Selim Günay, PostDoctoral Researcher KHALID MOSALAM, PROFESSOR, PROJECT PI

Preview:

DESCRIPTION

Seismic Performance Evaluation of Energy Efficient Structural Insulated Panels (SIPs) Using Hybrid Simulation and Cyclic Testing. Selim Günay, PostDoctoral Researcher KHALID MOSALAM, PROFESSOR, PROJECT PI SHAKHZOD TAKHIROV, SITE OPERATIONS MANAGER nees@berkeley. Introduction. - PowerPoint PPT Presentation

Citation preview

Seismic Performance Evaluation of Energy Efficient Structural Insulated

Panels (SIPs) Using Hybrid Simulation and Cyclic Testing

SELIM GÜNAY, POSTDOCTORAL RESEARCHER KHALID MOSALAM, PROFESSOR, PROJECT PISHAKHZOD TAKHIROV, S ITE OPERATIONS MANA GER

nees@berkeley

QUAKE SUMMIT 2012, Boston, July 12, 2012

2QUAKE SUMMIT 2012, Boston, July 12, 2012

Introduction

• Structural Insulated Panels (SIPs) are composite panels for energy efficient construction

• Composed of an energy-efficient core placed in between facing materials

• Their application in seismically hazardous regions is limited due to unacceptable performance as demonstrated by cyclic testing

• Limited number of tests with more realistic dynamic loading regimes

• Hybrid simulation is ideal to test SIPs with a variety of structural configurations and ground motion excitations

3QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Setup

Reconfigurable Reaction Wall

Loading Steel Tube

Specimen

Gravity Loading

Actuator

Support beam

4QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Setup

5QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Setup and Specimen

6QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Specimen

7/16” OSB Skins 3-5/8” EPS Insulating Foam

7QUAKE SUMMIT 2012, Boston, July 12, 2012

Instrumentation

Left Uplift Right

Uplift

Bottom vertical sliding

Top vertical sliding

Bottom gap opening

Top gap openingTube

sliding

8QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Matrix

Specimen Protocol Gravity Nail spacing [in] RemarksS1 CUREE No 6 Conventional wood panelS2 CUREE No 6 -S3 CUREE Yes 6 -S4 HS Yes 6 Near-fault pulse-type GMS5 HS Yes 3 Near-fault pulse-type GMS6 CUREE Yes 3 -S7 HS Yes 3 Long duration, harmonic GMS8 HS Yes 3 Near-fault GM; 3 stories computational

substructure

• A parameter related to the design and construction of panels: Nail spacing• Parameters related to loading

Presence of gravity loading Lateral loading: CUREE protocol vs HS Type of ground motion (Pulse type vs Long duration, harmonic)

• A parameter related to HS: presence of an analytical substructure

2. Investigate the effects of1. Compare the responses of conventional wood panel vs SIPs

9QUAKE SUMMIT 2012, Boston, July 12, 2012

Hybrid SimulationSpecimens S4, S5, S7 c

m

Specimen m (kip-sec2/in) ξ k (kip/in) c (kip-sec/in) T (sec)

S4 0.0325 0.05 18 0.0076 0.27S5 0.0325 0.05 32 0.0102 0.20S7 0.0325 0.05 32 0.0102 0.20

10QUAKE SUMMIT 2012, Boston, July 12, 2012

Hybrid Simulation

c=αmm

m

m

m

u1

Experimental DOF

u2

u3

c=αm

c=αm

c=αmAnalytical DOF

force-displacement relation from previous tests

Specimen S8

11QUAKE SUMMIT 2012, Boston, July 12, 2012

Hybrid Simulation: Numerical Integration

Specimen m k T (sec) dt (sec) dt/TS4 0.0325 18 0.27 0.005 0.018 ≤ 1/πS5 0.0325 32 0.20 0.005 0.025 ≤ 1/πS7 0.0325 32 0.20 0.0125 0.0625 ≤ 1/πS8 - - T4=0.10 0.005 0.05 ≤ 1/π

• Explicit Newmark Integration with γ=0.5• Does not require iterations• Does not require knowledge of initial experimental stiffness

12QUAKE SUMMIT 2012, Boston, July 12, 2012

0 10 20 30-0.8

-0.4

0

0.4

0.8A

cc (g

)Los Gatos, Loma Prieta, 1989

0 10 20 30-20

-10

0

10

20

Vel

(in/

sec)

0 10 20 30-5

0

5

Time (sec)

Dis

p (in

/sec

)

0 25 50 75 100

-0.5

0

0.5

Vinadel Mar, Chile, 1985

0 25 50 75 100-20

-10

0

10

20

0 25 50 75 100-5

0

5

Time (sec)

PGD = 3.87 in

PGV = 20.0 in/s

PGA = 0.61 g

PGV = 11.9 in/s

PGD = 4.53 in

PGA = 0.54 g

Near

faul

t, pu

lse-ty

pe G

M

Long

dur

atio

n, h

arm

onic

GM

Hybrid Simulation: Ground Motions

13QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Results: Global Parameters

-5 -4 -3 -2 -1 0 1 2 3 4 5-8

-6

-4

-2

0

2

4

6

8

10

Displacement [inch]

Forc

e [k

ip]

Full-HistoryEnvelope

• Initial stiffness =fi /di• Force capacity = fc• Ductility =du/dy• Hysteretic energy = fdx

-5 -4 -3 -2 -1 0 1 2 3 4 5-8

-6

-4

-2

0

2

4

6

8

10

Displacement [inch]

Forc

e [k

ip]

envelope

di, fi

dc, fcdy, fy

du, 0.75fc

dp, fp

dn, fn

• Positive peak displacement = dp• Negative peak displacement = dn• Residual displacement

14QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Results: Local Parameters

Top 2x6 Displ

Top Vertical Displ

Bottom Vertical Displ

Bottom Horizontal Displ

Bottom left 2x6 Displ

Bottom Right 2x6 Displ

Top Horizontal Displ

Tube sliding

Top ver. disp

Top hor. disp

Bottom hor. disp

Bottom ver. disp

Right upliftLeft uplift

Top horizontal gap opening

Bottom horizontal gap opening

Bottom vertical sliding

Right upliftLeft uplift

Top vertical sliding

Tube sliding

Peaks of local responses

15QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Results: Comparison of Conventional Wood Panel and SIPs (S1 vs S2)

SIPs (S2) Conventional Wood Frame (S1)

• 7/16’’ OSB Skin on both sides• 3-5/8” EPS Insulating Foam• Panel to panel thermal connections• Double 2x4’’ studs @ 96’’• 6’’ nail spacing

• 7/16” OSB Skin on both sides• 2x4’’ studs @ 16’’• Double 2x4’’ studs @ the ends• 6’’ nail spacing

Cyclic Testing with CUREE protocol

16QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Results: Comparison of Conventional Wood Panel and SIPs (S1 vs S2)

Specimen S1 S2

Initial Stiffness [kip/in] 46.2 12.2

Force Capacity [kip] 12.2 11.4

Ductility 7.0 3.6

Hysteretic Energy [kip-in] 201.8 193.1

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20Fo

rce

[kip

s]

Displacement [inch]

S1 (Conventional wood panel)S2 (SIPs)

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S2S3

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Forc

e [k

ips]

S3S4

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S4S5

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

Forc

e [k

ips]

S5S6S7

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

S5S8

b) Effect ofgravity loading

f) Effect ofanalyticalsubstructuring

d) Effect ofnail spacing

e) Effect ofloading andgroundmotion type

c) Effect ofloading type

17QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Results: Comparison of Conventional Wood Panel and SIPs (S1 vs S2)

Exterior Temp: -0.4 F

Double 2x4 studs

2x4 studs @ 16

OSB

Double 2x4 studs

EPS

Interior Temp: 69.8 F

OSBOSB

Exterior Temp: -0.4 F

Interior Temp: 69.8 F

R-factor: 3.49

S1 S2 S1 S2

cavity

14.10

Heat transfer analysis using THERM 6.3:

A software developed at Lawrence Berkeley National Laboratory for modeling and analyzing heat-transfer effects in building components

S1(Conventional

wood)

S2(SIPs) S1 S2

18QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Results: Effect of Gravity Loading (S2 vs S3)

No gravity loading (S2) Gravity loading (S3)

Cyclic Testing with CUREE protocol

19QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Results: Effect of Gravity Loading (S2 vs S3)

Specimen S2 S3

Initial Stiffness [kip/in] 12.2 23.4

Force Capacity [kip] 11.4 9.5

Ductility 3.6 3.5

Hysteretic Energy [kip-in] 193.1 189.2

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Forc

e [k

ips]

S1S2

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

Forc

e [k

ips]

S2 (No gravity)S3 (Gravity)

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Forc

e [k

ips]

S3S4

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S4S5

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

Forc

e [k

ips]

S5S6S7

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

S5S8

a) Conventionalwood panel vs SIPs

c) Effect ofloading type

f) Effect ofanalyticalsubstructuring

d) Effect ofnail spacing

e) Effect ofloading andgroundmotion type

Specimen Bottom ver. sliding

Bottom gap opening

Top ver. Sliding

Top gap opening

Uplift right

Uplift left

Tube sliding

S2 0.71 0.04 0.73 0.27 0.02 0.02 0.02

S3 0.49 0.01 0.50 0.14 0.03 0.02 0.03* All units in inches

20QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Results: Effect of Nail Spacing (S4 vs S5)

Nail Spacing: 6”(S4) Nail Spacing: 3”(S5)

Hybrid Simulation with Pulse-type GM

3”6”

21QUAKE SUMMIT 2012, Boston, July 12, 2012

Specimen S4 S5

Initial Stiffness [kip/in] 22.9 35.5

Force Capacity [kip] 8.6 15.6

Ductility 2.5 3.7

Hysteretic Energy [kip-in] 152.7 363.1

Test Results: Effect of Nail Spacing (S4 vs S5)-6 -3 0 3 6

-20

-15

-10

-5

0

5

10

15

20

Forc

e [k

ips]

S1S2

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S2S3

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S3S4

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

Forc

e [k

ips]

S4 (6" nail spc.)S5 (3" nail spc.)

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

Forc

e [k

ips]

S5S6S7

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S5S8

b) Effect ofgravity loading

a) Conventionalwood panel vs SIPs

c) Effect ofloading type

f) Effect ofanalyticalsubstructuring

e) Effect ofloading andgroundmotion type

Specimen DE MCE 1.5MCES4 S5 S4 S5 S4 S5

Peak Disp. (+) 2.7 1.3 4.7 3.5 - 5.8

Peak Disp. (-) -2.8 -1.0 - -3.2 - -

Residual Disp. 1.5 0.1 - 0.8 - -

22QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Results: Effect of Nail Spacing (S3 vs S6)

Nail Spacing: 6”(S3) Nail Spacing: 3”(S6)

3”6”

Cyclic Testing with CUREE protocol

23QUAKE SUMMIT 2012, Boston, July 12, 2012

Specimen S3 S6

Initial Stiffness [kip/in] 23.4 32.7

Force Capacity [kip] 9.5 16.2

Ductility 3.5 4.8

Hysteretic Energy [kip-in] 189.2 309.9

Test Results: Effect of Nail Spacing (S3 vs S6)

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Forc

e [k

ips]

S1S2

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S2S3

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Forc

e [k

ips]

Displacement [inch]

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S4S5

Displacement [inch]

Forc

e [k

ips]

S5S6S7

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

Forc

e [k

ips]

S5 (No analytical substructure)S8 (Analytical substructure)

b) Effect ofgravity loading

a) Conventionalwood panel vs SIPs

d) Effect ofnail spacing

e) Effect ofloading andgroundmotion type

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20Fo

rce

[kip

s]

S1S2

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S2S3

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S3S4

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

Forc

e [k

ips]

S4 (6" nail spc.)S5 (3" nail spc.)

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

Forc

e [k

ips]

S5S6S7

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S5S8

b) Effect ofgravity loading

a) Conventionalwood panel vs SIPs

c) Effect ofloading type

f) Effect ofanalyticalsubstructuring

e) Effect ofloading andgroundmotion type

S3S6

24QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Results: Effect of Lateral Loading (S6 vs S7)

Cyclic Testing with CUREE Protocol for Ordinary GM (S6)

Hybrid Simulation with Long Duration,

Harmonic GM (S7)

Nail spacing: 3”

0 10 20 30-0.8

-0.4

0

0.4

0.8

Acc

(g)

Los Gatos, Loma Prieta, 1989

0 10 20 30-20

-10

0

10

20

Vel

(in/

sec)

0 10 20 30-5

0

5

Time (sec)

Dis

p (in

/sec

)

0 25 50 75 100

-0.5

0

0.5

Vinadel Mar, Chile, 1985

0 25 50 75 100-20

-10

0

10

20

0 25 50 75 100-5

0

5

Time (sec)

PGD = 3.87 in

PGV = 20.0 in/s

PGA = 0.61 g

PGV = 11.9 in/s

PGD = 4.53 in

PGA = 0.54 g

0 10 20 30-0.8

-0.4

0

0.4

0.8

Acc

(g)

Los Gatos, Loma Prieta, 1989

0 10 20 30-20

-10

0

10

20

Vel

(in/

sec)

0 10 20 30-5

0

5

Time (sec)

Dis

p (in

/sec

)

0 25 50 75 100

-0.5

0

0.5

Vinadel Mar, Chile, 1985

0 25 50 75 100-20

-10

0

10

20

0 25 50 75 100-5

0

5

Time (sec)

PGD = 3.87 in

PGV = 20.0 in/s

PGA = 0.61 g

PGV = 11.9 in/s

PGD = 4.53 in

PGA = 0.54 g

0 500 1000 1500 2000 2500 3000 3500-5

-4

-3

-2

-1

0

1

2

3

4

5

Time [sec]

Dis

plac

emen

t [in

ch]

25QUAKE SUMMIT 2012, Boston, July 12, 2012

Specimen S6 S7

Initial Stiffness [kip/in] 32.7 33.2

Force Capacity [kip] 16.2 15.5

Ductility 4.8 3.4

Hysteretic Energy [kip-in] 309.9 1077.8

Test Results: Effect of Lateral Loading (S6 vs S7)

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Forc

e [k

ips]

S1S2

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S2S3

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Forc

e [k

ips]

S3S4

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S4S5

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

Forc

e [k

ips]

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

S5S8

S6 (CUREE)S7 (HS)

b) Effect ofgravity loading

a) Conventionalwood panel vs SIPs

c) Effect ofloading type

f) Effect ofanalyticalsubstructuring

d) Effect ofnail spacing

Specimen S6 S7Peak Disp. (+) 4.7 3.3Peak Disp. (-) -4.7 -4.2

Residual Disp. 0.0 0.3

26QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Results: Effect of Ground Motion Type (S5 vs S7)

Hybrid Simulation with Pulse-Type GM (S5)

Hybrid Simulation with Long Duration, Harmonic GM (S7)

Nail spacing: 3”

0 10 20 30-0.8

-0.4

0

0.4

0.8

Acc

(g)

Los Gatos, Loma Prieta, 1989

0 10 20 30-20

-10

0

10

20

Vel

(in/

sec)

0 10 20 30-5

0

5

Time (sec)

Dis

p (in

/sec

)

0 25 50 75 100

-0.5

0

0.5

Vinadel Mar, Chile, 1985

0 25 50 75 100-20

-10

0

10

20

0 25 50 75 100-5

0

5

Time (sec)

PGD = 3.87 in

PGV = 20.0 in/s

PGA = 0.61 g

PGV = 11.9 in/s

PGD = 4.53 in

PGA = 0.54 g

0 10 20 30-0.8

-0.4

0

0.4

0.8

Acc

(g)

Los Gatos, Loma Prieta, 1989

0 10 20 30-20

-10

0

10

20

Vel

(in/

sec)

0 10 20 30-5

0

5

Time (sec)

Dis

p (in

/sec

)

0 25 50 75 100

-0.5

0

0.5

Vinadel Mar, Chile, 1985

0 25 50 75 100-20

-10

0

10

20

0 25 50 75 100-5

0

5

Time (sec)

PGD = 3.87 in

PGV = 20.0 in/s

PGA = 0.61 g

PGV = 11.9 in/s

PGD = 4.53 in

PGA = 0.54 g

27QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Results: Effect of Ground Motion Type (S5 vs S7)

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Forc

e [k

ips]

S1S2

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S2S3

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Forc

e [k

ips]

S3S4

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S4S5

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

Forc

e [k

ips]

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

S5S8

S5 (Pulse-type)S7 (Harmonic)

b) Effect ofgravity loading

a) Conventionalwood panel vs SIPs

c) Effect ofloading type

f) Effect ofanalyticalsubstructuring

d) Effect ofnail spacing

Specimen S5 S7

Initial Stiffness [kip/in] 35.5 33.2

Force Capacity [kip] 15.6 15.5

Ductility 3.7 3.4

Hysteretic Energy [kip-in] 363.1 1077.8

SpecimenDE MCE 1.5MCE

S5 S7 S5 S7 S5 S7Peak Disp. (+) 1.3 1.1 3.5 2.2 5.8 3.3Peak Disp. (-) -1.0 -1.0 -3.2 -2.0 - -4.2Residual Disp. 0.1 0.0 0.8 0.0 - 0.3

28QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Results: Effect of Ground Motion Type (S5 vs S7)

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Forc

e [k

ips]

S1S2

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S2S3

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Forc

e [k

ips]

S3S4

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S4S5

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

Forc

e [k

ips]

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

S5S8

S5 (Pulse-type)S7 (Harmonic)

b) Effect ofgravity loading

a) Conventionalwood panel vs SIPs

c) Effect ofloading type

f) Effect ofanalyticalsubstructuring

d) Effect ofnail spacing

SpecimenDE MCE 1.5MCE

S5 S7 S5 S7 S5 S7Peak Disp. (+) 1.3 1.1 3.5 2.2 5.8 3.3Peak Disp. (-) -1.0 -1.0 -3.2 -2.0 - -4.2

Residual Disp. 0.1 0.0 0.8 0.0 - 0.3

Specimen Bottom ver. sliding

Bottom gap opening

Top ver. sliding

Top gap opening

Uplift right

Uplift left

Tube sliding

DE S5 0.26 0.02 0.27 0.03 0.08 0.07 0.18S7 0.23 0.02 0.21 0.02 0.15 0.04 0.02

MCE S5 0.63 0.05 0.64 0.09 0.14 0.12 0.19S7 0.45 0.03 0.43 0.04 0.53 0.09 0.06

29QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Results: Effect of Analytical Substructuring (S5 vs S8)

Hybrid Simulation with no Analytical Substructure (S5)

Pulse-type GM

c=αmm

m

m

m

u1

Experimental DOF

u2

u3

c=αm

c=αm

c=αmAnalytical DOF

Hybrid Simulation with Analytical Substructure (S8)

m c

30QUAKE SUMMIT 2012, Boston, July 12, 2012

Test Results: Effect of Analytical Substructuring (S5 vs S8)

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Forc

e [k

ips]

S1S2

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S2S3

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Forc

e [k

ips]

S3S4

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

S4S5

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

Forc

e [k

ips]

S5S6S7

-6 -3 0 3 6-20

-15

-10

-5

0

5

10

15

20

Displacement [inch]

Forc

e [k

ips]

S5 (No analytical substructure)S8 (Analytical substructure)

b) Effect ofgravity loading

a) Conventionalwood panel vs SIPs

c) Effect ofloading type

d) Effect ofnail spacing

e) Effect ofloading andgroundmotion type

Specimen S5 S8

Initial Stiffness [kip/in] 35.5 38.3

Force Capacity [kip] 15.6 16.0

Ductility 3.7 4.0

SpecimenDE MCE

S5 S8 S5 S8Peak Disp. (+) 1.3 1.2 3.5 2.4Peak Disp. (-) -1.0 -1.7 -3.2 -3.1

Residual Disp. 0.1 0.0 0.8 0.4

Specimen Bottom ver. sliding

Bottom gap opening

Top ver. sliding

Top gap opening

Uplift right

Uplift left

Tube sliding

DE S5 0.26 0.02 0.27 0.03 0.08 0.07 0.18S8 0.37 0.03 0.37 0.04 0.09 0.11 0.13

MCE S5 0.63 0.05 0.64 0.09 0.14 0.12 0.19S8 0.65 0.03 0.55 0.05 0.16 0.27 0.14

31QUAKE SUMMIT 2012, Boston, July 12, 2012

Concluding Remarks

• Finite element heat transfer analyses quantitatively show the thermal insulation efficiency of SIPs compared to conventional wood panels.

• Effect of nail spacing is significant on the structural performance of SIPs.

32QUAKE SUMMIT 2012, Boston, July 12, 2012

Concluding Remarks

• Although the global and local responses of SIPs with and without analytical substructuring are not dramatically different, there is a need for analytical substructuring for a more realistic representation.

• Hybrid simulation provides the force-deformation envelope that can also be gathered from a cyclic test. But it also provides response values, where the cyclic test would require complimentary analytical simulations to get the response values.

Thank you

33QUAKE SUMMIT 2012, Boston, July 12, 2012