Signal Integrity Simulation and Equivalent Circuit Modeling

Preview:

Citation preview

NTU

Signal Integrity Simulation and Equivalent Circuit Modeling

Tzong-Lin Wu

Department of Electrical EngineeringNational Taiwan University

Taipei, Taiwanwtl@cc.ee.ntu.edu.tw

NTU OutlineIntroduction

Signal Integrity Simulation in SPICEA case Study: Driver Board of TFT Display Panel

TDR Concept and Layer Peeling Technique (one port)

Macro-model Synthesis for Coupled Discontinuities of Signal Path (two-port)

Challenge of SI Modeling for Real PCB and Package

Summary

NTU

3

Introduction

With rapidly increased clock rate and denser interconnect layout, noise caused by the discontinuities can be a critical factor to degrade the signal integrity (SI) of circuit systems.

Example: Via coupling

stepV

TDTVCoupling

0 2E-011 4E-011 6E-011 8E-011 1E-010 1.2E-010t (s)

-0.005

0

0.005

0.01

0.015

0.02

0.025

V TD

T (v

olt) Signal rising time

100ps50ps20ps10ps

NTU

4

Introduction

GND

Power

Extracting SPICE-compatible models for thosediscontinuities are essential.

Benefits:1. More convenient integration with chip circuits

under SPICE environment.2. Better accuracy with higher order of equivalent circuits.

NTU Case Study: Driver Board of TFT Display

Time Controller (T-CON)

Driver IC

Driver PCB

NTU Case Study: Driver Board of TFT Display

Objectives of this project: Signal integrity modeling for the driver PCB and compare with the measured results.

Approaches:Establishing SPICE-compatible model for all interconnects and doing SI simulation on HSPICE.

IC I/O Buffer ModelSPICE modelIBIS model

NTU

TCON

Driver IC Driver IC Driver IC

Case Study: Driver Board of TFT Display -- HSPICE Approach

via1

via2

via3via3

Differential line (no GND)

Differential line(with GND)

FPCFPC FPC

Step 1: Trace all interconnects from driver (T-CON) to receiver (driver IC)

NTU

GND

Differential line (with GND)

Differential line (no GND)

Step 2: Extract SPICE Compatible models for each partitioned interconnects byAnsoft Q3D (Differential signals)

Case Study: Driver Board of TFT Display -- HSPICE Approach

NTU

TCON

Driver IC Driver IC Driver IC

Differential line (no GND)

Differential line(with GND)

via1

via2

via3via3

FPCFPC FPC

via1. via2.

Case Study: Driver Board of TFT Display -- HSPICE Approach

Step 2: Extract SPICE Compatible models for each partitioned interconnects byAnsoft Q3D (Differential Via Holes)

NTU

Case Study: Driver Board of TFT Display -- HSPICE Approach

2

1

34

via1.

12

3

4

Via Macro-model (type 1)

NTU

Case Study: Driver Board of TFT Display -- HSPICE Approach

via2.

Via Macro-model (type 2)

NTU

TCON

Driver IC Driver IC Driver IC

via1

via2

via3via3

Differential line (no GND)

Differential line(with GND)

FPCFPC FPC

Case Study: Driver Board of TFT Display -- HSPICE Approach

Step 2: Extract SPICE Compatible models for each partitioned interconnects byAnsoft Q3D (Flexible PCB)

NTU

Case Study: Driver Board of TFT Display -- HSPICE Approach

Substrate : polyimide

Differentialline

•Line pitch : 0.028mm•Substrate : polyimide (εr 3.5)•Thickness : 0.038mm

NTU

TCON

Differential line (no GND)

Differential line(with GND)

軟板軟板

via1

via2via3 via3

TCON(IBIS . spice)

open open open

Case1 : Open circuit for the receiver side (Driver IC)Using SPICE and IBIS models for transmitted side (T-CON)

Measuring Probes

軟板

open

via2

軟板

100Ω

Case Study: Driver Board of TFT Display -- HSPICE Approach

Step 4: Comparison between modeling and measurement

NTU

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

SpiceIBISmeasurement

Case Study: Driver Board of TFT Display -- HSPICE Approach

Case1 : Open circuit for the receiver side (Driver IC) Using SPICE and IBIS models for transmitted side (T-CON)

Step 4: Comparison between modeling and measurement

NTU

TCON

Driver IC

Differential line (no GND)

Differential line(with GND)

軟板軟板

via1

via2via3 via3

TCON(IBIS . spice)

Driver(IBIS)

訊號觀測點

Driver IC軟板

Driver(IBIS)

via2

軟板

Driver(IBIS)

100Ω

Driver(IBIS)

Case Study: Driver Board of TFT Display -- HSPICE Approach

Case2 : Using IBIS model for the receiver side (Driver IC) Using SPICE and IBIS models for transmitted side (T-CON)

Step 4: Comparison between modeling and measurement

NTU

Case Study: Driver Board of TFT Display -- HSPICE Approach

Case2 : Using IBIS model for the receiver side (Driver IC) Using SPICE and IBIS models for transmitted side (T-CON)

Step 4: Comparison between modeling and measurement

NTU OutlineIntroduction

Signal Integrity Simulation in SPICEA case Study: Driver Board of TFT Display Panel

TDR Concept and Layer Peeling Technique (one port)

Macro-model Synthesis for Coupled Discontinuities of Signal Path (two-port)

Challenge of SI Modeling for Real PCB and Package

Summary

NTU

19

TDR basic theory

2 d cablet

open circuit

load circuit

short circuit0

stepV

2 stepV1Γ =

0Γ =

1Γ = −

Coaxial cable

TDRV

stepV rV

stT eDR p rV V V= +

DUT Time-DomainReflectometry (TDR)

(1 )TDR step r stepV V V V= + = + Γ ⋅ ( ) ( )0 0/L LZ Z Z ZΓ = − +

NTU

20 2005/6/18

TDR theory

0Z 0Z

0Z0Z

C

L

0

stepV

capacitive dip

0

stepV

inductive peak

Coaxial cable

TDRV

stepV rV

stT eDR p rV V V= +

DUT Time-DomainReflectometry (TDR)

NTU

21

TDR theory

Fig. Source: HP TDR

NTU

22

Layer Peeling Technique (LPT)

1x1ZdT

1, ja−

1, jb−

( )I t

2x2Z

dT

3xdT

ixiZ

dT

,i ja−

,i jb−

,i jb +

,i ja+

, 1i jb

+

+, 1i j

a+

+

( )V t

0Z 2Z1Z

1X 2X 3X

X←Δ →

1iZ +

1ix +( )inV t

sZ

,11

1 ,1

ii ii

i i i

bZ ZZ Z a

−−

−−

−Γ ≡ =

+ ( )1

, ,2 2

, ,

11

1i j i ji

iii j i j

a a

b b

+ −−

+ −

⎡ ⎤ ⎡ ⎤−Γ⎡ ⎤= −Γ⎢ ⎥ ⎢ ⎥⎢ ⎥−Γ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

1, ,

1, , 1

i j i j

i j i j

a a

b b

− ++

− ++ +

=

=( ) ( )( ) ( )

1

1

1 1i i i i i i

i i i ii i

Z a b Z a b

a b a bZ Z

− − + +−

− − + +

+ = +

− = −

NTU

23 2005/6/18

Layer Peeling Technique (LPT) Begin

i=N?

i=i+1

End

111

ii i

i

Z Z −+ Γ

=− Γ

( )1

, ,2 2

, ,

11

1i j i ji

iii j i j

a a

b b

+ −−

+ −

⎡ ⎤ ⎡ ⎤− Γ⎡ ⎤= − Γ⎢ ⎥ ⎢ ⎥⎢ ⎥− Γ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

,1

,1

ii

i

ba

−Γ =

TDR

in

VV

⇒1, 1

1, 1

j

j

a a

b b

− −

− −

=

=

0 50, 1Z i= =

1, ,i j i ja a− ++ =

1, , 1i j i jb b− ++ += 1,2,3, ,j N i= −

1,2,3, ,j N i= −

1x

1ZdT

1, ja−

1, jb−

( )I t

2x2Z

dT

3xdT

ixiZ

dT

,i ja−

,i jb−

,i jb +

,i ja+

, 1i jb

+

+, 1i j

a+

+

( )V t

0Z 2Z1Z

1X 2X 3X

X←Δ →

1iZ +

1ix +( )inV t

sZ

NTU

24 2005/6/18

Layer Peeling Technique (LPT)

TDRV

0 1 2 3 4 5 6 7t (ns)

0.05

0.1

0.15

0.2

0.25

0.3

V TD

R (v

olt)

0 1 2 3 4 5 6 7t (ns)

20

30

40

50

60

70

80

90

100

110

Line

Impe

danc

e (O

hm)

70 ohm

100 ohm

40 ohm50 ohm

NTU OutlineIntroduction

Signal Integrity Simulation in SPICEA case Study: Driver Board of TFT Display Panel

TDR Concept and Layer Peeling Technique (one port)

Macro-model Synthesis for Coupled Discontinuities of Signal Path (two-port)

Challenge of SI Modeling for Real PCB and Package

Summary

NTU

262005/6/18

shorting vias

Differential via

SG

IC

GS

ICThrough-hole via

Broadband Macro-Models of Differential Via

NTU

27

Broadband Macro-Models of Differential Via

LR

1M

2M

3M

Port 1

Port 2

0LR Z=

0Z 0Z

stepV

Terminatted traces

Anti-Pad

Via-Pad

trace1

trace2

trace3

trace4

TDRV

TDRV

TDTV

TDTV

NTU

28

Step responses and macro-PI model

Step response : : incident wave: reflected wave: stimulative port: detected port

: step responsemn

abnmy

( )im

mn in

by ta

=

1( ) exp( )

mni i

mn mn mn

L

iy t r p t

== −∑

: residues

: poles: mode numbers

imn

imn

mnL

rp

Pencil of matrix method

NTU

29 2005/6/18

11 22 12 21 11 22 12 210

21 21

11 22 12 21 11 22 12 21

0 21 21

(1 )(1 ) (1 )(1 )2 2

1 (1 )(1 ) (1 )(1 )2 2

ZA BC D

Z

ξ ξ ξ ξ ξ ξ ξ ξξ ξ

ξ ξ ξ ξ ξ ξ ξ ξξ ξ

+ − + + + −⎡ ⎤⎢ ⎥⎡ ⎤ ⎢ ⎥=⎢ ⎥ − − − − + +⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

[ ]1 2 31 1 1D AM M M

B B B− −⎡ ⎤= ⎢ ⎥⎣ ⎦

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )

11 22 12 21 211

0 11 22 12 21

11 22 12 21 212

0 11 22 12 21

213

0 11 22 12 21

(1 )(1 ) 21(1 )(1 )

(1 )(1 ) 21(1 )(1 )

1 2 (1 )(1 )

M sZ

M sZ

M sZ

ξ ξ ξ ξ ξξ ξ ξ ξ

ξ ξ ξ ξ ξξ ξ ξ ξ

ξξ ξ ξ ξ

− + + −+ + −

+ − + −+ + −

=+ + −

=

=

Lapalace transformation:

1

( )mnL i

mnmn i

i mn

rs ss p

ξ=

=+∑Impulse response:

LR

LR1M

2M

3M

Port 1

Port 2

0Z 0Z

Step responses and macro-PI model

( )0 1 1 *

0 1 1

1 1 10 1 1 1 1

( )( ) ( )

( )i i iN i N i N i

k k ki ii i i i i

k k kk k k k k

r r rM s s Ks s j s j

sα α β α β= = =

++ + + + −

= + +∑ ∑ ∑

( )1

mnL imn

mn ii mn

ry ss p=

=+∑

NTU

30 2005/6/18

Order reduction

( )0 1 1 *

0 1 1

1 1 10 1 1 1 1

( )( ) ( )

( )i i iN i N i N i

k k ki ii i i i i

k k kk k k k k

r r rM s s Ks s j s j

sα α β α β= = =

++ + + + −

= + +∑ ∑ ∑

( )0 1

0 1

1

1

0 1

1 10 1 1

*1

1 1 1

( )

( ) ( )

(

)

i i

i ik k

i

ik

N i N ik k

i i i ik kk k k

r D r D

N ik

ii ik k k

r D

r rM s ss s j

r Ks j

sα α β

α β

= =≥ ≥

=≥

+ + +

+ −

= +

+ +

∑ ∑

: 0.1% ~ 5% maximum residueD

We define a parameter D for mode selection

NTU

31 2005/6/18

Passivity criterion

* *Re{ } Re{ } 0P V I V YV= = ≥

1M 2M

3M 12Y−

11 12Y Y+22 12Y Y+

1 3 311 12

3 2 321 22

M M MY YY

M M MY Y+ −⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥ − +⎣ ⎦ ⎣ ⎦

11 1 3

12 21 3

22 2 3

Y M MY Y M

Y M M

= += = −

= +1 3 3

3 2 3

( ) ( ) ( )eigen{Re } 0

( ) ( ) ( )M j M j M j

M j M j M jω ω ω

ω ω ω⎡ ⎤+ −

≥⎢ ⎥− +⎣ ⎦

NTU

32

Systematic lumped-model extraction technique (SLET)

0 1

21 1

0 0

( )( )( )

i i

K Ki i i

i ii ii i iq v

q rs v P sM s s s Ks h s u s m Q s= =

> >

+= + + +

+ + +∑ ∑

( )0 1 1

0 1 1

*0 1 1

1 1 10 1 1 1 1

( )( ) ( )

( )i i i

i i ik k k

N i N i N ik k k

i ii i i i ik k kk k k k k

r D r D r D

r r rM s s Ks s j s j

sα α β α β= = =

≥ ≥ ≥

+ + + + −= + + +∑ ∑ ∑

1 2 0 31/ 0K K Z K= = =

NTU

33 2005/6/18

Systematic lumped-model extraction technique (SLET)

0 1

21 1

0 0

( )( )( )

i i

K K

i ii iq v

i

i

i

i i

i

s P sM s s s Ks s s m

q r vuh Q s= =

> >

+= + + +

+ + +∑ ∑

1

1Ci

Ci i

RY ss

R C

=+

1

1

Ci

iCi

i

i

R

C

q

h R

=

=

iC

iCRiC

iCR

iLRiL

1

1

i

Cii

Li Cii

Lii

i i

i

i

ii

i

i

vm

ruv

C

RC

R R

RL

rr

C m

=

⎛ ⎞= −⎜ ⎟

⎝ ⎠

= −

⋅=

2 ( ) ( )i

i i i i i

i i i L

L i i C i i C L i i L

sLC C RY s

s R LC R LC s R R C L R+

=+ + + +

NTU

34

Systematic lumped-model extraction technique (SLET)

32

21 1

0 0

( )( )

i i

i i

i

KK

ii iq v

i

i

i

qP s ss s r vu

KQ s s s s mh= =

< <

+= + +

+ + +∑ ∑

iC2 ( )

iCV s

( ) iCV s+ −

iCRiCR

2 ( )iLV s

L

iLR

iC

( ) iCV s+ −

2 ( )iCV s ( )

iLV s+ −

1

1

Cii

ii Ci

Rq

Ch R

=

−=

1

1

ii Li Ci

i i

i Li iCi i i

i i i i

vC R Rm r

r R rR u Lv C C m

−= = −

⎛ ⎞ ⋅= + =⎜ ⎟ ⋅⎝ ⎠

NTU

35

1M

2M

3M +−

+−

+−

+−

+−

+−

+−

+−

+−

2 ( )LV s

+-

+-

2 ( )CV s

( )CV s+

-

+

-( )LV s

+-

2 ( )CV s

( )CV s

+

-

Vstep

LR

LRC

1M

2M

3M

Port 1

Port 2

Port 3

Port 4

0Z 0Z

NTU

36

Flow chart

( )im

mn in

by ta

=

1( ) exp( )

mni i

mn mn mn

L

iy t r p t

== −∑

TDR or FDTD

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )

11 22 12 21 211

0 11 22 12 21

11 22 12 21 212

0 11 22 12 21

213

0 11 22 12 21

(1 )(1 ) 21(1 )(1 )

(1 )(1 ) 21(1 )(1 )

1 2 (1 )(1 )

M sZ

M sZ

M sZ

ξ ξ ξ ξ ξξ ξ ξ ξ

ξ ξ ξ ξ ξξ ξ ξ ξ

ξξ ξ ξ ξ

− + + −+ + −

+ − + −+ + −

=+ + −

=

=

( )0 1 1

0 1 1

*0 1 1

1 1 10 1 1 1 1

( )( ) ( )

( )i i i

i i ik k k

N i N i N ik k k

i i i i i ik k kk k k k k

r D r D r D

r r rM s s Ks s j s j

sα α β α β= = =

≥ ≥ ≥

+ + + + −= + + +∑ ∑ ∑

LR

LR1M

2M

3M

Port 1

Port 2

0Z 0Z

1 3 3

3 2 3

( ) ( ) ( )eigen{Re } 0

( ) ( ) ( )M j M j M j

M j M j M jω ω ω

ω ω ω⎡ ⎤+ −

≥⎢ ⎥− +⎣ ⎦

NTU

37

Example: asymmetric vias

LR LR4.3rε =

Transmission line 50 OhmPort 2

S = 3 mil

GND

Port 1

Port 3 Port 4

Coupling Vias

LR

LR1M

2M

3M

Port 1

Port 2

0Z 0Z

NTU

38

Eigen-values profile of asymmetric vias

0.1 1 10GHz

0.01

0.02

0.03

0.04

0.05

Eige

nval

ue

asymmetric vias£f1£f2

1 3 3

3 2 3

( ) ( ) ( )eigen{Re } 0

( ) ( ) ( )M j M j M j

M j M j M jω ω ω

ω ω ω⎡ ⎤+ −

≥⎢ ⎥− +⎣ ⎦

NTU

39 2005/6/18

Stability

( )0 1

0 1

1

1

0 1

1 10 1 1

*1

1 1 1

( )

( ) ( )

(

)

i i

i ik k

i

ik

N i N ik k

i i i ik kk k k

r D r D

N ik

ii ik k k

r D

r rM s ss s j

r Ks j

sα α β

α β

= =≥ ≥

=≥

+ + +

+ −

= +

+ +

∑ ∑

1M

2M

3M

+−

+−

+−

+−

+−

+−

+−

+−

+−

NTU

40

Time-domain response – V11

0 10 20 30 40 50 60 70 80t (ps)

0

0.05

0.1

0.15

0.2

0.25

V 11

(vol

t)

3D-FDTDextracted model mode 54extracted model mode 44

( )0 1 1

0 1 1

*0 1 1

1 1 10 1 1 1 1

( )( ) ( )

( )i i i

i i ik k k

N i N i N ik k k

i ii i i i ik k kk k k k k

r D r D r D

r r rM s s Ks s j s j

sα α β α β= = =

≥ ≥ ≥

+ + + + −= + + +∑ ∑ ∑

LR LR4.3rε =

Transmission line 50 OhmPort 2

S = 3 mil

GND

Port 1

Port 3 Port 4

Coupling Vias

NTU

41

Time-domain response – V12 & V22

0 10 20 30 40 50 60 70 80t (ps)

0

0.05

0.1

0.15

0.2

0.25

V 22

(vol

t)

3D-FDTDextracted model mode 54extracted model mode 44

-0.015

-0.005

0.005

0.015

0.025

0.035

V12 & V

21 (volt)

( )0 1 1

0 1 1

*0 1 1

1 1 10 1 1 1 1

( )( ) ( )

( )i i i

i i ik k k

N i N i N ik k k

i ii i i i ik k kk k k k k

r D r D r D

r r rM s s Ks s j s j

sα α β α β= = =

≥ ≥ ≥

+ + + + −= + + +∑ ∑ ∑

LR LR4.3rε =

Transmission line 50 OhmPort 2

S = 3 mil

GND

Port 1

Port 3 Port 4

Coupling Vias

NTU

42

0 5 10 15 20 25 30GHz

-70

-60

-50

-40

-30

-20

-10

0

S11

(dB

)

3D-FDTD S11extracted model mode 54extracted model mode 44

0 5 10 15 20 25 30GHz

-200

-150

-100

-50

0

50

100

150

200

S11

(deg

)

3D-FDTD S11extracted model mode 54extracted model mode 44

Frequency-domain response - S11 & S21

0 5 10 15 20 25 30GHz

-80

-70

-60

-50

-40

-30

-20

-10

0

S21

(dB

)

3D-FDTD S21extracted model mode 54extracted model mode 44

0 5 10 15 20 25 30GHz

-200

-150

-100

-50

0

50

100

150

200

S21

(deg

)

3D-FDTD S21extracted model mode 54extracted model mode 44

LR LR4.3rε =

Transmission line 50 OhmPort 2

S = 3 mil

GND

Port 1

Port 3 Port 4

Coupling Vias

NTU

43

Frequency-domain response - S31 & S22

0 5 10 15 20 25 30GHz

-20

-15

-10

-5

0

5

S31

(dB

)

3D-FDTD S31extracted model mode 54extracted model mode 44

0 5 10 15 20 25 30GHz

-200

-150

-100

-50

0

50

100

150

200

S31

(deg

)

3D-FDTD S31extracted model mode 54extracted model mode 44

0 5 10 15 20 25 30GHz

-70

-60

-50

-40

-30

-20

-10

0

S22

(dB

)

3D-FDTD S22extracted model mode 54extracted model mode 44

0 5 10 15 20 25 30GHz

-200

-150

-100

-50

0

50

100

150

200

S22

(deg

)

3D-FDTD S22extracted model mode 54extracted model mode 44

LR LR4.3rε =

Transmission line 50 OhmPort 2

S = 3 mil

GND

Port 1

Port 3 Port 4

Coupling Vias

NTU

44

Example: Differential via

Transmission line 50 OhmPort 2

S = 3 mil

GND

Port 1

LR LR4.3rε =

Port 3 Port 4

GND

Differential Vias

LR

LR1M

3M

Port 1

Port 2

0Z 0Z

1M

NTU

45

Eigen-values profile of differential vias

1 3 3

3 2 3

( ) ( ) ( )eigen{Re } 0

( ) ( ) ( )M j M j M j

M j M j M jω ω ω

ω ω ω⎡ ⎤+ −

≥⎢ ⎥− +⎣ ⎦

0.1 1 10GHz

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Eige

nval

ue

Differential via£f1£f2

NTU

46

Time-domain response – V11 & V21

0 10 20 30 40 50 60 70 80t (ps)

0

0.05

0.1

0.15

0.2

0.25

V 11

(vol

t)

3D-FDTDextracted model

-0.02

-0.01

0

0.01

0.02

0.03

0.04

V12 & V

21 (volt)

NTU

47

Frequency-domain response - S11 & S21

0 5 10 15 20 25 30GHz

-70

-60

-50

-40

-30

-20

-10

0

10

S11

(dB

)

3D-FDTD S11extracted model S11

0 5 10 15 20 25 30GHz

-200

-150

-100

-50

0

50

100

150

200

S11

(deg

)

3D-FDTD S11extracted model

0 5 10 15 20 25 30GHz

-80

-70

-60

-50

-40

-30

-20

-10

0

S21

(dB

)

3D-FDTD S21extracted model S21

0 5 10 15 20 25 30GHz

-200

-150

-100

-50

0

50

100

150

200

S21

(deg

)3D-FDTD S21extracted model

NTU

48 2005/6/18

Frequency-domain response - S31 & S41

0 5 10 15 20 25 30GHz

-20

-15

-10

-5

0

5

S31

(dB

)

3D-FDTD S31extracted model S31

0 5 10 15 20 25 30GHz

-200

-150

-100

-50

0

50

100

150

200

S31

(deg

)

3D-FDTD S31extracted model

0 5 10 15 20 25 30GHz

-80

-70

-60

-50

-40

-30

-20

-10

0

S41

(dB

)

3D-FDTD S41extracted model S41

0 5 10 15 20 25 30GHz

-200

-150

-100

-50

0

50

100

150

200

S41

(deg

)

3D-FDTD S41extracted model

NTU OutlineIntroduction

Signal Integrity Simulation in SPICEA case Study: Driver Board of TFT Display Panel

TDR Concept and Layer Peeling Technique (one port)

Macro-model Synthesis for Coupled Discontinuities of Signal Path (two-port)

Challenge of SI Modeling for Real PCB and Package

Summary

NTU Challenge of Modeling the Real PCB and Package

4-layer Motherboard for Desktop Computer (PCB)

NTU Challenges for Modeling the Real PCB and Package

Top side

Bottom side

4-layer Motherboard for Desktop Computer (PCB)

NTU Challenges for Modeling the Real PCB and Package

4-layer BGA Package, 37.5mm ×

37.5mm, 788 pin balls

Ground Layer (layer 2)

Power Layer (layer 3)

NTU Challenges for Modeling the Real PCB and Package

Real PCB and Packages

1. Several thousands traces routed on a PCB.2. Several thousand through hole vias3. Perforated power and ground planes4. Irregular power/ground planes partitions.

In SI simulation, we need to think

How accurate you need?How complicated your circuits are?How much (computing) resources you have?

NTU Challenges for Modeling the Real PCB and Package

Material Characteristics:

1. Substrate: Broadband information of dielectric constant and loss tangent.

2. Conductor: frequency dependent loss (skin effect)

( ) ( ) ( )' ''f f j fε ε ε= −

NTUChallenges for Modeling the Real PCB and Package in High-speed Circuits

Signal Propagation Characteristics:

1. Signal line referred to the perforated power or ground planes.

2. Broadband single (differential) via models

NTUChallenges for Modeling the Real PCB and Package in High-speed Circuits

Power distribution networks characteristics

Challenges: (how accurate?)• Power/ground ring with shorting vias• Thousands of via holes on power/ground planes• Vertical interconnects modeling and linking between package and PCB• Mutual coupling between package and PCB

NTUChallenges for Modeling the Real PCB and Package in High-speed Circuits

Power Network Pre-drive

Circuits

IVDD

Ipd

Ishot

Isig

( )VDD sig shot pd clampI I I I I≅ + + +

IBIS Model for Power Noise modeling

Isig are considered in IBIS model (pull up and pull down current)

The pre-drive current Ipd and shot-through current Ishot are not considered in IBIS model

NTUChallenges for Modeling the Real PCB and Package in High- speed Circuits

IBIS Model for SSN modeling

Pull up current

Pre-drive current

NTU Summary

As an example, a driver PCB for TFT display panel is modeled by two approaches. One is using commercial SI design tool, and the other is based on the HSPICE environment by constructing equivalent SPICE-compatible models.

TDR concept and layer peeing technique for extracting equivalent circuit models is introduced based on time domain response.

A synthesis approach for macro equivalent circuit model for coupled discontinuity is also discussed.

Challenges for SI design tool in modeling the real PCB and package in high-speed circuits are discussed. They includes material characteristics, signal propagation characteristics, power distribution networks, and IBIS model for SSN.

Recommended