Tài Liệu Ôn Tập Mô Hình Thuật Toán Internet

Preview:

DESCRIPTION

Ôn tập môn mô hình thuật toán internet phổ biến

Citation preview

  • Chapter 1: Events and Probability Thursday, June 9, 2010,7:00 (GMT+7) 1. Background Pr(E1E2) = Pr(E1) + Pr(E2) - Pr(E1E2) ng dng: - 2 independent events: Pr(AB) = Pr(A)Pr(B) - 2 disjoint events: Pr(E1E2) = Pr(E1) + Pr(E2) 2. Tm tt l thuyt Cc mc ch o

    Ni dung Take note

    1.Verifying Polynomial Identities

    Gi s ta c mt chng trnh nhn cc a thc. V d: (x + 1)(x 2)(x + 3(x 4)(x + 5)(x 6) x6 7x3 + 25 Chng trnh ca ta s output kt qu la x6 7x3 + 25 Ta mun kim tra tnh ng n ca kt qu ny. Ta c th nhn ln lt cc s hng vi nhau. Th nhng vic lm ny rt tn km, m thc t ta li thc hin li gii thut nhn a thc c nh vy l i theo con ng c ri. Nu sai vn ra kt qu sai m thi. By gi ta s s dng gii thut random gii quyt cu hi : F(x) ? G(x) ALGORITHM 1.1: Chn mt s x = a bt k. Kim tra nu F(a) G(a)ta kt lun ngay F(x) G(x). PROBABILISTIC ANALYSIS: Khi F(a) = G(a) ta cha th kt lun ngay F(x) G(x) hn bi a c th l nghim ca phng trnh F(x) G(x) = 0. Gi s F(x) l a thc bc d. Khi F(x) - G(x) khng th c qu d nghim. Tc nu nh F(x) G(x) trong tt c s nguyn ta chn ch c d trng hp m F(a) = G(a).

    Gii thut bn c ngha m u cho phng php gii quyt vn bng xc sut. Khng nn ch trng n: - vic nghim a thc l s thc hay nguyn - vic chn khong {1..100d} hay {1..1000000d}

  • Nu nh ta chn a trong khong {0,..100d} tc khng gian mu c 100d kh nng. --> Xc sut chn trng nghim ca F(x) - G(x) l 1/100. y cng l xc sut ALGORITHM 1.1 sai. Thc hin thut ton n ln c lp. p dng cng thc cho cc s kin c lp ta c xc sut tht bi ca thut ton 1.1 l ( 1100

    )n 2. Axioms of Probability

    Khng gian mu (Sample Space) l tp hp tt c cc kh nng c th xy ra ca mt s kin. Hm xc sut l mt nh x t tp cc s kin vo tp s thc R. Ta gi hm s ny l: Pr(E) = Xc sut ca s kin E. Conditional Probability: Pr(E | F) =Pr(EF)Pr(F) Law of Total Probability: E1, E2 l cc s kin xung khc (E1 E2 =) m E1 v E2 lp y khng gian mu. Khi vi mt s kin bt k B ta c: Pr(B) = Pr(B E1) + Pr(B E2) => Bayes' Law: Pr(E1 | B) = Pr(B E1) / Pr(B) = Pr(BE1)

    Pr(BE1)! Pr(BE2)

    - d nh ta s coi Conditional Probability nh sau: s kin F l iu kin gii hn khng gian mu thnh mt khng gian mu nh hn. - VD: + khng gian mu ca tp cc s t nhin l {0,1,2,3, ..}. + khng gian mu ca tp cc s t nhin vi iu kin nh hn 5 l {0,1,2,3,4} + S kin s chn l tp ca cc s t nhin chn. (S kin l mt tp con ca khng gian mu). + Hai s kin xung khc (disjoint) lp u khng gian mu l E1 s t nhin chn , v E2 s t nhin l.

    3. Verifying Matrix Multiplication

    Cho 3 ma trn n*n l A, B v C. Ta cn kim tra xem A*B ?= C . Trong A,B l cc ma trn n v, ch bao gm cc s 0 v 1. GIi thut c in: Tnh A*B v so snh vi C. Time: (n3 ). ALGORITHM(1.3) : chn mt vector n v n chiu ngu nhin r = (r1,r2, ....,rn), ri = 0 or 1, 1

  • Ta tnh A*B*r = A * (B *r) ri so snh vi C*r. Case 1: A B r C r suy ra A B C Case 2: A B r = C r. Lc ny vn c th A B C. Ta tnh xc sut : A B C v A B r = C r. Tc xc sut gii thut tht bi. t D = AB - C. Lc ny D 0 v D r = 0 . Do D 0 nn tn ti mt phn t dij trong ma trn D m dij 0 Thm vo D r = 0 nn nj!1 dij rj = 0 ri = nj!1,j i dij rjdij (3.1) Trong cc rj u c chn ngu nhin. Gi s ta chn ngu nhin tt cc cc rj(j = 1 n n) ch cn li ri. Lc ny nj!1,j i dij rj

    dij nhn mt gi tr no c th l 0, 1 hay khc i. Suy ra kh nng chn ri tha mn phng trnh (3.1) l khng qu 1/2 bi ri ch c th nhn gi tr 0 hoc 1. Vy xc sut tht bi trong mt ln chy ALGORITHM(1.3) l 1/2. Chy n ln c lp cho ta xc sut tht bi l (1

    2)n

    Tt c rj u c chn ngu nhin (j = 1,2, ...,n). ch cn li ri ta xt sau cng. Phng php ny c gi l deferred decision. Cc gi tr random ban u ta coi nh c. bc quyt nh ta mi a s kin nhu nhin vo. V d: Cho x1,x2,x3,x4,x5,x6 l 6 s t nhin random. Tnh xc sut x1 + x2 + x4 + x5 + x6 l s chia ht cho 6. p dng deferred decision ta c xc sut ny l 1/6.

    4. A Randomized Min-Cut Algorithm (Karger Algprithm)

    Cho th G = (V,E). Ta nh ngha cut-set l tp cc cnh ca th m nu b cc cnh i s thnh phn lin thng ca th s tng ln. Min-Cut ca th G l cut-set nh nht ca th y Bi ton t ra l tm min-cut ca th. Tnh s cnh trong min-cut . Gii thut c in c phc tp n^3. ALGORITHM: mi iteration ta thc hin mt edge contraction (ch gii phn takenote). Sau khi thc hin n-2 iteration: ta cn li 2 nh.

    Edge Contraction ca 2 nh A v B l vic xc nhp 2 nh A v B li lm 1 nh trong khi gi nguyn mi lin h ca chng vi cc hnh khc trong th.(Hay gi nguyn cc cnh vo ra).

  • Return Min-Cut = S cnh ni 2 nh ny PROBABILISTIC ANALYSIS: Gi S v V - S l hai tp nh b chia r bi Min-Cut. Nu ta ch contract cc nh trong S hoc V-S gii thut s cho kt qu chnh xc. Bt c contract no lm mt cnh trong Min-Cut, kt qu khng chc s chnh xc. Ta gi Ei l s kin ti iteration th i ta khng contract bt c cnh no trong Min-Cut. t Fi l s kin khng c bt c ln no trong s i iteration u tin contract mt mt cnh trong Min-Cut. Ta c: Fi = ij ! 1 Ej Ta cn tnh Pr(Fn!2) Ban u: Gi n,m l s nh v s cnh ca th G. Gi MC l Min-Cut trong G v c l s cnh trong MC. Gi s nh A c bc nh nht trong th deg(A) = k. Suy ra c
  • Iteration th 2: Sau ln chy u tin th cn n-1 cnh. Do vy Pr(E2 |F1 ) = 1 2n!1 Tng t nh vy ti iteration th i: th cn n - i + 1 cnh Pr(Ei |Fi!1) = 1 2n!i!1 Tng kt li ta c: Pr(Fn!2) = Pr(En!2 Fn!3) = Pr(En!2|Fn!3)Pr(Fn!3) = Pr(En!2|Fn!3)Pr(En!3 Fn!4) = ... = Pr(En!2|Fn!3)Pr(En!3|Fn!4) ....Pr(E2 |F1 )Pr(F1 ) ni=1 ( 1 2

    ni+1) = ni=1 (ni1ni+1) = 2n(n1) Ta ly kt qu nh nht trong ln ln chyc chng trnh s dng ALGORITHM 1.4 Pr(fail) = ( 2n(n!1))n(n!1)ln n e!2 ln n = 1n2

    3. Exercises: http://docs.google.com/View?id=dgmqjfk5_188cq53p6ft

    Chapter 2: Discrete Random Variables and Expectation Thursday, June 9, 2010,12:00 (GMT+7) 1. Background 1.1. The inclusive-exclusive principle: Pr(E1E2) = Pr(E1) + Pr(E2) - Pr(E1E2)

  • ng dng: - 2 independent events: Pr(AB) = Pr(A)Pr(B) - 2 disjoint events: Pr(E1E2) = Pr(E1) + Pr(E2) 1.2. Bayes' Law: Pr(E1 | B) = Pr(BE1) / Pr(B) =Pr(BE1)Pr(BE1)+ Pr(BE2) 2. Tm tt l thuyt Cc mc ch o

    Ni dung Take note

    1. Random Variables and Expectation

    Random Variable: mt bin ngu nhin X l mt nh x t tp khng gian mu vo tp cc s thc R. Discrete Random Variable: mt bin ngu nhin ri rc X l mt bin ngu nhin m tp gi tr ca n khng phi l R na m l mt tp c th m c. The Expectation of a Random Variable: E[X] = x x Pr(X = x); x Linearity of Expectation X v Y l cc bin ngu nhin ri rc. E[X +Y] = E[X] + E[Y]

    Mt tp S c coi l c th m c nu tn ti mt song nh gia S v tp cc s t nhin. Ta cn ghi nh inh ngha ny c th hiu c phn tip theo. inh l ny c p dng lin tc bi yu cu cc bin X v Y ch cn ri rc. Gi cho chng minh: s kin ((X = x) (Y = y1 )) v s kin ((X = x) (Y = y2 )) l 2 s kin xung khc (disjoin). Suy ra: Pr ((X = x) (Y =y1 )) + Pr ((X = x) (Y =y2 )) = Pr ((X = x) ((Y = y1 ) Y = y2 ) )) Do : y Pr ((X = x) (Y = y )) = Pr(X = x)

    2. The Bernoulli and Binomial Random Variables

    Bernoulli Random Variable [ or indicator random variable] Xt kt qu ca mt th nghim: Y = 1 nu kt qu thnh cng Y = 0 nu ngc li. vi Pr(Y = 1) = p; E[Y] = 1 . p + 0 . (1-p) = p

    Binomial Random Variable Ta gi X l mt Binomial random variable with parameters n and p nu:

    C 2 cch nh ngha mt bin ngu nhin: 1. nh ngha da trn logic 2. nh ngha da trn xc sut tc ra ch r tp v xc sut ca tng s kin trong tp . Cch th 2 cho nh ngha cht ch hn v c s dng nhiu hn.

  • Pr (X = k) = nipk (1 p)n!k

    Din gii r hn X l s ln thnh cng ca n trials, T1,T2, ... , Tn trong m Pr(T1 = 1 ) = Pr(T2 = 1 ) = . . . . . .= p E[X] = np.

    Vi nh ngha theo cch th 2 ta c mt Distribution ca bin theo xc sut. Binomial random viable with parameters n and p Chng minh: E[X] = np Gi T1,T2, ... , Tn l n trials. Mi Ti l mt Bernoulli random variable with parameter p => E[Ti] = p; i = 1, 2, 3, ..., n p dng Linearity of Expectation ta c: E[X] = E[ ni!1 Ti ] =ni!1 E[Ti ] = np

    3 Conditional Expectation

    Conditional Expectation Xt mt khng gian mu con ca khng gian mu , tha mn Z = z;E[Y | Z = z] = y yPr(Y = y | Z = z) c gi l expectation ca bin ngu nhin Y vi iu kin Z = z. Decomposition Law E[X ] = y Pr(Y = y)E[X | Y = y] Chng minh cng thc ny tng t nh chng minh linearity of expectation. nh l v k vng ca k vng: E[Y] = E[E[Y | Z]

    V d: Xt 2 con xc sc chun (chun tc c 6 mt, mi mt c xc sut 1/6 v ghi mt s khc nhau t 1 n 6). Gieo 1 ln c 2 s l X1 v X2. t X = X1 + X2; E[X |X1 = 2] =

    x

    xPr(X = x|X1 = 2) Nhn thy 6 >= X1, X2 >= 1; y X1 = 2 nn 8>= X >= 3 E[X |X1 = 2] = 8

    x ! 3 xPr(X = x|X1= 2) = 8x ! 3 x 16 = 112 Compare: E1, E2 l c s kin xung khc (E1 E2 =) m E1 v E2 lp y khng gian mu. Khi vi mt s kin bt k

  • B ta c: Pr(B) = Pr(B E1) + Pr(B E2) Chng minh: t: f(Z) = E [Y | Z]. Ta c: E[E[Y | Z] = E[f(Z)] E[f(Z) ] =z Pr(Z = z)f(z) =z Pr(Z = z)E[Y | Z z] = E[X] (ng thc cui suy t

    decomposition law) 4. The Geometric Expectation

    Geometric Distribution X l mt geometric random variable with parameter p nu: Pr(X = n) = (1 p)n!1p T y ta tnh c: Pr(X n) = i!n Pr(X = n) =i!n (1 p)n!1p = p(1 p)n!1

    i!0 (1 p)i= p(1 p)n!1 11 (1 p) = (1 p)n!1

    Cng thc tnh expectation cho bin nguyn dng:: Cho X l mt bin ngu nhin ri rc ch nhn cc gi tr nguyn dng: E[X] = i!1 Pr(X 1) p dng cng thc trn ta tnh c expectation ca geometric random variable: E[X] = i!1 Pr(X 1) = i!1 (1 p)n!1 = 1

    1!(1!p) = 1p

    nh ngha v geometric random variable c a ra di dng phn phi xc sut (Xem Chapter 1) Din gii v ngha, X geometric random variable with parameter p tc X l s ln cn th t c thnh cng u tin bit rng xc sut thnh cng ca mi ln l p. Compare: 1. Binomial Random Variable: The number of Trials : fixed = n The number os Successes: X 2. Geometric Random Variable: The number of Trials: X The number of success: fixed = 1 Chng minh: (cng thc tnh expectation cho bin nguyn dng) S dng nh ngha k vng

  • E[X] = j!1 jPr(X = j) =

    j!1i!ji!1 Pr(X = j) Hon i biu thc sig-ma trn ta c:

    j!1 i!ji!1 Pr(X = j) =i!1 j!i Pr(X = j) = i!1 Pr(X j)

    Extra: Coupon Collector's Problem

    Problem: C n loi coupons trong hp, s lng mi loi rt rt ln. Mi ln ta ly ra 1 coupon. Hi ta phi ly bao nhiu ln c th thu thp c n loi coupons ny. Problem Analysis: Bi ton yu cu tm s ln ly c th thu c n loi. Nu vy s khc nhau gia n-1 loi v n loi l g? Lc ta ly c 1 loi coupon ri. Kh nng c thm loi na l rt d, xc sut ln ly tip theo c thm 1 loi coupon l (n-1)/n. Cn nu xt khi c n-1 loi ri, ly c loi th n kia xc sut ch l 1/n. Nh vy vic ly thm c mt loi coupon mi khng ph thuc vo cng vic ta lm trc m ch ph thuc vo s coupon tnh n thi im hin ti. Tc s coupon cn ly thm i t i-1 loi n i loi ch ph thuc vo gi tr ca i. Proof: Gi X_i l s coupon cn ly thm tnh t lc ta c i-1 loi n lc ta c i loi. Mi X_i (i=1,2,...,n) l mt geometric random variable with parameter pi = 1 i!1n = n!i!1n . Suy ra: E[Xi ] =1pi= nn!i!1 Suy ra: E[X] = E[ ni ! 1 Xi ] =

    ni ! 1 E[Xi ] = ni ! 1 nn!i!1

    Bi ton ny c nhiu ng dng trong thc t v vy bn cn c k c phg php phn tch v li gii. S dng k thut braching process with 0 generation in memory or memoryless. H(n) c gi l Harmonic number. H(n) = ln(n) + (1). chng minh ta ch cn dng bt ng thc tch phn t 1 n n cho hm f(x) = 1/x f( x ) f(x) f( x )

  • t k = n - i + 1 ta dc: = n nk ! 1

    1k= nH(n)

    5. Application: The Expected Run-Time of Quicksort

    Quick sort l mt gii thut tng i n gin v hiu qu. Vn cht cng trong quik sort chnh l chn pivot sao cho hp l, trong ri vo worst case n^2 ca gii thut. Nu nh y ta chn pivot mt cch ngu nhin liu gii thut trn c tr nn tt hn khng? tr li cu hi trn ta s phn tch thi gian tnh ca Quick Sort vi pivot chn ngu nhin. Probabilistic Analysis: Trong gii thut Quick Sort, sau khi chn xong pivot cng vic ca ta l so snh pivot vi tng s trong dy con. y nu phn tch k hn th cu lnh so snh ny chnh l cu lnh c trng ca vng lp trong Quick Sort. Do , ch cn tnh s ln so snh ny ta s thu c thi gian tnh ca thut ton. Gi s ln so snh ny l X. Gi s y_1,y_2,...,y_n l dy c xp xp. Gi X_ij l bin ngu nhin Beunoulli tha mn: X_ij = 1 nu trong qu trnh sp xp ta c so snh y_i v y_j i,j = 1,2,3...,n ; ij; X_ij = 0 nu ngc li. Ta c: X = n!1i!1 nj!i!1 Xij Suy ta: E[X] = E[ n!1i!1 nj!i!1 Xij ] =n!1i!1 nj!i!1 E[Xij ] (5.1) Cng vic tip theo ca ta l i tnh E[X_ij} Xt cc s trong khong t v tr i n v tr j : y_i,y_i+1,....y_j ; (i

  • th chng minh bng phn chng). Lc ny pivot s phi l mt trong j-i+ s trn. Trong c 2 trng hp dn n vic ta phi so snh y_i v y_j. Do : Pr(X_ij = 1) = 2/(j-i+1) Suy ra: E[X_ij] = 2/(j-i+1) ( v X l bin ngu nhin Bernoulli) Thay ng thc trn vo (5.1) ta c: E[X] = n!1i!1 nj!i!1 2j!i!1 t k = j-i+1 ta c: E[X] = n!1i!1 n!i!1k!2 2k S dng lut hon i sig-ma ta thu c: E[X] = nk!2 n!k!1i!1 2k =2 nk!2 n!k!1k = (2n + 2) n

    k!21k 2(n 2 + 1) Rt gn ta c: E[X] = (2n+2)H(n) - 4n hay E[X] = (nln n)

    Exercise Exercise 2.3: 1. Cho f(x) l mt vertex function (f''(x)>=0). Chng minh rng: E[f(x)] >= f(E[x]) 2.Chng minh rng: E[Xk ] (E[X])k Exercise 2.6: C 2 con xc sc chun (chun tc c 6 mt, mi mt c xc sut 1/6 v ghi mt s khc nhau t 1 n 6). Gieo xc sc ta c 2 s l X1 v X2. (a) Tnh: E[X | X1 chn] (b) Tnh E[X | X1 = X2] (c) Tnh E[X1 | X= 9] (d) Tnh E[X1-X2 | X = k Exercise 2.7: Cho X v Y l 2 bin geometric vi tham s (with parameter) ln lt l p v q. (a) Tnh Pr(X = Y) (b) Tnh E[max(X,Y)] (c) Tnh Pr(min(X,Y) = k) (d) Tnh E[X | X Y]

  • Hint: Bn s thy tnh memoryless ca geometric random variable rt c ch. Exercise 2.12: Ta ly cc tm card t trong hp c n loi card. (a) Tnh expectation ca s card phi ly cho n khi c n loi card (b) Nu ta ly ng 2n tm card, k vng ca s tm card khng c chn l bao nhiu? (c) Nu ta ly ng 2n tm card, k vng ca s tm card c chn ng mt ln l bao nhiu? Exercise 2.22: Cho u vo l mt dy ngu nhin n s: a1,a2,....,an. Mi s a_i c i ch vi s lin k cho n khi n n c v tr cn sp xp. Tnh Expected Number of Swap of Buble Sort. Hint: Ta ni a_i v a_j l inverted (b o ln) nu (i < j) AND (a_i > a_j). Mi bc swap trong Buble Sort lm mt i mt inverted pair. Exercise 2.23: Cho u vo l mt dy ngu nhin n s: a1,a2,....,an Tnh Expected Runtime of Linear Insertion Sort. Hint: Ta ni a_i l out of order nu tn ti a_j tha mn (i < j) AND (a_i > a_j). Sau iteration th k trong Linear Insertion Sort, phn t th 1,2,...k u in order. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Answers: ____________________________________________________ Exercise 2.3: 1. Cho f(x) l mt vertex function (f''(x)>=0). Chng minh rng: E[f(x)] f(E[x]) p dng Taylor Expansion ln cn im : f(x) = f() + f'()(x-)

    1! + cf''()(x-)22! ; trong c l mt hng s trong khong (0,1) Do f''(} 0 nn: E [f(x)] E[f() + f'()(x-)

    1! ] = E[f()] + E[f'()(x-)1! ]. V f() v f'() l hng s nn nn: E [f(x)] E[f() + f'()(x-)

    1! ] = E[f()] + E[f'()(x-)] (1) Ly expectation ca c 2 v ta c: E[f() + f'()(x-) ] = f() + f'()(E[x]-)(2) Chn = E[X] ri kt hp (1) (2) li ta c: E[f(x)] f(E[x]) 2.Chng minh rng: E[Xk ] (E[X])k

  • t f(x) = x^k. Ta c f''(x) = k(k-1)x^(k-2) >=0; p dng bt ng thc trong phn 1 ta thu c iu phi chng minh. ____________________________________________________ Exercise 2.6: C 2 con xc sc chun (chun tc c 6 mt, mi mt c xc sut 1/6 v ghi mt s khc nhau t 1 n 6). Gieo xc sc ta c 2 s l X1 v X2. (a) Tnh E[X | X1 chn] Trc ht ta tnh E[X|X1] = E[(X1+X2)|X1] (Linearity of conditional expectation) = E[X1 | X1] +E[X2|X1] = X1 + E[X2] ( v X1 v X2 c lp). = 7/2 + X1 - - trn ta s dng kt qu: E[X 2] = 6x ! 1 xPr(X2 = x) = 6x ! 1 x16= 16 6x ! 1 x = 72

    E[X | X1 chn] = Pr(X1 = 2)E[(X = x |X1 = 2)] + Pr(X1 = 4)E[(X = x |X1 =4)] + Pr(X1 = 6)E[(X = x |X1 = 6)] (decomposition law mc 2.1) = 1

    6(7

    2+ 2) + 1

    6(7

    2+ 4) + 1

    6(7

    2+ 6) = 18

    5

    (b) Tnh E[X | X1 = X2] E[X | X1 = X2] = 6x ! 1 Pr(X2 = x)E[X |(X1 = X2 (X2 = x) ] = 6x ! 1 Pr(X2 = x)2x = = 6x ! 1 163x = 13 6x ! 1 x =1321 = 7

    (c) Tnh E[X1 | X= 9] Do 1 X1 6 m X = 9 nn X1 = 3,4,5,6. E[X1 |X = 9] = 6x ! 3 xPr(X1 = x| X = 9) Dng Bayes' Law: Pr(X1 = x| X = 9) = Pr(X1 ! xX ! 9)

    Pr(X ! 9) = 136436

    = 14

    Thay vo trn ta c: E[X1 |X = 9] = 6x ! 3 x 14 = 214 (d) Tnh E[X1-X2 | X = k] E[X1-X2 | X = k] = E[X1 | X = k] - E[X2 | X = k] ( linearity of expectation) = 0. Bi X1 v X2 l 2 bin hon ton c lp, gi vai tr nh nhau trong biu thc trn. Do vy kt qu ca 2 biu th phi nh nhau. (Chng minh bng phn chng cng l mt cch hay bi E[X] c nh ngha l mt nh x t R vo R. ____________________________________________________ Exercise 2.7: Cho X v Y l 2 bin geometric vi tham s (with parameter) ln lt l p v q. (a) Tnh Pr(X = Y) Pr(X = Y) = n!1 Pr(X = x Y = y) = n!1 Pr(X = x )Pr(Y = y)

  • = n!1 (1-p)n-1p(1-q)n-1q = pq n!1 ((1-p)(1-q)n-1 = pq 1

    1- (1-p) (1-q) = pqp ! q - pq (b) Tnh E[max(X,Y)] Do X v Y l 2 bin geometric vi tham s (with parameter) ln lt l p v q nn E[X] = 1/p v E[Y] = 1/q Gi X1 l mt Bernoulli random variable tha mn X1 = TRUE khi v ch khi X = 1 tc ln th u tin thnh cng. Pr(X1 = TRUE) = p; X1 = FALSE nu ngc li. E[max(X,Y)] = Pr(X1 = TRUE) E[max(X | X1 = TRUE , Y) + Pr(X1 = FALSE) E[max(X | X1 = FALSE , Y) = p * E[Y] + (1-p)*E[max(X | X1 = FALSE , Y) ] ( v X1 = TRUE khi v ch khi X = 1 nn max(X|X1= 1,Y) = Y) (b-1) Khi X > 1 , gi X* l s ln cn phi th cho n ln thnh cng u tin. Khi E[X| X1 = FALSE] = E[X* +1]. E[max(X,Y)] = p * E[Y] + (1-p)*E[max(X* + 1 , Y) ] Gi Y1, v Y* l bin tng t nh X1 v X*, ch cn thay X bi Y. Lm tng t nh trn ta thu c: E[max(X,Y)] = p * E[Y] + (1-p)*( q*E[max( X* + 1 , Y|Y1 = TRUE) + (1 - q)*E[max(X* + 1 , Y*+1)] ) = p * E[Y] + (1-p)*( q*E[X* +1] + (1-q) *E[max(X*,Y*) + 1]). Do tnh memoryless ca phn phi geometry nn E[X*] = E[X], E[Y*] = E[Y], E[max(X*,Y*) + 1] = E[max(X,Y)], E[X] = 1/p v E[Y] = 1/q . Thay vo ta c: E[max(X,Y)] = p/q + (1-p)*(q*(1/p+1)+(1-q)*(E[max(X,Y)]+1) )

    Suy ra : E[max(X,Y)] = 1 !pq!qp- p -qp ! q -pq

    (c) Tnh Pr(min(X,Y) = k) Pr(min(X,Y) = k) = Pr(X = k Y k + 1) + Pr(X = k Y = k) + Pr(X k + 1 Y = k) = Pr(X = k)Pr(Y k + 1) + Pr(X = k)Pr( Y = k) + Pr(X k + 1 )Pr( Y = k) = (1-p)k-1p(1-q)k + (1-p)k-1p(1-q)k-1q + (1-p)k p(1-q)k-1q (xem muc 4 chng 2: Pr(Y n ) = (1-q)n-1) = (1-p)k-1(1-q)k-1(p + q - pq)

  • (d) Tnh E[X | X Y] Li gii tng t (b) E[X | X Y] = 1

    p ! q - pq ____________________________________________________ Exercise 2.12: Ta ly cc tm card t trong hp c n loi card. (a) Tnh expectation ca s card phi ly cho n khi c n loi card Bi ny tng t nh Coupon Collector Problem . Xem mc 2.4.Kt qu: E[X] = H(n) (b) Nu ta ly ng 2n tm card, k vng ca s tm card khng c chn l bao nhiu? Gi X_i l s loi card ly c ngay sau khi rt card th i. (i = 1,2,...,2n). D thy: X_1 = 1; Vi i>=1, c 2 trng hp sau: 1. Card tip theo thuc mt loi no c ri. Nh vy X_i = X_(i-1). Xc sut xy

    ra s kin ny l Pr(Xi = Xi-1) = Xi-1n 2. Card tip theo thuc mt loi hon ton mi. Nh vy X_i = X_(i-1) + 1. Xc sut

    xy ra s kin ny l Pr(Xi = Xi-1 + 1) = 1 - Xi-1n Suy ra: E[Xi |Xi-1] = Xi-1 Xi-1n + (Xi-1 + 1)(1 - Xi-1n ) = 1 + Xi-1(1- 1n) Ly Expectation ca 2 v ta c: E[X_i] = E[E[X_i | X_i-1]] = 1 + a*E[X_i-1]; vi a = 1-1/n. Bin i cng thc truy hi trn ta thu c: E[X2n] = a2n-1X[1] + a2n-2+ . . .+ a + 1 ; vi a = 1-1/n.

    Thay X_1 = 1 vo ra rt gn ta c: E[X2n] = a2n-1 + a2n-2+ . . .+ a + 1 = 1-a2n1-a ; Khi n ln ta c th thay: (1- 1

    n)n e-1. Kt qu cui cng: E[X2n] = n(1-e-2)

    (c) Nu ta ly ng 2n tm card, k vng ca s tm card c chn ng mt ln l bao nhiu? L lun tng t nh trn. Ch cn thy trng hp X_i = X_(i-1) bi X_i = X_(i-1) - 1 Lc ny hng s a tr thnh 1 - 2/n

    E[X2n] = n2(1-e-4) ____________________________________________________ Exercise 2.22: Cho u vo l mt dy ngu nhin n s: a1,a2,....,an. Mi s a_i c i ch vi s lin k cho n khi n n c v tr cn sp xp. Tnh Expected Number of Swap of Buble Sort. Proof: Ta ni a_i v a_j l inverted (b o ln) nu (i < j) AND (a_i > a_j). Gi X_ij l mt Bernoulli random variable tha mn: X_ij = 1 nu a_i v a_j l mt inverted pair. Pr(Xij = 1) = nk!1 Pr(ai = k

    aj > k) = nk!1 1n n-kn = 1 - 1n nk!1 k = 12 - 12n X_ij = 0 nu ngc li.

  • t X = s ln Swap trong Buble Sort Trong Buble Sort, s ln swap chnh l s inverted pair. Do vy: X = n-1i!1 nj!i!1 Xij . Ly expectation 2 v: E[X] = E[ n-1i!1 nj!i!1 Xij ] = n-1i!1 nj!i!1 E[Xij ] (Linearity of Expectation) E[X] = n-1i!1 nj!i!1 (12 - 12n) = (n-1)24 ____________________________________________________ Exercise 2.23: Cho u vo l mt dy ngu nhin n s: a1,a2,....,an Tnh Expected Runtime of Linear Insertion Sort. Proof: Sau khi sp xp cc s c th t t l: 1,2,...,n Gi s trc khi sp xp cc s c th t 1,2,...,n ang v tr ln lt l x_1,x_2, ... ,x_n. y (x_1,x_2, ... ,x_n ) l mt hon v ca (1,2,...,n) x_i v n v tr th nht cn thc hin |x_i - i| ln swap. Tng s ln swap l X = ni!1 |xi - i| Trong (x_1,x_2, ... ,x_n ) l mt hon v ca (1,2,...,n). E[X] = E[ ni!1 |xi - i|] = ni!1 E[|xi - i|] (Linearity of Expectation) E[|ai - i|] = i-1k!1 Pr(ai = k)(i - k) + nk!i!1 Pr(ai = k)(k - i) =1n( i-1k!1 (i-k) + nk!i!1 (k-i))

    = 1n( i-1j!1 j + n-ij!1 j )

    Suy ra: E[X] = ni!1 E[|xi - i|] = 1n( ni!1 i-1j!1 j + ni!1 n-ij!1 j ) . p dng lut hon i sig-ma ta c: E[X] = 1

    n( n-1j!1 n-1i!j j + n-1j!1 n-ji!1 j ) =

    1n( n-1j!1 ((n-j)j ) + n-1j!1 ( (n-j)j ))

    = 2n( n-1j!1 ((n-j)j ) = 2 n-1j!1 j - 2n( n-1j!1 j2 ) = n(n-1) - 2

    n-1 (n-1)n(2n - 1)6 E[X] = 2

    3n2 + 1

    3

    S

    Chapter 5: Balls and Bins Thursday, June 10, 2010,12:30 (GMT+7)

  • 1. Background 1.1. The inclusive-exclusive principle: Pr(E1E2) = Pr(E1) + Pr(E2) - Pr(E1E2) ng dng: - 2 independent events: Pr(AB) = Pr(A)Pr(B) - 2 disjoint events: Pr(E1E2) = Pr(E1) + Pr(E2) 1.2. Bayes' Law: Pr(E1 | B) = Pr(BE1) / Pr(B) =Pr(BE1)Pr(BE1)+ Pr(BE2) 1.3. Expectation

    1.4. Binomial Distribution

    : n trials + p success 1.5. Geometric Distribution

    : n trials + 1 success 2. Tm tt l thuyt Cc mc ch o

    Ni dung Take note

    1.The Birthday Paradox

    Problem: C 30 ngi trong phng, Hi xc sut tn ti 2 ngi c ngy sinh trng nhau l bao nhiu? Problem Analysis: Ngy sinh c 365 kh nng. S ngi l 30, 29 hay ch c 1 ,2 c khc g nhau khng? Khi c 1 ngi chc chn l khng trng vi ai. Khi c 2 ngi th kh nng khng trng chnh l kh nng ngi 2 sinh khac ngy ngi 1. Khi c 364 tng hp trong s 365 trng hp c th. Xc sut l 364/365. Nh vy xc sut ngi th i khng trng vi ngy sinh ca nhng ngi trc hon ton khng ph thuc vo ngi trc sinh ngy no m ch ph thuc vo gi tr ca i. V xc sut ny l: 1 - (i-1)/365 Proof: i theo lp lun trn ta tnh dc xc sut 30 ngi khng sinh trng ngy l: 30i!1 ( 1 i!1365) 0.2937

    - Khng k nm nhun (leap years) v sinh i (twin) Thm vo : tnh s ngi cn trong phng xc sut tn ti 2 ngi c ngy snh trng nhau bng 1/2 T cng thc (1) c th rt ra gi tr ca m xc sut ny = 1/ 2 l: m2/2n =

  • Tng qut bi ton cho n ngy sinh v m ngi c ngy sinh khng trng nhau: Pr = m!1i!0 ( 1 in) mi!0 e! in = e mi!0 ! in =e!m(m!1)2n (1) trn ta s dng cng thc 1 x e!x vi x tng i gn 0.

    ln2 hay m = 2 n ln2 Gi tr ny ch c tim cn l cn n. Nh vy l rt nh so vi nhn nh ban u. V th n c gi l Paradox. 2. Balls into Bins

    Tng qut vn Birthday Paradox trn ta xy dng c mt m hnh ton hc gi l balls into bins. y c s tng ng s ngi l s bng v s ngy sinh l s hp. Nu by gi ta nm m balls vo n bins (gi s khng nm trt qu no) , lc ny mi bins s c mt s bng nht nh. Ta gi maximum load l s bng cha trong hp c nhiu bng nht. nh l: Xc sut maximum load ln hn 3 ln n/ln ln n l khng qu 1/n. Proof: Xt bin th nht. Xc sut c t nht M balls trong bin 1 s l: n

    M(1

    n)M (chn ra M qu trong s n qu. Xc sut mi qu vo hp 1 l 1/n). n

    M(1

    n)M 1

    M! (eM)M Tron bt ng thc th 2 ta s dng cng thc: kkk! < i!0 kii! = ek ] Do xc sut tn ti mt bin cha nhiu hn M balls l: n n

    M(1

    n)M n(e

    M)M Thay M = 3 ln n/ln ln n vo ri chuyn ton b sang dng exp ta chng minh c xc sut ny khng qu 1/n

    Dng Taylor Expansion cho e^k

    3. The Poisson Distribution

    4. Application Hashing: Problem Set Membership 4.1. Chain Hashing 4.2. Fingerprint

    Problem: Cho tp S = {s_1,s_2, ... ,s_m} l tp con ca mt tp rt ln universe U. Vi mt phn t x bt k chn t U, ta phi tr li cu hi:" x c l phn t ca S hay khng?". Cu hi ny c gi l Set Membership Problem . 1. Chain Hashing Phng php c in nht l to mt bng bm tm

    hiu th no l rt ln bn c th coi S l tp cc bi ht trong my tnh ca bn. Cn U l tp ton b bn nhc trn th gii.

  • Method 4.3. Bloom Filter Method

    kim, Bn c th dng hm bm ngu nhin.Phng php ny lun cho kt qu chnh xc v thi gian kh nh. Theo phn tnh mc 2, maximum load bng ln n/ln ln n l khng qu 1/n. Vy th thi gian tm kim ln hn (ln n/ln ln n ) vi xc sut khng qu n. Nhc im ca phng ph ny l truy cp b nh qu ln : m phn t ca tp S khng th lu trong RAM c. 4.2. Fingerprint Method Ta nh ngha mt hm to fingerprint nh sau: f: S -> B Trong B l tp cc s nh phn b bt, D thy B c 2^b phn t. Ta ch cn lu m phn t, mi phn t b bt trong RAM. Tc cn m*2^b bit. Vic tnh f(x) cng chnh l vic tm ra fingerprint ca x. ALGORITHM Tnh f(x). So snh f(x) vi tt c cc f(s_i); s_i thuc S C 2 trng hp xy ra: Case 1: Nu f(x) f(s_i); mi i = 1, 2, ...,m => x khng thuc S. Case 2: Nu tn ti 1 x khng thuc S. Gi s ngc li x thuc S th phi tn ti i m f(x) = f(s_i) vi 1

  • = 1 Pr(i: f(x)f(si ) ) Pr (x S ) (4.2) Pr (x S ) = 0 do S l tp con c m phn t ca tp U rt rt ln. Pr(i: f(x)f(si ) ) = mi!1 Pr(f(x)f(si ) ) =

    mi!1 (1 Pr(f(x) = f(si ) ) Mi f(s_i) l mt fingerprint di b bits. Do vy xc sut f(x) = f(s_i) ch l 1/2^b. Vi mi i = 1,2, ... , m. Suy ra: Pr(i: f(x)f(si ) ) = (1 12b )m Thay vo ng th (4.2) ta c:

    Pr(false positive) = 1 (1 12b

    )m 1 e!m2b m2b

    xp x trn ta dng 2 ln cng thc: 1 x e!x khi x nh. Chn b = 32 tc fingerprint 32-bit, gi s t in c 2^16 password xu tc password ngi s dng khng c php dng. Khi trong RAM ta phi lu: 2^16 * 4 bytes = 256KB;

    Pr(false positive) 216232

    165536

    4.3. Bloom Filter Method Ging nh fingerprint method ta s dng mt nh x f t tp S vo tp cc gi tr n-bit By gi thay cho vic mi mt phn t cho ra mt fingerprint ta ch cn mt dy n bt m ta gi l Bloom lu tt c cc f(s_i). Nu f(s_i) tr li gi tr no m ti bit = 1 th ta thit lp bit ny. V d: Bloom n = 4 bit 0000; sau khi tinhs f(s_1) = 2 = 0010. Ta thu c Bloom 0010. Sau khi tnh f(s_2) = 10 = 1010 ta thu c Bloom 1010. Phng php Bloom Filter s dng mt Bloom, v cc hm h_i; i =1,2,...,k Ta ni y nm trong Bloom nu tt c cc v tr bit 1 ca y u c trong Bloom. V d: y= 8 = 1000 nm trong Bloom 1010.; y = 1001 khng nm trong Bloom 1010. ALGORITHM Tnh h_i(x); i =1,2,...,k x thuc S h_i(x) nm trong Bloom no vi mi i =1,2,...,k

    thc hin. y ta coi S l tp rt quan trng, "th ly nhm cn hn b st".

  • PROBABILISTIC ANALYSIS: Case 1: Khng tn ti i h_i(x) nm trong Bloom => x khng thuc S. Gi s ngc li x thuc S th phi tn ti i: 1
  • 3. Exercises: http://docs.google.com/View?id=dgmqjfk5_184c7sdskcv 4. Cng thc ny ch no , em c nu thy th chuyn vo nh: = 1 - Pr(A[j], 1jn: A[f(x)] = A[j])) Exercise Exercise 5.21: Trong open addressing, hash table c ci t bng mng, hon ton khng s dng linked-lists. Mi entry trong bng ch c th rng hoc cha 1 phn t. Bn c th nhp vo link sau tm hiu r hn. http://en.wikipedia.org/wiki/Open_addressing http://courseweb.xu.edu.ph/courses/ics20/supplements/holte/open-addr.htm http://courseweb.xu.edu.ph/courses/ics20/supplements/holte/open-addr.htm Vi mi key k trong table ta nh ngha mt probe sequence h(k,0),h(k,1) .... ,h(k,n); n l s entry trong table. chn kha k ta tnh ln lt h(k,0),h(k,1) .... cho n khi tm c trng chn k, sau n ln tht bi ta hiu l bng full v khng th chn thm Khi tm kim cng lm tng t nh vy, tnh ln lt h(k,0),h(k,1) ....n khi tm c kha k, hoc tm thy mt trng th chng t trong bng khng c kha k. Gi s h(k,j) c th nhn bt c gi tr ngu nhin no trong n entries ca bng v tt c cc h(k,j) c lp. Sau khi s dng bng ny lu gi m = n/2 phn t, ta nhn c yu cu tm kha k trong bng . Gi X_i l s probe (thm d) cn thc hin chn kha th i. t X = max {X_i}; 1 i m l s thm d ln nht cn thc hin chn phn t c kha m (a) Chng minh Pr(X>2log n) 1/n (b) Chng minh expectation ca di ln nht ca chui thm d cn thc hin l E[X] = O(log m). Ch : n = 2m. Phng php trn cn c gi l Double Hashing. V d: h(k,i) = a*h(k) + b*h(i) (mod n) tc l dng 2 hash function. (c) Open addressing/Linear Probing l mt trng hp ring ca phng php ny. : h(k,i) = h(k) + i (mode n); tron h(i) = i. Nhng khng hn nh vy bi h(k,i) v h(k,i+1) khng cn c lp nhau na. Hy a ra nh hng ca s khac bit ny v tm cch p dng Double Hashing cho vic tm xpectation ca di ln nht ca chui thm d cn thc hin cho Open addressing/Linear Probing. ( thi K52 - CNTT - HBK HN)

  • Exercise 5.22: Gi s list cc bi ht bn u thch l X, v list cc bi ht ti u thch l Y. Bit rng |X| = |Y| = n. Ta to ra Bloom filter ca cc tp X v Y s dng cc s m bits v k hash functions. (a) Tnh expectation ca s cp bit khc nhau trong Bloom filter ca X v Y (b) Tnh E[ |X Y|] (c) Gii thch ti sao ta c th s dng phng php ny tm nhng ngi c s thch cng th loi nhc thay cho vic so snh tt c list mt cch trc tip p s: (a) n(2p-p2 ) trong p = (1 - 1

    n)mk;

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Answer Exercise 5.21: Trong open addressing, hash table c ci t bng mng, hon ton khng s dng linked-lists. Mi entry trong bng ch c th rng hoc cha 1 phn t. Bn c th nhp vo link sau tm hiu r hn. http://en.wikipedia.org/wiki/Open_addressing http://courseweb.xu.edu.ph/courses/ics20/supplements/holte/open-addr.htm http://courseweb.xu.edu.ph/courses/ics20/supplements/holte/open-addr.htm Vi mi key k trong table ta nh ngha mt probe sequence h(k,0),h(k,1) .... ,h(k,n); n l s entry trong table. chn kha k ta tnh ln lt h(k,0),h(k,1) .... cho n khi tm c trng chn k, sau n ln tht bi ta hiu l bng full v khng th chn thm Khi tm kim cng lm tng t nh vy, tnh ln lt h(k,0),h(k,1) ....n khi tm c kha k, hoc tm thy mt trng th chng t trong bng khng c kha k. Gi s h(k,j) c th nhn bt c gi tr ngu nhin no trong n entries ca bng v tt c cc h(k,j) c lp. Sau khi s dng bng ny lu gi m = n/2 phn t, ta nhn c yu cu tm kha k trong bng . Gi X_i l s probe (thm d) cn thc hin chn kha th i. t X = max {X_i}; 1 i m l s thm d ln nht cn thc hin chn phn t c kha m Proof: (a) Chng minh Pr(X>2log n) 1/n ln chn th i, trong bng c i - 1 entries. Ta phi tnh h(i.j) cho n khi tm c entry trng. Nh vy X_i l mt geometric random variable with parameter pi = 1 - i-1n . Theo lut phn phi ny: Pr(Xi = j) = (1-p)j-1p Suy ra: Pr(Xi j) = l!j Pr(X = j) = l!j (1-p)j-1p = p(1-p)j-1 l!0 (1-p)l = p(1-p)j-1 11-(1-p) = (1-p)j-1 Suy ra: Pr(Xi > 2log m) = Pr(Xi 2log m + 1 ) = (1-pi )2logm; thay pi = 1 - i-1n v n

  • = 2m vo ta c: Pr(Xi > 2log m) = ( i-12m)2logm ( m2m)2logm = 1m2 (b) Chng minh expectation ca di ln nht ca chui thm d h(i,j) cn thc hin l E[X] = O(log m). Ch : n =2m.

    E[X] =x!2 log m ( xPr(X = x)) +

    m

    x ! 2 log m (xPr(X = x)) < 2 log mx!2 log m Pr(X = x) + n

    m

    x ! 2 log m Pr(X = x) E[X] < 2 log mPr(X 2 log m) + nPr(X > 2 log m) = 2 log m + n 1

    n= 2 log n trn ta s dng: Pr(X 2 log m) 1 v kt qu Pr(X > 2 log m) 1

    n t cu a.

    Ch trn ta a ra nhn xt X_i l mt geometric random variable with parameter pi = 1 - i-1n . Do vy: E[Xi!1] = 1pi!1 = nn-i = 11 -; trong = in Cng thc ny cho ta thy: "Nu nh trong bng c i kha th expectation ca s ln thm d cn lm l 1/(1-a) trong a l t s gia s phn t a vo bng v s entries bng c th cha c" (c) Open addressing/Linear Probing l mt trng hp ring ca phng php ny. : h(k,i) = h(k) + i (mode n); tron h(i) = i. Nhng khng hn nh vy bi h(k,i) v h(k,i+1) khng cn c lp nhau na. Hy a ra nh hng ca s khac bit ny v tm cch p dng Double Hashing cho vic tm xpectation ca di ln nht ca chui thm d cn thc hin cho Open addressing/Linear Probing. ( thi K52 - CNTT - HBK HN) Proof: Gi s by gi thy cho vic tnh h(k,0),h(k,1) .... ,h(k,n) mt cch ln lt ta s tnh h(k,i_0),h(k,i_1) .... ,h(k,i_n) vi (i_1,i_2 ,....,i_n) l mt hon v ca (1,2,...,n). Mi hon v c gi l mt case. Nh vy ta c n! case. Trong n! th t c th, c 1 v ch 1 hon v l (i_1,i_2 ,....,i_n) = (1,2,...,n) dn ta n Linear Probing. Ta gi Linear Probing l case_1 Mt nhn xt na l cc hon v ny u c vai tr tng ng nhau tc nu lm Linear Probing th cng c th lm (3,1,2,...,n-1,n) hay bt k hon v no cng cho ta mt kt qu ging nhau khi tnh expectation. Tr li vi Double Hashing ta nh ngha bin ngu nhin X = max {X_i}; 1 i m l s thm d ln nht cn thc hin tm phn t c kha m. E[X] = n!i!1 Pr(CASE = casei ) E[X|CASE = casei ]; trong CASE l mt hon v ca b (1,2,...,n). V cc case_i l tng ng nhau nn: Pr(case_i) = 1/n! vi mi i = 1,2,....,n!, v E[X|CASE = case_i] = E[X|CASE = case_1] = E[X|CASE = Linear Probing] vi mi i = 1,2,....,n!. Do vy: E[X|CASE = Linear Probing] = E[X] = O(log n);

  • Ch : Gi X_i l s probe (thm d) cn thc hin chn kha th i. trn ta a ra nhn xt X_i l mt geometric random variable with parameter pi = 1 - i-1n . Do vy: E[Xi!1] = 1pi!1 = nn-i = 11 -; trong = in Nhn xt ny ch ng cho trng hp Double Hashing khng c g m bo n s ng cho Linear Probing.

Recommended