Perspective on Turbulence Modeling using Reynolds...

Preview:

Citation preview

Perspective on Turbulence Modeling using Reynolds Stress Models : Modification for pressure gradients

Tobias Knopp, Bernhard Eisfeld

DLR Institute of Aerodynamics and Flow Technology

Experimental data shown were obtained in cooperation withDaniel Schanz, Matteo Novara, Erich Schülein, Andreas Schröder DLR AS

Nico Reuther, Nicolas Buchmann, Rainer Hain, Christian Cierpka, Christian KählerUniv Bundeswehr München, Institute for Fluid Mechanics and Aerodynamics

IMPULSE progress meeting

Folie 2

slide 2Slide 2

Motivation: Digital aerospace products

Numerical simulation based future aircraft design

Challenges§A/δ99 extremely large: large Re and large A§#simulations large for design and optimization

=> RANS, not LES

IMPULSE progress meeting

Folie 3

slide 3Slide 3

Optimism to describe “first order” steady state aerodynamic flow phenomena within the RANS concept

Separation in the wing-body junction at APG

Interaction of wake flow and boundary layer at APG

Interaction of strake vortex and boundary layer at APG

DLR strategy for RANS model improvement

Turbulent boundary layers at APG Separation and reattachment Wake flow at APG

[28] Hoffenberg & Sullivan, 1998

[21] Liu et al., 2002

[19] Roos, 1997

[22] Tummers et al., 2007

[20] Driver & Mateer, 2002

IMPULSE progress meeting

Folie 4

slide 4Slide 4

DLR strategy for RANS model improvement

High-quality data base (exp., DNS/LES)

IMPULSE progress meeting

Folie 5

slide 5Slide 5

DLR strategy for RANS model improvement

High-quality data base (exp., DNS/LES)

(Empirical) laws of turbulence

IMPULSE progress meeting

Folie 6

slide 6Slide 6

DLR strategy for RANS model improvement

High-quality data base (exp., DNS/LES)

(Empirical) laws of turbulence

Physics-based improvement of RANS

IMPULSE progress meeting

Folie 7

slide 7Slide 7

DLR strategy for RANS model improvement

High-quality data base (exp., DNS/LES)

(Empirical) laws of turbulence

Physics based improvement of RANS

Experiments by Nikuradze

Surface roughness

IMPULSE progress meeting

Folie 8

slide 8Slide 8

DLR strategy for RANS model improvement

High-quality data base (exp., DNS/LES)

(Empirical) laws of turbulence

Physics-based improvement of RANS

kr+ = kr uτ / νΔu+=f(kr

+)

Surface roughness

IMPULSE progress meeting

Folie 9

slide 9Slide 9

DLR strategy for RANS model improvement

High-quality data base (exp., DNS/LES)

(Empirical) laws of turbulence

Physics-based improvement of RANS νt = κuτ (y + 0.03kr)

Surface roughness

IMPULSE progress meeting

Folie 10

slide 10Slide 10

DLR strategy for RANS model improvement

High-quality data base (exp., DNS/LES)

(Empirical) laws of turbulence

Physics-based improvement of RANS

Surface roughness

IMPULSE progress meeting

Folie 11

slide 11Slide 11

DLR strategy for RANS model improvement

High-quality data base (exp., DNS/LES)

(Empirical) laws of turbulence

Physics-based improvement of RANS

Turbulent boundary layer at APG

IMPULSE progress meeting

Folie 12

slide 12Slide 12

DLR strategy for RANS model improvement

High-quality data base (exp., DNS/LES)

(Empirical) laws of turbulence

Physics-based improvement of RANS

Relevant parameter space?

Turbulent boundary layer at APG

IMPULSE progress meeting

Folie 13

slide 13Slide 13

Reynolds number

Pressure gradientparameter

Data base set-up: The parameter space

IMPULSE progress meeting

Folie 14

slide 14Slide 14

Reynolds number

Pressure gradientparameter

Data base set-up: The parameter space

A320 flap

IMPULSE progress meeting

Folie 15

slide 15Slide 15

A380 flap

Data base set-up: The parameter space

A320 flap

IMPULSE progress meeting

Folie 16

slide 16Slide 16

A380 flap A380 wingA350 wing

Data base set-up: The parameter space

IMPULSE progress meeting

Folie 17

slide 17Slide 17

Data base set-up: The parameter space

DLR institute AS decision 2009:New data needed!Only experiments can give large Re!

IMPULSE progress meeting

Folie 18

slide 18Slide 18

Exp I.Assess PIV at moderate Re

Data base set-up: The parameter space

IMPULSE progress meeting

Folie 19

slide 19Slide 19

Experiment #1 (2011): RETTINA I exp. (DLR + UniBw Munich)

Large scale overview 2D2C PIV

LR μPTV

2D3C PIV

U∞= 6 … 12m/s Reθ up to 10000 and δ99 =0.1mThick boundary layers enable PIV

IMPULSE progress meeting

Folie 20

slide 20Slide 20

Exp I.Assess PIVat moderate Re

Data base set-up: The parameter space

IMPULSE progress meeting

Folie 21

slide 21Slide 21

Exp II.Higher Re

Data base set-up: The parameter space

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 22

Experiment #2 (2015): RETTINA II exp. (DLR + UniBw Munich)

Flow relaxation

ZPGLog-law

APG region

Defined inflow condition. Defined

outflow condition

U∞=10m/s, 23m/s, 36m/s

Funded by DLR institute AS and by DFG

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 23

ZPGLog-law

APG region

U∞=36m/s

Reθ=41000

Experiment #2 (2015): RETTINA II exp. (DLR + UniBw Munich)

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 24

Large-scale 2D2C-PIV 9 cams2D3C PIVmicro 2D2C PTV3D3C PTV STB (shake the box)

Experiment #2 (2015): RETTINA II exp. (DLR + UniBw Munich)

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 25

Challenge: Large range of scale of turbulent boundary layer

Solution approach: Multi-resolution multi-camera PIV

Experiment #2 (2015): RETTINA II exp. (DLR + UniBw Munich)

U=36m/sReθ=41000

ν/uτ = 20μmδ99 = 0.2m

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 26

Challenge: Large range of scale of turbulent boundary layer

Solution approach: Multi-resolution multi-camera PIV

Experiment #2 (2015): RETTINA II exp. (DLR + UniBw Munich)

U=36m/sReθ=41000

ν/uτ = 20μmδ99 = 0.2m

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 27

Challenge: Large range of scale of turbulent boundary layer

Solution approach: Multi-resolution multi-camera PIV

Experiment #2 (2015): RETTINA II exp. (DLR + UniBw Munich)

U=36m/sReθ=41000

ν/uτ = 20μmδ99 = 0.2m

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 28

Challenge: Large range of scale of turbulent boundary layer

Solution approach: Multi-resolution multi-camera PIV

Experiment #2 (2015): RETTINA II exp. (DLR + UniBw Munich)

U=36m/sReθ=41000

ν/uτ = 20μmδ99 = 0.2m STB=„shake-the-box“

Particle-tracking-approachSchanz, Schröder, Novara@ DLR-AS

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 29

Measurement technique. Skin friction Clauser chart (y+-range depends on ZPG, FPG, APG)

μPTV: Viscous sublayer mean velocityOil film interferometry

IMPULSE progress meeting

Folie 30

slide 30Slide 30

Mild separation and reattachment

Experiment #3 (August 2017) within DLR internal project

IMPULSE progress meeting

Folie 31

slide 31Slide 31

DLR strategy for RANS model improvement

High-quality data base (exp., DNS/LES)

(Empirical) laws of turbulence

Physics-based improvement of RANS

IMPULSE progress meeting

Folie 32

slide 32Slide 32

Empirical wall law at APG

Mean velocity profiles2D2C Reynolds stresses

IMPULSE progress meeting

Folie 33

slide 33Slide 33

U=36m/sΔpx

+=0.015

Aim: Empirical wall-law at APG for y<0.1δ99

y<10%δ99

Empirical wall law at APG

IMPULSE progress meeting

Folie 34

slide 34Slide 34

U=36m/sΔpx

+=0.015

Aim: Empirical wall-law at APG for y<0.1δ99

y<10%δ99

Empirical wall law at APG

IMPULSE progress meeting

Folie 35

slide 35Slide 35

U=36m/sΔpx

+=0.015

Hypothesis #1: Resilience of a small log-region

y<0.1δ99

Empirical wall law at APG

IMPULSE progress meeting

Folie 36

slide 36Slide 36

U=36m/sΔpx

+=0.015

Hypothesis #1: Resilience of a small log-region

y<0.1δ99

Empirical wall law at APG

Galbraith et al. (1977),Granville (1985), Bradshaw (1995), Perry & Schofield (1973), Durbin & Belcher (1992)Skare & Krogstad (1994)Spalart & Coleman …

IMPULSE progress meeting

Folie 37

slide 37Slide 37

Results and analysis

y+Ξ-1 =

IMPULSE progress meeting

Folie 38

slide 38Slide 38

U=36m/sΔpx

+=0.015

y<0.1δ99

Empirical wall law at APG

IMPULSE progress meeting

Folie 39

slide 39Slide 39

U=36m/sΔpx

+=0.015

Hypothesis #2: square-root (sqrt)-law above the log-region

y<0.1δ99

Empirical wall law at APG

Szablewski (1954), Townsend (1961), McDonald (1969),Brown & Joubert…

IMPULSE progress meeting

Folie 40

slide 40Slide 40

Results and analysis

U=36m/sReθ=41000

Δpx+=0.015

Hypothesis #2: square-root (sqrt)-law above the log-region

y<0.1δ99

IMPULSE progress meeting

Folie 41

slide 41Slide 41

Results and analysis

y+log,max

Composite profile Brown & Joubert 1969

IMPULSE progress meeting

Folie 42

slide 42Slide 42

Results and analysis

Hypothesis #3: transition from log-law to sqrt-law depends on Δpx+

(probably more complex …)

y+log,max

Composite profile Brown & Joubert 1969

IMPULSE progress meeting

Folie 43

slide 43Slide 43

Results and analysis

Hypothesis #3: transition from log-law to sqrt-law depends on Δpx+

(probably more complex …)

y+log,max

Composite profile Brown & Joubert 1969

IMPULSE progress meeting

Folie 44

slide 44Slide 44

Results and analysis

Hypothesis #3: transition from log-law to sqrt-law depends on Δpx+

(probably more complex …)

y+log,max

Composite profile Brown & Joubert 1969

IMPULSE progress meeting

Folie 45

slide 45Slide 45

Results and analysis

Hypothesis #3: transition from log-law to sqrt-law depends on Δpx+

(probably more complex …)

ZPG Δpx

+→0

Pure log-law

IMPULSE progress meeting

Folie 46

slide 46Slide 46

Results and analysis

Hypothesis #3: transition from log-law to sqrt-law depends on Δpx+

(probably more complex …)

Separation Δpx

+→ ∞

Pure sqrt-law(Stratford)

• SlopecoefficientK

ZPG

„vonKarmanconstant“κ=0.40+/-0.1

Hypothesis #4: decrease of log-law slope parameter Ki at APG

Empirical wall law at APG

• SlopecoefficientK

ZPG

„vonKarmanconstant“κ=0.40+/-0.1

Hypothesis #4: decrease of log-law slope parameter Ki at APG

Empirical wall law at APG

APG

• SlopecoefficientK

„vonKarmanconstant“κ=0.40+/-0.1

Hypothesis #4: decrease of log-law slope parameter Ki at APG

Empirical wall law at APG

APG

• SlopecoefficientK

„vonKarmanconstant“κ=0.40+/-0.1

Hypothesis #4: decrease of log-law slope parameter Ki at APG

Empirical wall law at APG

APG

• SlopecoefficientK

ZPG

Hypothesis #4: decrease of log-law slope parameter Ki at APG

Empirical wall law at APG

• SlopecoefficientK

ZPG

Hypothesis #4: decrease of log-law slope parameter Ki at APG

Empirical wall law at APG

Increasing Δpx+

APG

• SlopecoefficientK

ZPG

Hypothesis #4: decrease of log-law slope parameter Ki at APG

Empirical wall law at APG

APG

• SlopecoefficientK

ZPG

Hypothesis #4: decrease of log-law slope parameter Ki at APG

Empirical wall law at APG

APG

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 55

DLR strategy for RANS model improvement

High-quality data base (exp., DNS/LES)

(Empirical) laws of turbulence

Physics-based improvement of RANS

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 56

DLR strategy for RANS model improvement

High-quality data base (exp., DNS/LES)

(Empirical) laws of turbulence

Physics-based improvement of RANS

Assumptions:§ Blended log-law + sqrt-law§ linear shear stress

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 57

DLR strategy for RANS model improvement

High-quality data base (exp., DNS/LES)

(Empirical) laws of turbulence

Physics-based improvement of RANS

Assumptions:§ Blended log-law + sqrt-law§ linear shear stress

Blending for eddy visc. νt

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 58

Idea: A composite wall-law for the turbulent viscosity

log-law at APG

sqrt-law at APG

(Galbraith et al. 1977)

Δpx+ = 0.012

Exp. by Skare & Krogstad

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 59

RANS modification

HGR01 airfoil at Rec=25Mio, incidence angle α=10°

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 60

RANS modification

HGR01 airfoil at Rec=25Mio, incidence angle α=10°

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 61

Idea #1: New terms with Δpx+-dependent local blending

Modifications should be activated only in parts of the boundary layer

Blending for y<0.15δ99 Activate only in the sqrt-region

Pressure diffusion at APG (Rao & Hassan)

Idea#2:RANSmodelcoefficientssensitizedtopressuregradientΔpx+

Standard calibration is for ZPG κ=0.41 = const

Coefficient γ controls the slope of the log-law

Idea#2:RANSmodelcoefficientssensitizedtopressuregradientΔpx+

• TheRANSmodelcoefficientwhichcontrolsthelog-lawslope(“Karman-constant”)becomesafunctiondependingonlocalflow

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 64

Data structure of wall-normal lines for Δpx+

Surface pointΔpx

+ from dp/dx and uτ

δ99, δ*, θ, H12

Field point

Extension of unstructured flow solver TAUWall-normal linesMethod to determine δ99, δ*, θ, H12

Coding efforts vs. Improvements in predictive accuracy

RANSmodelsensitizedtopressuregradientΔpx+

Surfacequantities Δpx+fromdp/dxanduτ

Maptocorrespondingfieldpoints

FielddistributionofΔpx+

RANSmodelsensitizedtopressuregradientΔpx+

RANSmodelcoefficientγ becomesafunctionofΔpx+

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 67

Validation of modified RANS

U=36m/s

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 68

Validation of modified RANS

U=36m/s

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 69

Validation of RANS

U=36m/s

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 70

Questions to the audience

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 71

Turbulent Boundary Layer at ZPG

-www.DLR.de • Folie 71

STELAR 2. Projekttreffen > DLR Göttingen > 23.04.2012

Slide 72

Turbulent Boundary Layer at ZPG

-www.DLR.de • Folie 72

Δcf=5%!

Conclusions

Conclusions

- DLR strategy: Physics based improvement of RANS using new laws of turbulence- First step: Wall law at APG- Composite wall law at APG (Brown & Joubert)

- Small log-region around y+~100- Sqrt-law region above log-region

- Machine learning for further tuning of first theoretical ideas

- Optimism to improve RANS models for aerodynamic flows during next decades- Great potential for future research- DNS/LES at relevant Re possible

- New smart DNS flows (e.g., work of Spalart & Coleman, Soria & Jimenez)- Improved measurement techniques (e.g. advances in PIV/PTV)

End of the presentation§ Experimental data shown in cooperation with

§ Daniel Schanz, Matteo Novara, Erich Schülein, Andreas Schröder DLR AS

§ Nico Reuther, Nicolas Buchmann, Rainer Hain, Christian Cierpka, Christian Kähler, UniBw München

§ Funding of measurement campaign by DFG within „Investigation ofturbulent boundary layers with pressure gradient at high Reynolds numbers with high resolution multi-camera techniques“

Validation RETTINA II

U=36m/s

Validation RETTINA II

U=36m/s

Validation RETTINA II

U=23m/s

IMPULSE progress meeting

Folie 79

slide 79Slide 79

Measuring technique

IMPULSE progress meeting

Folie 80

slide 80Slide 80

Modification of the k-omega model

Modified consistent model

Modification of the k-equation:Pressure diffusion term (Rao & Hassan)

Modification of the ω-equation:Pressure diffusion term

Negative cross-diffusion term

IMPULSE progress meeting

Folie 81

slide 81Slide 81

Consistency with wall-law

Summary of boundary layer analysis

Consistency with log-law at APG

Consistency with sqrt-law at APG

k-equation No No

ω-equation Yes No

IMPULSE progress meeting

Folie 82

slide 82Slide 82

Consistency with wall-law

Summary of boundary layer analysis

Consistency with log-law at APG

Consistency with sqrt-law at APG

Modified k-equation Yes Yes

Modified ω-equation Yes Yes

IMPULSE progress meeting

Folie 83

slide 83Slide 83

Consistency with wall-law

Summary of boundary layer analysis

Blending active in log-law region at APG

Blending active in sqrt-law region at APG

Modified k-equation Yes Yes

Modified ω-equation No Yes

IMPULSE progress meeting

Folie 84

slide 84Slide 84

The ω-equation in the sqrt-law region

Following ideas by Rao & Hassan, Catris & Aupoix

IMPULSE progress meeting

Folie 85

slide 85Slide 85

The ω-equation in the sqrt-law region

Following ideas by Rao & Hassan, Catris & Aupoix

IMPULSE progress meeting

Folie 86

slide 86Slide 86

The ω-equation in the sqrt-law region

IMPULSE progress meeting

Folie 87

slide 87Slide 87

The ω-equation in the sqrt-law region

Conclusion: The ω-equation is not consistent with the assumed solution in the sqrt-law region at APG

IMPULSE progress meeting

Folie 88

slide 88Slide 88

Measurement technique combining different PIV systems

1.5m

6.38m

1.5m0.78m

0 x [m]7.88 8.66 10.166.38 11.66

2D2C-PIV§ Large scale PIV§ 8 PCO 4000 cams side-by-side 2D3C stereo PIV overview

2D3C stereo PIV detail

1.5m

IMPULSE progress meeting

Folie 89

slide 89Slide 89

Requirements/Design criteria on a new flow experiment

1. Large Reθ for sufficiently thick overlap region2. Log-law established before entering the APG-section3. Thick BL at low flow velocity so that PIV in viscous sublayer possible4. Obtain large values for Δpx

+ , i.e. Δpx+>0.06

6.38m

U∞= 9m/s and U∞= 12m/s

At x=6mReθ up to 8000 and δ99 =0.1m

Design of the test case using RANS-CFD with the DLR TAU code by DLR

IMPULSE progress meeting

Folie 90

slide 90Slide 90

Data for mean velocity down to y+=1 using LR-PIV with PTV

1.5m6.38m

1.5m0.78m

x [m]7.88 8.66 10.166.38 11.66

2D2C PIV Long-range microscopic PIV with PTV

Particle-tracking velocimetry algorithm (PTV) applied to the LR-PIV data see also Kähler et al., Exp. Fluids (2012)

IMPULSE progress meeting

Folie 91

slide 91Slide 91

Boundary layer theory.An approximative model for the

shear stress

IMPULSE progress meeting

Folie 92

slide 92Slide 92

Turbulent boundary layer equation

Consider the equation for wall-parallel mean velocity component U

Integration in wall-normal direction from y‘=0 to wall-distance y

Or in viscous inner units

IMPULSE progress meeting

Folie 93

slide 93Slide 93

Review: Modeling the total shear stress (van den Berg 1973)

Aim: Relate the total shear stress and the mean velocity profile for U

by approximating the integrated convective (or: mean inertial) terms

Van den Berg makes the modeling assumption that

IMPULSE progress meeting

Folie 94

slide 94Slide 94

Review: Modeling the total shear stress (van den Berg 1973)

Modeling assumption

Then

For the V-velocity and using the continuity equation

This gives for the mean inertial term

IMPULSE progress meeting

Folie 95

slide 95Slide 95

Review: Modeling the total shear stress (van den Berg 1973)

This gives the model by van den Berg (1973)

Short notation:

With

Pressure gradient parameter

Wall shear-stress gradient parameter

IMPULSE progress meeting

Folie 96

slide 96Slide 96

Extended modeling for the total shear stress

Modeling assumption

For the chain rule of differentiation we need

Then we obtain, e.g.

With an additional parameter taking into account d²P/dx²

IMPULSE progress meeting

Folie 97

slide 97Slide 97

Extended modeling for the total shear stress

This gives the extended model

With integrals

and with parameters

Pressure gradient parameter

Wall shear-stress gradient parameter

Cross parameter

d²P/dx² -parameter

IMPULSE progress meeting

Folie 98

slide 98Slide 98

Characteristic non-dimensional parametersComparison of the characteristic non-dimensional parameters

IMPULSE progress meeting

Folie 99

slide 99Slide 99

Turbulent shear stress in non-equilibrium flow

Mean inertial terms cause a significant reduction of the turbulent shear stress τ+=1+Δpx+y+

λ

Present exp.at x=8.18mΔpx+=0.0473

IMPULSE progress meeting

Folie 100

slide 100Slide 100

Systematic trend/quantitative formula for variation of Ko

IMPULSE progress meeting

Folie 101

slide 101Slide 101

Conclusion

IMPULSE progress meeting

Folie 102

slide 102Slide 102

Conclusion.

Design of a flow experiment suitable to study the law-of-the-wall for flows at a substantial adverse pressure gradient

Sufficiently large overlap-layer due to large Reθ

Significant adverse pressure gradient Δpx+ up to Δpx

+ =0.065

Combination of different PIV techniques gives high-quality data setLarge number of velocity profilesHigh quality gradients and slope diagnostic functionsComparison of direct and indirect method for uτ locally

IMPULSE progress meeting

Folie 103

slide 103Slide 103

Conclusion.

The log-law does no longer describe the overlap layer 300 < y+ < 0.2 δ99+

A generalized half-power law (or modified log-law) gives a good description

Idea of a composite wall-law by Brown & Joubert (1969) is supportedLog-law-fit region is thin 60 < y+ < 130

1/slope Ki decreasing with increasing Δpx+ as devised by Nickels (2004)

Modified log-law region for 300-400 < y+ < 0.2 -0.4 δ99+

1/slope Ko decreasing with increasing Δpx+

But mean inertial terms need to be accounted for Ko

IMPULSE progress meeting

Folie 104

slide 104Slide 104

Characterization of the flow

ZPGlog-law

IMPULSE progress meeting

Folie 105

slide 105Slide 105

Characterization of the flow

Favourable dp/dsLFPG ~ 5 δref

IMPULSE progress meeting

Folie 106

slide 106Slide 106

Characterization of the flow

Focus region:

Adverse dp/dsLAPG ~ 5 δref

IMPULSE progress meeting

Folie 107

slide 107Slide 107

Universal log-law in zero-pressure gradient region

Universal log-law at the inlet of the adverse pressure gradient section

6.38m

At x=6mReθ=8000

U∞=12m/s

IMPULSE progress meeting

Folie 108

slide 108Slide 108

Systematic trend/quantitative formula for variation of Bi

IMPULSE progress meeting

Folie 109

slide 109Slide 109

Systematic trend/quantitative formula for variation of Bi

IMPULSE progress meeting

Folie 110

slide 110Slide 110

Measurement technique using PIV

Quanta Ray 400

Innolas Spitlight 1000

8 PCO 4000

Superelliptical nose

Flat plate of length 6.38m

Flap

APG region

IMPULSE progress meeting

Folie 111

slide 111Slide 111

Large-scale 2D2C PIV. Instantaneous flow field

Cam 5Cam 6

Cam 7Cam 8

IMPULSE progress meeting

Folie 112

slide 112Slide 112

Motivation: Digital aerospace products

Numerical simulation based future aircraft design

Challenges§A/δ99 extremely large: large Re and large A§#simulations large for design and optimization

=> RANS, not LES

IMPULSE progress meeting

Folie 113

slide 113Slide 113

Motivation: Turbulent boundary layers at adverse pressure gradient

During take-off and landingSignificant adverse pressure gradient (APG)

Goals:Þ Wall-laws at APGÞ Improvement RANS models

Recommended