Patterns of interaction in construction team meetings · 2011-08-22 · Patterns of interaction in...

Preview:

Citation preview

Patterns of interaction in construction teammeetings

JASON FOLEY and SEBASTIAN MACMILLAN*

The Martin Centre for Architectural and Urban Studies, 6 Chaucer Road, Cambridge

CB2 2EB, UK

(Received 1 July 2003; in final form 26 January 2004)

Sir John Egan’s 1998 report on the construction industry (Construction Task

Force 1998) noted its confrontational and adversarial nature. Both the

original report and its subsequent endorsement in Accelerating Change

(Strategic Forum 2002) called for improved working relationships—so-called

‘integration’—within and between both design and construction aspects. In

this paper, we report on our observations of on-site team meetings for a major

UK project during its construction phase. We attended a series of team

meetings and recorded the patterns of verbal interaction that took place within

them. In reporting our findings, we have deliberately used a graphical method

for presenting the results, in the expectation that this will make them more

readily accessible to designers. Our diagrams of these interaction patterns have

already proved to be intuitively and quickly understood, and have generated

interest and discussion among both those we observed and others who have

seen them. We noted that different patterns of communication occurred in

different types of meetings. Specifically, in the problem-solving meeting, there

was a richness of interaction that was largely missing from progress meetings

and technical meetings. Teammembers expressed greater satisfaction with this

problem-solving meeting where these enriched exchanges took place. By

making comparisons between the different patterns, we are also able to

explore functional roles and their interactions. From this and other published

evidence, we conclude that good teamworking practices depend on a complex

interplay of relations and dependencies embedded within the team.

Keywords: Teamwork; Communication; Collaboration; Decision-making

1. Introduction and aims

The construction industry is renowned for adversarial and confrontational relationships

between the parties, as reaffirmed by two major government-supported reports on the

*Corresponding author. Tel: 01223-331700. Email: sgm24@cam.ac.uk

CoDesign, Vol. 1, No. 1, March 2005, 19 – 37

CoDesignISSN 1571-0882 Print/ISSN 1745-3755 online # 2005 Taylor & Francis Ltd

http://www.tandf.co.uk/journalsDOI: 10.1080/15710880412331289926

industry in the 1990s. The Latham Report (Latham 1994) and the Egan Report

(Construction Task Force 1998) both recommended the need for improved working

relationships between clients, designers and constructors as a key means to reduce

construction costs, improve competitiveness and deliver buildings that meet the

performance needs of clients. During the 1990s, there was a fortunate coincidence of

purpose between, on the one hand, these views of the need of the industry to change its

business processes and practices and, on the other hand, the objectives of the LINK

research funding programme Integration in Design and Construction (IDAC), supported

jointly by the Engineering and Physical Sciences Research Council and the Department

of Environment, Transport and the Regions. The University of Cambridge has a long-

standing interest in design research, and we were fortunate to obtain LINK funding to

study the issue of teamworking practices in construction.

Our research had the overall aim of observing, identifying and describing the

conditions necessary for effective teamworking, including the development of shared

goals, the effectiveness of communication and the nature of team decision-making. A

laboratory study assessed the impact of explicit goals and self-reflection on the team

process. It demonstrated that team members perceived there were benefits in working to

explicitly agreed team goals and pausing periodically for reflection on the process of

teamwork (Busseri and Palmer 2000). Most of our research, however, was concerned with

teams operating in real-world situations—naturalistic decision-making in the words of

Klein (1998). We share Klein’s motivation of following the lead of curiosity—rather than

testing formal hypotheses—in situations where highly proficient decision-makers use their

experience and expertise to perform the challenging task of constructing a building under

all the confusion and pressures of an environment where there may be missing

information, vague goals, time constraints and changing conditions.

We have observed a number of different building design teams at work: firstly, during an

intensive design workshop to devise a strategic design approach for a primary school

(Macmillan and French 2001); secondly, throughout a series of bi-monthly partnering

workshops also for a school (Macmillan 2004); and thirdly, at a series of meetings held on

the site of a large building project. This paper reports on the third set of observed meetings.

Our survey of the literature on teamwork has already been published (Macmillan

2001b), and it joins a number of texts covering a wide range of issues faced by teams, such

as empowerment (Newcombe 1996) written primarily as guidance for practitioners.

Effective Teamwork by West (1994) is a similar, earlier and more extensive example,

grounded largely in the healthcare sector. The funding bodies of our study wished to see a

short industry guide to effective teamwork as one of the main outputs, and this expectation

has been met in the booklet Effective Teamwork—A Best Practice Guide for the

Construction Industry recently published by Constructing Excellence (Eclipse Research

Consultants 2004). Its intention is to help members of the industry to re-evaluate and re-

assess their own business processes against best practice. The booklet defines what a team

is, discusses what is expected of teammembers, suggests how to select members and how to

lead a team, and addresses what are identified as six crucial aspects of teamwork:

. the promotion of team identity;

. the development of a shared vision and common goals;

. effective communication among team members;

. the encouragement of collaboration and full participation;

. facing, negotiating and resolving conflict head-on if and when it arises;

. the importance of periodic self-reflection on the team process.

20 J. Foley and S. Macmillan

In this paper, we report on the ‘patterns of interaction’ observed in project team meetings.

We have taken this terminology from Richard Guzzo’s work where, in the introduction

to his joint book with Eduardo Salas on Team Effectiveness and Decision Making in

Organisations, he writes: ‘An analysis of group decision making and performance at this

level might focus on patterns of intragroup interaction as members exchange information

or coordinate their physical efforts as they work’ (Guzzo 1995). Our focus is on teamwork

rather than taskwork, our unit of assessment is the team rather than the individual, and

our interest lies in decision-making (Cannon-Bowers et al. 1996). Because of our interest

in design and the publication of this paper in a design journal, we have attempted to

convey the observed patterns using a graphical format analogous to the graphs used in

social network analysis (see, for example, Scott 1999). These patterns of interaction have

already proved to be intuitively and quickly understood, particularly by the members of

the observed team, and they have generated interest and discussion among both them and

others.

2. How teams work

One definition of a team is a group of people with complementary skills who are

committed to a common purpose and hold themselves mutually accountable for its

achievements (Katzenbach and Smith 1993). Syer and Connolly (1996) set out a number

of factors that contribute to team identity, for example, having a clear vision, shifting the

focus from personal needs to team needs, a membership that reflects the nature of the

task in terms of size and resources, and the team’s willingness to take ownership of the

problem. Successful teams benefit from their members’ understanding, and from

optimism, confidence and satisfaction; such teams lead to better decisions and more

efficient use of resources (Denton 1997). However, simply bringing together team

members does not ensure they will function well together—teamwork indifference may

result in mediocre performance, and the team may be undermined by disorganisation or

poor communication (Cooley 1994). Some team members may opt out of the process—

so-called ‘social loafing’—leaving others to do all the work (Erez and Somech 1996); team

members may waste time in disputes (Hackman 1987). Groupthink—in which the desire

to achieve consensus (perhaps arising from loyalty to the team leader) becomes more

important than the quality of decisions—is another risk under certain conditions, as

identified by Janis (1972), who also observed that the output of the whole team may

represent poorly the capacity of its parts, and arises from illusions about unanimity and

invulnerability (Janis 1982). Groupthink has been re-examined by many others (see

Turner and Pratkanis 1998). Individual behaviour in teams is affected by a wide range of

factors, such as members’ personalities, mental abilities, skills, knowledge and expertise,

their current values, motivations and commitment, and the constraints put upon them by

their organisational loyalties and the demands of the task and its environment (Goodman

1986, Driskell et al. 1987, Hackman 1987, Belbin 1993).

By sharing information among members, a team is able to make best use of its

pooled knowledge, although there is evidence that knowledge that is held in common—

rather than that held by a small number—is more highly influential in decision-making

(Chernyshenko et al. 2003). Good communication is vital. Yet teams that bring

together people from different professional backgrounds and that use different

terminology open up real risks of poor communication and misunderstanding.

Gruenfeld et al. (1996) report that groups of strangers are less likely to communicate

disagreement, while team members are most open to information from those they feel

Interaction in construction team meetings 21

are their equals (Abrams et al. 1990). Team members may also need to make their

personal preferences and assumptions explicit in order to build up trust and

understanding (Rentsch et al. 1994). Conflict can arise when team members have

different priorities, goals and/or constraints (Sonnenwald 1996). The conflict between

individual and team goals can present a serious threat to the success of a team (Larson

and La Fasto 1989). At worst, power struggles and unresolved differences in opinion

can halt team progress (Bolmar and Deal 1992).

Team meetings are one of the forums where the participants come face to face and have

to resolve problems and achieve consensus. Belbin (1993) poses a question to illustrate

clearly the issues that newly formed teams face in tackling a complex construction

project: ‘What happens when people are locked together by force of circumstance in a

working association into which not one with any advanced knowledge would have

entered freely?’ Belbin separated team roles, such as ideas generator, habitual critic or

progress-chaser from functional task-related roles. He noted the importance of having a

mix of team roles within a team, and that competition could develop among team

members vying to occupy particular roles. More recently, he has identified different types

of work (Belbin 1997) and subsequently written about the allocation of different types of

work among team members (Belbin 2000).

The ‘circumstance’ in which the project team may find itself will vary and develop over

the duration of a project’s lifetime, and interaction relationships will inevitably alter to

suit different situations. Managing teamwork can therefore be difficult to achieve,

particularly in attempting to ensure the team shares knowledge and arrives at consensus-

based and effective decision-making. Kline (1995) outlines this further when he writes:

‘Integration is a human action. The result—synthesis—is negotiated, situationally

dependent, and contingent on the participants. If the participants share the same habits

and the same position in time and space, communication is easier and knowledge more

likely to be disseminated.’ A major element in allowing the development of effective

communication in teamwork is often dependent on the physical or social context as well

as the language used. Habermas (1998) contended that ‘the ideal speech situation is a

valid critical standard against which all apparent consensus can be called into question

and tested.’ Ideally, these arenas for discussion—particularly team meetings—achieve

that. However, ‘the ideal speech situation’ can also be, in Tzanne’s view, the ‘creation of

miscommunication’ (Tzanne 1999).

Teamwork is further complicated by the ‘locking together’ of individuals within the

team. The theory of the ‘speaker’ and ‘addressee’ explains what happens when two people

interact in a communicative way and indicates a general flight path of interaction during

a discussion between two people (Thomas 1987). In this situation, the speaker directs

speech to the addressee, who in turn becomes the speaker—a shifting of roles in its

simplest form (Hanks 1996). Complex relationships develop if the discussional situation

is a group or team: the potential for dialogue interaction is multiplied, and individual

roles often shift during conversations, based on reassessments of the current situation

(Dyer 1977, Tzanne 1999). Social interactions and their dynamic nature—situations,

roles, directions and goals—have been investigated by many, including Drew and

Heritage (1992) and Thomas (1987). In Tzanne’s (1999) view, social interaction can

increase the potential for misunderstanding amongst the team members, making it

increasingly difficult for them to reach agreement or consensus. Consequently, the need to

pull together understanding in situations of group discussion can become critical and

difficult to manage, especially when the members of the group have low awareness of the

degree of misunderstanding.

22 J. Foley and S. Macmillan

3. Case study approach

We were fortunate to have the opportunity of attending regular meetings held on the site

of a major UK building project. Table 1 outlines details of the project case study, the

team meetings monitored and our method for recording our observations.

4. Project team meetings: the context

Team meetings are, of course, only part of the activity that team members have to

perform as part of their responsibilities for delivery of the project. Other actions take

place in smaller separate groups and many, perhaps most, by individual team members;

they are also dispersed among several environments. Table 2 summarises different

Table 1. Case study details and team meeting samples.

Case study

details

The project is a £46m lottery-funded exhibition centre. The building comprises a 5000 m2

hall plus a 40 m high tower. The construction cost is £16m. The start of the design work

began in 1998 with on-site substructure beginning March –August 1999 (Phase 1). Phase

2 started in December 1999. The client consists of a committee of enthusiasts, designed to

run the management side of the property group. They were concerned to achieve cost

certainty and quality and chose to use the JCT 80 form of contract. Following an

advertisement in Official Journal of the European Communities, six contractors were

selected for pre-tender evaluation and five were invited to tender.

Team meeting

observed

Observations were undertaken over a nine-month period, which was part of an eighteen-

month construction programme. Nine team meetings were observed, of which there were

four types:

1. Progress meetings. The aims of these monthly meetings were to monitor progress

against the agreed construction programme, to identify problems and obstacles to

progress, and to review contractual issues and requirements. Five meetings were

monitored at approximately monthly intervals.

2. Technical meetings. The aims of these monthly meetings were to resolve technical/

design-detailing matters critical to the project programme. These meetings were also

held monthly and were interspersed between the progress meetings.

3. Interim technical/cost reviews. The aims of these meetings were to review cost items

and technical issues. One was monitored.

4. Strategy/problem-solving meeting These meetings were held to consider future and

forthcoming risks and threats to the project, and to provide an opportunity for open

discussion and negotiations of contentious items so as to anticipate and resolve

problems and avoid protracted claims and disputes. One of these was monitored.

Observational

method

All the observations were carried out by the first named author. The team being

monitored refused permission to video- or tape-record the team meetings, so the

observations had to rely on hand-written notes of the discussions and hand-recorded

timings of the communication patterns. A simple coding system was adopted for

recording the nature and extent of the exchanges among team members, i.e. who spoke

and for how long, and who replied. Hand-written notes regarding the content of the

exchanges were also made. All notes from the observed meetings were written up as soon

as possible after they had taken place. Given that we were not allowed to use any

electronic recording method, this was the best way we could devise to collect the data and

to ensure that the insights gained from the observations were recorded. We have used

hand-written recording methods previously for studying team processes (Macmillan

2001a, 2004). As Klein (1998) says, the study of naturalistic decision making relies partly

on the insights of the observer, while the unique circumstances of the meetings make

replication impossible. We are also aware, of course, that the presence of the observer

may also influence the team members’ behaviour, but we have made no allowance for

this.

Interaction in construction team meetings 23

situations in which the activities of construction team members take place; the

highlighted cells in the table show where case study observations took place.

It is important to distinguish between team or individual situations as these will

ultimately affect relationships and behaviour (Busseri and Palmer 2000). Situations where

team members may find themselves were further subdivided into ‘discussional’ and

‘activity’ environments for the benefit of understanding the need for different interaction

processes and objectives. Our observations did not capture:

. events happening between team meetings (conversations, information flow and so

on). individual designers’ actions in their own environments. individual designers’ communication with other team members outside of team

meetings.

These have been described as the ‘activity’ environments and will not be discussed

here.

The team meetings were held under time pressures and were highly focused. Some

aspects of teamwork are therefore accounted for only partially, and some events only

partially captured. What we sought was to prepare a time line of communication

among team members, recording who spoke to whom and over what period of time.

In this way, it is possible to map the direction of communication, the extent of

communication input and the resulting patterns as they relate to the following four

major areas of interaction.

. who speaks and how much

. what people say

. how they say it and to whom

. their role(s).

In presenting the patterns of interaction in the following figures, we plotted the

interactions in each of the four different types of meeting. We adopted the following

conventions.

. The seating plan approximates to the actual seating positions adopted for the first

progress meeting. Team members sat in different places in subsequent meetings,

Table 2. Types of learning situations in a typical construction project.

Environment Situation Objectives Within Between

Discussional space Team meetings Learning Teams Individuals

Communicating Team members

Problem-solving

Feedback

Information distribution

Decision-making

Activity space Task completion Gathering data Organisations Teams and

Researching relevant Projects individuals

information Projects

Testing probable solutions

Completing tasks

24 J. Foley and S. Macmillan

although we noticed a tendency to choose approximately the same seats at each

meeting.. The ‘contractor’ had on occasion more than one representative at the meeting, but

for clarity we added together their inputs and have shown them as from one single

source.. In the figures, in each of the four types of meeting, we have added together the

interactions to provide an average picture for each meeting type.

Table 3. Progress meeting character table.

Meeting

type Objectives Discipline present

Communication

input (%)

Total time spent in

five progress meetings

observed=14 h

25 min

Progress

meeting

Monitor progress

against agreed

construction

programme.

Contractor 46

Identify problems

and obstacles to

progress.

Project management 15

Recording. Architect 16

Contractual issues

and requirements.

Structural engineer 9

Quantity surveyor 8

User – client 3

Funding body 1

Subcontractor 1

Other 1

Figure 1. Interaction flow analyses of communication input over five team progress

meetings.

Interaction in construction team meetings 25

5. Communication during five progress meetings

The contractor engaged in communication for almost half the time (46%) progress

meetings were observed, nearly three times more than any other discipline. However, the

contractor consistently had a greater number of representatives present during each

meeting. In this respect, the high percentage of the contractor’s engagement in

communication is related to the objectives of this meeting type (see table 3).

The architect and project manager both had similar input to the meetings, although

they had very different roles. The architect was lead designer and therefore took on a

leader role; the project manager adopted a mediator and contextualiser role. The

structural engineer and quantity surveyor had a similar input into the meetings and had

roles considered to be more advisory. The user-client, funding body and subcontractor

had very small inputs into the meetings and were periphery to almost all of the

discussions during the meetings (see figure 1).

6. Communication input during two technical meetings

These meetings were dominated by one or two issues, with smaller items addressed over

the rest of the meeting time. Figure 2 clearly shows the contractor (37%) and the architect

(33%) dominating the meetings. The project manager’s role was of mediator between the

contractor and architect, with the other core disciplines (the user – client, structural

engineer and quantity surveyor) having a limited amount of input.

The two meetings observed were single-issue led and focused on workmanship and the

quality of design production details. They were dominated by the architect and

contractor as they attempted to resolve the effects of bad workmanship on the rest of the

construction and poor design drawing details. The user-client was not present during the

first technical meeting and had very little input in any discussions during the second

meeting.

The other team members were generally observers and had supporting roles.

Surprisingly the subcontractor was not present during the technical meetings when

issues concerning them may have benefited from their presence. There were noticeably

fewer team members present during the technical meetings than for the progress

meetings. See table 4 and figure 2.

7. Communication input during one ‘interim technical’ meeting

This meeting was single-issue-led and focused on a dispute between the architect and

structural engineer on one side and the contractor and subcontractor on the other (table

5). The dispute centred on the lack of quality of the design drawing details and a

subsequent lack of progress on a lift set-up issue.

The manufacturers and constructors of the lift had joined the team as subcontractor to

the main contractor. They had a viewpoint to the lift problem that was in line with that of

the contractor and were needed to clarify certain issues so that solutions could be found.

The project manager’s role was of mediator and co-ordinator on issues to do with the

construction programme in terms of actual progress.

Again, there is a pattern with the communication triangle between the three main

disciplines. In this case, however, the architect has a larger amount of communication

input into the meeting. The contractor and project management make up the other points

of the triangle (see figure 3).

26 J. Foley and S. Macmillan

8. Communication input during strategy/problem-solving meetings

During this meeting (table 6), input was evenly distributed between the disciplines. The

client was more involved, but had three representatives, more than any other discipline.

Two other disciplines were introduced to the normal project team: (1) the mechanical and

electrical subcontractor and (2) the fit-out subcontractor. Their involvement arose from

the long-term outlook of the meeting (the Phase 2 fit-out) and the prominent involvement

these disciplines would have later in the project.

Project managers were more prominent in this meeting as they were the discipline

assigned to organise and co-ordinate strategies. The contractor is a vital element in the

organisation of site works. The subcontractors were more prominent during this meeting,

as they would take a larger stake in the construction programme during the start of Phase

2 fit-out. Up until now, they had been little involved during progress meetings and only

slightly more during technical meetings. See figure 4.

9. Comparisons of interaction relationships between team meetings

9.1 Progress meetings

The contractor dominated the progress meetings (see figure 1) as progress feedback was

the main objective for this meeting type. The contractor also had more members of their

organisation present than any of the other disciplines. The contractor’s role was mainly

that of ‘speaker’—feeding or providing information from on-site to the other consultants.

The rest of the team (‘addressees’) relied on the contractor for detailed progress reports to

ensure that any obstacles to progress were tackled by the whole team at an early stage.

Although this is to be expected during the construction phase, there is a possibility that

too much weight and expectation are given to the contractor with an emphasis on ‘total

output’ or progress.

The contractor—as speaker—takes up a position in the social arena of the meeting

where he is defined rigidly (by the rest of the team) as the feeder of information, based on

a tightly set-out code. This code symbolically consists of the contract and the

construction programme from which the contractor based the priced tender for the

project. The contractor is intrinsically tied in to a role that can be clearly defined in terms

of output—that of reaching precise aims in a set programme—which in effect becomes an

assessment tool. This situation resulted in the contractor being the central focus of

meetings; any shortfall on their part is highly visible. However, despite the overwhelming

communication dominance by the contractor, the contractor’s representatives did not

dominate the meeting in terms of pressing opinions or views. By having such a prominent

and defined role, they were more like a target of assessment. The architect’s role—as lead

designer—was often to point out shortfalls in progress from the contractor, creating a

situation that tended to fuel conflict within the team. This was a familiar pattern in the

observed progress meetings.

The project manager—as the organiser of all the meetings and whose role it was to

keep a tight rein on proceedings—had an important part to play in the meetings. During

these situations, the manager tended to change quite rapidly depending on who spoke

and what they were saying. For instance, his role involved checking items, showing

concern, probing for more details, managing time and mediating between the parties. On

occasion one role lasted for lengthy periods, but on other occasions, changes of role could

happen quickly. The contractor—who tended to have more than two members present

Interaction in construction team meetings 27

for each meeting—was observed to use several ‘languages’, able to respond to different

types of issue in the language appropriate to the issue (progress, technical and so on). In

this sense the contractor may be described as ‘multi-lingual’, i.e. having the skill to

respond to issues of project management, mechanical engineering, electrical engineering,

contractual matters, etc., as and when required. The interaction relationship between

project management and the contractor was observed to be complex as the focus of

interaction and direction of information shifted.

9.2 Technical meetings

Communication in technical meetings was dominated by the contractor and the

architects; between them, they spent 70% of the meeting in communication, mainly

interacting with each other. Each meeting tended to focus on one specific issue (for

example, ‘quality of workmanship’) with other less urgent matters filling the remaining

time allocated for that meeting. The meetings often took on a character of dispute

Figure 2. Interaction flow analyses of communication input during two team technical

meetings.

Table 4. Technical meeting character table.

Meeting

type Objectives Discipline present

Communication

input

(%)

Total time spent in two

technical meetings

observed= 2 h 55 min

Technical

meeting

Resolve technical/

design-detailing

matters critical to

programme

Contractor 37

Project management 14

Architect 33

Structural engineer 7

Quantity surveyor 5

User – client 3

Funding body 1

28 J. Foley and S. Macmillan

between the contractor and the architect with project management mediating between

them, as can be seen from their input level (14%). Other consultants tended to have

minimal input, and generally to support either the contractor or the architect when and if

required. Typically, the subcontractor supported the contractor, and the structural

engineer supported the architect.

An example taken from the first technical meeting centres on the team finding a

solution to a specific problem that was critical to progress. This issue revolved around

workmanship and the impact this would have on the rest of the programme in terms of

cost, time and quality. As the issue was focused on workmanship, discussions centred on

the contractor’s responsibilities. As the architect was the lead designer his functional role

was emphasised by the attempt of the team to find a solution, which also demanded

certain contractual and social requirements from the contractor. It was particularly

noticeable that the project manager was far more motivated to encourage the team

(‘team’ in effect here meaning the contractor and the architect) to find a solution quickly,

with little emphasis on understanding the root of the problem in the first place.

There were noticeably fewer team members present for these meeting types; for

example, the user-client and the funding body were often absent, possibly owing to the

Figure 3. Interaction flow analyses of communication input during one team interim

technical/cost meeting.

Table 5. Interim technical/cost review meeting character table.

Meeting

type Objectives Discipline present

Communication

input

(%)

Total time spent in one

interim technical meeting

observed=2 h 40 min

Interim

technical/cost

review

Review of cost

items and

technical issues.

Contractor 29

Project management 15

Architect 37

Structural engineer 6

Quantity surveyor 6

Subcontractor 7

Interaction in construction team meetings 29

‘technical’ nature of the meetings. Figure 2 shows the clear interaction triangle of the

three main contributors to the meeting, more defined here than in the other meetings

observed.

9.3 Interim technical/cost review meeting

The interaction patterns for the interim technical/cost review and the technical meeting

are very similar, except that the communication input by the contractor and the architect

are reversed, with other team members having very similar input levels to the other

technical meetings. The other major difference is the addition of the subcontractor to the

project team. The contractor and the architect again dominated proceedings, with project

management establishing a role of mediation and control as this meeting was also single-

Table 6. Strategy/problem-solving meeting character table.

Meeting

type Objectives Disciplines present

Communication

input

(%)

Total time spent

in five progress

meetings

observed=4 h

Strategy/

problem-solving

meetings

Consideration of

future/forthcoming

risks and threats to the

project.

Contractor 27

Open discussions/

resolution of problems

to avoid protracted

claims and disputes.

Project management 21

Architect 16

Structural engineer 18

Quantity surveyor 2

User – client 9

Subcontractor 7

Figure 4. Interaction flow analyses of communication input during one team strategy/

problem-solving meeting.

30 J. Foley and S. Macmillan

issue led. The technical meetings focused on the disciplines of the contractor and the

architect. In the situations observed, confrontation was more likely to break out when

discussions became narrowly defined and concerned just a few team members, thus

restricting communication, described here as ‘funnelled dialogue’.

9.4 Strategy/problem-solving meeting

During the strategy/problem-solving meeting, the team tended to focus on long-term

strategies in the construction programme. Strategies are a combined sequence in which

stages or activities in a process are executed or planned. Discussions focused on potential

problems that were not yet fully defined, or that required an accumulation of accurate

information in the long term developed from hypothetical situations. Strategies to inform

possible solutions to problems that had not yet arisen took priority, enabling the team to

form constructive communication relationships rather than blaming each other.

Often in meetings, the core team would be joined by subcontractors or peripheral

disciplines, such as interior designers, landscape designers, and exhibition specialists,

enabling a wider breadth of knowledge and experience to enter discussions and expand

communication. One positive outcome of this type of situation is the prevention of a rigid

approach to communication, where familiarity and expectation between some members

of the team can dictate communication and collaboration. During the strategy/problem-

solving meeting, communication was less concentrated around the three main parties

(contractor, architect and project manager), but rather was evenly spread across the

team, as shown in table 6 and figure 4.

It was particularly noteworthy that, at the conclusion of the meeting, the team agreed

that they had performed more satisfactorily in terms of productivity (resolving issues)

and enjoyment (social relationships) than during the other meeting types. Unfortunately,

in the attempt to avoid interfering with the teamwork process, almost all our

observations were undertaken passively and team members were not generally asked

about their satisfaction with the team process. It was only at this meeting that such a

comment emerged spontaneously. In retrospect, it would have been useful to survey

satisfaction levels at the conclusion of each meeting.

10. Analysis: the patterns of observed interaction

When we combine the three communication input amounts from the main players in the

team (contractor, architect and project manager), it emerges that 78% of the total

amount of time in communication is concentrated around these three individual

functions. Despite these meetings taking place during the construction phase of the

project, this is a surprising finding, given that at least eight people were present at most of

the meetings. Our observations suggest that the three main parties formed a core group

acting as agents for some of the others—the contractor, for example, communicated on

behalf of subcontractors and the user-client tended to communicate through other

disciplines to engage with the contractor. In other words, some of the interactions

between the parties are indirect rather than being direct. We have sought to capture this

in figure 5, which clearly illustrates the indirect nature of interaction between, say, the

user-client and the contractor. This pattern was observed in all meeting types, although

there was a slight variation during the strategy/problem-solving meeting where

communication patterns were less well defined as the user-client had a larger presence,

and a more diverse range of disciplines was present at that meeting.

Interaction in construction team meetings 31

Figure 6 shows clear principal communication relationships between a core group

within the team. The diagram illustrates four triangles. The first triangle is formed by the

three dominant disciplines (contractor, architect and project manager) and this is where

most communication interaction occurs. A second main triangle, shows the inclusion of

the structural engineer, as this team member has the next largest amount of

communication input into all meetings. The other two minor communication triangles

indicate the interaction of the other two disciplines in the core team, that of the quantity

surveyor and the user-client. These patterns are generalisations, as there were variations

depending on the issues and topics addressed during any one meeting.

Figure 5. The core group within the team and relationships of communication

interaction with the other disciplines.

Figure 6. The core triangle (1) and other feedback loops within the team.

32 J. Foley and S. Macmillan

From the core triangle, the contractor interacted mainly with the architect, project

manager and the structural engineer, with an additional one-way relationship with the

subcontractor (when present). As subcontractors were present only as and when required,

interaction with the contractor tended to be based on a feedback relationship to the

contractor directly, but to the rest of the team indirectly. The architect interacted with the

project manager, the structural engineer and the contractor. The project manager

communicated with the contractor and the architect, with additional one-way

communication with the user – client. The structural engineer interacted with the

contractor and the architect. The structural engineer interacted mainly with the

contractor and the architect, again indicating these two disciplines are pivotal during

team meetings.

11. Team role development

As team meeting interaction was concentrated on three main disciplines (contractor,

architect and project management), a tendency to exaggerate the ‘functional’ roles rather

than the ‘team’ roles of those disciplines occurred. Functional roles are determined by the

technical skills and knowledge of that team member (Belbin 1993). As a result, the team

found it difficult to focus on their ‘team’ roles. The pressures to identify workable

solutions quickly resulted in individuals searching for solutions within their own area of

expertise, and encouraged collaboration in the search to identify joint solutions.

However, there were limited opportunities for the team to reflect on their team roles or on

developing the social relationships of the team in general.

Table 7 indicates how the team members related to each other in terms of their role

functions during all the meetings observed. This approach is adapted from Belbin’s

(1993) nine team roles and is simplified to form a role character table. Two of the

three main disciplines (contractor and architect) have an interaction analogy of

primarily speaker but differ in their additional traits. The contractor has a secondary

trait of listener while the architect has an additional trait of observer. The project

Table 7. Role functions based on communication input and interaction relationshipsobserved during all team meetingsa.

Discipline Total

input

(%)

Interaction analogy Role function Description

Contractor 40 Speaker/listener Doer Collating and engaging experience

Architect 21 Speaker/observer Activator Abstracting, designing and leading

Project manager 16 Listener/observer/

speaker

Mediator/

contextualiser

Arranging strategies, finding

solutions, managing

Structural engineer 10 Listener/observer Thinker Testing, producing and advising

Quantity surveyor 6 Listener Absorber Resourcing

User-client 3 Listener/sensor Sensor Observing and reflecting. Background

player

Subcontractora 2 Speaker/listener Doer Providing concrete experience and

giving feedback

Other 2

aThe total possible input time over the nine team meetings observed is 23 h, 20 min.bThe subcontractor was only present during team meetings when information needed to be communicated

to the core team.

Interaction in construction team meetings 33

manager is both listener and observer, and has a third element of speaker—indicating

the varied roles of that discipline. The moderate, but important input into team

meetings by the project manager facilitated relations between the contractor and

architect, who between them dominate all meetings and would seem to have a clearer

‘functional’ outline in their roles.

In terms of ‘role functions’ of the core players, the contractor and architect in these

meetings may be characterised as doer and activator respectively. By contrast, the project

manager can be characterised as a mediator/contextualiser. The other team members act

as ‘communication input valves’, in effect attempting to prevent certain role functions from

dominating communication during team meetings. This was clearly acknowledged during

the strategy/problem-solving meeting where all team members had an input, as discussed

above. It was less apparent during the other meetings, where discipline domination was

evident. The examples above indicate that the case study team is dominated by the

functional roles of:

. collating and engaging experience (contractor)

. abstracting, designing and leading (architect) and

. arranging strategies, finding solutions and mediating (project management).

There was, accordingly, less emphasis on roles concerned with:

. testing, producing and advising (structural engineer)

. resourcing (quantity surveyor)

. observing and reflecting (user – client)

. feedback (subcontractor).

This illustrates that the whole team performs with a focus on achieving tasks without

necessarily being concerned how the tasks are achieved or indeed why they are not

achieved in a satisfactory manner. This is neatly summed up by a quotation from a

member of the case study team, when he said: ‘Construction tends to focus on what needs

to be done and not on how we do it.’

12. Conclusions

Teamwork involves a complex interplay of relations and dependencies embedded within

the team. Successful interdisciplinary teamwork depends on effective interaction among

the participants. In this study, we were fortunate in being able to observe what is in effect

the same team (although its membership was not absolutely constant), working on the

same project, meeting together regularly but for four different technical purposes.

Crucially, we found that the purpose of the meeting affected its character and the patterns

of interaction among team members. We have sought to capture these patterns in a

graphical format that illustrates clearly the extent and scale of the interactions, and the

different characters of the meetings.

We noted that the problem-solving meeting was characterised by a richness of

interaction and communication, and resulted in a spontaneously positive self-

assessment of the meeting. It would be too deterministic to claim, on the basis of

our study, that wider participation automatically leads to more effective decision-

making. We do not have any measure of effectiveness that we could apply, and neither

were we methodical in asking team members after each meeting about their perceived

34 J. Foley and S. Macmillan

effectiveness. In retrospect, this is a matter of regret about our research design. It arose

partly from our wish not to interfere in the team meetings and partly from the

difficulties associated with construction site meetings where urgent inspections and

other business need to be performed. What we can say is that, in this particular set of

circumstances, greater satisfaction about the team process among team members

occurred when interaction was enriched by the engagement of many team members

(figure 7).

By contrast, restricted patterns of interaction, such as that shown in figure 8, occur

when perceived disagreements or conflicts arise but are accompanied by input from too

limited a range of team members; and where proceedings are dominated by too few

interests. Restricted patterns of interaction may even encourage the development of

conflicts. Our study further suggests that where interaction is restricted, team role

development is also affected. Dominant team members may deflect discussion away from

an issue or reduce the potential for individuals to learn in the way that, for example,

Habermas (1988) would have considered ideal. Unevenly distributed knowledge and

skills can discourage learning, to the detriment of both individuals and teams, not only in

the short term but also in the long term. How individuals act within a team is affected by

the uncertainty surrounding individual behaviour in the context of the group. Ultimately,

the process and success of communication within a team both depend on team members

defining their relationships to one another as a team and not as a set of individuals.

Figure 7. Enriched communication.

Figure 8. Restricted communication.

Interaction in construction team meetings 35

Acknowledgements

This work was carried out as part of research project called ‘Measuring the Effectiveness

of Interdisciplinary Teamwork in Construction’. It was funded by the Engineering and

Physical Sciences Research Council and the Department of Environment, Transport and

the Regions under the LINK ‘Integration in Design and Construction’ research

programme. The support of the industrial collaborators is also gratefully acknowledged.

References

Abrams, D., Wettherell, M., Cochrane, S., Hogg, M. and Turner, J.C., Knowing what to think by knowing who

you are: self-categorization and the nature of norm formation, conformity and group polarization. Br. J. Soc.

Psychol., 1990, 29, 97 – 119.

Belbin, R.M., Team Roles at Work, 1993 (Butterworth Heinemann: Oxford).

Belbin, R.M., Changing the Way We Work, 1997 (Butterworth Heinemann: Oxford).

Belbin, R.M., Beyond the Team, 2000 (Butterworth Heinemann: Oxford).

Bolmar, L.G. and Deal, T.E., What makes a team work? Organis. Dynam., 1992, 21, 34 – 44.

Busseri, M. and Palmer, J., Improving teamwork: the effect of self-assessment on construction design teams. Des.

Stud., 2000, 21, 223 – 238.

Cannon-Bowers, J.A., Salas, E. and Pruitt, J.S., Establishing the boundaries of a paradigm for decision-making

research. Human Fact., 1996, 38, 193 – 205.

Chernyshenko, O.S., Miner, A.G., Baumann, M.R. and Sniezek, J.A., The impact of information distribution,

ownership and discussion on group member judgment: the differential cue weighting model. Organis. Behav.

Human Dec. Proc., 2003, 91, 12 – 25.

Construction Task Force, Rethinking Construction: The Report of the Construction Task Force, 1998 (Department

of the Environment, Transport and Regions: London).

Cooley, E., Training an interdisciplinary team in communication and decision making skills. Small Group Res.,

1994, 25, 5 – 25.

Denton, H.G., Multidisciplinary team-based project work: planning factors. Des. Stud., 1997, 18, 155 – 170.

Drew, P. and Heritage, J., Talk at Work: Interaction in Institutional Settings, 1992 (Cambridge University Press:

Cambridge).

Driskell, J.E., Hogan, R. and Salas, E. Personality and group performance. Rev. Personal. Social Psychol., 1987,

9, 91 – 112.

Dyer, W.G., Team Building: Issues and Alternatives, 1977 (Addison-Wesley, Wokingham, UK).

Eclipse Research Consultants, Effective Teamwork—A Best Practice Guide for the Construction Industry, 2004

(Constructing Excellence, London).

Erez, M. and Somech, A., Is group productivity loss the rule or the exception? Effects of culture and group-based

motivation. Acad. Manage. J., 1996, 39, 1513 – 1537.

Goodman, P.S., Designing Effective Work Groups, 1986 (Jossey-Bass: London).

Gruenfeld, D.H., Mannix, E.A., Williams, K.Y. and Neale, M.A., Group composition and decision-making: how

member familiarity and information distribution affect process and performance. Organis. Behav. Human Dec.

Proc., 1996, 67, 1 – 15.

Guzzo, R.A., Introduction: at the intersection of team effectiveness and decision making. In Team Effectiveness

and Decision Making in Organisations, edited by R.A Guzzo and E. Salas, 1995 (Jossey-Bass: San Francisco,

CA).

Habermas, J., The Theory of Communicative Action. Vol.2, Lifeword, and System: A Critique of Functionalist

Reason, 1988 (Beacon Press: Boston, MA).

Hackman, J.R., The Design of Work Teams, 1987 (Prentice-Hall: Englewood Cliffs, NJ).

Hanks, W.F., Language and Communicative Practices, 1996 (Westview Press: Oxford).

Janis, I., Victims of Groupthink, 1972 (Houghton Mifflin: Boston, MA).

Janis, I., Groupthink—Psychological Studies of Policy Decisions and Fiascos, 1982 (Houghton Mifflin: Boston,

MA).

Katzenbach, J.R. and Smith, D.K., The Wisdom of Teams, 1993 (Harvard Business School Press: Boston, MA).

Klein, G., Sources of Power: How People Make Decisions, 1998 (MIT Press: Cambridge, MA).

Kline, S.J., Conceptual Foundations for Multidisciplinary Thinking, 1995 (Stanford University Press: Stanford,

CA).

36 J. Foley and S. Macmillan

Larson, C.E. and La Fasto, F.M., Teamwork: What Must Go Right; What Can Go Wrong, 1989 (Sage: London).

Latham, M., Constructing the Team, 1994 (London, HMSO).

Macmillan, S., Successful teamwork from day one: running an interdisciplinary design workshop. In

Interdisciplinary Design in Practice, edited by R. Spence, S. Macmillan and P. Kirby, 2001a (Thomas

Telford: London).

Macmillan, S., Managing an interdisciplinary design team effectively. In Interdisciplinary Design in Practice,

edited by R. Spence, S. Macmillan and P. Kirby, 2001b (Thomas Telford: London).

Macmillan, S., Promoting Teamwork Through Partnering Workshops: A Case Study of Partnering Workshops in

the Construction of Oakfields Primary School, Wickford, Essex, 2004 (Constructing Excellence: London).

Macmillan, S. and French, C., Successful teamwork from day one: running an interdisciplinary design workshop.

In Interdisciplinary Design in Practice, edited by R. Spence, S. Macmillan and P. Kirby, 2001 (Thomas

Telford: London).

Newcombe, R., Empowering the construction project team. Int. J. Proj. Manage., 1996, 14, 75 – 80.

Rentsch, J.R., Heffner, T.S. and Duffy, L.T., What you know is what you get from experience: Team experience

related to teamwork schema. Group Organis. Manage., 1994, 19, 450 – 474.

Scott, J., Social network analysis: a handbook, 1999 (Sage: London).

Sonnenwald, D.H., Communication roles that support collaboration during the design process. Des. Stud., 1996,

17, 277 – 301.

Strategic Forum, Accelerating Change, 2002 (Rethinking Construction: London).

Syer, J. and Connolly, C., How Teamwork Works: The Dynamics of Effective Team Development, 1996 (McGraw-

Hill: London).

Thomas, A., Classroom Interaction, 1987 (Oxford University Press: Oxford).

Turner, M.E. and Pratkanis, A.R., Twenty-five years of groupthink theory and research: lessons from the

evaluation of a theory. Organis. Behavi. Human Dec. Proc., 1998, 73, (2/3), 105 – 115 (one of the papers in this

special issue celebrating the twenty-fifth anniversary of groupthink theory, issue edited by M.E. Turner and

A.R. Pratkanis).

Tzanne, A., Talking at Cross-Purpose: The Dynamics of Miscommunication, 1999 (John Benjamins: Amsterdam).

West, M., Effective Teamwork, 1994 (British Psychological Society: Leicester, UK).

Interaction in construction team meetings 37

Recommended