ø!t £] Ät...½|( ø#)¤ F Þ( t £'6 8ø(±| Æ :9¥ 2013 Ë 1ÿ4 2014 Ë 2ÿ')¤ Ät...

Preview:

Citation preview

1.

2013 12014 2 °

× °

Geng and Sugi, 2003 Mizuta 2012

° 980hPa

Chang 2013

°

Zappa et al., 2014

2. 2.1. 5

CMIP5

2RCP4.5

RCP8.5

6 CCSM4, CNRM-CM5, CMCC-CM, MIROC5, MRI-CGCM3, BCC-CSM 1-1(M)

CMIP5

3 (1) 2 JRA-55; Kobayashi et

al. 2014 (2) ECMWF Interim ERA Interim; Dee et al., 2011 (3) CFS

CFSR; Saha et al., 2010

1981-2005 20C

° 21 2036-2060 mid-21C 21

2076-2100 late-21C 2

2.2.

Neu et al. (2013)

(a) JRA55 (b) MIROC5

(c) CCSM4 (d) MRI-CGCM3

1: 20C 2

(a) JRA55, (b) MIROC5, (c) CCSM4, (d) MRI-CGCM3 SST 2K

115

Hayasaki and Kawamura (2012) SLP

Serreze

Serreze and Barett, 2008SLP 125 km

EASE 0.5 hPa

SLP 3. 3.1.

a 2 20CJRA55

2

2

CMIP5 20C

2b, d 1c

CCSM4

5 3.2.

2 2 30 -50 N,

130 -150 ESLP

SLP

150 EPinto et al. (2005)

CMIP5

2 11 3

3 CMIP5 20C

2: 2 20C

late-21C(RCP8.5) 150E 2(SLP) : 10-9 Pa m-2

3

20C, late-21C (RCP8.5)

CMIP5

116

4. 4.1.

2

3 20C late-21C, RCP8.5 Nov-Mar

late-21C 20C -10% RCP4.5 -16%

RCP8.5 4 4.2.

Yoshida and Asuma 2004 YA2004

YA2004 3 OJ, PO-L,

PO-O YA2004

1

PO-OOJ

5.

° CMIP56

CMIP5

4 30 -50 N, 130 - 150

E20C, mid-21C, late-21C

620C

21CRCP4.5 RCP8.5

1 late-21C (RCP8.5) Nov-Mar

OJ, PO-L, PO-O %20C

OJ PO-L PO-O MRI-CGCM3 27.7

(+6.1) 25.7 (-2.3)

39.2 (-6.2)

MIROC5 37.1 (+13.5)

24.1 (-2.6)

33.4 (-12.5)

CCSM4 26.3 (+3.2)

32.2 (+0.4)

34.0 (-4.5)

CNRM-CM5 26.6 (+1.9)

34.0 (-1.7)

34.0 (-3.6)

CMCC-CM 34.7 (+2.6)

30.0 (+1.1)

25.6 (-4.3)

BCC-CSM1-1(M) 27.3 (+2.7)

24.0 (+0.7)

34.4 (-6.1)

JRA55 20.0 25.7 52.6

117

(1) ° (2)

YA2004PO-O

OJ

Pinto et al., 2005; Neu et al., 2013

(2A-1201) .

Chang, E. K. M., 2014: Impacts of background

field removal on CMIP5 projected changes in Pacific winter cyclone activity. J. Geophys. Res., 119, doi:10.1002/2013JD020746.

Dee, D. P. and co-authors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 533–597.

Geng, Q., and M. Sugi, 2003: Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulfate aerosols– Study

with a high-resolution AGCM. J. Climate, 16, 2262–2274.

Hayasaki, M., and R. Kawamura, 2012: Cyclone activities in heavy rain- fall episodes in Japan during spring season. SOLA, 8, 45–48.

Kobayashi, S. and co-authors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, (in press).

Mizuta, R., 2012: Intensification of extratropical cyclones associated with the polar jet change in the CMIP5 global warming projections. Geophys. Res. Lett., 39, L19707, doi: 10.1029/2012GL053032.

Neu, U., and co-authors, 2013: IMILAST A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529–547.

Pinto, J. G., T. Spangehl, U. Ulbrich, and P. Speth, 2005: Sensitivities of a cyclone detection and tracking algorithm: Individual tracks and climatology. Meteorol. Zeitschrift, 14, 823–838.

Saha, S., and co-authors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057.

Serreze, M. C., and A. P. Barrett, 2008: The summer cyclone maximum over the central Arctic Ocean. J. Climate, 21, 1048–1065.

Yoshida, A., and Y. Asuma, 2004: Structures and environment of explosively developing extratropical cyclones in the Northwestern Pacific region. Mon. Wea. Rev., 132, 1121–1142.

Zappa, G., M. K. Hawcroft, L. Shaffrey, E. Black, and D. J. Brayshaw, 2014: Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Clim. Dyn., doi:10.1007/s00382-014-2426-8.

118

Recommended