SOME NEW HERMITE-HADAMARD TYPE INTEGRAL...

Preview:

Citation preview

Miskolc Mathematical Notes HU e-ISSN 1787-2413Vol. 18 (2017), No. 2, pp. 837–849 DOI: 10.18514/MMN.2017.1831

SOME NEW HERMITE-HADAMARD TYPE INTEGRALINEQUALITIES FOR FUNCTIONS WHOSE nth DERIVATIVES

ARE LOGARITHMICALLY RELATIVE h�PREINVEX

SABIR HUSSAIN AND SOBIA RAFEEQ

Received 28 October, 2015

Abstract. The authors have introduced the concept of logarithmically relative h�preinvex func-tion which is a generalized form of previously known concepts [9, 11], and try to establish somenew Hermite-Hadamard type integral inequalities for functions whose absolute values of nthderivatives are logarithmically relative h�preinvex.

2010 Mathematics Subject Classification: 34B10; 34B15

Keywords: Hermite-Hadamard inequality, Invex set, Preinvex function, logarithmically h�preinvexfunction, Beta function, Incomplete beta function

1. INTRODUCTION AND PRELIMINARIES

In recent years, researchers have paid a lot of attention to study and investigatethe theory of convex functions due to its extensive applications in different fields ofpure and applied sciences. Weir et al. [15] had given a significant generalization ofconvex functions by introducing preinvex functions. Varosanec[12], introduced theh�convex functions. Noor et al. [9] have introduced the concept of logarithmic-ally h�preinvex functions, generalizing the concept of logarithmically s�preinvexfunctions, logarithmically P�preinvex functions and logarithmically Q�preinvexfunctions.

There are many inequalities for convex functions but the most famous is the Hermite-Hadamard inequality, due to its rich geometrical significance and applications. Hermit-Hadamard inequlaities for the convex functions and their variant forms are availablein the literature [3–11, 13, 14].

Motivated by the works of Noor et al. [9], Fulga et al. [1], and using the concept oflogarithmically relative h�preinvex functions, we have derived some new Hermite-Hadamard type inequalites.

The paper is arranged in such a way that after this Introduction,in Section 1, theauthors have defined the logarithmically relative h�preinvex functions and its relat-ing consequent concepts, in section 2, the authors have discussed their main results

c 2017 Miskolc University Press

838 SABIR HUSSAIN AND SOBIA RAFEEQ

regarding Hermite-Hadamard type integral inequalities, using the concept of Young’sinquality, Holder’s inequality, and power mean’s inequality.

Let M be a nonempty closed set in Rn: Let f W M ! .0;1/ be a continuousfunction and let � W Rn�Rn! Rn be a continuous bifunction.

Definition 1 ([1]). A set M � Rn is said to be a relative invex (or g�invex) withrespect to the map �; if there exists a function g W Rn! Rn such that,

g.a/C t� .g.b/;g.a// 2M I 8 a;b 2 Rn W g.a/;g.b/ 2M; t 2 Œ0;1�:

Definition 2. LetM �Rn be a relative invex set with respect to �: Then ��relativepath, Pg.a/Ig.c/; joining the points g.a/ and g.c/D g.a/C�.g.b/;g.a// is definedas:

Pg.a/Ig.c/ D fg.d/jg.d/D g.a/C t� .g.b/;g.a// I a;b 2M; t 2 Œ0;1�g:

Remark 1. For gD I; I an identity function, definition 2 coincides with definitionof ��path [14].

Definition 3. Let h W J ! R; where .0;1/ � J be an interval in RI let h¤ 0 forall values of J I let M � Rn be a relative invex set with respect to �: A functionf W M ! .0;1/ is said to be logarithmically relative h�preinvex (or log�.g;h/preinvex) with respect to �; if

f .g.a/C t� .g.b/;g.a///� Œf .g.a//�h.1�t/Œf .g.b//�h.t/; (1.1)

for a;b 2 Rn such that g.a/;g.b/ 2M; t 2 .0;1/:f is logarithmically relative h�preconcave (or log�.g;h/ preconcave) with re-

spect to � whenever the inequality sign in .1:1/ is reversed.

Remark 2. For g.t/D I; I an identity function, definition 3 coincides with defin-ition of logarithmically h�preinvex function[9].

Example 1. Let M D Œ�2;�1�SŒ1;2�; then obviously M is relative invex for

g W R! RCSf0g and � W R�R! R respectively defined by:

g.x/D

(x2 for jxj �

p2

2 for jxj >p2:

�.x;y/D

(x�y for x:y > 02�y for x:y < 0:

Consider, f WM ! .0;1/ defined by

f .x/D arctan.xC2Cp3/ and h.t/D ts;

where s � 0: Then f is logarithmically relative h�preinvex function with respect to�:

Remark 3. For x Dp2; y D 1; t D 1

2; s D 1; the above function f is not logar-

ithmically relative h�preinvex function.

HERMITE-HADAMARD TYPE INEQUALITIES 839

Definition 4. A function f WM ! .0;1/ is said to be logarithmically relatives�preinvex (or log�.g;s/ preinvex) with respect to �; if

f .g.a/C t� .g.b/;g.a///� Œf .g.a//�.1�t/s

Œf .g.b//�ts

;

for a;b 2 Rn such that g.a/;g.b/ 2M; t 2 Œ0;1�; s 2 .0;1�:

Remark 4. (1) For g.t/ D I; I an identity function, definition 4 coincideswith definition of logarithmically s�preinvex function [9].

(2) For h.t/D ts; definition 3 coincides with definition 4.

Definition 5. A function f WM ! .0;1/ is said to be logarithmically relativeP�preinvex (or log�.g;P / preinvex) with respect to �; if

f .g.a/C t� .g.b/;g.a///� Œf .g.a//�Œf .g.b//�;

for a;b 2 Rn such that g.a/;g.b/ 2M; t 2 Œ0;1�:

Remark 5. (1) For g.t/D I; I an identity function, definition 5 coincideswith definition of logarithmically P�preinvex function [9].

(2) For h.t/D 1; definition 3 coincides with definition 5.

Definition 6. A function f WM ! .0;1/ is said to be logarithmically relativeQ�preinvex (or log�.g;Q/ preinvex) with respect to �; if

f .g.a/C t� .g.b/;g.a///� Œf .g.a//�1

1�t Œf .g.b//�1t ;

for a;b 2 Rn such that g.a/;g.b/ 2M; t 2 .0;1/:

Remark 6. (1) For g.t/D I; I an identity function, definition 6 coincideswith definition of logarithmically Q�preinvex function[9].

(2) For h.t/D 1t; definition 3 coincides with definition 6.

Example 2. Let M D Œ�2;�1�SŒ1;2�; then obviously M is relative invex for

g W R! RCSf0g and � W R�R! R respectively defined by

g.x/D

(x2 for jxj �

p2

1 for jxj >p2:

�.x;y/D x�y:

Consider, f WM ! .0;1/ defined by f .x/D arctan.xC2C�/ for � > 0 and h.t/D1t: Then f is logarithmically relative Q�preinvex function with respect to �:

Definition 7. The beta function is defined as:

ˇ.x;y/D

Z 1

0

tx�1.1� t /y�1dt; x;y > 0:

Definition 8. The incomplete beta function is defined as:

ˇ´.x;y/D

Z ´

0

tx�1.1� t /y�1dt; 0� ´� 1I x;y > 0:

840 SABIR HUSSAIN AND SOBIA RAFEEQ

2. RESULTS

For establishing some new Hermite-Hadamard type integral inequalities for n�timesdifferentiable functions such that jf .n/j are logarithmically relative h�preinvex func-tions, we need the following result, which is a generalization of a result proved byWang et al. [14, Lemma1].

Lemma 1 ([2]). Let A�R be an open relative invex subset with respect to � WR�R!R; with a;b 2A and �.g.a/;g.b//¤ 0: If f WR!R is n�times differentiablefunction and f .n/ is integrable on the ��relative path Pg.b/Ig.c/; then

Œ� .g.a/;g.b//�n

2nC2�nŠ

Z 1

0

.n�2t/tn�1�f .n/

�g.b/C

1� t

2� .g.a/;g.b//

�Cf .n/

�g.b/C

2� t

2� .g.a/;g.b//

��dt

D1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.x//dg.x/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

2kC2� .kC1/Š

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��(2.1)

where the above summation is zero for nD 1;2

Before going to our main results, we make the following assumptions:

(1) fAn WD j�.g.a/;g.b//jnnŠ�2nC2

(2) eBn;k.t/ WD ˇf .n/ .g.b//ˇ� ˇf .n/.g.a//

f .n/.g.b//

ˇh.k�t2/

(3) h.1Ct2/Ch.1�t

2/D 1D h. t

2/Ch.2�t

2/.

Theorem 1. Let A � R be a relative invex subset with respect to � W R�R!R; with a;b 2 A and �.g.a/;g.b// ¤ 0: Suppose that f W A! .0;1/ is n�timesdifferentiable function and f .n/ is integrable on the ��relative path Pg.b/Ig.c/; suchthat jf .n/j is logarithmically relative h�preinvex on AI let qk > 1; k D 1;2; thenˇ

1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

HERMITE-HADAMARD TYPE INEQUALITIES 841

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

8<:fA1P2

kD11qk

h.qk�1/

2

2qk�1CR 10

�eB1;k.t/�qkdti

for nD 1

fAnP2kD1

1qk

"n

nqkqk�1

C1�.qk�1/

2

qk .n�1/

qk�1C1

ˇ 2n

�nqk�1qk�1

; 2qk�1qk�1

�CR 10

�eBn;k.t/�qkdt

#for n� 2:

(2.2)

Proof. Since g.b/C t�.g.a/;g.b// 2 A for every t 2 .0;1/; by Lemma 1 andYoung’s inequality, we haveˇ

1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

�j� .g.a/;g.b//jn

nŠ�2nC2

Z 1

0

ˇ.n�2t/tn�1

ˇ �ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇC

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇ�dt

�j� .g.a/;g.b// jn

nŠ�2nC2�

Z 1

0

�q1�1

q1

ˇ.n�2t/tn�1

ˇ q1q1�1

C1

q1

ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇq1

Cq2�1

q2

ˇ.n�2t/tn�1

ˇ q2q2�1

C1

q2

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇq2�dt (2.3)

Using logarithmically relative h�preinvexity of jf .n/j; we haveZ 1

0

ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇq1

dt

Z 1

0

ˇf .n/ .g.b//

ˇh. 1Ct2/ ˇf .n/ .g.a//

ˇh. 1�t2/!q1

dt

D

Z 1

0

0@ˇf .n/ .g.b//ˇ ˇˇf .n/ .g.a//f .n/ .g.b//

ˇˇh. 1�t

2/1Aq1

dt (2.4)

842 SABIR HUSSAIN AND SOBIA RAFEEQ

SimilarlyZ 1

0

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇq2

dt

Z 1

0

0@ˇf .n/ .g.b//ˇ ˇˇf .n/ .g.a//f .n/ .g.b//

ˇˇh. 2�t

2/1Aq2

dt (2.5)

Also,

Z 1

0

ˇ.n�2t/tn�1

ˇ qkqk�1 dt D

8<:qk�12qk�1

for nD 1

n

nqkqk�1

C1

2

qk.n�1/

qk�1C1

ˇ 2n

�nqk�1qk�1

; 2qk�1qk�1

�for n� 2:

(2.6)

A combination of .2:3/-.2:6/ yields the desired result. �

Corollary 1. Under the conditions of theorem 1 for q1 D q2; we haveˇ1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇ

8<:eA1

q2

h2.q2�1/

2

2q2�1CR 10

P2kD1

�eB1;k.t/�q2dti

for nD 1

eAn

q2

"n

nq2q2�1

C1�.q2�1/

2

q2.n�1/

q2�1

ˇ 2n

�nq2�1q2�1

; 2q2�1q2�1

�CR 10

P2kD1

�eBn;k.t/�q2dt

#for n� 2:

Theorem 2. Let A � R be a relative invex subset with respect to � W R�R!R; with a;b 2 A and �.g.a/;g.b// ¤ 0: Suppose that f W A! .0;1/ is n�timesdifferentiable function and f .n/ is integrable on the ��relative path Pg.b/Ig.c/; suchthat jf .n/j is logarithmically relative h�preinvex on AI let q3 > 1; thenˇ

1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

HERMITE-HADAMARD TYPE INEQUALITIES 843

8<:eA1

q3

h.q3�1/

2

2q3�1CR 10

�P2kD1

eB1;k.t/�q3

dti

for nD 1eAn

q3

"n

nq3q3�1

C1�.q3�1/

2

q3.n�1/

q3�1C1

ˇ 2n

�nq3�1q3�1

; 2q3�1q3�1

�CR 10

�P2kD1

eBn;k.t/�q3

dt

#for n� 2:

(2.7)

Proof. Since g.b/C t�.g.a/;g.b// 2A for every t 2 .0;1/; by Lemma 1, Young’sinequality and the logarithmically relative h�preinvexity of jf .n/j; we haveˇ

1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

�j� .g.a/;g.b//jn

nŠ�2nC2

Z 1

0

ˇ.n�2t/tn�1

ˇ �ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇC

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇ�dt

�j� .g.a/;g.b// jn

nŠ�2nC2�

Z 1

0

�q3�1

q3

ˇ.n�2t/tn�1

ˇ q3q3�1

C1

q3

�ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇC

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇ�q3�dt

�j� .g.a/;g.b// jn

nŠ�2nC2�q3�

Z 1

0

�.q3�1/

ˇ.n�2t/tn�1

ˇ q3q3�1

C

0@ 2XkD1

ˇf .n/ .g.b//

ˇ ˇˇf .n/ .g.a//f .n/ .g.b//

ˇˇh.k�t

2/1Aq3

375dt�

Corollary 2. Under the conditions of theorem 2 for nD 2; we haveˇ1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

ˇˇ

844 SABIR HUSSAIN AND SOBIA RAFEEQ

�fA2q3

242 q3q3�1 � .q3�1/�ˇ

�2q3�1

q3�1;2q3�1

q3�1

�C

Z 1

0

2XkD1

eB2;k.t/!q3

dt

35Theorem 3. Let A � R be a relative invex subset with respect to � W R�R!

R; with a;b 2 A and �.g.a/;g.b// ¤ 0: Suppose that f W A! .0;1/ is n�timesdifferentiable function and f .n/ is integrable on the ��relative path Pg.b/Ig.c/; suchthat jf .n/j is logarithmically relative h�preinvex on AI let q3 > 1; and q3 � r > 0;thenˇ

1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

8<ˆ:

eA1

q3

h.q3�1/

2

2q3�r�1CR 10 j.n�2t/t

n�1jr�P2

kD1eB1;k.t/�q3

dti

for nD 1

eAn

q3

"n

n.q3�r/

q3�1C1�.q3�1/

2

.q3�r/.n�1/

q3�1C1

ˇ 2n

�nq3�nrCr�1

q3�1; 2q3�r�1

q3�1

�CR 10 j.n�2t/t

n�1jr�P2

kD1eBn;k.t/�q3

dti

for n� 2:

(2.8)

Proof. Since g.b/C t�.g.a/;g.b// 2A for every t 2 .0;1/; by Lemma 1, Young’sinequality and the logarithmically relative h�preinvexity of jf .n/j, we haveˇ

1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

�j� .g.a/;g.b//jn

nŠ�2nC2

Z 1

0

ˇ.n�2t/tn�1

ˇ �ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇC

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇ�dt

�j� .g.a/;g.b// jn

nŠ�2nC2

Z 1

0

�q3�1

q3

ˇ.n�2t/tn�1

ˇ q3�r

q3�1 C1

q3

ˇ.n�2t/tn�1

ˇr

HERMITE-HADAMARD TYPE INEQUALITIES 845

�ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇC

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇ�q3�dt

�j� .g.a/;g.b// jn

nŠ�2nC2�q3�

Z 1

0

�.q3�1/

ˇ.n�2t/tn�1

ˇ q3�r

q3�1

Cˇ.n�2t/tn�1

ˇr�

0@ 2XkD1

ˇf .n/ .g.b//

ˇ ˇˇf .n/ .g.a//f .n/ .g.b//

ˇˇh.k�t

2/1Aq3

375dt�

Corollary 3. Under the conditions of theorem 3 for r D q3; we have

ˇ1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

8<:eA1

q3

h.q3�1/C

R 10

�j.n�2t/tn�1j

P2kD1

eB1;k.t/�q3

dti

for nD 1eAn

q3

hn.q3�1/

2ˇ 2

n.1;1/C

R 10

�j.n�2t/tn�1j

P2kD1

eBn;k.t/�q3

dti

for n� 2:

Theorem 4. Let A � R be a relative invex subset with respect to � W R�R!R; with a;b 2 A and �.g.a/;g.b// ¤ 0: Suppose that f W A! .0;1/ is n�timesdifferentiable function and f .n/ is integrable on the ��relative path Pg.b/Ig.c/; suchthat jf .n/j is logarithmically relative h�preinvex on AI let q3 > 1; and then

ˇ1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

846 SABIR HUSSAIN AND SOBIA RAFEEQ

8<:eA1P2

kD1

�R 10

�eB1;k.t/�q3dt� 1

q3

�q3�12q3�1

�1� 1q3 for nD 1

eAnP2kD1

�R 10

�eBn;k.t/�q3dt� 1

q3

"n

nq3q3�1

C1

2

q3.n�1/

q3�1C1ˇ 2

n

�nq3�1q3�1

; 2q3�1q3�1

�#1� 1q3

for n� 2:

(2.9)

Proof. Since g.b/C t�.g.a/;g.b//2A for every t 2 .0;1/; by Lemma 1, Holder’sinequality and the logarithmically relative h�preinvexity of jf .n/j; we haveˇ

1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ�.g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

�j� .g.a/;g.b// jn

nŠ�2nC2

Z 1

0

ˇ.n�2t/tn�1

ˇ �ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇC

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇ�dt

�j� .g.a/;g.b// jn

nŠ�2nC2

�Z 1

0

ˇ.n�2t/tn�1

ˇ q3q3�1 dt

�1� 1q3

8<:�Z 1

0

ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇq3

dt

� 1q3

C

�Z 1

0

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇq3

dt

� 1q3

9=;�j� .g.a/;g.b// jn

nŠ�2nC2

�Z 1

0

ˇ.n�2t/tn�1

ˇ q3q3�1 dt

�1� 1q3

2XkD1

0B@Z 1

0

0@ˇf .n/ .g.b//ˇ ˇˇf .n/ .g.a//f .n/ .g.b//

ˇˇh.k�t

2/1Aq3

dt

1CA1

q3

Corollary 4. Under the conditions of theorem 4 for nD 2; we have

HERMITE-HADAMARD TYPE INEQUALITIES 847ˇ1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

ˇˇ

� 2eA2 2XkD1

�Z 1

0

�eB2;k.t/�q3dt

� 1q3�ˇ

�2q3�1

q3�1;2q3�1

q3�1

��1� 1q3

Theorem 5. Let A � R be a relative invex subset with respect to � W R�R!R; with a;b 2 A and �.g.a/;g.b// ¤ 0: Suppose that f W A! .0;1/ is n�timesdifferentiable function and f .n/ is integrable on the ��relative path Pg.b/Ig.c/; suchthat jf .n/j is logarithmically relative h�preinvex on AI let q3 � 1; thenˇ

1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

8<ˆ:eA1

P2kD1

�R 10 j.n�2t/t

n�1j

�eB1;k.t/�q3

dt

� 1q3

21� 1

q3

for nD 1

eAnP2kD1

�R 10 j.n�2t/t

n�1j�eBn;k.t/�q3

dt� 1

q3�n�1nC1

�1� 1q3 for n� 2:

Proof. By using the weighted power mean inequality and the similar techniquesused in theorem 4, we can prove this theorem. �

Corollary 5. Under the conditions of theorem 5 for q3 D 1; we haveˇ1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

(eA1 P2kD1

R 10 j.n�2t/t

n�1j eB1;k.t/dt for nD 1eAn P2kD1

R 10 j.n�2t/t

n�1j eBn;k.t/dt for n� 2:

848 SABIR HUSSAIN AND SOBIA RAFEEQ

Remark 7. If g.t/D I; where I is an identity function, then our results coincidethe results for logarithmically h�preinvex functions.

ACKNOWLEDGEMENT

The authors are grateful to the anonymous reviewers and editor for their so-calledinsights.

REFERENCES

[1] C. Fulga and V. Preda, “Nonlinear programming with E-preinvex and local E-preinvex functions,”Eur. J. Oper. Reseach., vol. 192, no. 3, pp. 737–743, 2009, doi: 10.1016/j.ejor.2007.11.056.

[2] S. Hussain and S. Rafeeq, “Some new Hermite-Hadamard type inequalities for functions whosen�th derivatives are ˛�relative preinvex,” Submitted.

[3] U. S. Kirmaci and M. E. Ozdemir, “On some inequalities for differentiable mappings and applic-ations to special means of real numbers and to midpoint formula,” Appl. Math. Comp., vol. 153,no. 2, pp. 361–368, 2004, doi: 10.1016/S0096-3003(03)00637-4.

[4] M. A. Latif, “On Hermite-Hadamard type integral inequalities for n�times differentiable preinvexfunctions with applications,” Stud. Univ. Babes-Bolyai Math., vol. 58, no. 3, pp. 325–343, 2013.

[5] M. A. Latif and S. S. Dragomir, “Some weighted integral inequalities for differentiable pre-invex and prequasiinvex functions with applications,” J. Inequal. Appl., no. 575, 2013, doi:10.1186/1029-242X-2013-575.

[6] M. A. Noor, “Invex equilibrium problems,” J. Math. Anal. Appl., vol. 302, no. 2, pp. 463–475,2005, doi: 10.1016/j.jmaa.2004.08.014.

[7] M. A. Noor, “Hermite-Hadamard integral inequalities for log-preinvex functions,” J. Math. Anal.Approx. Theory, no. 2, pp. 126–131, 2007.

[8] M. A. Noor, “Hadamrd integral inequalities for product of two preinvex function,” Nonl. Anal.forum, no. 14, pp. 167–173, 2009.

[9] M. A. Noor, K. I. Noor, M. U. Awan, and F. Qi, “Integral inequalities of Hermite-Hadamard typefor logarithmically h�preinvex functions,” Cogent Math., vol. 2, no. 1035856, pp. 1–10, 2015,doi: 10.1080/23311835.2015.1035856.

[10] C. E. M. Pearce and J. Pecaric, “Inequalities for differentiable mappings with application tosprcial means and quadrature formulae,” Appl. Math. Lett., vol. 13, no. 2, pp. 51–55, 2000, doi:10.1016/S0893-9659(99)00164-0.

[11] M. Z. Sarikaya, N. Alp, and H. Bozkurt, “On Hermite-Hadamard type Integral inequalities forpreinvex and log-preinvex functions,” Contemp. Anal. Appl. Math., vol. 1, no. 2, pp. 237–252,2013.

[12] S. Varosanec, “On h�convexity,” J. Math. Anal. Appl., vol. 326, no. 1, pp. 303–311, 2007, doi:10.1016/j.jmaa.2006.02.086.

[13] S.-H. Wang and F. Qi, “Hermite-Hadamrd type inequalities for n�times differentiable and prein-vex functions,” J. Inequal. Appl., 2014, doi: 10.1186/1029-242X-2014-49.

[14] Y. Wang, M.-M. Zheng, and F. Qi, “Integral inequalities of Hermite-Hadamard type for functionswhose derivatives are ˛�preinvex,” J. Inequal. Appl., no. 97, pp. 1–10, 2014, doi: 10.1186/1029-242X-2014-97.

[15] T. Weir and B. Mond, “Preinvex functions in multiobjective optimization,” J. Math. Anal. Appl.,vol. 136, no. 1, pp. 29–38, 1988, doi: 10.1016/0022-247X(88)90113-8.

HERMITE-HADAMARD TYPE INEQUALITIES 849

Authors’ addresses

Sabir HussainUniversity of Engineering and Technology, Department of Mathematics, Lahore, PakistanE-mail address: sabirhus@gmail.com

Sobia RafeeqUniversity of Engineering and Technology, Department of Mathematics, Lahore, PakistanE-mail address: sobia83zartash@hotmail.com

Recommended