS

Asphalt

EPS

Pipe with Sand

Lightweight Cover SystemLightweight‐Cover System

Displacement Vectors During Failure

Pipelines (Light‐weight Cover Over Faults)

Force – Displacement Relation

Pipelines (Light‐weight Cover Over Faults)

Pipeline Crossing, Salt Lake City, Utah

Pipelines (Light‐weight Cover Over Faults

Light‐Weight Backfill

Buried Structures and Walls (Light‐Weight Backfill)

Federal Courthouse – Salt Lake City IHC Hospital Murray UtFederal Courthouse  Salt Lake City IHC Hospital – Murray, Ut

Casino/Hotel – Reidoso, NM

Rail Embankments

Light Rail Embankments

UTA –Light Rail – Salt Lake City, Utah

Light Rail Embankments

UTA –Light Rail – Salt Lake City, Utah

Light Rail Embankments

UTA –Light Rail – Salt Lake City, Utah

Commuter Rail Embankments

Front Runner – UTA – Corner Canyon – Draper Utah

Slope Stabilization

Slope Stabilization

Pavement Cracking ScarpPavement Cracking Scarp

AL DOT AL DOT

Al b DOTAlabama DOT

Slope Stabilization

Overview of EPS Block Placement Configuration

Alabama DOT

Slope Stabilization

Backfill Placement Behind EPS Completed Road

Alabama DOT

Slope Stabilization

SR264 at 2nd Mesa, Arizona

Topics

• EPS Properties • Design and Construction Considerationsg• Applications for Transportation Projects• Performance Monitoring

Awards

ASCE 2002 Outstanding Civil Engineering Achievement (OPAL) Award, Wasatch Constructors I‐15 Reconstruction Design‐Build Team, Salt Lake City,Wasatch Constructors I 15 Reconstruction Design Build Team, Salt Lake City,Utah

ACEC Arizona 2006 Grand Award, Rockfall Containment and Safety, SR 264 at 2nd Mesa, Arizona 

ASCE 2010 Local Outstanding Civil Engineering Achievement Awards, /Geotechnical Category – Outstanding Award SR 519 / I‐90 to SR 99,

Intermodal Access I/C Improvements Phase 2 Design Build ProjectSeattle, Washington 

Rebuilding America’s Infrastructure Magazine 2012,Best of America’s Infrastructure – Cost Saving Approaches,Geofoam Embankments UTA TRAX line Salt Lake City UtahGeofoam Embankments, UTA TRAX line, Salt Lake, City, Utah 

Questions

Recommended