Research Article Hardy-Littlewood-Sobolev Inequalities on ...Hardy-Littlewood-Sobolev Inequalities...

Preview:

Citation preview

  • Research ArticleHardy-Littlewood-Sobolev Inequalities on 𝑝-Adic CentralMorrey Spaces

    Qing Yan Wu and Zun Wei Fu

    Department of Mathematics, Linyi University, Linyi, Shandong 276005, China

    Correspondence should be addressed to Zun Wei Fu; zwfu@mail.bnu.edu.cn

    Received 21 October 2014; Accepted 15 December 2014

    Academic Editor: Yoshihiro Sawano

    Copyright © 2015 Q. Y. Wu and Z. W. Fu. This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properlycited.

    We establish the Hardy-Littlewood-Sobolev inequalities on 𝑝-adic central Morrey spaces. Furthermore, we obtain the 𝜆-centralBMO estimates for commutators of 𝑝-adic Riesz potential on 𝑝-adic central Morrey spaces.

    1. Introduction

    Let 0 < 𝛌 < 𝑛. The Riesz potential operator 𝐌𝛌is defined by

    setting, for all locally integrable functions 𝑓 on R𝑛,

    𝐌𝛌𝑓 (𝑥) =

    1

    𝛟𝑛(𝛌)

    ∫R𝑛

    𝑓 (𝑊)

    𝑥 − 𝑊𝑛−𝛌𝑑𝑊, (1)

    where 𝛟𝑛(𝛌) = 𝜋

    𝑛/2

    2𝛌

    Γ(𝛌/2)/Γ((𝑛 − 𝛌)/2). It is closely relatedto the Laplacian operator of fractional degree. When 𝑛 > 2and 𝛌 = 2, 𝐌

    𝛌𝑓 is a solution of Poisson equation −Δ𝑢 =

    𝑓. The importance of Riesz potentials is owing to the factthat they are smooth operators and have been extensivelyused in various areas such as potential analysis, harmonicanalysis, and partial differential equations. For more detailsabout Riesz potentials one can refer to [1].

    This paper focuses on the Riesz potentials on 𝑝-adicfield. In the last 20 years, the field of 𝑝-adic numbers Q

    𝑝

    has been intensively used in theoretical and mathematicalphysics (cf. [2–12]). And it has already penetrated intensivelyinto several areas of mathematics and its applications, amongwhich harmonic analysis on 𝑝-adic field has been drawingmore and more concern (see [13–22] and references therein).

    For a prime number 𝑝, the field of 𝑝-adic numbers Q𝑝

    is defined as the completion of the field of rational numbersQ with respect to the non-Archimedean 𝑝-adic norm | ⋅ |

    𝑝,

    which satisfies |𝑥|𝑝= 0 if and only if 𝑥 = 0; |𝑥𝑊|

    𝑝=

    |𝑥|𝑝|𝑊|𝑝; |𝑥 + 𝑊|

    𝑝≀ max{|𝑥|

    𝑝, |𝑊|𝑝}. Moreover, if |𝑥|

    𝑝̞= |𝑊|𝑝,

    then |𝑥 ± 𝑊|𝑝= max{|𝑥|

    𝑝, |𝑊|𝑝}. It is well-known that Q

    𝑝

    is a typical model of non-Archimedean local fields. If anynonzero rational number 𝑥 is represented as 𝑥 = 𝑝𝛟(𝑚/𝑛),where 𝛟 = 𝛟(𝑥) ∈ Z and integers 𝑚, 𝑛 are indivisible by 𝑝,then |𝑥|

    𝑝= 𝑝−𝛟.

    The space Q𝑛𝑝= Q𝑝× Q𝑝× ⋅ ⋅ ⋅ × Q

    𝑝consists of points

    𝑥 = (𝑥1, 𝑥2, . . . , 𝑥

    𝑛), where 𝑥

    𝑗∈ Q𝑝, 𝑗 = 1, 2, . . . , 𝑛. The 𝑝-

    adic norm onQ𝑛𝑝is

    |𝑥|𝑝:= max1≀𝑗≀𝑛

    𝑥𝑗

    𝑝, 𝑥 ∈ Q

    𝑛

    𝑝. (2)

    Denote by

    𝐵𝛟(𝑎) = {𝑥 ∈ Q

    𝑛

    𝑝: |𝑥 − 𝑎|

    𝑝≀ 𝑝𝛟

    } (3)

    the ball of radius 𝑝𝛟 with center at 𝑎 ∈ Q𝑛𝑝and by

    𝑆𝛟(𝑎) = 𝐵

    𝛟(𝑎) \ 𝐵

    𝛟−1(𝑎) = {𝑥 ∈ Q

    𝑛

    𝑝: |𝑥 − 𝑎|

    𝑝= 𝑝𝛟

    } (4)

    the sphere of radius 𝑝𝛟 with center at 𝑎 ∈ Q𝑛𝑝, where 𝛟 ∈ Z. It

    is clear that

    𝐵𝛟(𝑎) = ⋃

    𝑘≀𝛟

    𝑆𝑘(𝑎) . (5)

    It is well-known that Q𝑛𝑝is a classical kind of locally

    compact Vilenkin groups. A locally compact Vilenkin group𝐺 is a locally compact Abelian group containing a strictlydecreasing sequence of compact open subgroups {𝐺

    𝑛}∞

    𝑛=−∞

    Hindawi Publishing CorporationJournal of Function SpacesVolume 2015, Article ID 419532, 7 pageshttp://dx.doi.org/10.1155/2015/419532

  • 2 Journal of Function Spaces

    such that (1) ∪∞𝑛=−∞

    𝐺𝑛= 𝐺 and ∩∞

    𝑛=−∞𝐺𝑛= 0 and (2)

    sup{order(𝐺𝑛/𝐺𝑛+1

    : 𝑛 ∈ Z)} < ∞. For several decades,parallel to the 𝑝-adic harmonic analysis, a development wasunder way of the harmonic analysis on locally compactVilenkin groups (cf. [23–25] and references therein).

    Since Q𝑛𝑝is a locally compact commutative group under

    addition, it follows from the standard analysis that there existsa Haar measure 𝑑𝑥 on Q𝑛

    𝑝, which is unique up to a positive

    constant factor and is translation invariant.We normalize themeasure 𝑑𝑥 by the equality

    ∫𝐵0(0)

    𝑑𝑥 =𝐵0 (0)

    𝐻 = 1, (6)

    where |𝐞|𝐻denotes the Haar measure of a measurable subset

    𝐞 ofQ𝑛𝑝. By simple calculation, we can obtain that

    𝐵𝛟(𝑎)𝐻= 𝑝𝛟𝑛

    ,

    𝑆𝛟(𝑎)𝐻= 𝑝𝛟𝑛

    (1 − 𝑝−𝑛

    )

    (7)

    for any 𝑎 ∈ Q𝑛𝑝. We should mention that the Haar measure

    takes value in R; there also exist 𝑝-adic valued measures (cf.[26, 27]). For a more complete introduction to the 𝑝-adicfield, one can refer to [22] or [10].

    On 𝑝-adic field, the 𝑝-adic Riesz potential 𝐌𝑝𝛌[22] is

    defined by

    𝐌𝑝

    𝛌𝑓 (𝑥) =

    1

    Γ𝑛(𝛌)

    ∫Q𝑛𝑝

    𝑓 (𝑊)

    𝑥 − 𝑊𝑛−𝛌

    𝑝

    𝑑𝑊, (8)

    where Γ𝑛(𝛌) = (1 − 𝑝

    𝛌−𝑛

    )/(1 − 𝑝−𝛌

    ), 𝛌 ∈ C, 𝛌 Ìž= 0. When𝑛 = 1, Haran [4, 28] obtained the explicit formula of Rieszpotentials onQ

    𝑝and developed analytical potential theory on

    Q𝑝. Taibleson [22] gave the fundamental analytic properties

    of the Riesz potentials on local fields including Q𝑛𝑝, as well

    as the classical Hardy-Littlewood-Sobolev inequalities. Kim[18] gave a simple proof of these inequalities by using the𝑝-adic version of the Calderón-Zygmund decompositiontechnique. Volosivets [29] investigated the boundedness forRiesz potentials on generalized Morrey spaces. Like onEuclidean spaces, using the Riesz potential with 𝑛 > 2 and𝛌 = 2, one can introduce the 𝑝-adic Laplacians [13].

    In this paper, we will consider the Riesz potentials andtheir commutators with 𝑝-adic central BMO functions on 𝑝-adic central Morrey spaces. Alvarez et al. [30] studied therelationship between central BMO spaces andMorrey spaces.Furthermore, they introduced 𝜆-central BMO spaces andcentralMorrey spaces, respectively. In [31], we introduce their𝑝-adic versions.

    Definition 1. Let 𝜆 ∈ R and 1 < 𝑞 < ∞. The 𝑝-adic centralMorrey space ᅵ̇ᅵ𝑞,𝜆(Q𝑛

    𝑝) is defined by

    𝑓ᅵ̇ᅵ𝑞,𝜆(Q𝑛

    𝑝):= sup𝛟∈Z

    (1

    𝐵𝛟

    1+𝜆𝑞

    𝐻

    ∫𝐵𝛟

    𝑓 (𝑥)𝑞

    𝑑𝑥)

    1/𝑞

    < ∞, (9)

    where 𝐵𝛟= 𝐵𝛟(0).

    Remark 2. It is clear that

    𝐿𝑞,𝜆

    (Q𝑛

    𝑝) ⊂ ᅵ̇ᅵ𝑞,𝜆

    (Q𝑛

    𝑝) ,

    ᅵ̇ᅵ𝑞,−1/𝑞

    (Q𝑛

    𝑝) = 𝐿𝑞

    (Q𝑛

    𝑝) .

    (10)

    When 𝜆 < −1/𝑞, the space ᅵ̇ᅵ𝑞,𝜆(Q𝑛𝑝) reduces to {0}; therefore,

    we can only consider the case 𝜆 ≥ −1/𝑞. If 1 ≀ 𝑞1< 𝑞2< ∞,

    by Hölder’s inequality,

    ᅵ̇ᅵ𝑞2,𝜆

    (Q𝑛

    𝑝) ⊂ ᅵ̇ᅵ𝑞1,𝜆

    (Q𝑛

    𝑝) (11)

    for 𝜆 ∈ R.

    Definition 3. Let 𝜆 < 1/𝑛 and 1 < 𝑞 < ∞. The spaceCBMO𝑞,𝜆(Q𝑛

    𝑝) is defined by the condition

    𝑓CBMO𝑞,𝜆(Q𝑛

    𝑝)

    := sup𝛟∈Z

    (1

    𝐵𝛟

    1+𝜆𝑞

    𝐻

    ∫𝐵𝛟

    𝑓 (𝑥) − 𝑓

    𝐵𝛟

    𝑞

    𝑑𝑥)

    1/𝑞

    < ∞.

    (12)

    Remark 4. When 𝜆 = 0, the space CBMO𝑞,𝜆(Q𝑛𝑝) is just

    CBMO𝑞(Q𝑛𝑝), which is defined in [32]. If 1 ≀ 𝑞

    1< 𝑞2< ∞,

    by Hölder’s inequality,

    CBMO𝑞2 ,𝜆 (Q𝑛𝑝) ⊂ CBMO𝑞1,𝜆 (Q𝑛

    𝑝) (13)

    for 𝜆 ∈ R. By the standard proof as that inR𝑛, we can see that𝑓CBMO𝑞,𝜆(Q𝑛

    𝑝)

    ∌ sup𝛟∈Z

    inf𝑐∈C(

    1

    𝐵𝛟

    1+𝜆𝑞

    𝐻

    ∫𝐵𝛟

    𝑓 (𝑥) − 𝑐𝑞

    𝑑𝑥)

    1/𝑞

    .

    (14)

    Remark 5. Formulas (9) and (12) yield that ᅵ̇ᅵ𝑞,𝜆(Q𝑛𝑝) is a

    Banach space continuously included in CBMO𝑞,𝜆(Q𝑛𝑝).

    Herewe introduce the𝑝-adicweak centralMorrey spaces.

    Definition 6. Let 𝜆 ∈ R and 1 < 𝑞 < ∞. The 𝑝-adic weakcentral Morrey space𝑊ᅵ̇ᅵ𝑞,𝜆(Q𝑛

    𝑝) is defined by

    𝑓𝑊ᅵ̇ᅵ𝑞,𝜆(Q𝑛

    𝑝)

    := sup𝛟∈Z

    (sup𝑡>0𝑡𝑞{𝑥 ∈ 𝐵

    𝛟:𝑓 (𝑥)

    > 𝑡}𝐻

    𝐵𝛟

    1+𝜆𝑞

    𝐻

    )

    1/𝑞

    < ∞,

    (15)

    where 𝐵𝛟= 𝐵𝛟(0).

    In Section 2, we will get the Hardy-Littlewood-Sobolevinequalities on 𝑝-adic central Morrey spaces. Namely, under

  • Journal of Function Spaces 3

    some conditions for indexes, 𝐌𝑝𝛌is bounded from ᅵ̇ᅵ𝑞,𝜆(Q𝑛

    𝑝) to

    ᅵ̇ᅵ𝑟,𝜇

    (Q𝑛𝑝) and is also bounded from ᅵ̇ᅵ1,𝜆(Q𝑛

    𝑝) to 𝑊ᅵ̇ᅵ𝑟,𝜇(Q𝑛

    𝑝).

    In Section 3, we establish the boundedness for commutatorsgenerated by 𝐌𝑝

    𝛌and 𝜆-central BMO functions on 𝑝-adic

    central Morrey spaces.Throughout this paper the letter 𝐶 will be used to denote

    various constants, and the various uses of the letter do not,however, denote the same constant.

    2. Hardy-Littlewood-Sobolev Inequalities

    We get the following Hardy-Littlewood-Sobolev inequalitieson 𝑝-adic central Morrey spaces.

    Theorem7. Let𝛌 be a complex numberwith 0 < Re𝛌 < 𝑛 andlet 1 ≀ 𝑞 < 𝑛/Re𝛌, 0 < 1/𝑟 = 1/𝑞 − Re𝛌/𝑛, 𝜆 < −Re𝛌/𝑛,and 𝜇 = 𝜆 + Re𝛌/𝑛.

    (i) If 𝑞 > 1, then 𝐌𝑝𝛌is bounded from ᅵ̇ᅵ𝑞,𝜆(Q𝑛

    𝑝) to ᅵ̇ᅵ𝑟,𝜇(Q𝑛

    𝑝).

    (ii) If 𝑞 = 1, then 𝐌𝑝𝛌

    is bounded from ᅵ̇ᅵ1,𝜆(Q𝑛𝑝) to

    𝑊ᅵ̇ᅵ𝑟,𝜇

    (Q𝑛𝑝).

    In order to give the proof of this theorem, we need thefollowing result.

    Lemma 8 (see [22]). Let 𝛌 be a complex number with 0 <Re𝛌 < 𝑛 and let 1 ≀ 𝑞 < 𝑟 < ∞ satisfy 1/𝑟 = 1/𝑞 − Re𝛌/𝑛.

    (i) If 𝑓 ∈ 𝐿𝑞(Q𝑛𝑝), 𝑞 > 1, then

    𝐌𝑝

    𝛌𝑓𝐿𝑟(Q𝑛

    𝑝)≀ 𝐎𝑞𝑟

    𝑓𝐿𝑞(Q𝑛

    𝑝), (16)

    where 𝐎𝑞𝑟is independent of 𝑓.

    (ii) If 𝑓 ∈ 𝐿1(Q𝑛𝑝), 𝑠 > 0, then

    {𝑥 ∈ Q

    𝑛

    𝑝:𝐌𝑝

    𝛌𝑓 (𝑥)

    > 𝑠}𝐻≀ (𝐎

    𝑟

    𝑓𝐿1(Q𝑛

    𝑝)

    𝑠)

    𝑟

    , (17)

    where 𝐎𝑟> 0 is independent of 𝑓.

    Proof ofTheorem 7. Let 𝑓 be a function in ᅵ̇ᅵ𝑞,𝜆(Q𝑛𝑝). For fixed

    𝛟 ∈ Z, denote 𝐵𝛟(0) by 𝐵

    𝛟.

    (i) If 𝑞 > 1, write

    (1

    𝐵𝛟

    1+𝜇𝑟

    𝐻

    ∫𝐵𝛟

    𝐌𝑝

    𝛌𝑓 (𝑥)

    𝑟

    𝑑𝑥)

    1/𝑟

    ≀ (1

    𝐵𝛟

    1+𝜇𝑟

    𝐻

    ∫𝐵𝛟

    𝐌𝑝

    𝛌(𝑓𝜒𝐵𝛟

    ) (𝑥)

    𝑟

    𝑑𝑥)

    1/𝑟

    + (1

    𝐵𝛟

    1+𝜇𝑟

    𝐻

    ∫𝐵𝛟

    𝐌𝑝

    𝛌(𝑓𝜒𝐵𝑐

    𝛟

    ) (𝑥)

    𝑟

    𝑑𝑥)

    1/𝑟

    := 𝐌 + 𝐌𝐌.

    (18)

    For 𝐌, since 1/𝑟 = 1/𝑞 − Re𝛌/𝑛 and 𝜇 = 𝜆 + Re𝛌/𝑛, byLemma 8,

    𝐌 = (1

    𝐵𝛟

    1+𝜇𝑟

    𝐻

    ∫𝐵𝛟

    𝐌𝑝

    𝛌(𝑓𝜒𝐵𝛟

    ) (𝑥)

    𝑟

    𝑑𝑥)

    1/𝑟

    ≀𝐵𝛟

    −1/𝑟−𝜇

    𝐻

    (∫𝐵𝛟

    𝑓𝜒𝐵𝛟

    (𝑥)

    𝑞

    𝑑𝑥)

    1/𝑞

    ≀𝑓ᅵ̇ᅵ𝑞,𝜆(Q𝑛

    𝑝).

    (19)

    For 𝐌𝐌, we firstly give the following estimate. For 𝑥 ∈ 𝐵𝛟,

    by Hölder’s inequality, we have

    𝐌𝑝

    𝛌(𝑓𝜒𝐵𝑐

    𝛟

    ) (𝑥)

    =

    1

    Γ𝑛(𝛌)

    ∫𝐵𝑐

    𝛟

    𝑓 (𝑊)

    𝑥 − 𝑊𝑛−𝛌

    𝑝

    𝑑𝑊

    ≀1

    Γ𝑛(𝛌)

    ∫𝐵𝑐

    𝛟

    𝑓 (𝑊)

    𝑥 − 𝑊𝑛−Re𝛌𝑝

    𝑑𝑊

    =1

    Γ𝑛(𝛌)

    ∞

    ∑

    𝑘=𝛟+1

    ∫𝑆𝑘

    𝑓 (𝑊)

    𝑥 − 𝑊𝑛−Re𝛌𝑝

    𝑑𝑊

    =1

    Γ𝑛(𝛌)

    ∞

    ∑

    𝑘=𝛟+1

    ∫𝑆𝑘

    𝑝−𝑘(𝑛−Re𝛌) 𝑓 (𝑊)

    𝑑𝑊

    ≀1

    Γ𝑛(𝛌)

    ∞

    ∑

    𝑘=𝛟+1

    𝑝−𝑘(𝑛−Re𝛌)

    (∫𝐵𝑘

    𝑓 (𝑊)𝑞

    𝑑𝑊)

    1/𝑞

    𝐵𝑘1−1/𝑞

    𝐻

    ≀1

    Γ𝑛(𝛌)

    𝑓ᅵ̇ᅵ𝑞,𝜆(Q𝑛

    𝑝)

    ∞

    ∑

    𝑘=𝛟+1

    𝑝−𝑘(𝑛−Re𝛌) 𝐵𝑘

    1+𝜆

    𝐻

    ≀ 𝐶𝐵𝛟

    𝜇

    𝐻

    𝑓ᅵ̇ᅵ𝑞,𝜆(Q𝑛

    𝑝).

    (20)

    The last inequality is due to the fact that 𝜆 < −Re𝛌/𝑛.Consequently,

    𝐌𝐌 = (1

    𝐵𝛟

    1+𝜇𝑟

    𝐻

    ∫𝐵𝛟

    𝐌𝑝

    𝛌(𝑓𝜒𝐵𝑐

    𝛟

    ) (𝑥)

    𝑟

    𝑑𝑥)

    1/𝑟

    ≀ 𝐶𝑓ᅵ̇ᅵ𝑞,𝜆(Q𝑛

    𝑝).

    (21)

    The above estimates imply that

    𝐌𝑝

    𝛌𝑓ᅵ̇ᅵ𝑟,𝜇(Q𝑛

    𝑝)≀ 𝐶

    𝑓ᅵ̇ᅵ𝑞,𝜆(Q𝑛

    𝑝). (22)

  • 4 Journal of Function Spaces

    (ii) If 𝑞 = 1, set 𝑓1= 𝑓𝜒𝐵𝛟

    and 𝑓2= 𝑓 − 𝑓

    1; by Lemma 8,

    we have{𝑥 ∈ 𝐵

    𝛟:𝐌𝑝

    𝛌𝑓1(𝑥) > 𝑡}

    𝐻

    ≀ 𝐶(

    𝑓1𝐿1(Q𝑛

    𝑝)

    𝑡)

    𝑟

    = 𝐶𝑡−𝑟

    (∫𝐵𝛟

    𝑓 (𝑥) 𝑑𝑥)

    𝑟

    ≀ 𝐶𝑡−𝑟𝐵𝛟

    (1+𝜆)𝑟

    𝐻

    𝑓𝑟

    ᅵ̇ᅵ1,𝜆(Q𝑛𝑝)

    = 𝐶𝑡−𝑟𝐵𝛟

    1+𝜇𝑟

    𝐻

    𝑓𝑟

    ᅵ̇ᅵ1,𝜆(Q𝑛𝑝).

    (23)

    On the other hand, by the same estimate as (30), we have

    𝐌𝑝

    𝛌𝑓2(𝑥) ≀ 𝐶

    𝐵𝛟

    𝜇

    𝐻

    𝑓2ᅵ̇ᅵ1,𝜆(Q𝑛

    𝑝). (24)

    Then using Chebyshev’s inequality, we obtain

    {𝑥 ∈ 𝐵

    𝛟:𝐌𝑝

    𝛌𝑓2(𝑥) > 𝑡}

    𝐻≀ 𝑡−𝑟

    ∫𝐵𝛟

    𝐌𝑝

    𝛌𝑓2(𝑥)𝑟

    𝑑𝑥

    ≀ 𝐶𝑡−𝑟𝐵𝛟

    1+𝜇𝑟

    𝐻

    𝑓2𝑟

    ᅵ̇ᅵ1,𝜆(Q𝑛𝑝)

    ≀ 𝐶𝑡−𝑟𝐵𝛟

    1+𝜇𝑟

    𝐻

    𝑓𝑟

    ᅵ̇ᅵ1,𝜆(Q𝑛𝑝).

    (25)

    Since𝐌𝑝

    𝛌𝑓 (𝑥)

    ≀𝐌𝑝

    𝛌𝑓1(𝑥) +𝐌𝑝

    𝛌𝑓2(𝑥) , (26)

    we get

    {𝑥 ∈ 𝐵

    𝛟:𝐌𝑝

    𝛌𝑓 (𝑥)

    > 𝑡}𝐻≀{𝑥 ∈ 𝐵

    𝛟:𝐌𝑝

    𝛌𝑓1(𝑥) >

    𝑡

    2}𝐻

    +{𝑥 ∈ 𝐵

    𝛟:𝐌𝑝

    𝛌𝑓2(𝑥) >

    𝑡

    2}𝐻

    ≀ 𝐶𝑡−𝑟𝐵𝛟

    1+𝜇𝑟

    𝐻

    𝑓𝑟

    ᅵ̇ᅵ1,𝜆(Q𝑛𝑝).

    (27)

    Therefore,

    (𝑡𝑟{𝑥 ∈ 𝐵

    𝛟:𝐌𝑝

    𝛌𝑓 (𝑥)

    > 𝑡}𝐻

    𝐵𝛟

    1+𝜇𝑟

    𝐻

    )

    1/𝑟

    ≀ 𝐶𝑓ᅵ̇ᅵ1,𝜆(Q𝑛

    𝑝), (28)

    for any 𝑡 > 0 and 𝛟 ∈ Z. This completes the proof.

    For application, we now introduce a pseudo-differentialoperator𝐷𝛌 defined by Vladimirov in [33].

    The operator 𝐷𝛌 : 𝜓 → 𝐷𝛌𝜓 is defined as convolutionof generalized functions 𝑓

    −𝛌and 𝜓:

    𝐷𝛌

    𝜓 = 𝑓−𝛌∗ 𝜓, 𝛌 Ìž= −1, (29)

    where 𝑓𝛌= |𝑥|𝛌−1

    𝑝/Γ(𝛌) and Γ(𝛌) = (1 − 𝑝𝛌−1)/(1 − 𝑝−𝛌).

    Let us consider the equation

    𝐷𝛌

    𝜓 = 𝑔, 𝑔 ∈ E

    , (30)

    where E is the space of linear continuous functionals on Eand here E denotes the set of locally constant functions onQ𝑝. A complex-valued function 𝑓(𝑥) defined onQ

    𝑝is called

    locally constant if for any point 𝑥 ∈ Q𝑝there exists an integer

    𝑙(𝑥) ∈ Z such that

    𝑓 (𝑥 + 𝑥

    ) = 𝑓 (𝑥) ,

    𝑥𝑝≀ 𝑝𝑙(𝑥)

    .

    (31)

    The following lemma (page 154 in [10]) gives solutions of(30).

    Lemma 9. For 𝛌 > 0 any solution of (30) is expressed by theformula

    𝜓 = 𝐷−𝛌

    𝑔 + 𝐶, (32)

    where 𝐶 is an arbitrary constant; for 𝛌 < 0 a solution of (30) isunique and it is expressed by formula (32) for 𝐶 = 0.

    Combining with Theorem 7, we obtain the followingregular property of the solution.

    Corollary 10. Let 0 < 𝛌 < 1 and let 1 ≀ 𝑞 < 1/𝛌, 0 < 1/𝑟 =1/𝑞 − 𝛌, 𝜆 < −𝛌, and 𝜇 = 𝜆 + 𝛌. If 𝑔 ∈ E ∩ ᅵ̇ᅵ𝑞,𝜆(Q𝑛

    𝑝), then

    (i) when 𝑞 > 1, (30) has a solution in ᅵ̇ᅵ𝑟,𝜇(Q𝑛𝑝),

    (ii) when 𝑞 = 1, (30) has a solution in𝑊ᅵ̇ᅵ𝑟,𝜇(Q𝑛𝑝).

    3. Commutators of 𝑝-Adic Riesz Potential

    In this section, we will establish the 𝜆-central BMO estimatesfor commutators 𝐌𝑝,𝑏

    𝛌of 𝑝-adic Riesz potential which is

    defined by

    𝐌𝑝,𝑏

    𝛌𝑓 = 𝑏𝐌

    𝑝

    𝛌𝑓 − 𝐌𝑝

    𝛌(𝑏𝑓) , (33)

    for some suitable functions 𝑓.

    Theorem 11. Suppose 0 < Re𝛌 < 𝑛, 1 < 𝑞1< 𝑛/Re𝛌, 𝑞

    1<

    𝑞2< ∞, and 1/𝑞 = 1/𝑞

    1+ 1/𝑞2− Re𝛌/𝑛. Let 0 ≀ 𝜆

    2< 1/𝑛,

    𝜆1satisfies 𝜆

    1< −𝜆2− Re𝛌/𝑛, and 𝜆 = 𝜆

    1+ 𝜆2+ Re𝛌/𝑛. If

    𝑏 ∈ 𝐶𝐵𝑀𝑂𝑞2,𝜆2(Q𝑛𝑝), then 𝐌𝑝,𝑏

    𝛌is bounded from ᅵ̇ᅵ𝑞1 ,𝜆1(Q𝑛

    𝑝) to

    ᅵ̇ᅵ𝑞,𝜆

    (Q𝑛𝑝), and the following inequality holds:

    𝐌𝑝,𝑏

    𝛌𝑓ᅵ̇ᅵ𝑞,𝜆(Q𝑛

    𝑝)

    ≀ 𝐶 ‖𝑏‖𝐶𝐵𝑀𝑂

    𝑞2,𝜆2 (Q𝑛𝑝)

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝). (34)

    Before proving this theorem,we need the following result.

    Lemma 12 (see [31]). Suppose that 𝑏 ∈ 𝐶𝐵𝑀𝑂𝑞,𝜆(Q𝑛𝑝) and

    𝑗, 𝑘 ∈ Z, 𝜆 ≥ 0. Then𝑏𝐵𝑗

    − 𝑏𝐵𝑘

    ≀ 𝑝𝑛 𝑗 − 𝑘

    ‖𝑏‖𝐶𝐵𝑀𝑂𝑞,𝜆(Q𝑛𝑝)max {𝐵𝑗

    𝜆

    𝐻

    ,𝐵𝑘𝜆

    𝐻} .

    (35)

  • Journal of Function Spaces 5

    Proof of Theorem 11. Suppose that 𝑓 is a function inᅵ̇ᅵ𝑞1,𝜆1(Q𝑛𝑝). For fixed 𝛟 ∈ Z, denote 𝐵

    𝛟(0) by 𝐵

    𝛟. We write

    (1

    𝐵𝛟

    𝐻

    ∫𝐵𝛟

    𝐌𝑝,𝑏

    𝛌𝑓 (𝑥)

    𝑞

    𝑑𝑥)

    1/𝑞

    ≀ (1

    𝐵𝛟

    𝐻

    ∫𝐵𝛟

    (𝑏 (𝑥) − 𝑏

    𝐵𝛟

    ) (𝐌𝑝

    𝛌𝑓𝜒𝐵𝛟

    ) (𝑥)

    𝑞

    𝑑𝑥)

    1/𝑞

    + (1

    𝐵𝛟

    𝐻

    ∫𝐵𝛟

    (𝑏 (𝑥) − 𝑏

    𝐵𝛟

    ) (𝐌𝑝

    𝛌𝑓𝜒𝐵𝑐

    𝛟

    ) (𝑥)

    𝑞

    𝑑𝑥)

    1/𝑞

    + (1

    𝐵𝛟

    𝐻

    ∫𝐵𝛟

    𝐌𝑝

    𝛌((𝑏 − 𝑏

    𝐵𝛟

    )𝑓𝜒𝐵𝛟

    ) (𝑥)

    𝑞

    𝑑𝑥)

    1/𝑞

    + (1

    𝐵𝛟

    𝐻

    ∫𝐵𝛟

    𝐌𝑝

    𝛌((𝑏 − 𝑏

    𝐵𝛟

    )𝑓𝜒𝐵𝑐

    𝛟

    ) (𝑥)

    𝑞

    𝑑𝑥)

    1/𝑞

    := 𝐜1+ 𝐜2+ 𝐜3+ 𝐜4.

    (36)

    Set 1/𝑟 = 1/𝑞1− Re𝛌/𝑛; then 1/𝑞 = 1/𝑞

    2+ 1/𝑟; by

    Lemma 8 and Hölder’s inequality, we have

    𝐜1= (

    1𝐵𝛟

    𝐻

    ∫𝐵𝛟

    (𝑏 (𝑥) − 𝑏

    𝐵𝛟

    ) (𝐌𝑝

    𝛌𝑓𝜒𝐵𝛟

    ) (𝑥)

    𝑞

    𝑑𝑥)

    1/𝑞

    ≀𝐵𝛟

    −1/𝑞

    𝐻

    (∫𝐵𝛟

    𝑏 (𝑥) − 𝑏

    𝐵𝛟

    𝑞2

    𝑑𝑥)

    1/𝑞2

    ⋅ (∫𝐵𝛟

    𝐌𝑝

    𝛌(𝑓𝜒𝐵𝛟

    ) (𝑥)

    𝑟

    𝑑𝑥)

    1/𝑟

    ≀ 𝐶𝐵𝛟

    −1/𝑟+𝜆2

    𝐻

    ‖𝑏‖CBMO𝑞2,𝜆2 (Q𝑛𝑝)

    ⋅ (∫𝐵𝛟

    𝑓𝜒𝐵𝛟

    (𝑥)

    𝑞1

    𝑑𝑥)

    1/𝑞1

    ≀ 𝐶𝐵𝛟

    𝜆

    𝐻

    ‖𝑏‖CBMO𝑞2,𝜆2 (Q𝑛𝑝)

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝).

    (37)

    Similarly, denote 1/𝑙 = 1/𝑞1+ 1/𝑞

    2; then 1/𝑞 = 1/𝑙 −

    Re𝛌/𝑛, and by Hölder’s inequality and Lemma 8, we get

    𝐜3= (

    1𝐵𝛟

    𝐻

    ∫𝐵𝛟

    𝐌𝑝

    𝛌((𝑏 − 𝑏

    𝐵𝛟

    )𝑓𝜒𝐵𝛟

    ) (𝑥)

    𝑞

    𝑑𝑥)

    1/𝑞

    ≀ 𝐶𝐵𝛟

    −1/𝑞

    𝐻

    (∫𝐵𝛟

    (𝑏 (𝑥) − 𝑏

    𝐵𝛟

    )𝑓 (𝑥)

    𝑙

    𝑑𝑥)

    1/𝑙

    ≀ 𝐶𝐵𝛟

    −1/𝑞

    𝐻

    (∫𝐵𝛟

    𝑏 (𝑥) − 𝑏

    𝐵𝛟

    𝑞2

    𝑑𝑥)

    1/𝑞2

    ⋅ (∫𝐵𝛟

    𝑓 (𝑥)𝑞1

    𝑑𝑥)

    1/𝑞1

    ≀ 𝐶𝐵𝛟

    𝜆

    𝐻

    ‖𝑏‖CBMO𝑞2,𝜆2 (Q𝑛𝑝)

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝).

    (38)

    To estimate 𝐜2and 𝐜

    4, we firstly give the following

    estimates. For 𝑥 ∈ 𝐵𝛟, by Hölder’s inequality, we obtain

    𝐌𝑝

    𝛌(𝑓𝜒𝐵𝑐

    𝛟

    ) (𝑥)

    =

    1

    Γ𝑛(𝛌)

    ∫𝐵𝑐

    𝛟

    𝑓 (𝑊)

    𝑥 − 𝑊𝑛−𝛌

    𝑝

    𝑑𝑊

    ≀1

    Γ𝑛(𝛌)

    ∫𝐵𝑐

    𝛟

    𝑓 (𝑊)

    𝑥 − 𝑊𝑛−Re𝛌𝑝

    𝑑𝑊

    =1

    Γ𝑛(𝛌)

    ∞

    ∑

    𝑘=𝛟+1

    ∫𝑆𝑘

    𝑓 (𝑊) 𝑝−𝑘(𝑛−Re𝛌)

    𝑑𝑊

    ≀1

    Γ𝑛(𝛌)

    ∞

    ∑

    𝑘=𝛟+1

    𝑝−𝑘(𝑛−Re𝛌) 𝐵𝑘

    1−1/𝑞

    1

    𝐻(∫𝑆𝑘

    𝑓 (𝑊)𝑞1

    𝑑𝑊)

    1/𝑞1

    ≀1

    Γ𝑛(𝛌)

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝)

    ∞

    ∑

    𝑘=𝛟+1

    𝑝−𝑘(𝑛−Re𝛌) 𝐵𝑘

    1+𝜆1

    𝐻

    =1

    Γ𝑛(𝛌)

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝)

    𝑝(𝛟+1)(𝑛𝜆

    1+Re𝛌)

    1 − 𝑝𝑛𝜆1+Re𝛌

    = 𝐶𝐵𝛟

    𝜆1+Re𝛌/𝑛𝐻

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝),

    (39)

    where the penultimate “=” is due to the fact that 𝜆1+Re𝛌/𝑛 <

    −𝜆2≀ 0. Similarly,

    𝐌𝑝

    𝛌((𝑏 − 𝑏

    𝐵𝛟

    )𝑓𝜒𝐵𝑐

    𝛟

    ) (𝑥)

    =

    1

    Γ𝑛(𝛌)

    ∫𝐵𝑐

    𝛟

    (𝑏 (𝑊) − 𝑏𝐵𝛟

    )𝑓 (𝑊)

    𝑥 − 𝑊𝑛−𝛌

    𝑝

    𝑑𝑊

    ≀1

    Γ𝑛(𝛌)

    ∫𝐵𝑐

    𝛟

    𝑏 (𝑊) − 𝑏

    𝐵𝛟

    𝑓 (𝑊)

    𝑥 − 𝑊𝑛−Re𝛌𝑝

    𝑑𝑊

    =1

    Γ𝑛(𝛌)

    ∞

    ∑

    𝑘=𝛟+1

    ∫𝑆𝑘

    𝑏 (𝑊) − 𝑏

    𝐵𝛟

    𝑓 (𝑊) 𝑝−𝑘(𝑛−Re𝛌)

    𝑑𝑊

    =1

    Γ𝑛(𝛌)

    ∞

    ∑

    𝑘=𝛟+1

    𝑝−𝑘(𝑛−Re𝛌) 𝐵𝑘

    1−1/𝑞

    1−1/𝑞2

    𝐻

    ⋅ (∫𝑆𝑘

    𝑓 (𝑊)𝑞1

    𝑑𝑊)

    1/𝑞1

    (∫𝑆𝑘

    𝑏 (𝑊) − 𝑏

    𝐵𝛟

    𝑞2

    𝑑𝑊)

    1/𝑞2

    ≀1

    Γ𝑛(𝛌)

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝)

    ∞

    ∑

    𝑘=𝛟+1

    𝑝−𝑘(𝑛−Re𝛌) 𝐵𝑘

    1−1/𝑞

    2+𝜆1

    𝐻

    ⋅ (∫𝐵𝑘

    𝑏 (𝑊) − 𝑏

    𝐵𝛟

    𝑞2

    𝑑𝑊)

    1/𝑞2

    ≀1

    Γ𝑛(𝛌)

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝)

    ∞

    ∑

    𝑘=𝛟+1

    𝑝−𝑘(𝑛−Re𝛌) 𝐵𝑘

    1−1/𝑞

    2+𝜆1

    𝐻

    × [(∫𝐵𝑘

    𝑏 (𝑊) − 𝑏

    𝐵𝑘

    𝑞2

    𝑑𝑊)

    1/𝑞2

    +𝑏𝐵𝑘

    − 𝑏𝐵𝛟

    𝐵𝑘1/𝑞2

    𝐻] .

    (40)

  • 6 Journal of Function Spaces

    Since 𝑘 ≥ 𝛟 + 1, by Lemma 12, we have𝑏𝐵𝑘

    − 𝑏𝐵𝛟

    ≀ 𝑝𝑛

    (𝑘 − 𝛟) ‖𝑏‖CBMO𝑞2,𝜆2 (Q𝑛𝑝)

    𝐵𝑘𝜆2

    𝐻. (41)

    Thus𝐌𝑝

    𝛌((𝑏 − 𝑏

    𝐵𝛟

    )𝑓𝜒𝐵𝑐

    𝛟

    ) (𝑥)

    ≀1

    Γ𝑛(𝛌)

    ‖𝑏‖CBMO𝑞2,𝜆2 (Q𝑛𝑝)

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝)

    ×

    ∞

    ∑

    𝑘=𝛟+1

    𝑝−𝑘(𝑛−Re𝛌) 𝐵𝑘

    1−1/𝑞

    2+𝜆1

    𝐻

    ⋅ [𝐵𝑘1/𝑞2+𝜆2

    𝐻+ 𝑝𝑛

    (𝑘 − 𝛟)𝐵𝑘1/𝑞2+𝜆2

    𝐻]

    ≀𝐶

    Γ𝑛(𝛌)

    ‖𝑏‖CBMO𝑞2,𝜆2 (Q𝑛𝑝)

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝)

    ⋅

    ∞

    ∑

    𝑘=𝛟+1

    (𝑘 − 𝛟) 𝑝−𝑘(𝑛−Re𝛌) 𝐵𝑘

    1+𝜆1+𝜆2

    𝐻

    ≀𝐶

    Γ𝑛(𝛌)

    ‖𝑏‖CBMO𝑞2,𝜆2 (Q𝑛𝑝)

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝)

    ∞

    ∑

    𝑘=𝛟+1

    (𝑘 − 𝛟) 𝑝𝑘𝑛𝜆

    = 𝐶𝐵𝛟

    𝜆

    𝐻

    ‖𝑏‖CBMO𝑞2,𝜆2 (Q𝑛𝑝)

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝).

    (42)

    Now by (39) and Hölder’s inequality, we obtain

    𝐜2= (

    1𝐵𝛟

    𝐻

    ∫𝐵𝛟

    (𝑏 (𝑥) − 𝑏

    𝐵𝛟

    ) (𝐌𝑝

    𝛌𝑓𝜒𝐵𝑐

    𝛟

    ) (𝑥)

    𝑞

    𝑑𝑥)

    1/𝑞

    ≀ 𝐶𝐵𝛟

    𝜆1+Re𝛌/𝑛−1/𝑞𝐻

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝)

    ⋅ (∫𝐵𝛟

    𝑏 (𝑥) − 𝑏

    𝐵𝛟

    𝑞

    𝑑𝑥)

    1/𝑞

    ≀ 𝐶𝐵𝛟

    𝜆1+Re𝛌/𝑛−1/𝑞

    2

    𝐻

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝)

    ⋅ (∫𝐵𝛟

    𝑏 (𝑥) − 𝑏

    𝐵𝛟

    𝑞2

    𝑑𝑥)

    1/𝑞2

    ≀ 𝐶𝐵𝛟

    𝜆

    𝐻

    ‖𝑏‖CBMO𝑞2,𝜆2 (Q𝑛𝑝)

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝).

    (43)

    It follows from (42) that

    𝐜4= (

    1𝐵𝛟

    𝐻

    ∫𝐵𝛟

    𝐌𝑝

    𝛌((𝑏 − 𝑏

    𝐵𝛟

    )𝑓𝜒𝐵𝑐

    𝛟

    ) (𝑥)

    𝑞

    𝑑𝑥)

    1/𝑞

    ≀ 𝐶𝐵𝛟

    𝜆

    𝐻

    ‖𝑏‖CBMO𝑞2,𝜆2 (Q𝑛𝑝)

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝).

    (44)

    The above estimates imply that𝐌𝑝,𝑏

    𝛌𝑓ᅵ̇ᅵ𝑞,𝜆(Q𝑛

    𝑝)

    ≀ 𝐶 ‖𝑏‖CBMO𝑞2,𝜆2 (Q𝑛𝑝)

    𝑓ᅵ̇ᅵ𝑞1,𝜆1 (Q𝑛

    𝑝). (45)

    This completes the proof of the theorem.

    Remark 13. Since 𝑝-adic field is a kind of locally com-pact Vilenkin groups, we can further consider the Hardy-Littlewood-Sobolev inequalities on such groups, which ismore complicated and will appear elsewhere.

    Conflict of Interests

    The authors declare that there is no conflict of interestsregarding the publication of this paper.

    Acknowledgments

    This work was partially supported by NSF of China (Grantnos. 11271175, 11171345, and 11301248) and AMEP (DYSP)of Linyi University and Macao Science and TechnologyDevelopment Fund, MSAR (Ref. 018/2014/A1).

    References

    [1] L. Grafakos,Modern Fourier Analysis, vol. 250 ofGraduate Textsin Mathematics, Springer, New York, NY, USA, 2nd edition,2008.

    [2] S. Albeverio and W. Karwowski, “A random walk on p-adics—the generator and its spectrum,” Stochastic Processes and theirApplications, vol. 53, no. 1, pp. 1–22, 1994.

    [3] V.A.Avetisov, A.H. Bikulov, S. V. Kozyrev, andV.A.Osipov, “𝑝-adicmodels of ultrametric diffusion constrained by hierarchicalenergy landscapes,” Journal of Physics. A. Mathematical andGeneral, vol. 35, no. 2, pp. 177–189, 2002.

    [4] S. Haran, “Riesz potentials and explicit sums in arithmetic,”Inventiones Mathematicae, vol. 101, no. 3, pp. 697–703, 1990.

    [5] A. Khrennikov, p-Adic Valued Distributions in MathematicalPhysics, Kluwer Academic Publishers, Dordrecht, The Nether-lands, 1994.

    [6] A. Khrennikov, Non-Archimedean Analysis: Quantum Para-doxes, Dynamical Systems and Biological Models, Kluwer Aca-demic Publishers, Dordrecht, The Netherlands, 1997.

    [7] A. N. Kochubei, “A non-Archimedean wave equation,” PacificJournal of Mathematics, vol. 235, no. 2, pp. 245–261, 2008.

    [8] V. S. Varadarajan, “Path integrals for a class of 𝑝-adicSchrödinger equations,” Letters inMathematical Physics, vol. 39,no. 2, pp. 97–106, 1997.

    [9] V. S. Vladimirov and I. V. Volovich, “𝑝-adic quantum mechan-ics,” Communications in Mathematical Physics, vol. 123, no. 4,pp. 659–676, 1989.

    [10] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-AdicAnalysis and Mathematical Physics. Volume I, Series on Sovietand East European Mathematics, World Scientific, Singapore,1992.

    [11] I. V. Volovich, “𝑝-adic space-time and string theory,”Akademiya Nauk SSSR: Teoreticheskaya i MatematicheskayaFizika, vol. 71, no. 3, pp. 337–340, 1987.

    [12] I. V. Volovich, “𝑝-adic string,” Classical and Quantum Gravity,vol. 4, no. 4, pp. L83–L87, 1987.

    [13] S. Albeverio, A. Yu. Khrennikov, and V. M. Shelkovich, “Har-monic analysis in the p-adicLizorkinspaces: fractional opera-tors, pseudo-differential equations, p-adic wavelets, Tauberiantheorems,” Journal of Fourier Analysis and Applications, vol. 12,pp. 393–425, 2006.

  • Journal of Function Spaces 7

    [14] N. M. Chuong and H. D. Hung, “Maximal functions andweighted norm inequalities on local fields,” Applied and Com-putational Harmonic Analysis, vol. 29, no. 3, pp. 272–286, 2010.

    [15] N. M. Chuong, Y. V. Egorov, A. Khrennikov, Y. Meyer, andD. Mumford, Harmonic, Waveletand p-Adic Analysis, WorldScientific Publishers, Singapore, 2007.

    [16] Y.-C. Kim, “Carleson measures and the BMO space on the 𝑝-adic vector space,” Mathematische Nachrichten, vol. 282, no. 9,pp. 1278–1304, 2009.

    [17] Y.-C. Kim, “Weak type estimates of square functions associ-ated with quasiradial Bochner-Riesz means on certain Hardyspaces,” Journal of Mathematical Analysis and Applications, vol.339, no. 1, pp. 266–280, 2008.

    [18] Y.-C. Kim, “A simple proof of the 𝑝-adic version of theSobolev embedding theorem,” Communications of the KoreanMathematical Society, vol. 25, no. 1, pp. 27–36, 2010.

    [19] S. Z. Lu and D. C. Yang, “The decomposition of Herz spaceson local fields and its applications,” Journal of MathematicalAnalysis and Applications, vol. 196, no. 1, pp. 296–313, 1995.

    [20] K. M. Rogers, “A van der Corput lemma for the 𝑝-adicnumbers,” Proceedings of the American Mathematical Society,vol. 133, no. 12, pp. 3525–3534, 2005.

    [21] K. M. Rogers, “Maximal averages along curves over the p-adicnumbers,” Bulletin of the Australian Mathematical Society, vol.70, no. 3, pp. 357–375, 2004.

    [22] M. H. Taibleson, Fourier Analysis on Local Fields, PrincetonUniversity Press, Princeton,NJ, USA,University of Tokyo Press,Tokyo, Japan, 1975.

    [23] S.-h. Lan, “The commutators on Herz spaces over locallycompact Vilenkin groups,”Advances inMathematics, vol. 35, no.5, pp. 539–550, 2006.

    [24] C. Tang, “The boundedness of multilinear commutators onlocally compact Vilenkin groups,” Journal of Function Spacesand Applications, vol. 4, no. 3, pp. 261–273, 2006.

    [25] J. Wu, “Boundedness of commutators on homogeneousMorrey-Herz spaces over locally compact Vilenkin groups,”Analysis in Theory and Applications, vol. 25, no. 3, pp. 283–296,2009.

    [26] A. Khrennikov, “𝑝-adic valued probability measures,” Indaga-tiones Mathematicae, vol. 7, no. 3, pp. 311–330, 1996.

    [27] A. Khrennikov and M. Nilsson, p-Adic Deterministic and Ran-dom Dynamical Systems, Kluwer, Dordreht, The Netherlands,2004.

    [28] S. Haran, “Analytic potential theory over the 𝑝-adics,” Annalesde l’institut Fourier, vol. 43, no. 4, pp. 905–944, 1993.

    [29] S. S. Volosivets, “Maximal function and Riesz potential on 𝑝-adic linear spaces,” p-Adic Numbers, Ultrametric Analysis, andApplications, vol. 5, no. 3, pp. 226–234, 2013.

    [30] J. Alvarez, J. Lakey, and M. Guzmán-Partida, “Spaces ofbounded 𝜆-central mean oscillation, Morrey spaces, and 𝜆-central Carleson measures,” Universitat de Barcelona. Col-lectanea Mathematica, vol. 51, no. 1, pp. 1–47, 2000.

    [31] Q. Y. Wu, L. Mi, and Z. W. Fu, “Boundedness of p-adic Hardyoperators and their commutatorson p-adic central Morrey andBMO spaces,” Journal of Function Spaces and Applications, vol.2013, Article ID 359193, 10 pages, 2013.

    [32] Z. W. Fu, Q. Y. Wu, and S. Z. Lu, “Sharp estimates of p-adichardy andHardy-Littlewood-Pólya operators,”ActaMathemat-ica Sinica, vol. 29, no. 1, pp. 137–150, 2013.

    [33] V. S. Vladimirov, “Generalized functions over p-adic numberfield,” Uspekhi Matematicheskikh Nauk, vol. 43, pp. 17–53, 1988.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of

Recommended