Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query...

Preview:

Citation preview

Numerical Schemes for the Hamilton-Jacobi EquationContinuum Limit of Non-dominated Sorting

Jeff Calder

Department of MathematicsUniversity of California, Berkeley

Applied Mathematics Seminar

McGill University

September 9, 2015

Calder (UC Berkeley) Numerical schemes September 9, 2015 1 / 63

Outline

1 IntroductionMotivating example: Image retrievalNon-dominated sorting

2 Continuum limit for nondominated sortingHamilton-Jacobi equation for layersPDE-based ranking

3 Numerical schemesAn O(h1/n) schemeTwo (formally) O(h) schemesRegularityConvergence rates

4 Experimental results

5 References

Calder (UC Berkeley) Numerical schemes September 9, 2015 2 / 63

Motivating example: Google Goggles

Query image

Retrieved images

Calder (UC Berkeley) Numerical schemes September 9, 2015 3 / 63

Multi-query image retrieval

Problem: Find images in a dataset S thatare similar to multiple query images.

Pareto method: Solve the multi-criteriaoptimization problem

argminI∈S

(dist(I ,Q1), . . . , dist(I ,Qd)).

Query 1 Query 2

Pareto points:

Calder (UC Berkeley) Numerical schemes September 9, 2015 4 / 63

Multi-query image retrieval

Problem: Find images in a dataset S thatare similar to multiple query images.

Pareto method: Solve the multi-criteriaoptimization problem

argminI∈S

(dist(I ,Q1), . . . , dist(I ,Qd)).

Query 1 Query 2

Pareto points:

Calder (UC Berkeley) Numerical schemes September 9, 2015 4 / 63

Multi-objective optimizationHow do we solve the multi-objective optimization problem

argminI∈S

(f1(I ), . . . , fd(I ))?

Basic approach:

1 Choose some weights αi ∈ [0, 1] with∑d

i=1 αi = 1 and define

fα(I ) = α1f1(I ) + α2f2(I ) + · · ·+ αd fd(I ).

2 Solve the scalarized optimization problem

argminI∈S

fα(I ).

Problems:

1 Difficult to choose weights

2 Ignores relevant solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 5 / 63

Multi-objective optimizationHow do we solve the multi-objective optimization problem

argminI∈S

(f1(I ), . . . , fd(I ))?

Basic approach:

1 Choose some weights αi ∈ [0, 1] with∑d

i=1 αi = 1 and define

fα(I ) = α1f1(I ) + α2f2(I ) + · · ·+ αd fd(I ).

2 Solve the scalarized optimization problem

argminI∈S

fα(I ).

Problems:

1 Difficult to choose weights

2 Ignores relevant solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 5 / 63

Multi-objective optimizationHow do we solve the multi-objective optimization problem

argminI∈S

(f1(I ), . . . , fd(I ))?

Basic approach:

1 Choose some weights αi ∈ [0, 1] with∑d

i=1 αi = 1 and define

fα(I ) = α1f1(I ) + α2f2(I ) + · · ·+ αd fd(I ).

2 Solve the scalarized optimization problem

argminI∈S

fα(I ).

Problems:

1 Difficult to choose weights

2 Ignores relevant solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 5 / 63

Multi-objective optimizationHow do we solve the multi-objective optimization problem

argminI∈S

(f1(I ), . . . , fd(I ))?

Basic approach:

1 Choose some weights αi ∈ [0, 1] with∑d

i=1 αi = 1 and define

fα(I ) = α1f1(I ) + α2f2(I ) + · · ·+ αd fd(I ).

2 Solve the scalarized optimization problem

argminI∈S

fα(I ).

Problems:

1 Difficult to choose weights

2 Ignores relevant solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 5 / 63

Basic approach

Calder (UC Berkeley) Numerical schemes September 9, 2015 6 / 63

Basic approach

Calder (UC Berkeley) Numerical schemes September 9, 2015 6 / 63

Basic approach

Calder (UC Berkeley) Numerical schemes September 9, 2015 6 / 63

Basic approach

Calder (UC Berkeley) Numerical schemes September 9, 2015 6 / 63

Non-dominated solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 7 / 63

Non-dominated solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 7 / 63

Non-dominated solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 7 / 63

Non-dominated solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 7 / 63

Non-dominated solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 7 / 63

Non-dominated solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 7 / 63

Non-dominated solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 7 / 63

Multi-query image retrieval

First Pareto front:

Query 1

Query 2

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Hsiao, K.-J., Calder, J., and Hero III, A. O. (2015). Pareto-depth for multiple-queryimage retrieval. IEEE Transactions on Image Processing, 24(2):583–594.

Calder (UC Berkeley) Numerical schemes September 9, 2015 8 / 63

Non-dominated sorting

Let X1, . . . ,XN be points in Rn and set S = X1, . . . ,XN.

Define the partial order

x 5 y ⇐⇒ xi ≤ yi for all i ∈ 1, . . . ,n.

DefinitionNon-dominated sorting is the process of arranging S into layers F1,F2,F3, . . . , definedby

F1 = Minimal elements of S ,

Fk = Minimal elements of S \⋃

j≤k−1

Fj .

Calder (UC Berkeley) Numerical schemes September 9, 2015 9 / 63

Non-dominated sorting

Let X1, . . . ,XN be points in Rn and set S = X1, . . . ,XN.

Define the partial order

x 5 y ⇐⇒ xi ≤ yi for all i ∈ 1, . . . ,n.

DefinitionNon-dominated sorting is the process of arranging S into layers F1,F2,F3, . . . , definedby

F1 = Minimal elements of S ,

Fk = Minimal elements of S \⋃

j≤k−1

Fj .

Calder (UC Berkeley) Numerical schemes September 9, 2015 9 / 63

Applications

Multi-objective optimization

Genetic algorithms [Deb et al., 2002]

Gene selection and ranking [Hero, 2003]

Database systems [Papadias et al., 2005]

Anomaly detection [Hsiao et al., 2012, Hsiao et al., 2015b]

Image retrieval [Hsiao et al., 2015a]

Combinatorics and probability

Longest chain in Euclidean space [Hammersley, 1972]

Patience sorting [Aldous and Diaconis, 1999]

Young Tableaux [Viennot, 1984]

Graph theory [Lou and Sarrafzadeh, 1993]

Polynuclear growth (crystals) [Prahofer and Spohn, 2000]

Other applications

Molecular biology [Pevzner, 2000]

Integrated circuit design [Adhar, 2007]

Calder (UC Berkeley) Numerical schemes September 9, 2015 10 / 63

Applications

Multi-objective optimization

Genetic algorithms [Deb et al., 2002]

Gene selection and ranking [Hero, 2003]

Database systems [Papadias et al., 2005]

Anomaly detection [Hsiao et al., 2012, Hsiao et al., 2015b]

Image retrieval [Hsiao et al., 2015a]

Combinatorics and probability

Longest chain in Euclidean space [Hammersley, 1972]

Patience sorting [Aldous and Diaconis, 1999]

Young Tableaux [Viennot, 1984]

Graph theory [Lou and Sarrafzadeh, 1993]

Polynuclear growth (crystals) [Prahofer and Spohn, 2000]

Other applications

Molecular biology [Pevzner, 2000]

Integrated circuit design [Adhar, 2007]

Calder (UC Berkeley) Numerical schemes September 9, 2015 10 / 63

Applications

Multi-objective optimization

Genetic algorithms [Deb et al., 2002]

Gene selection and ranking [Hero, 2003]

Database systems [Papadias et al., 2005]

Anomaly detection [Hsiao et al., 2012, Hsiao et al., 2015b]

Image retrieval [Hsiao et al., 2015a]

Combinatorics and probability

Longest chain in Euclidean space [Hammersley, 1972]

Patience sorting [Aldous and Diaconis, 1999]

Young Tableaux [Viennot, 1984]

Graph theory [Lou and Sarrafzadeh, 1993]

Polynuclear growth (crystals) [Prahofer and Spohn, 2000]

Other applications

Molecular biology [Pevzner, 2000]

Integrated circuit design [Adhar, 2007]

Calder (UC Berkeley) Numerical schemes September 9, 2015 10 / 63

Demo: 50 Random samples

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Calder (UC Berkeley) Numerical schemes September 9, 2015 11 / 63

Demo: Uniform distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 102 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 12 / 63

Demo: Uniform distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 103 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 12 / 63

Demo: Uniform distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 104 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 12 / 63

Demo: Uniform distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 105 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 12 / 63

Demo: Uniform distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 106 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 12 / 63

Demo: Gaussian distribution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 102 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 13 / 63

Demo: Gaussian distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 103 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 13 / 63

Demo: Gaussian distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 104 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 13 / 63

Demo: Gaussian distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 105 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 13 / 63

Demo: Gaussian distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 106 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 13 / 63

Demo: Uniform distribution on [0, 1]2 \ [0, 0.5]2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 102 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 14 / 63

Demo: Uniform distribution on [0, 1]2 \ [0, 0.5]2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 103 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 14 / 63

Demo: Uniform distribution on [0, 1]2 \ [0, 0.5]2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 104 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 14 / 63

Demo: Uniform distribution on [0, 1]2 \ [0, 0.5]2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 105 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 14 / 63

Demo: Uniform distribution on [0, 1]2 \ [0, 0.5]2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 106 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 14 / 63

Question

Can we characterize the asymptotic shapes of the Pareto fronts?

Calder (UC Berkeley) Numerical schemes September 9, 2015 15 / 63

Outline

1 IntroductionMotivating example: Image retrievalNon-dominated sorting

2 Continuum limit for nondominated sortingHamilton-Jacobi equation for layersPDE-based ranking

3 Numerical schemesAn O(h1/n) schemeTwo (formally) O(h) schemesRegularityConvergence rates

4 Experimental results

5 References

Calder (UC Berkeley) Numerical schemes September 9, 2015 16 / 63

A PDE continuum limit for non-dominated sorting

Let X1, . . . ,XN be i.i.d. random variables in [0,∞)n with continuous density f .

Let UN : Rn → N0 be the function that ‘counts’ the layers F1,F2, . . .

Calder (UC Berkeley) Numerical schemes September 9, 2015 17 / 63

Continuum limit

Theorem (Calder, Esedoglu, Hero, 2014)

With probability one

N−1d UN −→ u locally uniformly on [0,∞)n ,

where u ∈ C 0, 1n ([0,∞)n) is the unique nondecreasing viscosity solution of

(P1)

ux1 · · · uxn = cn f in Rn

+ := (0,∞)n

u = 0 on ∂Rn+.

Calder, J., Esedoglu, S., and Hero, A. O. (2014). A Hamilton-Jacobi equation for thecontinuum limit of non-dominated sorting. SIAM Journal on Mathematical Analysis,46(1):603–638.

Calder, J. (2015). A direct verification argument for the Hamilton-Jacobi equationcontinuum limit of nondominated sorting. arXiv preprint:1508.01565

Calder (UC Berkeley) Numerical schemes September 9, 2015 18 / 63

Demo: f = 1− χ[0,0.5]2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Calder (UC Berkeley) Numerical schemes September 9, 2015 19 / 63

Demo: Multimodal f

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Calder (UC Berkeley) Numerical schemes September 9, 2015 20 / 63

Demo: A Cat

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Calder (UC Berkeley) Numerical schemes September 9, 2015 21 / 63

Fast approximate sorting

Algorithm (PDE-based Ranking)1 Select k points from X1, . . . ,XN at random. Call them Y1, . . . ,Yk .

2 Select a grid spacing h for solving the PDE (P1) and estimate f with a histogramaligned to the grid [0, 1]nh , i.e.,

f (x) =1

khn·#Yi : x 5 Yi 5 x + h(1, . . . , 1)

for x ∈ [0, 1]nh .

3 Compute the numerical solution Uh on [0, 1]nh .

4 Evaluate Uh(Xi) for i = 1, . . . ,N via interpolation.

Notes:

Total complexity is O(k + h−n + N ).

If we fix k , h and n, independent of N , then Steps 1-3 have O(1) complexity.

Calder, J., Esedoglu, S., and Hero, A. O. (2015). A PDE-based approach tonondominated sorting. SIAM Journal on Numerical Analysis, 53(1):82–104.

Calder (UC Berkeley) Numerical schemes September 9, 2015 22 / 63

Outline

1 IntroductionMotivating example: Image retrievalNon-dominated sorting

2 Continuum limit for nondominated sortingHamilton-Jacobi equation for layersPDE-based ranking

3 Numerical schemesAn O(h1/n) schemeTwo (formally) O(h) schemesRegularityConvergence rates

4 Experimental results

5 References

Calder (UC Berkeley) Numerical schemes September 9, 2015 23 / 63

Numerics

How do we numerically solve

(P1)

ux1 · · · uxn = f in Rn

+

u = 0 on ∂Rn+

efficiently and accurately (in dimensions n = 2, 3, 4)?

Calder (UC Berkeley) Numerical schemes September 9, 2015 24 / 63

Recall: Viscosity solution

Consider the Hamilton-Jacobi equation

H (x , u,Du) = 0 on O ⊆ Rn , (1)

where H : O × R× Rn → R is continuous.

A continuous function u : O → R is a viscosity solution of (1) if

1 Subsolution: For every x ∈ O and ϕ ∈ C∞(Rn) such that u − ϕ has a localmaximum at x with respect to O

H (x , u(x),Dϕ(x)) ≤ 0.

2 Supersolution: For every x ∈ O and ϕ ∈ C∞(Rn) such that u − ϕ has a localminimum at x with respect to O

H (x , u(x),Dϕ(x)) ≥ 0.

Calder (UC Berkeley) Numerical schemes September 9, 2015 25 / 63

Bounded domain

We first pose the PDE on a bounded domain

(P1)

ux1 · · · uxn = f in (0, 1]n

u = 0 on Γ

where Γ = [0, 1]n \ (0, 1]n .

Minor technicality: Viscosity solutions of (P1) do not exist due to a well-known issuewith viscosity solutions on boundaries of domains.

We actually need to slightly modify the PDE:

(P1’)

(ux1)+ · · · (uxn )+ = f in (0, 1]n

u = 0 on Γ,

where t+ = max(t , 0).

Calder (UC Berkeley) Numerical schemes September 9, 2015 26 / 63

Bounded domain

We first pose the PDE on a bounded domain

(P1)

ux1 · · · uxn = f in (0, 1]n

u = 0 on Γ

where Γ = [0, 1]n \ (0, 1]n .

Minor technicality: Viscosity solutions of (P1) do not exist due to a well-known issuewith viscosity solutions on boundaries of domains.

We actually need to slightly modify the PDE:

(P1’)

(ux1)+ · · · (uxn )+ = f in (0, 1]n

u = 0 on Γ,

where t+ = max(t , 0).

Calder (UC Berkeley) Numerical schemes September 9, 2015 26 / 63

Bounded domain

We first pose the PDE on a bounded domain

(P1)

ux1 · · · uxn = f in (0, 1]n

u = 0 on Γ

where Γ = [0, 1]n \ (0, 1]n .

Minor technicality: Viscosity solutions of (P1) do not exist due to a well-known issuewith viscosity solutions on boundaries of domains.

We actually need to slightly modify the PDE:

(P1’)

(ux1)+ · · · (uxn )+ = f in (0, 1]n

u = 0 on Γ,

where t+ = max(t , 0).

Calder (UC Berkeley) Numerical schemes September 9, 2015 26 / 63

Upwind finite difference scheme for (P1)

The upwind scheme corresponds to using backward differences:

(S1)

D−1 uh(x) · · ·D−n uh(x) = f (x) for x ∈ (0, 1]nh

uh(x) = 0 for x ∈ Γh ,

where Ωh := Ω ∩ hZn and

D±i uh(x) = ±uh(x ± hei)− uh(x)

h.

The scheme (S) can be solved in a single pass (similar to fast sweeping or marching),and in dimension n = 2 we have the closed form expression

uh(x) =uh(x − he1) + uh(x − he2)

2+

1

2

√(uh(x − he1)− uh(x − he2))2 + 4h2f (x)2.

However, accuracy is poor O(h1n ).

Calder, J., Esedoglu, S., and Hero, A. O. (2015). A PDE-based approach tonondominated sorting. SIAM Journal on Numerical Analysis, 53(1):82–104.

Calder (UC Berkeley) Numerical schemes September 9, 2015 27 / 63

Upwind finite difference scheme for (P1)

The upwind scheme corresponds to using backward differences:

(S1)

D−1 uh(x) · · ·D−n uh(x) = f (x) for x ∈ (0, 1]nh

uh(x) = 0 for x ∈ Γh ,

where Ωh := Ω ∩ hZn and

D±i uh(x) = ±uh(x ± hei)− uh(x)

h.

The scheme (S) can be solved in a single pass (similar to fast sweeping or marching),and in dimension n = 2 we have the closed form expression

uh(x) =uh(x − he1) + uh(x − he2)

2+

1

2

√(uh(x − he1)− uh(x − he2))2 + 4h2f (x)2.

However, accuracy is poor O(h1n ).

Calder, J., Esedoglu, S., and Hero, A. O. (2015). A PDE-based approach tonondominated sorting. SIAM Journal on Numerical Analysis, 53(1):82–104.

Calder (UC Berkeley) Numerical schemes September 9, 2015 27 / 63

Accuracy of (S1)For f ≡ 1, u(x) = n(x1 · · · xn)

1n . Set ϕ(x) = Cn(x1 · · · xn)

1n and by concavity

D−i ϕ(x) ≥ ϕxi (x) = C (x1 · · · xn)1n x−1

i .

On the other hand, if xi = h then

D−i ϕ(x) =ϕ(x)

h= Cn(x1 · · · xn)

1n x−1

i .

Therefore, for any x ∈ (0, 1]nh such that xi = h for some i we have

D−1 ϕ(x) · · ·D−n ϕ(x) ≥ nC n := 1

(C :=

1

n1n

).

By comparison, uh(x) ≤ ϕ(x) whenever xi = h for some i . For x = (h, 1, . . . , 1)

uh(x) ≤ ϕ(x) = n1− 1n h

1n and u(x) = nh

1n .

Thereforeu(x)− uh(x) ≥

(n − n1− 1

n

)h

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 28 / 63

Accuracy of (S1)For f ≡ 1, u(x) = n(x1 · · · xn)

1n . Set ϕ(x) = Cn(x1 · · · xn)

1n and by concavity

D−i ϕ(x) ≥ ϕxi (x) = C (x1 · · · xn)1n x−1

i .

On the other hand, if xi = h then

D−i ϕ(x) =ϕ(x)

h= Cn(x1 · · · xn)

1n x−1

i .

Therefore, for any x ∈ (0, 1]nh such that xi = h for some i we have

D−1 ϕ(x) · · ·D−n ϕ(x) ≥ nC n := 1

(C :=

1

n1n

).

By comparison, uh(x) ≤ ϕ(x) whenever xi = h for some i . For x = (h, 1, . . . , 1)

uh(x) ≤ ϕ(x) = n1− 1n h

1n and u(x) = nh

1n .

Thereforeu(x)− uh(x) ≥

(n − n1− 1

n

)h

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 28 / 63

Accuracy of (S1)For f ≡ 1, u(x) = n(x1 · · · xn)

1n . Set ϕ(x) = Cn(x1 · · · xn)

1n and by concavity

D−i ϕ(x) ≥ ϕxi (x) = C (x1 · · · xn)1n x−1

i .

On the other hand, if xi = h then

D−i ϕ(x) =ϕ(x)

h= Cn(x1 · · · xn)

1n x−1

i .

Therefore, for any x ∈ (0, 1]nh such that xi = h for some i we have

D−1 ϕ(x) · · ·D−n ϕ(x) ≥ nC n := 1

(C :=

1

n1n

).

By comparison, uh(x) ≤ ϕ(x) whenever xi = h for some i . For x = (h, 1, . . . , 1)

uh(x) ≤ ϕ(x) = n1− 1n h

1n and u(x) = nh

1n .

Thereforeu(x)− uh(x) ≥

(n − n1− 1

n

)h

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 28 / 63

Accuracy of (S1)For f ≡ 1, u(x) = n(x1 · · · xn)

1n . Set ϕ(x) = Cn(x1 · · · xn)

1n and by concavity

D−i ϕ(x) ≥ ϕxi (x) = C (x1 · · · xn)1n x−1

i .

On the other hand, if xi = h then

D−i ϕ(x) =ϕ(x)

h= Cn(x1 · · · xn)

1n x−1

i .

Therefore, for any x ∈ (0, 1]nh such that xi = h for some i we have

D−1 ϕ(x) · · ·D−n ϕ(x) ≥ nC n := 1

(C :=

1

n1n

).

By comparison, uh(x) ≤ ϕ(x) whenever xi = h for some i .

For x = (h, 1, . . . , 1)

uh(x) ≤ ϕ(x) = n1− 1n h

1n and u(x) = nh

1n .

Thereforeu(x)− uh(x) ≥

(n − n1− 1

n

)h

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 28 / 63

Accuracy of (S1)For f ≡ 1, u(x) = n(x1 · · · xn)

1n . Set ϕ(x) = Cn(x1 · · · xn)

1n and by concavity

D−i ϕ(x) ≥ ϕxi (x) = C (x1 · · · xn)1n x−1

i .

On the other hand, if xi = h then

D−i ϕ(x) =ϕ(x)

h= Cn(x1 · · · xn)

1n x−1

i .

Therefore, for any x ∈ (0, 1]nh such that xi = h for some i we have

D−1 ϕ(x) · · ·D−n ϕ(x) ≥ nC n := 1

(C :=

1

n1n

).

By comparison, uh(x) ≤ ϕ(x) whenever xi = h for some i . For x = (h, 1, . . . , 1)

uh(x) ≤ ϕ(x) = n1− 1n h

1n and u(x) = nh

1n .

Thereforeu(x)− uh(x) ≥

(n − n1− 1

n

)h

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 28 / 63

Accuracy of (S1)For f ≡ 1, u(x) = n(x1 · · · xn)

1n . Set ϕ(x) = Cn(x1 · · · xn)

1n and by concavity

D−i ϕ(x) ≥ ϕxi (x) = C (x1 · · · xn)1n x−1

i .

On the other hand, if xi = h then

D−i ϕ(x) =ϕ(x)

h= Cn(x1 · · · xn)

1n x−1

i .

Therefore, for any x ∈ (0, 1]nh such that xi = h for some i we have

D−1 ϕ(x) · · ·D−n ϕ(x) ≥ nC n := 1

(C :=

1

n1n

).

By comparison, uh(x) ≤ ϕ(x) whenever xi = h for some i . For x = (h, 1, . . . , 1)

uh(x) ≤ ϕ(x) = n1− 1n h

1n and u(x) = nh

1n .

Thereforeu(x)− uh(x) ≥

(n − n1− 1

n

)h

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 28 / 63

Towards a new schemeThis suggests that we should try to remove the gradient singularity. Consider

v :=un

nn.

Then

vxi =un−1

nn−1uxi = v

n−1n uxi .

Thereforevx1 · · · vxn = vn−1 ux1 · · · uxn︸ ︷︷ ︸

f

= vn−1f .

We find that v is a viscosity solution of

(P2)

vx1 · · · vxn = vn−1f in (0, 1]n

v = 0 on Γ

Since f ≥ 0, (P2) has a zeroth order term of the wrong sign for a comparison principle.The method of vanishing viscosity takes the form

vεx1 · · · vεxn − ε∆vε = (vε)n−1f .

Calder (UC Berkeley) Numerical schemes September 9, 2015 29 / 63

Towards a new schemeThis suggests that we should try to remove the gradient singularity. Consider

v :=un

nn.

Then

vxi =un−1

nn−1uxi = v

n−1n uxi .

Thereforevx1 · · · vxn = vn−1 ux1 · · · uxn︸ ︷︷ ︸

f

= vn−1f .

We find that v is a viscosity solution of

(P2)

vx1 · · · vxn = vn−1f in (0, 1]n

v = 0 on Γ

Since f ≥ 0, (P2) has a zeroth order term of the wrong sign for a comparison principle.The method of vanishing viscosity takes the form

vεx1 · · · vεxn − ε∆vε = (vε)n−1f .

Calder (UC Berkeley) Numerical schemes September 9, 2015 29 / 63

Towards a new schemeThis suggests that we should try to remove the gradient singularity. Consider

v :=un

nn.

Then

vxi =un−1

nn−1uxi = v

n−1n uxi .

Thereforevx1 · · · vxn = vn−1 ux1 · · · uxn︸ ︷︷ ︸

f

= vn−1f .

We find that v is a viscosity solution of

(P2)

vx1 · · · vxn = vn−1f in (0, 1]n

v = 0 on Γ

Since f ≥ 0, (P2) has a zeroth order term of the wrong sign for a comparison principle.The method of vanishing viscosity takes the form

vεx1 · · · vεxn − ε∆vε = (vε)n−1f .

Calder (UC Berkeley) Numerical schemes September 9, 2015 29 / 63

Towards a new schemeThis suggests that we should try to remove the gradient singularity. Consider

v :=un

nn.

Then

vxi =un−1

nn−1uxi = v

n−1n uxi .

Thereforevx1 · · · vxn = vn−1 ux1 · · · uxn︸ ︷︷ ︸

f

= vn−1f .

We find that v is a viscosity solution of

(P2)

vx1 · · · vxn = vn−1f in (0, 1]n

v = 0 on Γ

Since f ≥ 0, (P2) has a zeroth order term of the wrong sign for a comparison principle.The method of vanishing viscosity takes the form

vεx1 · · · vεxn − ε∆vε = (vε)n−1f .

Calder (UC Berkeley) Numerical schemes September 9, 2015 29 / 63

Nonuniqueness for (P2)

(P2)

vx1 · · · vxn = vn−1f in (0, 1]n

v = 0 on Γ

When f ≡ 1, v(x) = u(x)n/nn = x1 · · · xn , but

vy(x) := (x1 − y1)+ · · · (xn − yn)+

is also a viscosity solution of (P2) for any y ∈ (0, 1)n .

LemmaAssume f is continuous on [0, 1]n . Then v := un/nn is the unique maximal viscositysolution of (P2).

Calder (UC Berkeley) Numerical schemes September 9, 2015 30 / 63

Nonuniqueness for (P2)

(P2)

vx1 · · · vxn = vn−1f in (0, 1]n

v = 0 on Γ

When f ≡ 1, v(x) = u(x)n/nn = x1 · · · xn , but

vy(x) := (x1 − y1)+ · · · (xn − yn)+

is also a viscosity solution of (P2) for any y ∈ (0, 1)n .

LemmaAssume f is continuous on [0, 1]n . Then v := un/nn is the unique maximal viscositysolution of (P2).

Calder (UC Berkeley) Numerical schemes September 9, 2015 30 / 63

Numerical scheme for (P2)

An upwind scheme for (P2) uses backward difference quotients

(S2)

D−1 vh(x) · · ·D−n vh(x) = vn−1

h (x)f (x) for x ∈ (0, 1]nh

vh(x) = 0 for x ∈ Γh ,

We define vh by taking the largest solution of (S2) at each x ∈ (0, 1]nh .

The scheme can be solved efficiently in a single pass, and in dimension n = 2 thescheme can be solved in closed form

vh(x) =A + h2f (x)

2+

1

2

√B2 + 2h2f (x)A + h4f (x)2,

where

A = vh(x − he1) + vh(x − he2) and B = vh(x − he1)− vh(x − he2).

Notice when f ≡ 1, vh(x) = x1 · · · xn is the exact solution of (P2).

Calder (UC Berkeley) Numerical schemes September 9, 2015 31 / 63

Numerical scheme for (P2)

An upwind scheme for (P2) uses backward difference quotients

(S2)

D−1 vh(x) · · ·D−n vh(x) = vn−1

h (x)f (x) for x ∈ (0, 1]nh

vh(x) = 0 for x ∈ Γh ,

We define vh by taking the largest solution of (S2) at each x ∈ (0, 1]nh .

The scheme can be solved efficiently in a single pass, and in dimension n = 2 thescheme can be solved in closed form

vh(x) =A + h2f (x)

2+

1

2

√B2 + 2h2f (x)A + h4f (x)2,

where

A = vh(x − he1) + vh(x − he2) and B = vh(x − he1)− vh(x − he2).

Notice when f ≡ 1, vh(x) = x1 · · · xn is the exact solution of (P2).

Calder (UC Berkeley) Numerical schemes September 9, 2015 31 / 63

Numerical scheme for (P2)

An upwind scheme for (P2) uses backward difference quotients

(S2)

D−1 vh(x) · · ·D−n vh(x) = vn−1

h (x)f (x) for x ∈ (0, 1]nh

vh(x) = 0 for x ∈ Γh ,

We define vh by taking the largest solution of (S2) at each x ∈ (0, 1]nh .

The scheme can be solved efficiently in a single pass, and in dimension n = 2 thescheme can be solved in closed form

vh(x) =A + h2f (x)

2+

1

2

√B2 + 2h2f (x)A + h4f (x)2,

where

A = vh(x − he1) + vh(x − he2) and B = vh(x − he1)− vh(x − he2).

Notice when f ≡ 1, vh(x) = x1 · · · xn is the exact solution of (P2).

Calder (UC Berkeley) Numerical schemes September 9, 2015 31 / 63

Rate of convergence for (S2)

(S2)

D−1 vh(x) · · ·D−n vh(x) = vn−1

h (x)f (x) for x ∈ (0, 1]nh

vh(x) = 0 for x ∈ Γh ,

The scheme (S2) has formal accuracy of O(h) and we have

Theorem

Suppose f ∈ C 0,1([0, 1]n) and f > 0. Then

|nnvh − un | ≤ C√h in [0, 1]nh , (2)

and

|nv1nh − u| ≤ C δ1−n

√h in [δ, 1]nh , (3)

where δ > 0 and C = C(n, [f ]1;[0,1]n ,min[0,1]n f

).

Calder, J. (2015). Numerical schemes and rates of convergence for the Hamilton-Jacobiequation continuum limit of nondominated sorting. arXiv preprint:1508.01557.

Calder (UC Berkeley) Numerical schemes September 9, 2015 32 / 63

One-sided rate for (S1)Recall uh satisfies

D−1 uh(x) · · ·D−n uh(x) = f (x) for x ∈ (0, 1]nh .

Let ψ(x) = unh /n

n . By convexity and monotoncity

D−i ψ(x) =uh(x)n − uh(x − hei)

n

nnh≤ uh(x)n−1

nn−1D−i uh(x).

ThereforeD−1 ψ(x) · · ·D−n ψ(x) ≤ ψ(x)n−1f (x),

so ψ is a subsolution of (S2). By comparison we have unh /n

n = ψ ≤ vh .

Corollary

Suppose f ∈ C 0,1([0, 1]n) and f > 0. Then

unh − un ≤ C

√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 33 / 63

One-sided rate for (S1)Recall uh satisfies

D−1 uh(x) · · ·D−n uh(x) = f (x) for x ∈ (0, 1]nh .

Let ψ(x) = unh /n

n . By convexity and monotoncity

D−i ψ(x) =uh(x)n − uh(x − hei)

n

nnh≤ uh(x)n−1

nn−1D−i uh(x).

ThereforeD−1 ψ(x) · · ·D−n ψ(x) ≤ ψ(x)n−1f (x),

so ψ is a subsolution of (S2). By comparison we have unh /n

n = ψ ≤ vh .

Corollary

Suppose f ∈ C 0,1([0, 1]n) and f > 0. Then

unh − un ≤ C

√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 33 / 63

One-sided rate for (S1)Recall uh satisfies

D−1 uh(x) · · ·D−n uh(x) = f (x) for x ∈ (0, 1]nh .

Let ψ(x) = unh /n

n . By convexity and monotoncity

D−i ψ(x) =uh(x)n − uh(x − hei)

n

nnh≤ uh(x)n−1

nn−1D−i uh(x).

ThereforeD−1 ψ(x) · · ·D−n ψ(x) ≤ ψ(x)n−1f (x),

so ψ is a subsolution of (S2). By comparison we have unh /n

n = ψ ≤ vh .

Corollary

Suppose f ∈ C 0,1([0, 1]n) and f > 0. Then

unh − un ≤ C

√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 33 / 63

One-sided rate for (S1)Recall uh satisfies

D−1 uh(x) · · ·D−n uh(x) = f (x) for x ∈ (0, 1]nh .

Let ψ(x) = unh /n

n . By convexity and monotoncity

D−i ψ(x) =uh(x)n − uh(x − hei)

n

nnh≤ uh(x)n−1

nn−1D−i uh(x).

ThereforeD−1 ψ(x) · · ·D−n ψ(x) ≤ ψ(x)n−1f (x),

so ψ is a subsolution of (S2). By comparison we have unh /n

n = ψ ≤ vh .

Corollary

Suppose f ∈ C 0,1([0, 1]n) and f > 0. Then

unh − un ≤ C

√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 33 / 63

Regularity

To prove the O(√h) convergence rate, we need a Lipschitz regularity result for (P2) or

(S2). Textbook regularity results are based on (p = Du)

(Coercivity) lim|p|→∞

H (x , p) =∞ uniformly in x ,

or(Zeroth order term) u + H (x ,Du) = 0.

Refer to [Bardi and Dolcetta, 1997]

The Hamiltonian for (P2) is (z = u, p = Du)

H (x , z , p) = p1 · · · pn − zn−1f (x)

which satisfies neither.

Calder (UC Berkeley) Numerical schemes September 9, 2015 34 / 63

Regularity

To prove the O(√h) convergence rate, we need a Lipschitz regularity result for (P2) or

(S2). Textbook regularity results are based on (p = Du)

(Coercivity) lim|p|→∞

H (x , p) =∞ uniformly in x ,

or(Zeroth order term) u + H (x ,Du) = 0.

Refer to [Bardi and Dolcetta, 1997]

The Hamiltonian for (P2) is (z = u, p = Du)

H (x , z , p) = p1 · · · pn − zn−1f (x)

which satisfies neither.

Calder (UC Berkeley) Numerical schemes September 9, 2015 34 / 63

Regularity for n = 2

Differentiate both sides of (P2) ∂∂x

(vxvy) = ∂∂x

(vf ) to find that

vxxvy + vxvxy = vx f + vfx .

Set ϕ = vx and rearrange

ϕxvy + (ϕy − f )ϕ = vfx ≤ ‖f ‖L∞ [f ]1;[0,1]n .

We can compare ϕ against a supersolution of the form

ϕ(x , y) = C (1 + y).

The bound v(x) ≤ ‖f ‖L∞xy yields boundary gradient estimates.

Lemma

Let f ∈ C 0,1([0, 1]2) be nonnegative. Then there exists C > 0 such that

[v ]1;[0,1]2 ≤ C‖f ‖C0,1([0,1]2). (4)

Calder (UC Berkeley) Numerical schemes September 9, 2015 35 / 63

Regularity for n = 2

Differentiate both sides of (P2) ∂∂x

(vxvy) = ∂∂x

(vf ) to find that

vxxvy + vxvxy = vx f + vfx .

Set ϕ = vx and rearrange

ϕxvy + (ϕy − f )ϕ = vfx ≤ ‖f ‖L∞ [f ]1;[0,1]n .

We can compare ϕ against a supersolution of the form

ϕ(x , y) = C (1 + y).

The bound v(x) ≤ ‖f ‖L∞xy yields boundary gradient estimates.

Lemma

Let f ∈ C 0,1([0, 1]2) be nonnegative. Then there exists C > 0 such that

[v ]1;[0,1]2 ≤ C‖f ‖C0,1([0,1]2). (4)

Calder (UC Berkeley) Numerical schemes September 9, 2015 35 / 63

Regularity for n = 2

Differentiate both sides of (P2) ∂∂x

(vxvy) = ∂∂x

(vf ) to find that

vxxvy + vxvxy = vx f + vfx .

Set ϕ = vx and rearrange

ϕxvy + (ϕy − f )ϕ = vfx ≤ ‖f ‖L∞ [f ]1;[0,1]n .

We can compare ϕ against a supersolution of the form

ϕ(x , y) = C (1 + y).

The bound v(x) ≤ ‖f ‖L∞xy yields boundary gradient estimates.

Lemma

Let f ∈ C 0,1([0, 1]2) be nonnegative. Then there exists C > 0 such that

[v ]1;[0,1]2 ≤ C‖f ‖C0,1([0,1]2). (4)

Calder (UC Berkeley) Numerical schemes September 9, 2015 35 / 63

Regularity for n = 2

Differentiate both sides of (P2) ∂∂x

(vxvy) = ∂∂x

(vf ) to find that

vxxvy + vxvxy = vx f + vfx .

Set ϕ = vx and rearrange

ϕxvy + (ϕy − f )ϕ = vfx ≤ ‖f ‖L∞ [f ]1;[0,1]n .

We can compare ϕ against a supersolution of the form

ϕ(x , y) = C (1 + y).

The bound v(x) ≤ ‖f ‖L∞xy yields boundary gradient estimates.

Lemma

Let f ∈ C 0,1([0, 1]2) be nonnegative. Then there exists C > 0 such that

[v ]1;[0,1]2 ≤ C‖f ‖C0,1([0,1]2). (4)

Calder (UC Berkeley) Numerical schemes September 9, 2015 35 / 63

Sketch of proofDifferentiate numerical scheme D−x (D−x vD−y v) = D−x (vf ) (x = (x , y))

D−x D−x v(x)D−y v(x− hex ) + D−x v(x)D−x D−y v(x) = v(x)D−x f (x) + f (x− hex )D−x v(x).

Set ϕ = D−x v to find

D−x ϕ(x)D−y v(x− hex ) +(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

Set ϕ(x , y) = C (1 + y) and compute(D−y ϕ(x)− f (x− hex )

)ϕ(x) ≥ C

(C − ‖f ‖L∞

).

We can selectC = ‖f ‖L∞ +

√‖f ‖L∞ [f ]1

and we have (D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 36 / 63

Sketch of proofDifferentiate numerical scheme D−x (D−x vD−y v) = D−x (vf ) (x = (x , y))

D−x D−x v(x)D−y v(x− hex ) + D−x v(x)D−x D−y v(x) = v(x)D−x f (x) + f (x− hex )D−x v(x).

Set ϕ = D−x v to find

D−x ϕ(x)D−y v(x− hex ) +(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

Set ϕ(x , y) = C (1 + y) and compute(D−y ϕ(x)− f (x− hex )

)ϕ(x) ≥ C

(C − ‖f ‖L∞

).

We can selectC = ‖f ‖L∞ +

√‖f ‖L∞ [f ]1

and we have (D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 36 / 63

Sketch of proofDifferentiate numerical scheme D−x (D−x vD−y v) = D−x (vf ) (x = (x , y))

D−x D−x v(x)D−y v(x− hex ) + D−x v(x)D−x D−y v(x) = v(x)D−x f (x) + f (x− hex )D−x v(x).

Set ϕ = D−x v to find

D−x ϕ(x)D−y v(x− hex ) +(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

Set ϕ(x , y) = C (1 + y) and compute(D−y ϕ(x)− f (x− hex )

)ϕ(x) ≥ C

(C − ‖f ‖L∞

).

We can selectC = ‖f ‖L∞ +

√‖f ‖L∞ [f ]1

and we have (D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 36 / 63

Sketch of proofDifferentiate numerical scheme D−x (D−x vD−y v) = D−x (vf ) (x = (x , y))

D−x D−x v(x)D−y v(x− hex ) + D−x v(x)D−x D−y v(x) = v(x)D−x f (x) + f (x− hex )D−x v(x).

Set ϕ = D−x v to find

D−x ϕ(x)D−y v(x− hex ) +(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

Set ϕ(x , y) = C (1 + y) and compute(D−y ϕ(x)− f (x− hex )

)ϕ(x) ≥ C

(C − ‖f ‖L∞

).

We can selectC = ‖f ‖L∞ +

√‖f ‖L∞ [f ]1

and we have (D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 36 / 63

Sketch of proofWe claim ϕ ≤ ϕ := C (1 + y).

Since v(x , y) ≤ ‖f ‖L∞xy , ϕ ≤ ϕ on Γ = [0, 1]2 \ (0, 1]2.Assume to the contrary that ϕ(x) > ϕ(x) for some x ∈ (0, 1]2. Then there exists xsuch that

ϕ(x) > ϕ(x), ϕ(x− hex ) ≤ ϕ(x− hex ), and ϕ(x− hey) ≤ ϕ(x− hey).

ThenD−x ϕ(x) ≥ D−x ϕ(x) = 0 and D−y ϕ(x) ≥ D−y ϕ(x) ≥ ‖f ‖L∞ .

Hence

(D−y ϕ(x)− f (x− hex ))ϕ(x) ≥ (D−y ϕ(x)− f (x− hex ))ϕ(x).

Recalling

D−x ϕ(x)D−y v(x− hex )︸ ︷︷ ︸≥0

+(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

(D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1,

we have a contradiction.Thus

D−x v ≤ 2C = 2(‖f ‖L∞ +

√‖f ‖L∞ [f ]1

)≤ C‖f ‖C0,1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 37 / 63

Sketch of proofWe claim ϕ ≤ ϕ := C (1 + y). Since v(x , y) ≤ ‖f ‖L∞xy , ϕ ≤ ϕ on Γ = [0, 1]2 \ (0, 1]2.

Assume to the contrary that ϕ(x) > ϕ(x) for some x ∈ (0, 1]2. Then there exists xsuch that

ϕ(x) > ϕ(x), ϕ(x− hex ) ≤ ϕ(x− hex ), and ϕ(x− hey) ≤ ϕ(x− hey).

ThenD−x ϕ(x) ≥ D−x ϕ(x) = 0 and D−y ϕ(x) ≥ D−y ϕ(x) ≥ ‖f ‖L∞ .

Hence

(D−y ϕ(x)− f (x− hex ))ϕ(x) ≥ (D−y ϕ(x)− f (x− hex ))ϕ(x).

Recalling

D−x ϕ(x)D−y v(x− hex )︸ ︷︷ ︸≥0

+(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

(D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1,

we have a contradiction.Thus

D−x v ≤ 2C = 2(‖f ‖L∞ +

√‖f ‖L∞ [f ]1

)≤ C‖f ‖C0,1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 37 / 63

Sketch of proofWe claim ϕ ≤ ϕ := C (1 + y). Since v(x , y) ≤ ‖f ‖L∞xy , ϕ ≤ ϕ on Γ = [0, 1]2 \ (0, 1]2.Assume to the contrary that ϕ(x) > ϕ(x) for some x ∈ (0, 1]2. Then there exists xsuch that

ϕ(x) > ϕ(x), ϕ(x− hex ) ≤ ϕ(x− hex ), and ϕ(x− hey) ≤ ϕ(x− hey).

ThenD−x ϕ(x) ≥ D−x ϕ(x) = 0 and D−y ϕ(x) ≥ D−y ϕ(x) ≥ ‖f ‖L∞ .

Hence

(D−y ϕ(x)− f (x− hex ))ϕ(x) ≥ (D−y ϕ(x)− f (x− hex ))ϕ(x).

Recalling

D−x ϕ(x)D−y v(x− hex )︸ ︷︷ ︸≥0

+(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

(D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1,

we have a contradiction.Thus

D−x v ≤ 2C = 2(‖f ‖L∞ +

√‖f ‖L∞ [f ]1

)≤ C‖f ‖C0,1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 37 / 63

Sketch of proofWe claim ϕ ≤ ϕ := C (1 + y). Since v(x , y) ≤ ‖f ‖L∞xy , ϕ ≤ ϕ on Γ = [0, 1]2 \ (0, 1]2.Assume to the contrary that ϕ(x) > ϕ(x) for some x ∈ (0, 1]2. Then there exists xsuch that

ϕ(x) > ϕ(x), ϕ(x− hex ) ≤ ϕ(x− hex ), and ϕ(x− hey) ≤ ϕ(x− hey).

ThenD−x ϕ(x) ≥ D−x ϕ(x) = 0 and D−y ϕ(x) ≥ D−y ϕ(x) ≥ ‖f ‖L∞ .

Hence

(D−y ϕ(x)− f (x− hex ))ϕ(x) ≥ (D−y ϕ(x)− f (x− hex ))ϕ(x).

Recalling

D−x ϕ(x)D−y v(x− hex )︸ ︷︷ ︸≥0

+(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

(D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1,

we have a contradiction.Thus

D−x v ≤ 2C = 2(‖f ‖L∞ +

√‖f ‖L∞ [f ]1

)≤ C‖f ‖C0,1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 37 / 63

Sketch of proofWe claim ϕ ≤ ϕ := C (1 + y). Since v(x , y) ≤ ‖f ‖L∞xy , ϕ ≤ ϕ on Γ = [0, 1]2 \ (0, 1]2.Assume to the contrary that ϕ(x) > ϕ(x) for some x ∈ (0, 1]2. Then there exists xsuch that

ϕ(x) > ϕ(x), ϕ(x− hex ) ≤ ϕ(x− hex ), and ϕ(x− hey) ≤ ϕ(x− hey).

ThenD−x ϕ(x) ≥ D−x ϕ(x) = 0 and D−y ϕ(x) ≥ D−y ϕ(x) ≥ ‖f ‖L∞ .

Hence

(D−y ϕ(x)− f (x− hex ))ϕ(x) ≥ (D−y ϕ(x)− f (x− hex ))ϕ(x).

Recalling

D−x ϕ(x)D−y v(x− hex )︸ ︷︷ ︸≥0

+(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

(D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1,

we have a contradiction.Thus

D−x v ≤ 2C = 2(‖f ‖L∞ +

√‖f ‖L∞ [f ]1

)≤ C‖f ‖C0,1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 37 / 63

Sketch of proofWe claim ϕ ≤ ϕ := C (1 + y). Since v(x , y) ≤ ‖f ‖L∞xy , ϕ ≤ ϕ on Γ = [0, 1]2 \ (0, 1]2.Assume to the contrary that ϕ(x) > ϕ(x) for some x ∈ (0, 1]2. Then there exists xsuch that

ϕ(x) > ϕ(x), ϕ(x− hex ) ≤ ϕ(x− hex ), and ϕ(x− hey) ≤ ϕ(x− hey).

ThenD−x ϕ(x) ≥ D−x ϕ(x) = 0 and D−y ϕ(x) ≥ D−y ϕ(x) ≥ ‖f ‖L∞ .

Hence

(D−y ϕ(x)− f (x− hex ))ϕ(x) ≥ (D−y ϕ(x)− f (x− hex ))ϕ(x).

Recalling

D−x ϕ(x)D−y v(x− hex )︸ ︷︷ ︸≥0

+(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

(D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1,

we have a contradiction.

Thus

D−x v ≤ 2C = 2(‖f ‖L∞ +

√‖f ‖L∞ [f ]1

)≤ C‖f ‖C0,1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 37 / 63

Sketch of proofWe claim ϕ ≤ ϕ := C (1 + y). Since v(x , y) ≤ ‖f ‖L∞xy , ϕ ≤ ϕ on Γ = [0, 1]2 \ (0, 1]2.Assume to the contrary that ϕ(x) > ϕ(x) for some x ∈ (0, 1]2. Then there exists xsuch that

ϕ(x) > ϕ(x), ϕ(x− hex ) ≤ ϕ(x− hex ), and ϕ(x− hey) ≤ ϕ(x− hey).

ThenD−x ϕ(x) ≥ D−x ϕ(x) = 0 and D−y ϕ(x) ≥ D−y ϕ(x) ≥ ‖f ‖L∞ .

Hence

(D−y ϕ(x)− f (x− hex ))ϕ(x) ≥ (D−y ϕ(x)− f (x− hex ))ϕ(x).

Recalling

D−x ϕ(x)D−y v(x− hex )︸ ︷︷ ︸≥0

+(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

(D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1,

we have a contradiction.Thus

D−x v ≤ 2C = 2(‖f ‖L∞ +

√‖f ‖L∞ [f ]1

)≤ C‖f ‖C0,1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 37 / 63

Regularity for n = 3

Differentiate both sides of (P2) ∂∂x

(vxvyvz ) = ∂∂x

(v2f ) to find that

vxxvyvz + vxvyxvz + vxvyvzx = 2vvx f + v2fx .

Set ϕ = vx and rearrange

F (ϕ) := ϕxvyvz + (vzϕy + vyϕz − 2vf )ϕ = v2fx ≤ ‖f ‖2L∞ [f ]1.

Perhaps we should be looking for a supersolution of the form

ϕ(x , y , z ) = C (1 + y + z )?

Then F (ϕ) ≥ C (Cvz + Cvy − 2vf ). . .

At a maximum of ϕ, ϕx = ϕy = ϕz = 0 so

−2vf ϕ ≤ ‖f ‖2L∞ [f ]1.

Calder (UC Berkeley) Numerical schemes September 9, 2015 38 / 63

Regularity for n = 3

Differentiate both sides of (P2) ∂∂x

(vxvyvz ) = ∂∂x

(v2f ) to find that

vxxvyvz + vxvyxvz + vxvyvzx = 2vvx f + v2fx .

Set ϕ = vx and rearrange

F (ϕ) := ϕxvyvz + (vzϕy + vyϕz − 2vf )ϕ = v2fx ≤ ‖f ‖2L∞ [f ]1.

Perhaps we should be looking for a supersolution of the form

ϕ(x , y , z ) = C (1 + y + z )?

Then F (ϕ) ≥ C (Cvz + Cvy − 2vf ). . .

At a maximum of ϕ, ϕx = ϕy = ϕz = 0 so

−2vf ϕ ≤ ‖f ‖2L∞ [f ]1.

Calder (UC Berkeley) Numerical schemes September 9, 2015 38 / 63

Regularity for n = 3

Differentiate both sides of (P2) ∂∂x

(vxvyvz ) = ∂∂x

(v2f ) to find that

vxxvyvz + vxvyxvz + vxvyvzx = 2vvx f + v2fx .

Set ϕ = vx and rearrange

F (ϕ) := ϕxvyvz + (vzϕy + vyϕz − 2vf )ϕ = v2fx ≤ ‖f ‖2L∞ [f ]1.

Perhaps we should be looking for a supersolution of the form

ϕ(x , y , z ) = C (1 + y + z )?

Then F (ϕ) ≥ C (Cvz + Cvy − 2vf ). . .

At a maximum of ϕ, ϕx = ϕy = ϕz = 0 so

−2vf ϕ ≤ ‖f ‖2L∞ [f ]1.

Calder (UC Berkeley) Numerical schemes September 9, 2015 38 / 63

Regularity for n = 3

Differentiate both sides of (P2) ∂∂x

(vxvyvz ) = ∂∂x

(v2f ) to find that

vxxvyvz + vxvyxvz + vxvyvzx = 2vvx f + v2fx .

Set ϕ = vx and rearrange

F (ϕ) := ϕxvyvz + (vzϕy + vyϕz − 2vf )ϕ = v2fx ≤ ‖f ‖2L∞ [f ]1.

Perhaps we should be looking for a supersolution of the form

ϕ(x , y , z ) = C (1 + y + z )?

Then F (ϕ) ≥ C (Cvz + Cvy − 2vf ). . .

At a maximum of ϕ, ϕx = ϕy = ϕz = 0 so

−2vf ϕ ≤ ‖f ‖2L∞ [f ]1.

Calder (UC Berkeley) Numerical schemes September 9, 2015 38 / 63

Regularity for n ≥ 3?

Unfortunately this argument fails for n ≥ 3 due to the additional nonlinearity.

Furthermore, we cannot directly prove rates for (P2) due to the wrong sign on zerothorder term.

Back to the drawing board!

Calder (UC Berkeley) Numerical schemes September 9, 2015 39 / 63

Regularity for n ≥ 3?

Unfortunately this argument fails for n ≥ 3 due to the additional nonlinearity.

Furthermore, we cannot directly prove rates for (P2) due to the wrong sign on zerothorder term.

Back to the drawing board!

Calder (UC Berkeley) Numerical schemes September 9, 2015 39 / 63

Another PDERecall for f ≡ 1, u(x) = n(x1 · · · xn)

1n . For general f , we are tempted to make the

ansatzu(x) = n(x1 · · · xn)

1n w(x).

Proceeding formally

uxi = (x1 · · · xn)1nw

xi+ n(x1 · · · xn)

1n wxi =

1

xi(x1 · · · xn)

1n (w + nxiwxi ).

Therefore

f = ux1 · · · uxn =n∏

i=1

(w + nxiwxi ).

We can show that w is a bounded viscosity solution of

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

Notice:

Zeroth order term has correct sign! (since uxi ≥ 0)

v = un/nn = x1 · · · xnwn .

Calder (UC Berkeley) Numerical schemes September 9, 2015 40 / 63

Another PDERecall for f ≡ 1, u(x) = n(x1 · · · xn)

1n . For general f , we are tempted to make the

ansatzu(x) = n(x1 · · · xn)

1n w(x).

Proceeding formally

uxi = (x1 · · · xn)1nw

xi+ n(x1 · · · xn)

1n wxi =

1

xi(x1 · · · xn)

1n (w + nxiwxi ).

Therefore

f = ux1 · · · uxn =n∏

i=1

(w + nxiwxi ).

We can show that w is a bounded viscosity solution of

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

Notice:

Zeroth order term has correct sign! (since uxi ≥ 0)

v = un/nn = x1 · · · xnwn .

Calder (UC Berkeley) Numerical schemes September 9, 2015 40 / 63

Another PDERecall for f ≡ 1, u(x) = n(x1 · · · xn)

1n . For general f , we are tempted to make the

ansatzu(x) = n(x1 · · · xn)

1n w(x).

Proceeding formally

uxi = (x1 · · · xn)1nw

xi+ n(x1 · · · xn)

1n wxi =

1

xi(x1 · · · xn)

1n (w + nxiwxi ).

Therefore

f = ux1 · · · uxn =n∏

i=1

(w + nxiwxi ).

We can show that w is a bounded viscosity solution of

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

Notice:

Zeroth order term has correct sign! (since uxi ≥ 0)

v = un/nn = x1 · · · xnwn .

Calder (UC Berkeley) Numerical schemes September 9, 2015 40 / 63

Regularity for (P3)Let us rewrite (P3) as

n∑j=1

log(w + nxjwxj ) = log(f ) in (0, 1]n .

Differentiate each side in xi :

n∑j=1

wxi + nδi,jwxj + nxjwxixj

w + nxjwxj

=fxif.

At a maximum of wxi we have wxixj = 0 hence

wxi

n∑j=1

1 + nδi,jw + nxjwxj

=fxif.

By the inequality of arithmetic and geometric means

n∑j=1

1 + nδi,jw + nxjwxj

≥n∑

j=1

1

w + nxjwxj

≥ n

n∏j=1

(w + nxjwxj )−1n = nf −

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 41 / 63

Regularity for (P3)Let us rewrite (P3) as

n∑j=1

log(w + nxjwxj ) = log(f ) in (0, 1]n .

Differentiate each side in xi :

n∑j=1

wxi + nδi,jwxj + nxjwxixj

w + nxjwxj

=fxif.

At a maximum of wxi we have wxixj = 0 hence

wxi

n∑j=1

1 + nδi,jw + nxjwxj

=fxif.

By the inequality of arithmetic and geometric means

n∑j=1

1 + nδi,jw + nxjwxj

≥n∑

j=1

1

w + nxjwxj

≥ n

n∏j=1

(w + nxjwxj )−1n = nf −

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 41 / 63

Regularity for (P3)Let us rewrite (P3) as

n∑j=1

log(w + nxjwxj ) = log(f ) in (0, 1]n .

Differentiate each side in xi :

n∑j=1

wxi + nδi,jwxj + nxjwxixj

w + nxjwxj

=fxif.

At a maximum of wxi we have wxixj = 0 hence

wxi

n∑j=1

1 + nδi,jw + nxjwxj

=fxif.

By the inequality of arithmetic and geometric means

n∑j=1

1 + nδi,jw + nxjwxj

≥n∑

j=1

1

w + nxjwxj

≥ n

n∏j=1

(w + nxjwxj )−1n = nf −

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 41 / 63

Regularity for (P3)Let us rewrite (P3) as

n∑j=1

log(w + nxjwxj ) = log(f ) in (0, 1]n .

Differentiate each side in xi :

n∑j=1

wxi + nδi,jwxj + nxjwxixj

w + nxjwxj

=fxif.

At a maximum of wxi we have wxixj = 0 hence

wxi

n∑j=1

1 + nδi,jw + nxjwxj

=fxif.

By the inequality of arithmetic and geometric means

n∑j=1

1 + nδi,jw + nxjwxj

≥n∑

j=1

1

w + nxjwxj

≥ nn∏

j=1

(w + nxjwxj )−1n = nf −

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 41 / 63

Regularity for (P3)

Hence, at a positive maximum of wxi we have

wxi ≤1

nf

1n−1fxi = (f

1n )xi ≤ [f

1n ]1;[0,1]n .

Problem: We have no boundary condition for w , how do we know wxi attains amaximum or minimum?

Recall

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

When f ≡ 1, the solution of (P3) that we care about is w ≡ 1. For any C > 0

w(x) =n∏

i=1

(1 + Cx−1i )

1n

is an unbounded solution of (P3).

Calder (UC Berkeley) Numerical schemes September 9, 2015 42 / 63

Regularity for (P3)

Hence, at a positive maximum of wxi we have

wxi ≤1

nf

1n−1fxi = (f

1n )xi ≤ [f

1n ]1;[0,1]n .

Problem: We have no boundary condition for w , how do we know wxi attains amaximum or minimum?

Recall

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

When f ≡ 1, the solution of (P3) that we care about is w ≡ 1. For any C > 0

w(x) =n∏

i=1

(1 + Cx−1i )

1n

is an unbounded solution of (P3).

Calder (UC Berkeley) Numerical schemes September 9, 2015 42 / 63

Regularity for (P3)

Hence, at a positive maximum of wxi we have

wxi ≤1

nf

1n−1fxi = (f

1n )xi ≤ [f

1n ]1;[0,1]n .

Problem: We have no boundary condition for w , how do we know wxi attains amaximum or minimum?

Recall

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

When f ≡ 1, the solution of (P3) that we care about is w ≡ 1. For any C > 0

w(x) =n∏

i=1

(1 + Cx−1i )

1n

is an unbounded solution of (P3).

Calder (UC Berkeley) Numerical schemes September 9, 2015 42 / 63

Extension property for (P3)

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

LemmaLet f ≥ 0 be continuous on [0, 1]n and let u be the solution of (P1). Then

w(x) =u(x)

n(x1 · · · xn)1n

can be extended to a continuous function w ∈ C ((−∞, 1]n) satisfying

w(x) = w(x+) for all x ∈ (−∞, 1]n ,

where x+ = (max(x1, 0), . . . ,max(xn , 0)). Furthermore, if we extend f by settingf (x) := f (x+) then w is a viscosity solution of

n∏i=1

(w + nxiwxi ) = f in (−∞, 1]n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 43 / 63

Regularity for (P3)

The extension property allows us to complete the regularity result.

Theorem

Let f be a nonnegative function for which f1n ∈ C 0,1([0, 1]n), and let w be the maximal

bounded viscosity solution of (P3). Then w ∈ C 0,1([0, 1]n) and

[w ]1;[0,1]n ≤√n [f

1n ]1;[0,1]n . (5)

Theorem is sharp: When f (x) = (x1 · · · xn)n−1, w(x) = 1n

(x1 · · · xn)1−1n 6∈ C 0,1([0, 1]n).

Since v = x1 · · · xnwn we have the following corollary.

Corollary

Let v be the maximal viscosity solution of (P2). Then v ∈ C 0,1([0, 1]n) and

[v ]1;[0,1]n ≤ C‖fn−1n ‖L∞([0,1]n )‖f

1n ‖C0,1([0,1]n ). (6)

Calder (UC Berkeley) Numerical schemes September 9, 2015 44 / 63

Regularity for (P3)

The extension property allows us to complete the regularity result.

Theorem

Let f be a nonnegative function for which f1n ∈ C 0,1([0, 1]n), and let w be the maximal

bounded viscosity solution of (P3). Then w ∈ C 0,1([0, 1]n) and

[w ]1;[0,1]n ≤√n [f

1n ]1;[0,1]n . (5)

Theorem is sharp: When f (x) = (x1 · · · xn)n−1, w(x) = 1n

(x1 · · · xn)1−1n 6∈ C 0,1([0, 1]n).

Since v = x1 · · · xnwn we have the following corollary.

Corollary

Let v be the maximal viscosity solution of (P2). Then v ∈ C 0,1([0, 1]n) and

[v ]1;[0,1]n ≤ C‖fn−1n ‖L∞([0,1]n )‖f

1n ‖C0,1([0,1]n ). (6)

Calder (UC Berkeley) Numerical schemes September 9, 2015 44 / 63

Numerical scheme for (P3)An upwind scheme for (P3) uses backward difference quotients

(S3)n∏

i=1

(wh(x) + nxiD

−i wh(x)

)= f (x) for x ∈ [0, 1]nh .

We define wh by taking the largest solution of (P2) at each x ∈ [0, 1]nh .Notice

wh(0) = f (0)1n .

When f ≡ 1, wh ≡ 1 which is the exact solution of (P3).

The scheme can be solved efficiently in a single pass, and in dimension n = 2 thescheme can be solved in closed form

wh(x) = C +√

D2 + (2x1 + h)(2x2 + h)h2f (x),

whereC = x1(2x2 + h)wh(x − he1) + x2(2x1 + h)wh(x − he2),

andD = x1(2x2 + h)wh(x − he1)− x2(2x1 + h)wh(x − he2).

Calder (UC Berkeley) Numerical schemes September 9, 2015 45 / 63

Numerical scheme for (P3)An upwind scheme for (P3) uses backward difference quotients

(S3)n∏

i=1

(wh(x) + nxiD

−i wh(x)

)= f (x) for x ∈ [0, 1]nh .

We define wh by taking the largest solution of (P2) at each x ∈ [0, 1]nh .Notice

wh(0) = f (0)1n .

When f ≡ 1, wh ≡ 1 which is the exact solution of (P3).

The scheme can be solved efficiently in a single pass, and in dimension n = 2 thescheme can be solved in closed form

wh(x) = C +√

D2 + (2x1 + h)(2x2 + h)h2f (x),

whereC = x1(2x2 + h)wh(x − he1) + x2(2x1 + h)wh(x − he2),

andD = x1(2x2 + h)wh(x − he1)− x2(2x1 + h)wh(x − he2).

Calder (UC Berkeley) Numerical schemes September 9, 2015 45 / 63

Numerical scheme for (P3)An upwind scheme for (P3) uses backward difference quotients

(S3)n∏

i=1

(wh(x) + nxiD

−i wh(x)

)= f (x) for x ∈ [0, 1]nh .

We define wh by taking the largest solution of (P2) at each x ∈ [0, 1]nh .Notice

wh(0) = f (0)1n .

When f ≡ 1, wh ≡ 1 which is the exact solution of (P3).

The scheme can be solved efficiently in a single pass, and in dimension n = 2 thescheme can be solved in closed form

wh(x) = C +√

D2 + (2x1 + h)(2x2 + h)h2f (x),

whereC = x1(2x2 + h)wh(x − he1) + x2(2x1 + h)wh(x − he2),

andD = x1(2x2 + h)wh(x − he1)− x2(2x1 + h)wh(x − he2).

Calder (UC Berkeley) Numerical schemes September 9, 2015 45 / 63

Convergence rate

Since (P3) has a zeroth order term of the correct sign, and w and wh are Lipschitzcontinuous on [0, 1]n we can prove

Theorem

Suppose that f ∈ C 0,1([0, 1]n) and f > 0. Then

|w(x)− wh(x)| ≤ C√h for all x ∈ [0, 1]nh , (7)

where C = C(n, [f ]1;[0,1]n ,min[0,1]n f

).

Calder (UC Berkeley) Numerical schemes September 9, 2015 46 / 63

Directed Hamiltonians

All of the PDE in this talk have a common useful property.

H (x , u(x),Du(x)) = 0.

DefinitionWe say that H (x , z , p) is directed if

H (x , z , p) ≤ H (x , z , q) whenever pi ≤ qi for all i .

Recall:

(P1) H (x , z , p) = (p1)+ · · · (pn)+ − f (x)

(P2) H (x , z , p) = (p1)+ · · · (pn)+ − zn−1f (x)

(P3) H (x , z , p) =n∏

i=1

(z + nxipi)+ − f (x)

Calder (UC Berkeley) Numerical schemes September 9, 2015 47 / 63

Directed Hamiltonians

All of the PDE in this talk have a common useful property.

H (x , u(x),Du(x)) = 0.

DefinitionWe say that H (x , z , p) is directed if

H (x , z , p) ≤ H (x , z , q) whenever pi ≤ qi for all i .

Recall:

(P1) H (x , z , p) = (p1)+ · · · (pn)+ − f (x)

(P2) H (x , z , p) = (p1)+ · · · (pn)+ − zn−1f (x)

(P3) H (x , z , p) =n∏

i=1

(z + nxipi)+ − f (x)

Calder (UC Berkeley) Numerical schemes September 9, 2015 47 / 63

Monotone (upwind) scheme for directed H

A monotone scheme for a directed Hamiltonian H is always to use backward differences

H (x , u(x),D−u(x)) = 0,

whereD−u(x) = (D−1 u(x), . . . ,D−n u(x)).

Indeed, if u ≥ v and u(x) = v(x) then D−i u(x) ≤ D−i v(x) for all i and

H (x , u(x),D−u(x)) ≤ H (x , v(x),D−v(x)),

which is exactly monotonicity of the scheme.

Calder (UC Berkeley) Numerical schemes September 9, 2015 48 / 63

Monotone (upwind) scheme for directed H

A monotone scheme for a directed Hamiltonian H is always to use backward differences

H (x , u(x),D−u(x)) = 0,

whereD−u(x) = (D−1 u(x), . . . ,D−n u(x)).

Indeed, if u ≥ v and u(x) = v(x) then D−i u(x) ≤ D−i v(x) for all i and

H (x , u(x),D−u(x)) ≤ H (x , v(x),D−v(x)),

which is exactly monotonicity of the scheme.

Calder (UC Berkeley) Numerical schemes September 9, 2015 48 / 63

Convergence rate

(S)

uh + H (D−uh) = f for x ∈ (0, 1]nh

uh = g for x ∈ Γh ,

(H)

u + H (Du) = f in (0, 1]n

u = g on Γ,

Theorem ([Crandall and Lions, 1984, Souganidis, 1985])

Assume H ∈ C 0,1(Rn) is directed and f , g ∈ C 0,1([0, 1]n). Let uh be a solution of (S)and let u be a viscosity solution of (H). If u ∈ C 0,1([0, 1]n) and

suph>0

supx 6=y

|uh(x)− uh(y)||x − y | <∞,

then|uh − u| ≤ C

√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 49 / 63

Sketch of proof that uh ≤ u + C√h

For α > 0 setΦ(x , y) = uh(x)− u(y)− α

2|x − y |2,

and let (xα, yα) ∈ (0, 1]nh × (0, 1]n such that Φ(xα, yα) = max[0,1]nh×[0,1]n Φ.

Setϕ(x) =

α

2|x − yα|2 −

α

2|xα − yα|2 + uh(xα).

Then ϕ(xα) = uh(xα) and uh(x) ≤ ϕ(x) for all x ∈ [0, 1]nh . Since H is directed

f (xα) = uh(xα) + H (D−uh(xα)) ≥ uh(xα) + H (D−ϕ(xα)).

Since H ∈ C 0,1(Rn) and D−ϕ(xα) = pα − αh2

(1, . . . , 1) where pα = α(xα − yα)

uh(xα) + H (pα) ≤ f (xα) + Cαh.

Let ψ(y) = α2|xα − y |2. Since u + ψ has a minimum at yα and −Dψ(yα) = pα

u(yα) + H (pα) ≥ f (yα).

Hence: uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Calder (UC Berkeley) Numerical schemes September 9, 2015 50 / 63

Sketch of proof that uh ≤ u + C√h

For α > 0 setΦ(x , y) = uh(x)− u(y)− α

2|x − y |2,

and let (xα, yα) ∈ (0, 1]nh × (0, 1]n such that Φ(xα, yα) = max[0,1]nh×[0,1]n Φ.

Setϕ(x) =

α

2|x − yα|2 −

α

2|xα − yα|2 + uh(xα).

Then ϕ(xα) = uh(xα) and uh(x) ≤ ϕ(x) for all x ∈ [0, 1]nh .

Since H is directed

f (xα) = uh(xα) + H (D−uh(xα)) ≥ uh(xα) + H (D−ϕ(xα)).

Since H ∈ C 0,1(Rn) and D−ϕ(xα) = pα − αh2

(1, . . . , 1) where pα = α(xα − yα)

uh(xα) + H (pα) ≤ f (xα) + Cαh.

Let ψ(y) = α2|xα − y |2. Since u + ψ has a minimum at yα and −Dψ(yα) = pα

u(yα) + H (pα) ≥ f (yα).

Hence: uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Calder (UC Berkeley) Numerical schemes September 9, 2015 50 / 63

Sketch of proof that uh ≤ u + C√h

For α > 0 setΦ(x , y) = uh(x)− u(y)− α

2|x − y |2,

and let (xα, yα) ∈ (0, 1]nh × (0, 1]n such that Φ(xα, yα) = max[0,1]nh×[0,1]n Φ.

Setϕ(x) =

α

2|x − yα|2 −

α

2|xα − yα|2 + uh(xα).

Then ϕ(xα) = uh(xα) and uh(x) ≤ ϕ(x) for all x ∈ [0, 1]nh . Since H is directed

f (xα) = uh(xα) + H (D−uh(xα)) ≥ uh(xα) + H (D−ϕ(xα)).

Since H ∈ C 0,1(Rn) and D−ϕ(xα) = pα − αh2

(1, . . . , 1) where pα = α(xα − yα)

uh(xα) + H (pα) ≤ f (xα) + Cαh.

Let ψ(y) = α2|xα − y |2. Since u + ψ has a minimum at yα and −Dψ(yα) = pα

u(yα) + H (pα) ≥ f (yα).

Hence: uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Calder (UC Berkeley) Numerical schemes September 9, 2015 50 / 63

Sketch of proof that uh ≤ u + C√h

For α > 0 setΦ(x , y) = uh(x)− u(y)− α

2|x − y |2,

and let (xα, yα) ∈ (0, 1]nh × (0, 1]n such that Φ(xα, yα) = max[0,1]nh×[0,1]n Φ.

Setϕ(x) =

α

2|x − yα|2 −

α

2|xα − yα|2 + uh(xα).

Then ϕ(xα) = uh(xα) and uh(x) ≤ ϕ(x) for all x ∈ [0, 1]nh . Since H is directed

f (xα) = uh(xα) + H (D−uh(xα)) ≥ uh(xα) + H (D−ϕ(xα)).

Since H ∈ C 0,1(Rn) and D−ϕ(xα) = pα − αh2

(1, . . . , 1) where pα = α(xα − yα)

uh(xα) + H (pα) ≤ f (xα) + Cαh.

Let ψ(y) = α2|xα − y |2. Since u + ψ has a minimum at yα and −Dψ(yα) = pα

u(yα) + H (pα) ≥ f (yα).

Hence: uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Calder (UC Berkeley) Numerical schemes September 9, 2015 50 / 63

Sketch of proof that uh ≤ u + C√h

For α > 0 setΦ(x , y) = uh(x)− u(y)− α

2|x − y |2,

and let (xα, yα) ∈ (0, 1]nh × (0, 1]n such that Φ(xα, yα) = max[0,1]nh×[0,1]n Φ.

Setϕ(x) =

α

2|x − yα|2 −

α

2|xα − yα|2 + uh(xα).

Then ϕ(xα) = uh(xα) and uh(x) ≤ ϕ(x) for all x ∈ [0, 1]nh . Since H is directed

f (xα) = uh(xα) + H (D−uh(xα)) ≥ uh(xα) + H (D−ϕ(xα)).

Since H ∈ C 0,1(Rn) and D−ϕ(xα) = pα − αh2

(1, . . . , 1) where pα = α(xα − yα)

uh(xα) + H (pα) ≤ f (xα) + Cαh.

Let ψ(y) = α2|xα − y |2. Since u + ψ has a minimum at yα and −Dψ(yα) = pα

u(yα) + H (pα) ≥ f (yα).

Hence: uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Calder (UC Berkeley) Numerical schemes September 9, 2015 50 / 63

Sketch of proof that uh ≤ u + C√h

For α > 0 setΦ(x , y) = uh(x)− u(y)− α

2|x − y |2,

and let (xα, yα) ∈ (0, 1]nh × (0, 1]n such that Φ(xα, yα) = max[0,1]nh×[0,1]n Φ.

Setϕ(x) =

α

2|x − yα|2 −

α

2|xα − yα|2 + uh(xα).

Then ϕ(xα) = uh(xα) and uh(x) ≤ ϕ(x) for all x ∈ [0, 1]nh . Since H is directed

f (xα) = uh(xα) + H (D−uh(xα)) ≥ uh(xα) + H (D−ϕ(xα)).

Since H ∈ C 0,1(Rn) and D−ϕ(xα) = pα − αh2

(1, . . . , 1) where pα = α(xα − yα)

uh(xα) + H (pα) ≤ f (xα) + Cαh.

Let ψ(y) = α2|xα − y |2. Since u + ψ has a minimum at yα and −Dψ(yα) = pα

u(yα) + H (pα) ≥ f (yα).

Hence: uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Calder (UC Berkeley) Numerical schemes September 9, 2015 50 / 63

Sketch of proof that uh ≤ u + C√h

Since Φ(x , y) = uh(x)− u(y)− α2|x − y |2

max[0,1]n

h

(uh − u) ≤ Φ(xα, yα) ≤ uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Since Φ(xα, xα) ≤ Φ(xα, yα) and u ∈ C 0,1([0, 1]n)

uh(xα)− u(xα) ≤ uh(xα)− u(yα)− α

2|xα − yα|2

or α

2|xα − yα|2 ≤ u(xα)− u(yα) ≤ C |xα − yα|.

Hence |xα − yα| ≤ C/α. Therefore

max[0,1]n

h

(uh − u) ≤ C

(1

α+ αh

).

The best possible choice for α is α = 1/√h which yields

uh − u ≤ C√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 51 / 63

Sketch of proof that uh ≤ u + C√h

Since Φ(x , y) = uh(x)− u(y)− α2|x − y |2

max[0,1]n

h

(uh − u) ≤ Φ(xα, yα) ≤ uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Since Φ(xα, xα) ≤ Φ(xα, yα) and u ∈ C 0,1([0, 1]n)

uh(xα)− u(xα) ≤ uh(xα)− u(yα)− α

2|xα − yα|2

or α

2|xα − yα|2 ≤ u(xα)− u(yα) ≤ C |xα − yα|.

Hence |xα − yα| ≤ C/α.

Therefore

max[0,1]n

h

(uh − u) ≤ C

(1

α+ αh

).

The best possible choice for α is α = 1/√h which yields

uh − u ≤ C√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 51 / 63

Sketch of proof that uh ≤ u + C√h

Since Φ(x , y) = uh(x)− u(y)− α2|x − y |2

max[0,1]n

h

(uh − u) ≤ Φ(xα, yα) ≤ uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Since Φ(xα, xα) ≤ Φ(xα, yα) and u ∈ C 0,1([0, 1]n)

uh(xα)− u(xα) ≤ uh(xα)− u(yα)− α

2|xα − yα|2

or α

2|xα − yα|2 ≤ u(xα)− u(yα) ≤ C |xα − yα|.

Hence |xα − yα| ≤ C/α. Therefore

max[0,1]n

h

(uh − u) ≤ C

(1

α+ αh

).

The best possible choice for α is α = 1/√h which yields

uh − u ≤ C√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 51 / 63

Sketch of proof that uh ≤ u + C√h

Since Φ(x , y) = uh(x)− u(y)− α2|x − y |2

max[0,1]n

h

(uh − u) ≤ Φ(xα, yα) ≤ uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Since Φ(xα, xα) ≤ Φ(xα, yα) and u ∈ C 0,1([0, 1]n)

uh(xα)− u(xα) ≤ uh(xα)− u(yα)− α

2|xα − yα|2

or α

2|xα − yα|2 ≤ u(xα)− u(yα) ≤ C |xα − yα|.

Hence |xα − yα| ≤ C/α. Therefore

max[0,1]n

h

(uh − u) ≤ C

(1

α+ αh

).

The best possible choice for α is α = 1/√h which yields

uh − u ≤ C√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 51 / 63

Convergence rate for (S3)

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

The proof that |w − wh | ≤ C√h is similar, with the extension property replacing the

boundary condition.

Zeroth order term: Notice we can write (P3) as H (x , u,Du) = f (x) where

H (x , z , p) =n∏

i=1

(z + nxipi)

Therefore

∂zH (x , z , p) = H (x , z , p)

n∑i=1

1

z + nxipi

≥ nH (x , z , p)

(n∏

i=1

1

z + nxipi

) 1n

= nH (x , z , p)n−1n

= nf (x)n−1n .

Proof requires f ≥ m > 0.

Calder (UC Berkeley) Numerical schemes September 9, 2015 52 / 63

Convergence rate for (S3)

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

The proof that |w − wh | ≤ C√h is similar, with the extension property replacing the

boundary condition.Zeroth order term: Notice we can write (P3) as H (x , u,Du) = f (x) where

H (x , z , p) =n∏

i=1

(z + nxipi)

Therefore

∂zH (x , z , p) = H (x , z , p)

n∑i=1

1

z + nxipi

≥ nH (x , z , p)

(n∏

i=1

1

z + nxipi

) 1n

= nH (x , z , p)n−1n

= nf (x)n−1n .

Proof requires f ≥ m > 0.

Calder (UC Berkeley) Numerical schemes September 9, 2015 52 / 63

Convergence rate for (S3)

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

The proof that |w − wh | ≤ C√h is similar, with the extension property replacing the

boundary condition.Zeroth order term: Notice we can write (P3) as H (x , u,Du) = f (x) where

H (x , z , p) =n∏

i=1

(z + nxipi)

Therefore

∂zH (x , z , p) = H (x , z , p)

n∑i=1

1

z + nxipi

≥ nH (x , z , p)

(n∏

i=1

1

z + nxipi

) 1n

= nH (x , z , p)n−1n

= nf (x)n−1n .

Proof requires f ≥ m > 0.Calder (UC Berkeley) Numerical schemes September 9, 2015 52 / 63

Convergence rate for (S2)

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n (P2)

vx1 · · · vxn = vn−1f in (0, 1]n

v = 0 on Γ

Recall v = x1 · · · xnwn . This identity approximately holds for wh and vh :

Lemma

Assume f ∈ C 0,1([0, 1]n) and f > 0. Then

|x1 · · · xnwh(x)n − vh(x)| ≤ Ch for all x ∈ [0, 1]nh , (8)

whereC = C

(n, [f ]1;[0,1]n , min

[0,1]nf).

The rate of convergence |nnvh(x)− u(x)n | ≤ C√h follows from the lemma and the rate

|wh(x)− w(x)| ≤ C√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 53 / 63

Outline

1 IntroductionMotivating example: Image retrievalNon-dominated sorting

2 Continuum limit for nondominated sortingHamilton-Jacobi equation for layersPDE-based ranking

3 Numerical schemesAn O(h1/n) schemeTwo (formally) O(h) schemesRegularityConvergence rates

4 Experimental results

5 References

Calder (UC Berkeley) Numerical schemes September 9, 2015 54 / 63

Test cases

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) u1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) u2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) u3

We consider 3 test cases:

u1(x) = n maxi∈1,...,n

(xi −

1

2

)+

∏j 6=i

xj

1n

u2(x) =1

k + 1(x1 · · · xn)

1n

(n∑

j=1

sin(kxj )2 + nk

)(k = 20)

u3(x) = n(x1 · · · xn)1n

(C maxx1, . . . , xn+

n∑j=1

xj

)(C = 10)

Calder (UC Berkeley) Numerical schemes September 9, 2015 55 / 63

n=2 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order2.5× 10−2 7.1× 10−2 2.1× 10−2 6.7× 10−2

6.3× 10−3 3.4× 10−2 0.54 5.7× 10−3 0.93 3.3× 10−2 0.511.6× 10−3 1.6× 10−2 0.51 1.5× 10−3 0.97 1.6× 10−2 0.503.9× 10−4 8.2× 10−3 0.50 3.8× 10−4 0.98 8.2× 10−3 0.509.8× 10−5 4.1× 10−3 0.50 9.7× 10−5 0.99 4.1× 10−3 0.502.4× 10−5 2.0× 10−3 0.50 2.4× 10−5 1.00 2.0× 10−3 0.50

n=3 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order5× 10−2 3.1× 10−1 9.1× 10−2 2.1× 10−1

2.5× 10−2 2.3× 10−1 0.41 5.3× 10−2 0.79 1.7× 10−1 0.341.3× 10−2 1.8× 10−1 0.38 3.0× 10−2 0.80 1.3× 10−1 0.346.3× 10−3 1.4× 10−1 0.36 1.7× 10−2 0.82 1.1× 10−1 0.333.1× 10−3 1.1× 10−1 0.35 9.5× 10−3 0.84 8.5× 10−2 0.331.6× 10−3 8.5× 10−2 0.34 5.3× 10−3 0.85 6.7× 10−2 0.33

n=4 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order2.5× 10−1 1.1× 10−0 3.8× 10−1 4.9× 10−1

1.3× 10−1 7.9× 10−1 0.46 2.4× 10−1 0.68 4.1× 10−1 0.266.3× 10−2 6.0× 10−1 0.40 1.5× 10−1 0.64 3.5× 10−1 0.253.1× 10−2 4.7× 10−1 0.36 9.5× 10−2 0.70 2.9× 10−1 0.251.6× 10−2 3.7× 10−1 0.32 5.7× 10−2 0.72 2.5× 10−1 0.257.8× 10−3 3.1× 10−1 0.29 3.4× 10−2 0.75 2.1× 10−1 0.25

Calder (UC Berkeley) Numerical schemes September 9, 2015 56 / 63

n=2 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order2.5× 10−2 9.5× 10−2 2.4× 10−2 2.4× 10−2

6.3× 10−3 4.6× 10−2 0.53 6.1× 10−3 0.99 5.9× 10−3 1.011.6× 10−3 2.3× 10−2 0.50 1.6× 10−3 0.97 1.4× 10−3 1.023.9× 10−4 1.1× 10−2 0.50 4.1× 10−4 0.98 3.5× 10−4 1.029.8× 10−5 5.6× 10−3 0.50 1.0× 10−4 0.99 8.8× 10−5 1.002.4× 10−5 2.8× 10−3 0.50 2.6× 10−5 1.00 2.2× 10−5 0.99

n=3 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order5× 10−2 3.6× 10−1 6.6× 10−2 5.6× 10−2

2.5× 10−2 2.8× 10−1 0.39 4.8× 10−2 0.46 4.0× 10−2 0.481.3× 10−2 2.2× 10−1 0.36 2.4× 10−2 1.02 2.0× 10−2 1.016.3× 10−3 1.7× 10−1 0.35 1.2× 10−2 0.94 1.0× 10−2 0.963.1× 10−3 1.3× 10−1 0.34 6.2× 10−3 0.98 5.3× 10−3 0.971.6× 10−3 1.1× 10−1 0.34 3.2× 10−3 0.96 2.7× 10−3 0.96

n=4 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order2.5× 10−1 1.6× 10−0 4.0× 10−1 3.1× 10−1

1.3× 10−1 1.2× 10−0 0.42 3.9× 10−1 3.8× 10−1

6.3× 10−2 6.9× 10−1 0.79 1.4× 10−1 1.49 1.1× 10−1 1.813.1× 10−2 5.3× 10−1 0.37 7.2× 10−2 0.93 5.8× 10−2 0.881.6× 10−2 4.3× 10−1 0.30 3.7× 10−2 0.94 3.0× 10−2 0.967.8× 10−3 3.4× 10−1 0.28 1.9× 10−2 0.98 1.5× 10−2 0.96

Calder (UC Berkeley) Numerical schemes September 9, 2015 57 / 63

n=2 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order2.5× 10−2 8.3× 10−2 7.5× 10−2 3.1× 10−2

6.3× 10−3 4.2× 10−2 0.49 1.9× 10−2 1.00 8.0× 10−3 0.981.6× 10−3 2.1× 10−2 0.50 4.7× 10−3 1.00 2.0× 10−3 1.003.9× 10−4 1.1× 10−2 0.50 1.2× 10−3 1.00 5.0× 10−4 1.009.8× 10−5 5.3× 10−3 0.50 2.9× 10−4 1.00 1.3× 10−4 1.002.4× 10−5 2.7× 10−3 0.50 7.4× 10−5 1.00 3.1× 10−5 1.00

n=3 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order5× 10−2 3.0× 10−1 2.6× 10−1 1.3× 10−1

2.5× 10−2 2.5× 10−1 0.31 1.3× 10−1 0.96 6.8× 10−2 0.951.3× 10−2 2.0× 10−1 0.32 6.7× 10−2 0.99 3.5× 10−2 0.976.3× 10−3 1.6× 10−1 0.33 3.3× 10−2 0.99 1.8× 10−2 0.983.1× 10−3 1.2× 10−1 0.33 1.7× 10−2 1.00 8.8× 10−3 0.991.6× 10−3 9.9× 10−2 0.33 8.4× 10−3 1.00 4.4× 10−3 1.00

n=4 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order2.5× 10−1 8.5× 10−1 1.4× 10−0 6.3× 10−1

1.3× 10−1 6.6× 10−1 0.37 7.7× 10−1 0.84 3.8× 10−1 0.736.3× 10−2 5.5× 10−1 0.26 4.1× 10−1 0.89 2.1× 10−1 0.863.1× 10−2 4.6× 10−1 0.25 2.2× 10−1 0.94 1.1× 10−1 0.911.6× 10−2 3.9× 10−1 0.25 1.1× 10−1 0.98 5.6× 10−2 0.967.8× 10−3 3.2× 10−1 0.25 5.5× 10−2 0.99 2.8× 10−2 0.99

Calder (UC Berkeley) Numerical schemes September 9, 2015 58 / 63

Outline

1 IntroductionMotivating example: Image retrievalNon-dominated sorting

2 Continuum limit for nondominated sortingHamilton-Jacobi equation for layersPDE-based ranking

3 Numerical schemesAn O(h1/n) schemeTwo (formally) O(h) schemesRegularityConvergence rates

4 Experimental results

5 References

Calder (UC Berkeley) Numerical schemes September 9, 2015 59 / 63

Adhar, G. (2007).Parallel algorithms for chains and anti-chains of points on a plane.In International Conference on Parallel and Distributed Systems (ICPADS),volume 2, pages 1–7.

Aldous, D. and Diaconis, P. (1999).Longest increasing subsequences: from patience sorting to theBaik-Deift-Johansson Theorem.Bulletin of the American Mathematical Society, 36(4):413–432.

Bardi, M. and Dolcetta, I. (1997).Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations.Springer.

Calder, J. (2015a).A direct verification argument for the Hamilton-Jacobi equation continuum limit ofnondominated sorting.arXiv preprint:1508.01565.

Calder, J. (2015b).Numerical schemes and rates of convergence for the Hamilton-Jacobi equationcontinuum limit of nondominated sorting.arXiv preprint:1508.01557.

Calder (UC Berkeley) Numerical schemes September 9, 2015 60 / 63

Calder, J., Esedoglu, S., and Hero, A. O. (2014).A Hamilton-Jacobi equation for the continuum limit of non-dominated sorting.SIAM Journal on Mathematical Analysis, 46(1):603–638.

Calder, J., Esedoglu, S., and Hero, A. O. (2015).A PDE-based approach to nondominated sorting.SIAM Journal on Numerical Analysis, 53(1):82–104.

Crandall, M. G. and Lions, P.-L. (1984).Two approximations of solutions of Hamilton-Jacobi equations.Mathematics of Computation, 43(167):1–19.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).A fast and elitist multiobjective genetic algorithm: NSGA-II.IEEE Transactions on Evolutionary Computation, 6(2):182–197.

Hammersley, J. (1972).A few seedlings of research.In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics andProbability, volume 1, pages 345–394.

Hero, A. (2003).Gene selection and ranking with microarray data.In IEEE International Symposium on Signal Processing and its Applications,volume 1, pages 457–464.

Calder (UC Berkeley) Numerical schemes September 9, 2015 61 / 63

Hsiao, K.-J., Calder, J., and Hero III, A. O. (2015a).Pareto-depth for multiple-query image retrieval.IEEE Transactions on Image Processing, 24(2):583–594.

Hsiao, K.-J., Xu, K., Calder, J., and Hero, A. (2012).Multi-criteria anomaly detection using Pareto Depth Analysis.In Advances in Neural Information Processing Systems 25, pages 854–862.

Hsiao, K.-J., Xu, K., Calder, J., and Hero, A. (2015b).Multi-criteria similarity-based anomaly detection using Pareto Depth Analysis.IEEE Transactions on Neural Networks and Learning Systems.To appear.

Lou, R. and Sarrafzadeh, M. (1993).An optimal algorithm for the maximum three-chain problem.SIAM Journal on Computing, 22(5):976–993.

Papadias, D., Tao, Y., Fu, G., and Seeger, B. (2005).Progressive skyline computation in database systems.ACM Transactions on Database Systems (TODS), 30(1):41–82.

Pevzner, P. (2000).Computational Molecular Biology.The MIT Press.

Calder (UC Berkeley) Numerical schemes September 9, 2015 62 / 63

Prahofer, M. and Spohn, H. (2000).Universal distributions for growth processes in 1+ 1 dimensions and randommatrices.Physical review letters, 84(21):4882–4885.

Souganidis, P. E. (1985).Approximation schemes for viscosity solutions of Hamilton-Jacobi equations.Journal of differential equations, 59(1):1–43.

Viennot, G. (1984).Chain and antichain families, grids and Young tableaux.In Orders: description and roles, volume 99 of North-Holland Mathematics Studies,pages 409–463.

Calder (UC Berkeley) Numerical schemes September 9, 2015 63 / 63

Recommended