Unit 17 Inductance in AC Circuits. Objectives: Discuss the properties of inductance in an...

Preview:

Citation preview

Unit 17Inductance in AC Circuits

Unit 17 Inductance in AC Circuits

Objectives:

• Discuss the properties of inductance in an alternating current circuit.

• Discuss inductive reactance.

• Compute values of inductive reactance and inductance.

• Discuss the relationship of voltage and current in a pure inductive circuit.

Unit 17 Inductance in AC Circuits

Objectives:

• Be able to compute values for inductors connected in series or parallel.

• Discuss reactive power (VARs).

A continually changing magnetic field induces a voltage into any conductor.

Unit 17 Inductance in AC Circuits

Unit 17 Inductance in AC Circuits

As current flow increases through a coil, a magnetic field is created around the coil.

Unit 17 Inductance in AC Circuits

As current flow decreases through a coil, the magnetic field collapses.

Unit 17 Inductance in AC Circuits

The applied voltage and induced voltage are 180° out of phase.

Unit 17 Inductance in AC Circuits

• Inductive reactance is the current-limiting property of an inductor.

• The inductive reactance symbol is XL .

• The unit of measurement is in ohms, just like resistance, and Ohm’s law formulas can be used.

Unit 17 Inductance in AC Circuits

Inductive Reactance

XL = 2πfL

XL = inductive reactance2 = a constantπ = 3.1416F = frequency in hertz (Hz)L = inductance in henrys (H)

Unit 17 Inductance in AC Circuits

Coils with turns close together produce more inductance than coils with turns far apart.

Unit 17 Inductance in AC Circuits

Three factors that determine induced voltage:

1. The number of turns of wire.

2. The strength of the magnetic field.

3. The speed of the cutting action.

Unit 17 Inductance in AC Circuits

Circuit current is limited by inductive reactance.

XL = 2πfL = 377 x .8 = 301.6 Ω

I = E / XL = 120 V / 301.594 Ω = 0.398 A

Unit 17 Inductance in AC Circuits

Inductors connected in series.

LT = L1 + L2 + L3

XLT = XL1 + XL2 + XL3

Unit 17 Inductance in AC Circuits

Inductors connected in parallel.

1/LT = 1/L1 + 1/L2 + 1/L3

1/XLT = 1/XL1 + 1/XL2 + 1/XL3

Unit 17 Inductance in AC Circuits

In a pure inductive circuit, the current lags the applied voltage by 90°.

Applied Voltage

Current Flow

Unit 17 Inductance in AC Circuits

Reactive Power

VARs = EL x IL

VARs = EL2 / XL

VARs = IL2 x XL

EL = voltage applied to an inductor

IL = current flow through an inductor

XL = inductive reactance

Unit 17 Inductance in AC Circuits

Review:

1. Induced voltage is proportional to the rate of change of current.

2. Induced voltage is always opposite in polarity to the applied voltage.

3. Inductive reactance is a countervoltage that limits the flow of current, as does resistance.

Unit 17 Inductance in AC Circuits

Review:

4. Inductive reactance is measured in ohms.

5. Inductive reactance is proportional to the inductance of the coil and the frequency of the line.

6. Inductive reactance is symbolized by XL.

7. Inductance is measured in henrys (H) and is symbolized by the letter L.

Unit 17 Inductance in AC Circuits

Review:

8. When inductors are connected in series, the total inductance is equal to the sum of all the inductors.

9. When inductors are connected in parallel, the reciprocal of the total inductance is equal to the sum of the reciprocals of all the inductors.

Unit 17 Inductance in AC Circuits

Review:

10.The current lags the applied voltage by 90° in a pure inductive circuit.

11.Reactive power is measured in VARs.

Recommended