13
Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 18 (2017), No. 2, pp. 837–849 DOI: 10.18514/MMN.2017.1831 SOME NEW HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR FUNCTIONS WHOSE nth DERIVATIVES ARE LOGARITHMICALLY RELATIVE hPREINVEX SABIR HUSSAIN AND SOBIA RAFEEQ Received 28 October, 2015 Abstract. The authors have introduced the concept of logarithmically relative hpreinvex func- tion which is a generalized form of previously known concepts [9, 11], and try to establish some new Hermite-Hadamard type integral inequalities for functions whose absolute values of nth derivatives are logarithmically relative hpreinvex. 2010 Mathematics Subject Classification: 34B10; 34B15 Keywords: Hermite-Hadamard inequality, Invex set, Preinvex function, logarithmically hpreinvex function, Beta function, Incomplete beta function 1. I NTRODUCTION AND PRELIMINARIES In recent years, researchers have paid a lot of attention to study and investigate the theory of convex functions due to its extensive applications in different fields of pure and applied sciences. Weir et al. [15] had given a significant generalization of convex functions by introducing preinvex functions. Varosanec[12], introduced the hconvex functions. Noor et al. [9] have introduced the concept of logarithmic- ally hpreinvex functions, generalizing the concept of logarithmically s preinvex functions, logarithmically P preinvex functions and logarithmically Qpreinvex functions. There are many inequalities for convex functions but the most famous is the Hermite- Hadamard inequality, due to its rich geometrical significance and applications. Hermit- Hadamard inequlaities for the convex functions and their variant forms are available in the literature [311, 13, 14]. Motivated by the works of Noor et al. [9], Fulga et al. [1], and using the concept of logarithmically relative hpreinvex functions, we have derived some new Hermite- Hadamard type inequalites. The paper is arranged in such a way that after this Introduction,in Section 1, the authors have defined the logarithmically relative hpreinvex functions and its relat- ing consequent concepts, in section 2, the authors have discussed their main results c 2017 Miskolc University Press

SOME NEW HERMITE-HADAMARD TYPE INTEGRAL …mat76.mat.uni-miskolc.hu/mnotes/download_article/1831.pdf · SABIR HUSSAIN AND SOBIA RAFEEQ Received 28 October, 2015 Abstract. The authors

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SOME NEW HERMITE-HADAMARD TYPE INTEGRAL …mat76.mat.uni-miskolc.hu/mnotes/download_article/1831.pdf · SABIR HUSSAIN AND SOBIA RAFEEQ Received 28 October, 2015 Abstract. The authors

Miskolc Mathematical Notes HU e-ISSN 1787-2413Vol. 18 (2017), No. 2, pp. 837–849 DOI: 10.18514/MMN.2017.1831

SOME NEW HERMITE-HADAMARD TYPE INTEGRALINEQUALITIES FOR FUNCTIONS WHOSE nth DERIVATIVES

ARE LOGARITHMICALLY RELATIVE h�PREINVEX

SABIR HUSSAIN AND SOBIA RAFEEQ

Received 28 October, 2015

Abstract. The authors have introduced the concept of logarithmically relative h�preinvex func-tion which is a generalized form of previously known concepts [9, 11], and try to establish somenew Hermite-Hadamard type integral inequalities for functions whose absolute values of nthderivatives are logarithmically relative h�preinvex.

2010 Mathematics Subject Classification: 34B10; 34B15

Keywords: Hermite-Hadamard inequality, Invex set, Preinvex function, logarithmically h�preinvexfunction, Beta function, Incomplete beta function

1. INTRODUCTION AND PRELIMINARIES

In recent years, researchers have paid a lot of attention to study and investigatethe theory of convex functions due to its extensive applications in different fields ofpure and applied sciences. Weir et al. [15] had given a significant generalization ofconvex functions by introducing preinvex functions. Varosanec[12], introduced theh�convex functions. Noor et al. [9] have introduced the concept of logarithmic-ally h�preinvex functions, generalizing the concept of logarithmically s�preinvexfunctions, logarithmically P�preinvex functions and logarithmically Q�preinvexfunctions.

There are many inequalities for convex functions but the most famous is the Hermite-Hadamard inequality, due to its rich geometrical significance and applications. Hermit-Hadamard inequlaities for the convex functions and their variant forms are availablein the literature [3–11, 13, 14].

Motivated by the works of Noor et al. [9], Fulga et al. [1], and using the concept oflogarithmically relative h�preinvex functions, we have derived some new Hermite-Hadamard type inequalites.

The paper is arranged in such a way that after this Introduction,in Section 1, theauthors have defined the logarithmically relative h�preinvex functions and its relat-ing consequent concepts, in section 2, the authors have discussed their main results

c 2017 Miskolc University Press

Page 2: SOME NEW HERMITE-HADAMARD TYPE INTEGRAL …mat76.mat.uni-miskolc.hu/mnotes/download_article/1831.pdf · SABIR HUSSAIN AND SOBIA RAFEEQ Received 28 October, 2015 Abstract. The authors

838 SABIR HUSSAIN AND SOBIA RAFEEQ

regarding Hermite-Hadamard type integral inequalities, using the concept of Young’sinquality, Holder’s inequality, and power mean’s inequality.

Let M be a nonempty closed set in Rn: Let f W M ! .0;1/ be a continuousfunction and let � W Rn�Rn! Rn be a continuous bifunction.

Definition 1 ([1]). A set M � Rn is said to be a relative invex (or g�invex) withrespect to the map �; if there exists a function g W Rn! Rn such that,

g.a/C t� .g.b/;g.a// 2M I 8 a;b 2 Rn W g.a/;g.b/ 2M; t 2 Œ0;1�:

Definition 2. LetM �Rn be a relative invex set with respect to �: Then ��relativepath, Pg.a/Ig.c/; joining the points g.a/ and g.c/D g.a/C�.g.b/;g.a// is definedas:

Pg.a/Ig.c/ D fg.d/jg.d/D g.a/C t� .g.b/;g.a// I a;b 2M; t 2 Œ0;1�g:

Remark 1. For gD I; I an identity function, definition 2 coincides with definitionof ��path [14].

Definition 3. Let h W J ! R; where .0;1/ � J be an interval in RI let h¤ 0 forall values of J I let M � Rn be a relative invex set with respect to �: A functionf W M ! .0;1/ is said to be logarithmically relative h�preinvex (or log�.g;h/preinvex) with respect to �; if

f .g.a/C t� .g.b/;g.a///� Œf .g.a//�h.1�t/Œf .g.b//�h.t/; (1.1)

for a;b 2 Rn such that g.a/;g.b/ 2M; t 2 .0;1/:f is logarithmically relative h�preconcave (or log�.g;h/ preconcave) with re-

spect to � whenever the inequality sign in .1:1/ is reversed.

Remark 2. For g.t/D I; I an identity function, definition 3 coincides with defin-ition of logarithmically h�preinvex function[9].

Example 1. Let M D Œ�2;�1�SŒ1;2�; then obviously M is relative invex for

g W R! RCSf0g and � W R�R! R respectively defined by:

g.x/D

(x2 for jxj �

p2

2 for jxj >p2:

�.x;y/D

(x�y for x:y > 02�y for x:y < 0:

Consider, f WM ! .0;1/ defined by

f .x/D arctan.xC2Cp3/ and h.t/D ts;

where s � 0: Then f is logarithmically relative h�preinvex function with respect to�:

Remark 3. For x Dp2; y D 1; t D 1

2; s D 1; the above function f is not logar-

ithmically relative h�preinvex function.

Page 3: SOME NEW HERMITE-HADAMARD TYPE INTEGRAL …mat76.mat.uni-miskolc.hu/mnotes/download_article/1831.pdf · SABIR HUSSAIN AND SOBIA RAFEEQ Received 28 October, 2015 Abstract. The authors

HERMITE-HADAMARD TYPE INEQUALITIES 839

Definition 4. A function f WM ! .0;1/ is said to be logarithmically relatives�preinvex (or log�.g;s/ preinvex) with respect to �; if

f .g.a/C t� .g.b/;g.a///� Œf .g.a//�.1�t/s

Œf .g.b//�ts

;

for a;b 2 Rn such that g.a/;g.b/ 2M; t 2 Œ0;1�; s 2 .0;1�:

Remark 4. (1) For g.t/ D I; I an identity function, definition 4 coincideswith definition of logarithmically s�preinvex function [9].

(2) For h.t/D ts; definition 3 coincides with definition 4.

Definition 5. A function f WM ! .0;1/ is said to be logarithmically relativeP�preinvex (or log�.g;P / preinvex) with respect to �; if

f .g.a/C t� .g.b/;g.a///� Œf .g.a//�Œf .g.b//�;

for a;b 2 Rn such that g.a/;g.b/ 2M; t 2 Œ0;1�:

Remark 5. (1) For g.t/D I; I an identity function, definition 5 coincideswith definition of logarithmically P�preinvex function [9].

(2) For h.t/D 1; definition 3 coincides with definition 5.

Definition 6. A function f WM ! .0;1/ is said to be logarithmically relativeQ�preinvex (or log�.g;Q/ preinvex) with respect to �; if

f .g.a/C t� .g.b/;g.a///� Œf .g.a//�1

1�t Œf .g.b//�1t ;

for a;b 2 Rn such that g.a/;g.b/ 2M; t 2 .0;1/:

Remark 6. (1) For g.t/D I; I an identity function, definition 6 coincideswith definition of logarithmically Q�preinvex function[9].

(2) For h.t/D 1t; definition 3 coincides with definition 6.

Example 2. Let M D Œ�2;�1�SŒ1;2�; then obviously M is relative invex for

g W R! RCSf0g and � W R�R! R respectively defined by

g.x/D

(x2 for jxj �

p2

1 for jxj >p2:

�.x;y/D x�y:

Consider, f WM ! .0;1/ defined by f .x/D arctan.xC2C�/ for � > 0 and h.t/D1t: Then f is logarithmically relative Q�preinvex function with respect to �:

Definition 7. The beta function is defined as:

ˇ.x;y/D

Z 1

0

tx�1.1� t /y�1dt; x;y > 0:

Definition 8. The incomplete beta function is defined as:

ˇ´.x;y/D

Z ´

0

tx�1.1� t /y�1dt; 0� ´� 1I x;y > 0:

Page 4: SOME NEW HERMITE-HADAMARD TYPE INTEGRAL …mat76.mat.uni-miskolc.hu/mnotes/download_article/1831.pdf · SABIR HUSSAIN AND SOBIA RAFEEQ Received 28 October, 2015 Abstract. The authors

840 SABIR HUSSAIN AND SOBIA RAFEEQ

2. RESULTS

For establishing some new Hermite-Hadamard type integral inequalities for n�timesdifferentiable functions such that jf .n/j are logarithmically relative h�preinvex func-tions, we need the following result, which is a generalization of a result proved byWang et al. [14, Lemma1].

Lemma 1 ([2]). Let A�R be an open relative invex subset with respect to � WR�R!R; with a;b 2A and �.g.a/;g.b//¤ 0: If f WR!R is n�times differentiablefunction and f .n/ is integrable on the ��relative path Pg.b/Ig.c/; then

Œ� .g.a/;g.b//�n

2nC2�nŠ

Z 1

0

.n�2t/tn�1�f .n/

�g.b/C

1� t

2� .g.a/;g.b//

�Cf .n/

�g.b/C

2� t

2� .g.a/;g.b//

��dt

D1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.x//dg.x/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

2kC2� .kC1/Š

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��(2.1)

where the above summation is zero for nD 1;2

Before going to our main results, we make the following assumptions:

(1) fAn WD j�.g.a/;g.b//jnnŠ�2nC2

(2) eBn;k.t/ WD ˇf .n/ .g.b//ˇ� ˇf .n/.g.a//

f .n/.g.b//

ˇh.k�t2/

(3) h.1Ct2/Ch.1�t

2/D 1D h. t

2/Ch.2�t

2/.

Theorem 1. Let A � R be a relative invex subset with respect to � W R�R!R; with a;b 2 A and �.g.a/;g.b// ¤ 0: Suppose that f W A! .0;1/ is n�timesdifferentiable function and f .n/ is integrable on the ��relative path Pg.b/Ig.c/; suchthat jf .n/j is logarithmically relative h�preinvex on AI let qk > 1; k D 1;2; thenˇ

1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

Page 5: SOME NEW HERMITE-HADAMARD TYPE INTEGRAL …mat76.mat.uni-miskolc.hu/mnotes/download_article/1831.pdf · SABIR HUSSAIN AND SOBIA RAFEEQ Received 28 October, 2015 Abstract. The authors

HERMITE-HADAMARD TYPE INEQUALITIES 841

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

8<:fA1P2

kD11qk

h.qk�1/

2

2qk�1CR 10

�eB1;k.t/�qkdti

for nD 1

fAnP2kD1

1qk

"n

nqkqk�1

C1�.qk�1/

2

qk .n�1/

qk�1C1

ˇ 2n

�nqk�1qk�1

; 2qk�1qk�1

�CR 10

�eBn;k.t/�qkdt

#for n� 2:

(2.2)

Proof. Since g.b/C t�.g.a/;g.b// 2 A for every t 2 .0;1/; by Lemma 1 andYoung’s inequality, we haveˇ

1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

�j� .g.a/;g.b//jn

nŠ�2nC2

Z 1

0

ˇ.n�2t/tn�1

ˇ �ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇC

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇ�dt

�j� .g.a/;g.b// jn

nŠ�2nC2�

Z 1

0

�q1�1

q1

ˇ.n�2t/tn�1

ˇ q1q1�1

C1

q1

ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇq1

Cq2�1

q2

ˇ.n�2t/tn�1

ˇ q2q2�1

C1

q2

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇq2�dt (2.3)

Using logarithmically relative h�preinvexity of jf .n/j; we haveZ 1

0

ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇq1

dt

Z 1

0

ˇf .n/ .g.b//

ˇh. 1Ct2/ ˇf .n/ .g.a//

ˇh. 1�t2/!q1

dt

D

Z 1

0

0@ˇf .n/ .g.b//ˇ ˇˇf .n/ .g.a//f .n/ .g.b//

ˇˇh. 1�t

2/1Aq1

dt (2.4)

Page 6: SOME NEW HERMITE-HADAMARD TYPE INTEGRAL …mat76.mat.uni-miskolc.hu/mnotes/download_article/1831.pdf · SABIR HUSSAIN AND SOBIA RAFEEQ Received 28 October, 2015 Abstract. The authors

842 SABIR HUSSAIN AND SOBIA RAFEEQ

SimilarlyZ 1

0

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇq2

dt

Z 1

0

0@ˇf .n/ .g.b//ˇ ˇˇf .n/ .g.a//f .n/ .g.b//

ˇˇh. 2�t

2/1Aq2

dt (2.5)

Also,

Z 1

0

ˇ.n�2t/tn�1

ˇ qkqk�1 dt D

8<:qk�12qk�1

for nD 1

n

nqkqk�1

C1

2

qk.n�1/

qk�1C1

ˇ 2n

�nqk�1qk�1

; 2qk�1qk�1

�for n� 2:

(2.6)

A combination of .2:3/-.2:6/ yields the desired result. �

Corollary 1. Under the conditions of theorem 1 for q1 D q2; we haveˇ1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇ

8<:eA1

q2

h2.q2�1/

2

2q2�1CR 10

P2kD1

�eB1;k.t/�q2dti

for nD 1

eAn

q2

"n

nq2q2�1

C1�.q2�1/

2

q2.n�1/

q2�1

ˇ 2n

�nq2�1q2�1

; 2q2�1q2�1

�CR 10

P2kD1

�eBn;k.t/�q2dt

#for n� 2:

Theorem 2. Let A � R be a relative invex subset with respect to � W R�R!R; with a;b 2 A and �.g.a/;g.b// ¤ 0: Suppose that f W A! .0;1/ is n�timesdifferentiable function and f .n/ is integrable on the ��relative path Pg.b/Ig.c/; suchthat jf .n/j is logarithmically relative h�preinvex on AI let q3 > 1; thenˇ

1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

Page 7: SOME NEW HERMITE-HADAMARD TYPE INTEGRAL …mat76.mat.uni-miskolc.hu/mnotes/download_article/1831.pdf · SABIR HUSSAIN AND SOBIA RAFEEQ Received 28 October, 2015 Abstract. The authors

HERMITE-HADAMARD TYPE INEQUALITIES 843

8<:eA1

q3

h.q3�1/

2

2q3�1CR 10

�P2kD1

eB1;k.t/�q3

dti

for nD 1eAn

q3

"n

nq3q3�1

C1�.q3�1/

2

q3.n�1/

q3�1C1

ˇ 2n

�nq3�1q3�1

; 2q3�1q3�1

�CR 10

�P2kD1

eBn;k.t/�q3

dt

#for n� 2:

(2.7)

Proof. Since g.b/C t�.g.a/;g.b// 2A for every t 2 .0;1/; by Lemma 1, Young’sinequality and the logarithmically relative h�preinvexity of jf .n/j; we haveˇ

1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

�j� .g.a/;g.b//jn

nŠ�2nC2

Z 1

0

ˇ.n�2t/tn�1

ˇ �ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇC

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇ�dt

�j� .g.a/;g.b// jn

nŠ�2nC2�

Z 1

0

�q3�1

q3

ˇ.n�2t/tn�1

ˇ q3q3�1

C1

q3

�ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇC

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇ�q3�dt

�j� .g.a/;g.b// jn

nŠ�2nC2�q3�

Z 1

0

�.q3�1/

ˇ.n�2t/tn�1

ˇ q3q3�1

C

0@ 2XkD1

ˇf .n/ .g.b//

ˇ ˇˇf .n/ .g.a//f .n/ .g.b//

ˇˇh.k�t

2/1Aq3

375dt�

Corollary 2. Under the conditions of theorem 2 for nD 2; we haveˇ1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

ˇˇ

Page 8: SOME NEW HERMITE-HADAMARD TYPE INTEGRAL …mat76.mat.uni-miskolc.hu/mnotes/download_article/1831.pdf · SABIR HUSSAIN AND SOBIA RAFEEQ Received 28 October, 2015 Abstract. The authors

844 SABIR HUSSAIN AND SOBIA RAFEEQ

�fA2q3

242 q3q3�1 � .q3�1/�ˇ

�2q3�1

q3�1;2q3�1

q3�1

�C

Z 1

0

2XkD1

eB2;k.t/!q3

dt

35Theorem 3. Let A � R be a relative invex subset with respect to � W R�R!

R; with a;b 2 A and �.g.a/;g.b// ¤ 0: Suppose that f W A! .0;1/ is n�timesdifferentiable function and f .n/ is integrable on the ��relative path Pg.b/Ig.c/; suchthat jf .n/j is logarithmically relative h�preinvex on AI let q3 > 1; and q3 � r > 0;thenˇ

1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

8<ˆ:

eA1

q3

h.q3�1/

2

2q3�r�1CR 10 j.n�2t/t

n�1jr�P2

kD1eB1;k.t/�q3

dti

for nD 1

eAn

q3

"n

n.q3�r/

q3�1C1�.q3�1/

2

.q3�r/.n�1/

q3�1C1

ˇ 2n

�nq3�nrCr�1

q3�1; 2q3�r�1

q3�1

�CR 10 j.n�2t/t

n�1jr�P2

kD1eBn;k.t/�q3

dti

for n� 2:

(2.8)

Proof. Since g.b/C t�.g.a/;g.b// 2A for every t 2 .0;1/; by Lemma 1, Young’sinequality and the logarithmically relative h�preinvexity of jf .n/j, we haveˇ

1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

�j� .g.a/;g.b//jn

nŠ�2nC2

Z 1

0

ˇ.n�2t/tn�1

ˇ �ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇC

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇ�dt

�j� .g.a/;g.b// jn

nŠ�2nC2

Z 1

0

�q3�1

q3

ˇ.n�2t/tn�1

ˇ q3�r

q3�1 C1

q3

ˇ.n�2t/tn�1

ˇr

Page 9: SOME NEW HERMITE-HADAMARD TYPE INTEGRAL …mat76.mat.uni-miskolc.hu/mnotes/download_article/1831.pdf · SABIR HUSSAIN AND SOBIA RAFEEQ Received 28 October, 2015 Abstract. The authors

HERMITE-HADAMARD TYPE INEQUALITIES 845

�ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇC

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇ�q3�dt

�j� .g.a/;g.b// jn

nŠ�2nC2�q3�

Z 1

0

�.q3�1/

ˇ.n�2t/tn�1

ˇ q3�r

q3�1

Cˇ.n�2t/tn�1

ˇr�

0@ 2XkD1

ˇf .n/ .g.b//

ˇ ˇˇf .n/ .g.a//f .n/ .g.b//

ˇˇh.k�t

2/1Aq3

375dt�

Corollary 3. Under the conditions of theorem 3 for r D q3; we have

ˇ1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

8<:eA1

q3

h.q3�1/C

R 10

�j.n�2t/tn�1j

P2kD1

eB1;k.t/�q3

dti

for nD 1eAn

q3

hn.q3�1/

2ˇ 2

n.1;1/C

R 10

�j.n�2t/tn�1j

P2kD1

eBn;k.t/�q3

dti

for n� 2:

Theorem 4. Let A � R be a relative invex subset with respect to � W R�R!R; with a;b 2 A and �.g.a/;g.b// ¤ 0: Suppose that f W A! .0;1/ is n�timesdifferentiable function and f .n/ is integrable on the ��relative path Pg.b/Ig.c/; suchthat jf .n/j is logarithmically relative h�preinvex on AI let q3 > 1; and then

ˇ1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

Page 10: SOME NEW HERMITE-HADAMARD TYPE INTEGRAL …mat76.mat.uni-miskolc.hu/mnotes/download_article/1831.pdf · SABIR HUSSAIN AND SOBIA RAFEEQ Received 28 October, 2015 Abstract. The authors

846 SABIR HUSSAIN AND SOBIA RAFEEQ

8<:eA1P2

kD1

�R 10

�eB1;k.t/�q3dt� 1

q3

�q3�12q3�1

�1� 1q3 for nD 1

eAnP2kD1

�R 10

�eBn;k.t/�q3dt� 1

q3

"n

nq3q3�1

C1

2

q3.n�1/

q3�1C1ˇ 2

n

�nq3�1q3�1

; 2q3�1q3�1

�#1� 1q3

for n� 2:

(2.9)

Proof. Since g.b/C t�.g.a/;g.b//2A for every t 2 .0;1/; by Lemma 1, Holder’sinequality and the logarithmically relative h�preinvexity of jf .n/j; we haveˇ

1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ�.g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

�j� .g.a/;g.b// jn

nŠ�2nC2

Z 1

0

ˇ.n�2t/tn�1

ˇ �ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇC

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇ�dt

�j� .g.a/;g.b// jn

nŠ�2nC2

�Z 1

0

ˇ.n�2t/tn�1

ˇ q3q3�1 dt

�1� 1q3

8<:�Z 1

0

ˇf .n/

�g.b/C

1� t

2� .g.a/;g.b//

�ˇq3

dt

� 1q3

C

�Z 1

0

ˇf .n/

�g.b/C

2� t

2� .g.a/;g.b//

�ˇq3

dt

� 1q3

9=;�j� .g.a/;g.b// jn

nŠ�2nC2

�Z 1

0

ˇ.n�2t/tn�1

ˇ q3q3�1 dt

�1� 1q3

2XkD1

0B@Z 1

0

0@ˇf .n/ .g.b//ˇ ˇˇf .n/ .g.a//f .n/ .g.b//

ˇˇh.k�t

2/1Aq3

dt

1CA1

q3

Corollary 4. Under the conditions of theorem 4 for nD 2; we have

Page 11: SOME NEW HERMITE-HADAMARD TYPE INTEGRAL …mat76.mat.uni-miskolc.hu/mnotes/download_article/1831.pdf · SABIR HUSSAIN AND SOBIA RAFEEQ Received 28 October, 2015 Abstract. The authors

HERMITE-HADAMARD TYPE INEQUALITIES 847ˇ1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

ˇˇ

� 2eA2 2XkD1

�Z 1

0

�eB2;k.t/�q3dt

� 1q3�ˇ

�2q3�1

q3�1;2q3�1

q3�1

��1� 1q3

Theorem 5. Let A � R be a relative invex subset with respect to � W R�R!R; with a;b 2 A and �.g.a/;g.b// ¤ 0: Suppose that f W A! .0;1/ is n�timesdifferentiable function and f .n/ is integrable on the ��relative path Pg.b/Ig.c/; suchthat jf .n/j is logarithmically relative h�preinvex on AI let q3 � 1; thenˇ

1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

8<ˆ:eA1

P2kD1

�R 10 j.n�2t/t

n�1j

�eB1;k.t/�q3

dt

� 1q3

21� 1

q3

for nD 1

eAnP2kD1

�R 10 j.n�2t/t

n�1j�eBn;k.t/�q3

dt� 1

q3�n�1nC1

�1� 1q3 for n� 2:

Proof. By using the weighted power mean inequality and the similar techniquesused in theorem 4, we can prove this theorem. �

Corollary 5. Under the conditions of theorem 5 for q3 D 1; we haveˇ1

2

�f .g.b//Cf .g.b/C� .g.a/;g.b///

2Cf

�2g.b/C� .g.a/;g.b//

2

���

1

� .g.a/;g.b//

Z g.b/C�.g.a/;g.b//

g.b/

f .g.u//dg.u/

n�1XkD2

Œ� .g.a/;g.b//�k.k�1/

.kC1/Š�2kC2

�f .k/ .g.b//Cf .k/

�2g.b/C� .g.a/;g.b//

2

��ˇˇ

(eA1 P2kD1

R 10 j.n�2t/t

n�1j eB1;k.t/dt for nD 1eAn P2kD1

R 10 j.n�2t/t

n�1j eBn;k.t/dt for n� 2:

Page 12: SOME NEW HERMITE-HADAMARD TYPE INTEGRAL …mat76.mat.uni-miskolc.hu/mnotes/download_article/1831.pdf · SABIR HUSSAIN AND SOBIA RAFEEQ Received 28 October, 2015 Abstract. The authors

848 SABIR HUSSAIN AND SOBIA RAFEEQ

Remark 7. If g.t/D I; where I is an identity function, then our results coincidethe results for logarithmically h�preinvex functions.

ACKNOWLEDGEMENT

The authors are grateful to the anonymous reviewers and editor for their so-calledinsights.

REFERENCES

[1] C. Fulga and V. Preda, “Nonlinear programming with E-preinvex and local E-preinvex functions,”Eur. J. Oper. Reseach., vol. 192, no. 3, pp. 737–743, 2009, doi: 10.1016/j.ejor.2007.11.056.

[2] S. Hussain and S. Rafeeq, “Some new Hermite-Hadamard type inequalities for functions whosen�th derivatives are ˛�relative preinvex,” Submitted.

[3] U. S. Kirmaci and M. E. Ozdemir, “On some inequalities for differentiable mappings and applic-ations to special means of real numbers and to midpoint formula,” Appl. Math. Comp., vol. 153,no. 2, pp. 361–368, 2004, doi: 10.1016/S0096-3003(03)00637-4.

[4] M. A. Latif, “On Hermite-Hadamard type integral inequalities for n�times differentiable preinvexfunctions with applications,” Stud. Univ. Babes-Bolyai Math., vol. 58, no. 3, pp. 325–343, 2013.

[5] M. A. Latif and S. S. Dragomir, “Some weighted integral inequalities for differentiable pre-invex and prequasiinvex functions with applications,” J. Inequal. Appl., no. 575, 2013, doi:10.1186/1029-242X-2013-575.

[6] M. A. Noor, “Invex equilibrium problems,” J. Math. Anal. Appl., vol. 302, no. 2, pp. 463–475,2005, doi: 10.1016/j.jmaa.2004.08.014.

[7] M. A. Noor, “Hermite-Hadamard integral inequalities for log-preinvex functions,” J. Math. Anal.Approx. Theory, no. 2, pp. 126–131, 2007.

[8] M. A. Noor, “Hadamrd integral inequalities for product of two preinvex function,” Nonl. Anal.forum, no. 14, pp. 167–173, 2009.

[9] M. A. Noor, K. I. Noor, M. U. Awan, and F. Qi, “Integral inequalities of Hermite-Hadamard typefor logarithmically h�preinvex functions,” Cogent Math., vol. 2, no. 1035856, pp. 1–10, 2015,doi: 10.1080/23311835.2015.1035856.

[10] C. E. M. Pearce and J. Pecaric, “Inequalities for differentiable mappings with application tosprcial means and quadrature formulae,” Appl. Math. Lett., vol. 13, no. 2, pp. 51–55, 2000, doi:10.1016/S0893-9659(99)00164-0.

[11] M. Z. Sarikaya, N. Alp, and H. Bozkurt, “On Hermite-Hadamard type Integral inequalities forpreinvex and log-preinvex functions,” Contemp. Anal. Appl. Math., vol. 1, no. 2, pp. 237–252,2013.

[12] S. Varosanec, “On h�convexity,” J. Math. Anal. Appl., vol. 326, no. 1, pp. 303–311, 2007, doi:10.1016/j.jmaa.2006.02.086.

[13] S.-H. Wang and F. Qi, “Hermite-Hadamrd type inequalities for n�times differentiable and prein-vex functions,” J. Inequal. Appl., 2014, doi: 10.1186/1029-242X-2014-49.

[14] Y. Wang, M.-M. Zheng, and F. Qi, “Integral inequalities of Hermite-Hadamard type for functionswhose derivatives are ˛�preinvex,” J. Inequal. Appl., no. 97, pp. 1–10, 2014, doi: 10.1186/1029-242X-2014-97.

[15] T. Weir and B. Mond, “Preinvex functions in multiobjective optimization,” J. Math. Anal. Appl.,vol. 136, no. 1, pp. 29–38, 1988, doi: 10.1016/0022-247X(88)90113-8.

Page 13: SOME NEW HERMITE-HADAMARD TYPE INTEGRAL …mat76.mat.uni-miskolc.hu/mnotes/download_article/1831.pdf · SABIR HUSSAIN AND SOBIA RAFEEQ Received 28 October, 2015 Abstract. The authors

HERMITE-HADAMARD TYPE INEQUALITIES 849

Authors’ addresses

Sabir HussainUniversity of Engineering and Technology, Department of Mathematics, Lahore, PakistanE-mail address: [email protected]

Sobia RafeeqUniversity of Engineering and Technology, Department of Mathematics, Lahore, PakistanE-mail address: [email protected]