147
Numerical Schemes for the Hamilton-Jacobi Equation Continuum Limit of Non-dominated Sorting Jeff Calder Department of Mathematics University of California, Berkeley Applied Mathematics Seminar McGill University September 9, 2015 Calder (UC Berkeley) Numerical schemes September 9, 2015 1 / 63

Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Numerical Schemes for the Hamilton-Jacobi EquationContinuum Limit of Non-dominated Sorting

Jeff Calder

Department of MathematicsUniversity of California, Berkeley

Applied Mathematics Seminar

McGill University

September 9, 2015

Calder (UC Berkeley) Numerical schemes September 9, 2015 1 / 63

Page 2: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Outline

1 IntroductionMotivating example: Image retrievalNon-dominated sorting

2 Continuum limit for nondominated sortingHamilton-Jacobi equation for layersPDE-based ranking

3 Numerical schemesAn O(h1/n) schemeTwo (formally) O(h) schemesRegularityConvergence rates

4 Experimental results

5 References

Calder (UC Berkeley) Numerical schemes September 9, 2015 2 / 63

Page 3: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Motivating example: Google Goggles

Query image

Retrieved images

Calder (UC Berkeley) Numerical schemes September 9, 2015 3 / 63

Page 4: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Multi-query image retrieval

Problem: Find images in a dataset S thatare similar to multiple query images.

Pareto method: Solve the multi-criteriaoptimization problem

argminI∈S

(dist(I ,Q1), . . . , dist(I ,Qd)).

Query 1 Query 2

Pareto points:

Calder (UC Berkeley) Numerical schemes September 9, 2015 4 / 63

Page 5: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Multi-query image retrieval

Problem: Find images in a dataset S thatare similar to multiple query images.

Pareto method: Solve the multi-criteriaoptimization problem

argminI∈S

(dist(I ,Q1), . . . , dist(I ,Qd)).

Query 1 Query 2

Pareto points:

Calder (UC Berkeley) Numerical schemes September 9, 2015 4 / 63

Page 6: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Multi-objective optimizationHow do we solve the multi-objective optimization problem

argminI∈S

(f1(I ), . . . , fd(I ))?

Basic approach:

1 Choose some weights αi ∈ [0, 1] with∑d

i=1 αi = 1 and define

fα(I ) = α1f1(I ) + α2f2(I ) + · · ·+ αd fd(I ).

2 Solve the scalarized optimization problem

argminI∈S

fα(I ).

Problems:

1 Difficult to choose weights

2 Ignores relevant solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 5 / 63

Page 7: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Multi-objective optimizationHow do we solve the multi-objective optimization problem

argminI∈S

(f1(I ), . . . , fd(I ))?

Basic approach:

1 Choose some weights αi ∈ [0, 1] with∑d

i=1 αi = 1 and define

fα(I ) = α1f1(I ) + α2f2(I ) + · · ·+ αd fd(I ).

2 Solve the scalarized optimization problem

argminI∈S

fα(I ).

Problems:

1 Difficult to choose weights

2 Ignores relevant solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 5 / 63

Page 8: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Multi-objective optimizationHow do we solve the multi-objective optimization problem

argminI∈S

(f1(I ), . . . , fd(I ))?

Basic approach:

1 Choose some weights αi ∈ [0, 1] with∑d

i=1 αi = 1 and define

fα(I ) = α1f1(I ) + α2f2(I ) + · · ·+ αd fd(I ).

2 Solve the scalarized optimization problem

argminI∈S

fα(I ).

Problems:

1 Difficult to choose weights

2 Ignores relevant solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 5 / 63

Page 9: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Multi-objective optimizationHow do we solve the multi-objective optimization problem

argminI∈S

(f1(I ), . . . , fd(I ))?

Basic approach:

1 Choose some weights αi ∈ [0, 1] with∑d

i=1 αi = 1 and define

fα(I ) = α1f1(I ) + α2f2(I ) + · · ·+ αd fd(I ).

2 Solve the scalarized optimization problem

argminI∈S

fα(I ).

Problems:

1 Difficult to choose weights

2 Ignores relevant solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 5 / 63

Page 10: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Basic approach

Calder (UC Berkeley) Numerical schemes September 9, 2015 6 / 63

Page 11: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Basic approach

Calder (UC Berkeley) Numerical schemes September 9, 2015 6 / 63

Page 12: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Basic approach

Calder (UC Berkeley) Numerical schemes September 9, 2015 6 / 63

Page 13: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Basic approach

Calder (UC Berkeley) Numerical schemes September 9, 2015 6 / 63

Page 14: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Non-dominated solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 7 / 63

Page 15: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Non-dominated solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 7 / 63

Page 16: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Non-dominated solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 7 / 63

Page 17: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Non-dominated solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 7 / 63

Page 18: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Non-dominated solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 7 / 63

Page 19: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Non-dominated solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 7 / 63

Page 20: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Non-dominated solutions

Calder (UC Berkeley) Numerical schemes September 9, 2015 7 / 63

Page 21: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Multi-query image retrieval

First Pareto front:

Query 1

Query 2

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Hsiao, K.-J., Calder, J., and Hero III, A. O. (2015). Pareto-depth for multiple-queryimage retrieval. IEEE Transactions on Image Processing, 24(2):583–594.

Calder (UC Berkeley) Numerical schemes September 9, 2015 8 / 63

Page 22: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Non-dominated sorting

Let X1, . . . ,XN be points in Rn and set S = X1, . . . ,XN.

Define the partial order

x 5 y ⇐⇒ xi ≤ yi for all i ∈ 1, . . . ,n.

DefinitionNon-dominated sorting is the process of arranging S into layers F1,F2,F3, . . . , definedby

F1 = Minimal elements of S ,

Fk = Minimal elements of S \⋃

j≤k−1

Fj .

Calder (UC Berkeley) Numerical schemes September 9, 2015 9 / 63

Page 23: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Non-dominated sorting

Let X1, . . . ,XN be points in Rn and set S = X1, . . . ,XN.

Define the partial order

x 5 y ⇐⇒ xi ≤ yi for all i ∈ 1, . . . ,n.

DefinitionNon-dominated sorting is the process of arranging S into layers F1,F2,F3, . . . , definedby

F1 = Minimal elements of S ,

Fk = Minimal elements of S \⋃

j≤k−1

Fj .

Calder (UC Berkeley) Numerical schemes September 9, 2015 9 / 63

Page 24: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Applications

Multi-objective optimization

Genetic algorithms [Deb et al., 2002]

Gene selection and ranking [Hero, 2003]

Database systems [Papadias et al., 2005]

Anomaly detection [Hsiao et al., 2012, Hsiao et al., 2015b]

Image retrieval [Hsiao et al., 2015a]

Combinatorics and probability

Longest chain in Euclidean space [Hammersley, 1972]

Patience sorting [Aldous and Diaconis, 1999]

Young Tableaux [Viennot, 1984]

Graph theory [Lou and Sarrafzadeh, 1993]

Polynuclear growth (crystals) [Prahofer and Spohn, 2000]

Other applications

Molecular biology [Pevzner, 2000]

Integrated circuit design [Adhar, 2007]

Calder (UC Berkeley) Numerical schemes September 9, 2015 10 / 63

Page 25: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Applications

Multi-objective optimization

Genetic algorithms [Deb et al., 2002]

Gene selection and ranking [Hero, 2003]

Database systems [Papadias et al., 2005]

Anomaly detection [Hsiao et al., 2012, Hsiao et al., 2015b]

Image retrieval [Hsiao et al., 2015a]

Combinatorics and probability

Longest chain in Euclidean space [Hammersley, 1972]

Patience sorting [Aldous and Diaconis, 1999]

Young Tableaux [Viennot, 1984]

Graph theory [Lou and Sarrafzadeh, 1993]

Polynuclear growth (crystals) [Prahofer and Spohn, 2000]

Other applications

Molecular biology [Pevzner, 2000]

Integrated circuit design [Adhar, 2007]

Calder (UC Berkeley) Numerical schemes September 9, 2015 10 / 63

Page 26: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Applications

Multi-objective optimization

Genetic algorithms [Deb et al., 2002]

Gene selection and ranking [Hero, 2003]

Database systems [Papadias et al., 2005]

Anomaly detection [Hsiao et al., 2012, Hsiao et al., 2015b]

Image retrieval [Hsiao et al., 2015a]

Combinatorics and probability

Longest chain in Euclidean space [Hammersley, 1972]

Patience sorting [Aldous and Diaconis, 1999]

Young Tableaux [Viennot, 1984]

Graph theory [Lou and Sarrafzadeh, 1993]

Polynuclear growth (crystals) [Prahofer and Spohn, 2000]

Other applications

Molecular biology [Pevzner, 2000]

Integrated circuit design [Adhar, 2007]

Calder (UC Berkeley) Numerical schemes September 9, 2015 10 / 63

Page 27: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: 50 Random samples

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Calder (UC Berkeley) Numerical schemes September 9, 2015 11 / 63

Page 28: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: Uniform distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 102 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 12 / 63

Page 29: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: Uniform distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 103 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 12 / 63

Page 30: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: Uniform distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 104 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 12 / 63

Page 31: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: Uniform distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 105 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 12 / 63

Page 32: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: Uniform distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 106 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 12 / 63

Page 33: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: Gaussian distribution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 102 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 13 / 63

Page 34: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: Gaussian distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 103 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 13 / 63

Page 35: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: Gaussian distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 104 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 13 / 63

Page 36: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: Gaussian distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 105 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 13 / 63

Page 37: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: Gaussian distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 106 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 13 / 63

Page 38: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: Uniform distribution on [0, 1]2 \ [0, 0.5]2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 102 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 14 / 63

Page 39: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: Uniform distribution on [0, 1]2 \ [0, 0.5]2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 103 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 14 / 63

Page 40: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: Uniform distribution on [0, 1]2 \ [0, 0.5]2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 104 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 14 / 63

Page 41: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: Uniform distribution on [0, 1]2 \ [0, 0.5]2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 105 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 14 / 63

Page 42: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: Uniform distribution on [0, 1]2 \ [0, 0.5]2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 106 points

Calder (UC Berkeley) Numerical schemes September 9, 2015 14 / 63

Page 43: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Question

Can we characterize the asymptotic shapes of the Pareto fronts?

Calder (UC Berkeley) Numerical schemes September 9, 2015 15 / 63

Page 44: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Outline

1 IntroductionMotivating example: Image retrievalNon-dominated sorting

2 Continuum limit for nondominated sortingHamilton-Jacobi equation for layersPDE-based ranking

3 Numerical schemesAn O(h1/n) schemeTwo (formally) O(h) schemesRegularityConvergence rates

4 Experimental results

5 References

Calder (UC Berkeley) Numerical schemes September 9, 2015 16 / 63

Page 45: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

A PDE continuum limit for non-dominated sorting

Let X1, . . . ,XN be i.i.d. random variables in [0,∞)n with continuous density f .

Let UN : Rn → N0 be the function that ‘counts’ the layers F1,F2, . . .

Calder (UC Berkeley) Numerical schemes September 9, 2015 17 / 63

Page 46: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Continuum limit

Theorem (Calder, Esedoglu, Hero, 2014)

With probability one

N−1d UN −→ u locally uniformly on [0,∞)n ,

where u ∈ C 0, 1n ([0,∞)n) is the unique nondecreasing viscosity solution of

(P1)

ux1 · · · uxn = cn f in Rn

+ := (0,∞)n

u = 0 on ∂Rn+.

Calder, J., Esedoglu, S., and Hero, A. O. (2014). A Hamilton-Jacobi equation for thecontinuum limit of non-dominated sorting. SIAM Journal on Mathematical Analysis,46(1):603–638.

Calder, J. (2015). A direct verification argument for the Hamilton-Jacobi equationcontinuum limit of nondominated sorting. arXiv preprint:1508.01565

Calder (UC Berkeley) Numerical schemes September 9, 2015 18 / 63

Page 47: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: f = 1− χ[0,0.5]2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Calder (UC Berkeley) Numerical schemes September 9, 2015 19 / 63

Page 48: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: Multimodal f

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Calder (UC Berkeley) Numerical schemes September 9, 2015 20 / 63

Page 49: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Demo: A Cat

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Calder (UC Berkeley) Numerical schemes September 9, 2015 21 / 63

Page 50: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Fast approximate sorting

Algorithm (PDE-based Ranking)1 Select k points from X1, . . . ,XN at random. Call them Y1, . . . ,Yk .

2 Select a grid spacing h for solving the PDE (P1) and estimate f with a histogramaligned to the grid [0, 1]nh , i.e.,

f (x) =1

khn·#Yi : x 5 Yi 5 x + h(1, . . . , 1)

for x ∈ [0, 1]nh .

3 Compute the numerical solution Uh on [0, 1]nh .

4 Evaluate Uh(Xi) for i = 1, . . . ,N via interpolation.

Notes:

Total complexity is O(k + h−n + N ).

If we fix k , h and n, independent of N , then Steps 1-3 have O(1) complexity.

Calder, J., Esedoglu, S., and Hero, A. O. (2015). A PDE-based approach tonondominated sorting. SIAM Journal on Numerical Analysis, 53(1):82–104.

Calder (UC Berkeley) Numerical schemes September 9, 2015 22 / 63

Page 51: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Outline

1 IntroductionMotivating example: Image retrievalNon-dominated sorting

2 Continuum limit for nondominated sortingHamilton-Jacobi equation for layersPDE-based ranking

3 Numerical schemesAn O(h1/n) schemeTwo (formally) O(h) schemesRegularityConvergence rates

4 Experimental results

5 References

Calder (UC Berkeley) Numerical schemes September 9, 2015 23 / 63

Page 52: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Numerics

How do we numerically solve

(P1)

ux1 · · · uxn = f in Rn

+

u = 0 on ∂Rn+

efficiently and accurately (in dimensions n = 2, 3, 4)?

Calder (UC Berkeley) Numerical schemes September 9, 2015 24 / 63

Page 53: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Recall: Viscosity solution

Consider the Hamilton-Jacobi equation

H (x , u,Du) = 0 on O ⊆ Rn , (1)

where H : O × R× Rn → R is continuous.

A continuous function u : O → R is a viscosity solution of (1) if

1 Subsolution: For every x ∈ O and ϕ ∈ C∞(Rn) such that u − ϕ has a localmaximum at x with respect to O

H (x , u(x),Dϕ(x)) ≤ 0.

2 Supersolution: For every x ∈ O and ϕ ∈ C∞(Rn) such that u − ϕ has a localminimum at x with respect to O

H (x , u(x),Dϕ(x)) ≥ 0.

Calder (UC Berkeley) Numerical schemes September 9, 2015 25 / 63

Page 54: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Bounded domain

We first pose the PDE on a bounded domain

(P1)

ux1 · · · uxn = f in (0, 1]n

u = 0 on Γ

where Γ = [0, 1]n \ (0, 1]n .

Minor technicality: Viscosity solutions of (P1) do not exist due to a well-known issuewith viscosity solutions on boundaries of domains.

We actually need to slightly modify the PDE:

(P1’)

(ux1)+ · · · (uxn )+ = f in (0, 1]n

u = 0 on Γ,

where t+ = max(t , 0).

Calder (UC Berkeley) Numerical schemes September 9, 2015 26 / 63

Page 55: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Bounded domain

We first pose the PDE on a bounded domain

(P1)

ux1 · · · uxn = f in (0, 1]n

u = 0 on Γ

where Γ = [0, 1]n \ (0, 1]n .

Minor technicality: Viscosity solutions of (P1) do not exist due to a well-known issuewith viscosity solutions on boundaries of domains.

We actually need to slightly modify the PDE:

(P1’)

(ux1)+ · · · (uxn )+ = f in (0, 1]n

u = 0 on Γ,

where t+ = max(t , 0).

Calder (UC Berkeley) Numerical schemes September 9, 2015 26 / 63

Page 56: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Bounded domain

We first pose the PDE on a bounded domain

(P1)

ux1 · · · uxn = f in (0, 1]n

u = 0 on Γ

where Γ = [0, 1]n \ (0, 1]n .

Minor technicality: Viscosity solutions of (P1) do not exist due to a well-known issuewith viscosity solutions on boundaries of domains.

We actually need to slightly modify the PDE:

(P1’)

(ux1)+ · · · (uxn )+ = f in (0, 1]n

u = 0 on Γ,

where t+ = max(t , 0).

Calder (UC Berkeley) Numerical schemes September 9, 2015 26 / 63

Page 57: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Upwind finite difference scheme for (P1)

The upwind scheme corresponds to using backward differences:

(S1)

D−1 uh(x) · · ·D−n uh(x) = f (x) for x ∈ (0, 1]nh

uh(x) = 0 for x ∈ Γh ,

where Ωh := Ω ∩ hZn and

D±i uh(x) = ±uh(x ± hei)− uh(x)

h.

The scheme (S) can be solved in a single pass (similar to fast sweeping or marching),and in dimension n = 2 we have the closed form expression

uh(x) =uh(x − he1) + uh(x − he2)

2+

1

2

√(uh(x − he1)− uh(x − he2))2 + 4h2f (x)2.

However, accuracy is poor O(h1n ).

Calder, J., Esedoglu, S., and Hero, A. O. (2015). A PDE-based approach tonondominated sorting. SIAM Journal on Numerical Analysis, 53(1):82–104.

Calder (UC Berkeley) Numerical schemes September 9, 2015 27 / 63

Page 58: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Upwind finite difference scheme for (P1)

The upwind scheme corresponds to using backward differences:

(S1)

D−1 uh(x) · · ·D−n uh(x) = f (x) for x ∈ (0, 1]nh

uh(x) = 0 for x ∈ Γh ,

where Ωh := Ω ∩ hZn and

D±i uh(x) = ±uh(x ± hei)− uh(x)

h.

The scheme (S) can be solved in a single pass (similar to fast sweeping or marching),and in dimension n = 2 we have the closed form expression

uh(x) =uh(x − he1) + uh(x − he2)

2+

1

2

√(uh(x − he1)− uh(x − he2))2 + 4h2f (x)2.

However, accuracy is poor O(h1n ).

Calder, J., Esedoglu, S., and Hero, A. O. (2015). A PDE-based approach tonondominated sorting. SIAM Journal on Numerical Analysis, 53(1):82–104.

Calder (UC Berkeley) Numerical schemes September 9, 2015 27 / 63

Page 59: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Accuracy of (S1)For f ≡ 1, u(x) = n(x1 · · · xn)

1n . Set ϕ(x) = Cn(x1 · · · xn)

1n and by concavity

D−i ϕ(x) ≥ ϕxi (x) = C (x1 · · · xn)1n x−1

i .

On the other hand, if xi = h then

D−i ϕ(x) =ϕ(x)

h= Cn(x1 · · · xn)

1n x−1

i .

Therefore, for any x ∈ (0, 1]nh such that xi = h for some i we have

D−1 ϕ(x) · · ·D−n ϕ(x) ≥ nC n := 1

(C :=

1

n1n

).

By comparison, uh(x) ≤ ϕ(x) whenever xi = h for some i . For x = (h, 1, . . . , 1)

uh(x) ≤ ϕ(x) = n1− 1n h

1n and u(x) = nh

1n .

Thereforeu(x)− uh(x) ≥

(n − n1− 1

n

)h

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 28 / 63

Page 60: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Accuracy of (S1)For f ≡ 1, u(x) = n(x1 · · · xn)

1n . Set ϕ(x) = Cn(x1 · · · xn)

1n and by concavity

D−i ϕ(x) ≥ ϕxi (x) = C (x1 · · · xn)1n x−1

i .

On the other hand, if xi = h then

D−i ϕ(x) =ϕ(x)

h= Cn(x1 · · · xn)

1n x−1

i .

Therefore, for any x ∈ (0, 1]nh such that xi = h for some i we have

D−1 ϕ(x) · · ·D−n ϕ(x) ≥ nC n := 1

(C :=

1

n1n

).

By comparison, uh(x) ≤ ϕ(x) whenever xi = h for some i . For x = (h, 1, . . . , 1)

uh(x) ≤ ϕ(x) = n1− 1n h

1n and u(x) = nh

1n .

Thereforeu(x)− uh(x) ≥

(n − n1− 1

n

)h

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 28 / 63

Page 61: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Accuracy of (S1)For f ≡ 1, u(x) = n(x1 · · · xn)

1n . Set ϕ(x) = Cn(x1 · · · xn)

1n and by concavity

D−i ϕ(x) ≥ ϕxi (x) = C (x1 · · · xn)1n x−1

i .

On the other hand, if xi = h then

D−i ϕ(x) =ϕ(x)

h= Cn(x1 · · · xn)

1n x−1

i .

Therefore, for any x ∈ (0, 1]nh such that xi = h for some i we have

D−1 ϕ(x) · · ·D−n ϕ(x) ≥ nC n := 1

(C :=

1

n1n

).

By comparison, uh(x) ≤ ϕ(x) whenever xi = h for some i . For x = (h, 1, . . . , 1)

uh(x) ≤ ϕ(x) = n1− 1n h

1n and u(x) = nh

1n .

Thereforeu(x)− uh(x) ≥

(n − n1− 1

n

)h

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 28 / 63

Page 62: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Accuracy of (S1)For f ≡ 1, u(x) = n(x1 · · · xn)

1n . Set ϕ(x) = Cn(x1 · · · xn)

1n and by concavity

D−i ϕ(x) ≥ ϕxi (x) = C (x1 · · · xn)1n x−1

i .

On the other hand, if xi = h then

D−i ϕ(x) =ϕ(x)

h= Cn(x1 · · · xn)

1n x−1

i .

Therefore, for any x ∈ (0, 1]nh such that xi = h for some i we have

D−1 ϕ(x) · · ·D−n ϕ(x) ≥ nC n := 1

(C :=

1

n1n

).

By comparison, uh(x) ≤ ϕ(x) whenever xi = h for some i .

For x = (h, 1, . . . , 1)

uh(x) ≤ ϕ(x) = n1− 1n h

1n and u(x) = nh

1n .

Thereforeu(x)− uh(x) ≥

(n − n1− 1

n

)h

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 28 / 63

Page 63: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Accuracy of (S1)For f ≡ 1, u(x) = n(x1 · · · xn)

1n . Set ϕ(x) = Cn(x1 · · · xn)

1n and by concavity

D−i ϕ(x) ≥ ϕxi (x) = C (x1 · · · xn)1n x−1

i .

On the other hand, if xi = h then

D−i ϕ(x) =ϕ(x)

h= Cn(x1 · · · xn)

1n x−1

i .

Therefore, for any x ∈ (0, 1]nh such that xi = h for some i we have

D−1 ϕ(x) · · ·D−n ϕ(x) ≥ nC n := 1

(C :=

1

n1n

).

By comparison, uh(x) ≤ ϕ(x) whenever xi = h for some i . For x = (h, 1, . . . , 1)

uh(x) ≤ ϕ(x) = n1− 1n h

1n and u(x) = nh

1n .

Thereforeu(x)− uh(x) ≥

(n − n1− 1

n

)h

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 28 / 63

Page 64: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Accuracy of (S1)For f ≡ 1, u(x) = n(x1 · · · xn)

1n . Set ϕ(x) = Cn(x1 · · · xn)

1n and by concavity

D−i ϕ(x) ≥ ϕxi (x) = C (x1 · · · xn)1n x−1

i .

On the other hand, if xi = h then

D−i ϕ(x) =ϕ(x)

h= Cn(x1 · · · xn)

1n x−1

i .

Therefore, for any x ∈ (0, 1]nh such that xi = h for some i we have

D−1 ϕ(x) · · ·D−n ϕ(x) ≥ nC n := 1

(C :=

1

n1n

).

By comparison, uh(x) ≤ ϕ(x) whenever xi = h for some i . For x = (h, 1, . . . , 1)

uh(x) ≤ ϕ(x) = n1− 1n h

1n and u(x) = nh

1n .

Thereforeu(x)− uh(x) ≥

(n − n1− 1

n

)h

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 28 / 63

Page 65: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Towards a new schemeThis suggests that we should try to remove the gradient singularity. Consider

v :=un

nn.

Then

vxi =un−1

nn−1uxi = v

n−1n uxi .

Thereforevx1 · · · vxn = vn−1 ux1 · · · uxn︸ ︷︷ ︸

f

= vn−1f .

We find that v is a viscosity solution of

(P2)

vx1 · · · vxn = vn−1f in (0, 1]n

v = 0 on Γ

Since f ≥ 0, (P2) has a zeroth order term of the wrong sign for a comparison principle.The method of vanishing viscosity takes the form

vεx1 · · · vεxn − ε∆vε = (vε)n−1f .

Calder (UC Berkeley) Numerical schemes September 9, 2015 29 / 63

Page 66: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Towards a new schemeThis suggests that we should try to remove the gradient singularity. Consider

v :=un

nn.

Then

vxi =un−1

nn−1uxi = v

n−1n uxi .

Thereforevx1 · · · vxn = vn−1 ux1 · · · uxn︸ ︷︷ ︸

f

= vn−1f .

We find that v is a viscosity solution of

(P2)

vx1 · · · vxn = vn−1f in (0, 1]n

v = 0 on Γ

Since f ≥ 0, (P2) has a zeroth order term of the wrong sign for a comparison principle.The method of vanishing viscosity takes the form

vεx1 · · · vεxn − ε∆vε = (vε)n−1f .

Calder (UC Berkeley) Numerical schemes September 9, 2015 29 / 63

Page 67: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Towards a new schemeThis suggests that we should try to remove the gradient singularity. Consider

v :=un

nn.

Then

vxi =un−1

nn−1uxi = v

n−1n uxi .

Thereforevx1 · · · vxn = vn−1 ux1 · · · uxn︸ ︷︷ ︸

f

= vn−1f .

We find that v is a viscosity solution of

(P2)

vx1 · · · vxn = vn−1f in (0, 1]n

v = 0 on Γ

Since f ≥ 0, (P2) has a zeroth order term of the wrong sign for a comparison principle.The method of vanishing viscosity takes the form

vεx1 · · · vεxn − ε∆vε = (vε)n−1f .

Calder (UC Berkeley) Numerical schemes September 9, 2015 29 / 63

Page 68: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Towards a new schemeThis suggests that we should try to remove the gradient singularity. Consider

v :=un

nn.

Then

vxi =un−1

nn−1uxi = v

n−1n uxi .

Thereforevx1 · · · vxn = vn−1 ux1 · · · uxn︸ ︷︷ ︸

f

= vn−1f .

We find that v is a viscosity solution of

(P2)

vx1 · · · vxn = vn−1f in (0, 1]n

v = 0 on Γ

Since f ≥ 0, (P2) has a zeroth order term of the wrong sign for a comparison principle.The method of vanishing viscosity takes the form

vεx1 · · · vεxn − ε∆vε = (vε)n−1f .

Calder (UC Berkeley) Numerical schemes September 9, 2015 29 / 63

Page 69: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Nonuniqueness for (P2)

(P2)

vx1 · · · vxn = vn−1f in (0, 1]n

v = 0 on Γ

When f ≡ 1, v(x) = u(x)n/nn = x1 · · · xn , but

vy(x) := (x1 − y1)+ · · · (xn − yn)+

is also a viscosity solution of (P2) for any y ∈ (0, 1)n .

LemmaAssume f is continuous on [0, 1]n . Then v := un/nn is the unique maximal viscositysolution of (P2).

Calder (UC Berkeley) Numerical schemes September 9, 2015 30 / 63

Page 70: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Nonuniqueness for (P2)

(P2)

vx1 · · · vxn = vn−1f in (0, 1]n

v = 0 on Γ

When f ≡ 1, v(x) = u(x)n/nn = x1 · · · xn , but

vy(x) := (x1 − y1)+ · · · (xn − yn)+

is also a viscosity solution of (P2) for any y ∈ (0, 1)n .

LemmaAssume f is continuous on [0, 1]n . Then v := un/nn is the unique maximal viscositysolution of (P2).

Calder (UC Berkeley) Numerical schemes September 9, 2015 30 / 63

Page 71: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Numerical scheme for (P2)

An upwind scheme for (P2) uses backward difference quotients

(S2)

D−1 vh(x) · · ·D−n vh(x) = vn−1

h (x)f (x) for x ∈ (0, 1]nh

vh(x) = 0 for x ∈ Γh ,

We define vh by taking the largest solution of (S2) at each x ∈ (0, 1]nh .

The scheme can be solved efficiently in a single pass, and in dimension n = 2 thescheme can be solved in closed form

vh(x) =A + h2f (x)

2+

1

2

√B2 + 2h2f (x)A + h4f (x)2,

where

A = vh(x − he1) + vh(x − he2) and B = vh(x − he1)− vh(x − he2).

Notice when f ≡ 1, vh(x) = x1 · · · xn is the exact solution of (P2).

Calder (UC Berkeley) Numerical schemes September 9, 2015 31 / 63

Page 72: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Numerical scheme for (P2)

An upwind scheme for (P2) uses backward difference quotients

(S2)

D−1 vh(x) · · ·D−n vh(x) = vn−1

h (x)f (x) for x ∈ (0, 1]nh

vh(x) = 0 for x ∈ Γh ,

We define vh by taking the largest solution of (S2) at each x ∈ (0, 1]nh .

The scheme can be solved efficiently in a single pass, and in dimension n = 2 thescheme can be solved in closed form

vh(x) =A + h2f (x)

2+

1

2

√B2 + 2h2f (x)A + h4f (x)2,

where

A = vh(x − he1) + vh(x − he2) and B = vh(x − he1)− vh(x − he2).

Notice when f ≡ 1, vh(x) = x1 · · · xn is the exact solution of (P2).

Calder (UC Berkeley) Numerical schemes September 9, 2015 31 / 63

Page 73: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Numerical scheme for (P2)

An upwind scheme for (P2) uses backward difference quotients

(S2)

D−1 vh(x) · · ·D−n vh(x) = vn−1

h (x)f (x) for x ∈ (0, 1]nh

vh(x) = 0 for x ∈ Γh ,

We define vh by taking the largest solution of (S2) at each x ∈ (0, 1]nh .

The scheme can be solved efficiently in a single pass, and in dimension n = 2 thescheme can be solved in closed form

vh(x) =A + h2f (x)

2+

1

2

√B2 + 2h2f (x)A + h4f (x)2,

where

A = vh(x − he1) + vh(x − he2) and B = vh(x − he1)− vh(x − he2).

Notice when f ≡ 1, vh(x) = x1 · · · xn is the exact solution of (P2).

Calder (UC Berkeley) Numerical schemes September 9, 2015 31 / 63

Page 74: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Rate of convergence for (S2)

(S2)

D−1 vh(x) · · ·D−n vh(x) = vn−1

h (x)f (x) for x ∈ (0, 1]nh

vh(x) = 0 for x ∈ Γh ,

The scheme (S2) has formal accuracy of O(h) and we have

Theorem

Suppose f ∈ C 0,1([0, 1]n) and f > 0. Then

|nnvh − un | ≤ C√h in [0, 1]nh , (2)

and

|nv1nh − u| ≤ C δ1−n

√h in [δ, 1]nh , (3)

where δ > 0 and C = C(n, [f ]1;[0,1]n ,min[0,1]n f

).

Calder, J. (2015). Numerical schemes and rates of convergence for the Hamilton-Jacobiequation continuum limit of nondominated sorting. arXiv preprint:1508.01557.

Calder (UC Berkeley) Numerical schemes September 9, 2015 32 / 63

Page 75: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

One-sided rate for (S1)Recall uh satisfies

D−1 uh(x) · · ·D−n uh(x) = f (x) for x ∈ (0, 1]nh .

Let ψ(x) = unh /n

n . By convexity and monotoncity

D−i ψ(x) =uh(x)n − uh(x − hei)

n

nnh≤ uh(x)n−1

nn−1D−i uh(x).

ThereforeD−1 ψ(x) · · ·D−n ψ(x) ≤ ψ(x)n−1f (x),

so ψ is a subsolution of (S2). By comparison we have unh /n

n = ψ ≤ vh .

Corollary

Suppose f ∈ C 0,1([0, 1]n) and f > 0. Then

unh − un ≤ C

√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 33 / 63

Page 76: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

One-sided rate for (S1)Recall uh satisfies

D−1 uh(x) · · ·D−n uh(x) = f (x) for x ∈ (0, 1]nh .

Let ψ(x) = unh /n

n . By convexity and monotoncity

D−i ψ(x) =uh(x)n − uh(x − hei)

n

nnh≤ uh(x)n−1

nn−1D−i uh(x).

ThereforeD−1 ψ(x) · · ·D−n ψ(x) ≤ ψ(x)n−1f (x),

so ψ is a subsolution of (S2). By comparison we have unh /n

n = ψ ≤ vh .

Corollary

Suppose f ∈ C 0,1([0, 1]n) and f > 0. Then

unh − un ≤ C

√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 33 / 63

Page 77: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

One-sided rate for (S1)Recall uh satisfies

D−1 uh(x) · · ·D−n uh(x) = f (x) for x ∈ (0, 1]nh .

Let ψ(x) = unh /n

n . By convexity and monotoncity

D−i ψ(x) =uh(x)n − uh(x − hei)

n

nnh≤ uh(x)n−1

nn−1D−i uh(x).

ThereforeD−1 ψ(x) · · ·D−n ψ(x) ≤ ψ(x)n−1f (x),

so ψ is a subsolution of (S2). By comparison we have unh /n

n = ψ ≤ vh .

Corollary

Suppose f ∈ C 0,1([0, 1]n) and f > 0. Then

unh − un ≤ C

√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 33 / 63

Page 78: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

One-sided rate for (S1)Recall uh satisfies

D−1 uh(x) · · ·D−n uh(x) = f (x) for x ∈ (0, 1]nh .

Let ψ(x) = unh /n

n . By convexity and monotoncity

D−i ψ(x) =uh(x)n − uh(x − hei)

n

nnh≤ uh(x)n−1

nn−1D−i uh(x).

ThereforeD−1 ψ(x) · · ·D−n ψ(x) ≤ ψ(x)n−1f (x),

so ψ is a subsolution of (S2). By comparison we have unh /n

n = ψ ≤ vh .

Corollary

Suppose f ∈ C 0,1([0, 1]n) and f > 0. Then

unh − un ≤ C

√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 33 / 63

Page 79: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity

To prove the O(√h) convergence rate, we need a Lipschitz regularity result for (P2) or

(S2). Textbook regularity results are based on (p = Du)

(Coercivity) lim|p|→∞

H (x , p) =∞ uniformly in x ,

or(Zeroth order term) u + H (x ,Du) = 0.

Refer to [Bardi and Dolcetta, 1997]

The Hamiltonian for (P2) is (z = u, p = Du)

H (x , z , p) = p1 · · · pn − zn−1f (x)

which satisfies neither.

Calder (UC Berkeley) Numerical schemes September 9, 2015 34 / 63

Page 80: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity

To prove the O(√h) convergence rate, we need a Lipschitz regularity result for (P2) or

(S2). Textbook regularity results are based on (p = Du)

(Coercivity) lim|p|→∞

H (x , p) =∞ uniformly in x ,

or(Zeroth order term) u + H (x ,Du) = 0.

Refer to [Bardi and Dolcetta, 1997]

The Hamiltonian for (P2) is (z = u, p = Du)

H (x , z , p) = p1 · · · pn − zn−1f (x)

which satisfies neither.

Calder (UC Berkeley) Numerical schemes September 9, 2015 34 / 63

Page 81: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for n = 2

Differentiate both sides of (P2) ∂∂x

(vxvy) = ∂∂x

(vf ) to find that

vxxvy + vxvxy = vx f + vfx .

Set ϕ = vx and rearrange

ϕxvy + (ϕy − f )ϕ = vfx ≤ ‖f ‖L∞ [f ]1;[0,1]n .

We can compare ϕ against a supersolution of the form

ϕ(x , y) = C (1 + y).

The bound v(x) ≤ ‖f ‖L∞xy yields boundary gradient estimates.

Lemma

Let f ∈ C 0,1([0, 1]2) be nonnegative. Then there exists C > 0 such that

[v ]1;[0,1]2 ≤ C‖f ‖C0,1([0,1]2). (4)

Calder (UC Berkeley) Numerical schemes September 9, 2015 35 / 63

Page 82: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for n = 2

Differentiate both sides of (P2) ∂∂x

(vxvy) = ∂∂x

(vf ) to find that

vxxvy + vxvxy = vx f + vfx .

Set ϕ = vx and rearrange

ϕxvy + (ϕy − f )ϕ = vfx ≤ ‖f ‖L∞ [f ]1;[0,1]n .

We can compare ϕ against a supersolution of the form

ϕ(x , y) = C (1 + y).

The bound v(x) ≤ ‖f ‖L∞xy yields boundary gradient estimates.

Lemma

Let f ∈ C 0,1([0, 1]2) be nonnegative. Then there exists C > 0 such that

[v ]1;[0,1]2 ≤ C‖f ‖C0,1([0,1]2). (4)

Calder (UC Berkeley) Numerical schemes September 9, 2015 35 / 63

Page 83: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for n = 2

Differentiate both sides of (P2) ∂∂x

(vxvy) = ∂∂x

(vf ) to find that

vxxvy + vxvxy = vx f + vfx .

Set ϕ = vx and rearrange

ϕxvy + (ϕy − f )ϕ = vfx ≤ ‖f ‖L∞ [f ]1;[0,1]n .

We can compare ϕ against a supersolution of the form

ϕ(x , y) = C (1 + y).

The bound v(x) ≤ ‖f ‖L∞xy yields boundary gradient estimates.

Lemma

Let f ∈ C 0,1([0, 1]2) be nonnegative. Then there exists C > 0 such that

[v ]1;[0,1]2 ≤ C‖f ‖C0,1([0,1]2). (4)

Calder (UC Berkeley) Numerical schemes September 9, 2015 35 / 63

Page 84: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for n = 2

Differentiate both sides of (P2) ∂∂x

(vxvy) = ∂∂x

(vf ) to find that

vxxvy + vxvxy = vx f + vfx .

Set ϕ = vx and rearrange

ϕxvy + (ϕy − f )ϕ = vfx ≤ ‖f ‖L∞ [f ]1;[0,1]n .

We can compare ϕ against a supersolution of the form

ϕ(x , y) = C (1 + y).

The bound v(x) ≤ ‖f ‖L∞xy yields boundary gradient estimates.

Lemma

Let f ∈ C 0,1([0, 1]2) be nonnegative. Then there exists C > 0 such that

[v ]1;[0,1]2 ≤ C‖f ‖C0,1([0,1]2). (4)

Calder (UC Berkeley) Numerical schemes September 9, 2015 35 / 63

Page 85: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proofDifferentiate numerical scheme D−x (D−x vD−y v) = D−x (vf ) (x = (x , y))

D−x D−x v(x)D−y v(x− hex ) + D−x v(x)D−x D−y v(x) = v(x)D−x f (x) + f (x− hex )D−x v(x).

Set ϕ = D−x v to find

D−x ϕ(x)D−y v(x− hex ) +(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

Set ϕ(x , y) = C (1 + y) and compute(D−y ϕ(x)− f (x− hex )

)ϕ(x) ≥ C

(C − ‖f ‖L∞

).

We can selectC = ‖f ‖L∞ +

√‖f ‖L∞ [f ]1

and we have (D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 36 / 63

Page 86: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proofDifferentiate numerical scheme D−x (D−x vD−y v) = D−x (vf ) (x = (x , y))

D−x D−x v(x)D−y v(x− hex ) + D−x v(x)D−x D−y v(x) = v(x)D−x f (x) + f (x− hex )D−x v(x).

Set ϕ = D−x v to find

D−x ϕ(x)D−y v(x− hex ) +(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

Set ϕ(x , y) = C (1 + y) and compute(D−y ϕ(x)− f (x− hex )

)ϕ(x) ≥ C

(C − ‖f ‖L∞

).

We can selectC = ‖f ‖L∞ +

√‖f ‖L∞ [f ]1

and we have (D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 36 / 63

Page 87: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proofDifferentiate numerical scheme D−x (D−x vD−y v) = D−x (vf ) (x = (x , y))

D−x D−x v(x)D−y v(x− hex ) + D−x v(x)D−x D−y v(x) = v(x)D−x f (x) + f (x− hex )D−x v(x).

Set ϕ = D−x v to find

D−x ϕ(x)D−y v(x− hex ) +(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

Set ϕ(x , y) = C (1 + y) and compute(D−y ϕ(x)− f (x− hex )

)ϕ(x) ≥ C

(C − ‖f ‖L∞

).

We can selectC = ‖f ‖L∞ +

√‖f ‖L∞ [f ]1

and we have (D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 36 / 63

Page 88: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proofDifferentiate numerical scheme D−x (D−x vD−y v) = D−x (vf ) (x = (x , y))

D−x D−x v(x)D−y v(x− hex ) + D−x v(x)D−x D−y v(x) = v(x)D−x f (x) + f (x− hex )D−x v(x).

Set ϕ = D−x v to find

D−x ϕ(x)D−y v(x− hex ) +(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

Set ϕ(x , y) = C (1 + y) and compute(D−y ϕ(x)− f (x− hex )

)ϕ(x) ≥ C

(C − ‖f ‖L∞

).

We can selectC = ‖f ‖L∞ +

√‖f ‖L∞ [f ]1

and we have (D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 36 / 63

Page 89: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proofWe claim ϕ ≤ ϕ := C (1 + y).

Since v(x , y) ≤ ‖f ‖L∞xy , ϕ ≤ ϕ on Γ = [0, 1]2 \ (0, 1]2.Assume to the contrary that ϕ(x) > ϕ(x) for some x ∈ (0, 1]2. Then there exists xsuch that

ϕ(x) > ϕ(x), ϕ(x− hex ) ≤ ϕ(x− hex ), and ϕ(x− hey) ≤ ϕ(x− hey).

ThenD−x ϕ(x) ≥ D−x ϕ(x) = 0 and D−y ϕ(x) ≥ D−y ϕ(x) ≥ ‖f ‖L∞ .

Hence

(D−y ϕ(x)− f (x− hex ))ϕ(x) ≥ (D−y ϕ(x)− f (x− hex ))ϕ(x).

Recalling

D−x ϕ(x)D−y v(x− hex )︸ ︷︷ ︸≥0

+(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

(D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1,

we have a contradiction.Thus

D−x v ≤ 2C = 2(‖f ‖L∞ +

√‖f ‖L∞ [f ]1

)≤ C‖f ‖C0,1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 37 / 63

Page 90: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proofWe claim ϕ ≤ ϕ := C (1 + y). Since v(x , y) ≤ ‖f ‖L∞xy , ϕ ≤ ϕ on Γ = [0, 1]2 \ (0, 1]2.

Assume to the contrary that ϕ(x) > ϕ(x) for some x ∈ (0, 1]2. Then there exists xsuch that

ϕ(x) > ϕ(x), ϕ(x− hex ) ≤ ϕ(x− hex ), and ϕ(x− hey) ≤ ϕ(x− hey).

ThenD−x ϕ(x) ≥ D−x ϕ(x) = 0 and D−y ϕ(x) ≥ D−y ϕ(x) ≥ ‖f ‖L∞ .

Hence

(D−y ϕ(x)− f (x− hex ))ϕ(x) ≥ (D−y ϕ(x)− f (x− hex ))ϕ(x).

Recalling

D−x ϕ(x)D−y v(x− hex )︸ ︷︷ ︸≥0

+(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

(D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1,

we have a contradiction.Thus

D−x v ≤ 2C = 2(‖f ‖L∞ +

√‖f ‖L∞ [f ]1

)≤ C‖f ‖C0,1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 37 / 63

Page 91: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proofWe claim ϕ ≤ ϕ := C (1 + y). Since v(x , y) ≤ ‖f ‖L∞xy , ϕ ≤ ϕ on Γ = [0, 1]2 \ (0, 1]2.Assume to the contrary that ϕ(x) > ϕ(x) for some x ∈ (0, 1]2. Then there exists xsuch that

ϕ(x) > ϕ(x), ϕ(x− hex ) ≤ ϕ(x− hex ), and ϕ(x− hey) ≤ ϕ(x− hey).

ThenD−x ϕ(x) ≥ D−x ϕ(x) = 0 and D−y ϕ(x) ≥ D−y ϕ(x) ≥ ‖f ‖L∞ .

Hence

(D−y ϕ(x)− f (x− hex ))ϕ(x) ≥ (D−y ϕ(x)− f (x− hex ))ϕ(x).

Recalling

D−x ϕ(x)D−y v(x− hex )︸ ︷︷ ︸≥0

+(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

(D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1,

we have a contradiction.Thus

D−x v ≤ 2C = 2(‖f ‖L∞ +

√‖f ‖L∞ [f ]1

)≤ C‖f ‖C0,1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 37 / 63

Page 92: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proofWe claim ϕ ≤ ϕ := C (1 + y). Since v(x , y) ≤ ‖f ‖L∞xy , ϕ ≤ ϕ on Γ = [0, 1]2 \ (0, 1]2.Assume to the contrary that ϕ(x) > ϕ(x) for some x ∈ (0, 1]2. Then there exists xsuch that

ϕ(x) > ϕ(x), ϕ(x− hex ) ≤ ϕ(x− hex ), and ϕ(x− hey) ≤ ϕ(x− hey).

ThenD−x ϕ(x) ≥ D−x ϕ(x) = 0 and D−y ϕ(x) ≥ D−y ϕ(x) ≥ ‖f ‖L∞ .

Hence

(D−y ϕ(x)− f (x− hex ))ϕ(x) ≥ (D−y ϕ(x)− f (x− hex ))ϕ(x).

Recalling

D−x ϕ(x)D−y v(x− hex )︸ ︷︷ ︸≥0

+(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

(D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1,

we have a contradiction.Thus

D−x v ≤ 2C = 2(‖f ‖L∞ +

√‖f ‖L∞ [f ]1

)≤ C‖f ‖C0,1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 37 / 63

Page 93: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proofWe claim ϕ ≤ ϕ := C (1 + y). Since v(x , y) ≤ ‖f ‖L∞xy , ϕ ≤ ϕ on Γ = [0, 1]2 \ (0, 1]2.Assume to the contrary that ϕ(x) > ϕ(x) for some x ∈ (0, 1]2. Then there exists xsuch that

ϕ(x) > ϕ(x), ϕ(x− hex ) ≤ ϕ(x− hex ), and ϕ(x− hey) ≤ ϕ(x− hey).

ThenD−x ϕ(x) ≥ D−x ϕ(x) = 0 and D−y ϕ(x) ≥ D−y ϕ(x) ≥ ‖f ‖L∞ .

Hence

(D−y ϕ(x)− f (x− hex ))ϕ(x) ≥ (D−y ϕ(x)− f (x− hex ))ϕ(x).

Recalling

D−x ϕ(x)D−y v(x− hex )︸ ︷︷ ︸≥0

+(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

(D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1,

we have a contradiction.Thus

D−x v ≤ 2C = 2(‖f ‖L∞ +

√‖f ‖L∞ [f ]1

)≤ C‖f ‖C0,1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 37 / 63

Page 94: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proofWe claim ϕ ≤ ϕ := C (1 + y). Since v(x , y) ≤ ‖f ‖L∞xy , ϕ ≤ ϕ on Γ = [0, 1]2 \ (0, 1]2.Assume to the contrary that ϕ(x) > ϕ(x) for some x ∈ (0, 1]2. Then there exists xsuch that

ϕ(x) > ϕ(x), ϕ(x− hex ) ≤ ϕ(x− hex ), and ϕ(x− hey) ≤ ϕ(x− hey).

ThenD−x ϕ(x) ≥ D−x ϕ(x) = 0 and D−y ϕ(x) ≥ D−y ϕ(x) ≥ ‖f ‖L∞ .

Hence

(D−y ϕ(x)− f (x− hex ))ϕ(x) ≥ (D−y ϕ(x)− f (x− hex ))ϕ(x).

Recalling

D−x ϕ(x)D−y v(x− hex )︸ ︷︷ ︸≥0

+(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

(D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1,

we have a contradiction.

Thus

D−x v ≤ 2C = 2(‖f ‖L∞ +

√‖f ‖L∞ [f ]1

)≤ C‖f ‖C0,1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 37 / 63

Page 95: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proofWe claim ϕ ≤ ϕ := C (1 + y). Since v(x , y) ≤ ‖f ‖L∞xy , ϕ ≤ ϕ on Γ = [0, 1]2 \ (0, 1]2.Assume to the contrary that ϕ(x) > ϕ(x) for some x ∈ (0, 1]2. Then there exists xsuch that

ϕ(x) > ϕ(x), ϕ(x− hex ) ≤ ϕ(x− hex ), and ϕ(x− hey) ≤ ϕ(x− hey).

ThenD−x ϕ(x) ≥ D−x ϕ(x) = 0 and D−y ϕ(x) ≥ D−y ϕ(x) ≥ ‖f ‖L∞ .

Hence

(D−y ϕ(x)− f (x− hex ))ϕ(x) ≥ (D−y ϕ(x)− f (x− hex ))ϕ(x).

Recalling

D−x ϕ(x)D−y v(x− hex )︸ ︷︷ ︸≥0

+(D−y ϕ(x)− f (x− hex )

)ϕ(x) = vD−x f ≤ ‖f ‖L∞ [f ]1.

(D−y ϕ(x)− f (x− hex )

)ϕ(x) > ‖f ‖L∞ [f ]1,

we have a contradiction.Thus

D−x v ≤ 2C = 2(‖f ‖L∞ +

√‖f ‖L∞ [f ]1

)≤ C‖f ‖C0,1 .

Calder (UC Berkeley) Numerical schemes September 9, 2015 37 / 63

Page 96: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for n = 3

Differentiate both sides of (P2) ∂∂x

(vxvyvz ) = ∂∂x

(v2f ) to find that

vxxvyvz + vxvyxvz + vxvyvzx = 2vvx f + v2fx .

Set ϕ = vx and rearrange

F (ϕ) := ϕxvyvz + (vzϕy + vyϕz − 2vf )ϕ = v2fx ≤ ‖f ‖2L∞ [f ]1.

Perhaps we should be looking for a supersolution of the form

ϕ(x , y , z ) = C (1 + y + z )?

Then F (ϕ) ≥ C (Cvz + Cvy − 2vf ). . .

At a maximum of ϕ, ϕx = ϕy = ϕz = 0 so

−2vf ϕ ≤ ‖f ‖2L∞ [f ]1.

Calder (UC Berkeley) Numerical schemes September 9, 2015 38 / 63

Page 97: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for n = 3

Differentiate both sides of (P2) ∂∂x

(vxvyvz ) = ∂∂x

(v2f ) to find that

vxxvyvz + vxvyxvz + vxvyvzx = 2vvx f + v2fx .

Set ϕ = vx and rearrange

F (ϕ) := ϕxvyvz + (vzϕy + vyϕz − 2vf )ϕ = v2fx ≤ ‖f ‖2L∞ [f ]1.

Perhaps we should be looking for a supersolution of the form

ϕ(x , y , z ) = C (1 + y + z )?

Then F (ϕ) ≥ C (Cvz + Cvy − 2vf ). . .

At a maximum of ϕ, ϕx = ϕy = ϕz = 0 so

−2vf ϕ ≤ ‖f ‖2L∞ [f ]1.

Calder (UC Berkeley) Numerical schemes September 9, 2015 38 / 63

Page 98: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for n = 3

Differentiate both sides of (P2) ∂∂x

(vxvyvz ) = ∂∂x

(v2f ) to find that

vxxvyvz + vxvyxvz + vxvyvzx = 2vvx f + v2fx .

Set ϕ = vx and rearrange

F (ϕ) := ϕxvyvz + (vzϕy + vyϕz − 2vf )ϕ = v2fx ≤ ‖f ‖2L∞ [f ]1.

Perhaps we should be looking for a supersolution of the form

ϕ(x , y , z ) = C (1 + y + z )?

Then F (ϕ) ≥ C (Cvz + Cvy − 2vf ). . .

At a maximum of ϕ, ϕx = ϕy = ϕz = 0 so

−2vf ϕ ≤ ‖f ‖2L∞ [f ]1.

Calder (UC Berkeley) Numerical schemes September 9, 2015 38 / 63

Page 99: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for n = 3

Differentiate both sides of (P2) ∂∂x

(vxvyvz ) = ∂∂x

(v2f ) to find that

vxxvyvz + vxvyxvz + vxvyvzx = 2vvx f + v2fx .

Set ϕ = vx and rearrange

F (ϕ) := ϕxvyvz + (vzϕy + vyϕz − 2vf )ϕ = v2fx ≤ ‖f ‖2L∞ [f ]1.

Perhaps we should be looking for a supersolution of the form

ϕ(x , y , z ) = C (1 + y + z )?

Then F (ϕ) ≥ C (Cvz + Cvy − 2vf ). . .

At a maximum of ϕ, ϕx = ϕy = ϕz = 0 so

−2vf ϕ ≤ ‖f ‖2L∞ [f ]1.

Calder (UC Berkeley) Numerical schemes September 9, 2015 38 / 63

Page 100: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for n ≥ 3?

Unfortunately this argument fails for n ≥ 3 due to the additional nonlinearity.

Furthermore, we cannot directly prove rates for (P2) due to the wrong sign on zerothorder term.

Back to the drawing board!

Calder (UC Berkeley) Numerical schemes September 9, 2015 39 / 63

Page 101: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for n ≥ 3?

Unfortunately this argument fails for n ≥ 3 due to the additional nonlinearity.

Furthermore, we cannot directly prove rates for (P2) due to the wrong sign on zerothorder term.

Back to the drawing board!

Calder (UC Berkeley) Numerical schemes September 9, 2015 39 / 63

Page 102: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Another PDERecall for f ≡ 1, u(x) = n(x1 · · · xn)

1n . For general f , we are tempted to make the

ansatzu(x) = n(x1 · · · xn)

1n w(x).

Proceeding formally

uxi = (x1 · · · xn)1nw

xi+ n(x1 · · · xn)

1n wxi =

1

xi(x1 · · · xn)

1n (w + nxiwxi ).

Therefore

f = ux1 · · · uxn =n∏

i=1

(w + nxiwxi ).

We can show that w is a bounded viscosity solution of

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

Notice:

Zeroth order term has correct sign! (since uxi ≥ 0)

v = un/nn = x1 · · · xnwn .

Calder (UC Berkeley) Numerical schemes September 9, 2015 40 / 63

Page 103: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Another PDERecall for f ≡ 1, u(x) = n(x1 · · · xn)

1n . For general f , we are tempted to make the

ansatzu(x) = n(x1 · · · xn)

1n w(x).

Proceeding formally

uxi = (x1 · · · xn)1nw

xi+ n(x1 · · · xn)

1n wxi =

1

xi(x1 · · · xn)

1n (w + nxiwxi ).

Therefore

f = ux1 · · · uxn =n∏

i=1

(w + nxiwxi ).

We can show that w is a bounded viscosity solution of

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

Notice:

Zeroth order term has correct sign! (since uxi ≥ 0)

v = un/nn = x1 · · · xnwn .

Calder (UC Berkeley) Numerical schemes September 9, 2015 40 / 63

Page 104: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Another PDERecall for f ≡ 1, u(x) = n(x1 · · · xn)

1n . For general f , we are tempted to make the

ansatzu(x) = n(x1 · · · xn)

1n w(x).

Proceeding formally

uxi = (x1 · · · xn)1nw

xi+ n(x1 · · · xn)

1n wxi =

1

xi(x1 · · · xn)

1n (w + nxiwxi ).

Therefore

f = ux1 · · · uxn =n∏

i=1

(w + nxiwxi ).

We can show that w is a bounded viscosity solution of

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

Notice:

Zeroth order term has correct sign! (since uxi ≥ 0)

v = un/nn = x1 · · · xnwn .

Calder (UC Berkeley) Numerical schemes September 9, 2015 40 / 63

Page 105: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for (P3)Let us rewrite (P3) as

n∑j=1

log(w + nxjwxj ) = log(f ) in (0, 1]n .

Differentiate each side in xi :

n∑j=1

wxi + nδi,jwxj + nxjwxixj

w + nxjwxj

=fxif.

At a maximum of wxi we have wxixj = 0 hence

wxi

n∑j=1

1 + nδi,jw + nxjwxj

=fxif.

By the inequality of arithmetic and geometric means

n∑j=1

1 + nδi,jw + nxjwxj

≥n∑

j=1

1

w + nxjwxj

≥ n

n∏j=1

(w + nxjwxj )−1n = nf −

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 41 / 63

Page 106: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for (P3)Let us rewrite (P3) as

n∑j=1

log(w + nxjwxj ) = log(f ) in (0, 1]n .

Differentiate each side in xi :

n∑j=1

wxi + nδi,jwxj + nxjwxixj

w + nxjwxj

=fxif.

At a maximum of wxi we have wxixj = 0 hence

wxi

n∑j=1

1 + nδi,jw + nxjwxj

=fxif.

By the inequality of arithmetic and geometric means

n∑j=1

1 + nδi,jw + nxjwxj

≥n∑

j=1

1

w + nxjwxj

≥ n

n∏j=1

(w + nxjwxj )−1n = nf −

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 41 / 63

Page 107: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for (P3)Let us rewrite (P3) as

n∑j=1

log(w + nxjwxj ) = log(f ) in (0, 1]n .

Differentiate each side in xi :

n∑j=1

wxi + nδi,jwxj + nxjwxixj

w + nxjwxj

=fxif.

At a maximum of wxi we have wxixj = 0 hence

wxi

n∑j=1

1 + nδi,jw + nxjwxj

=fxif.

By the inequality of arithmetic and geometric means

n∑j=1

1 + nδi,jw + nxjwxj

≥n∑

j=1

1

w + nxjwxj

≥ n

n∏j=1

(w + nxjwxj )−1n = nf −

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 41 / 63

Page 108: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for (P3)Let us rewrite (P3) as

n∑j=1

log(w + nxjwxj ) = log(f ) in (0, 1]n .

Differentiate each side in xi :

n∑j=1

wxi + nδi,jwxj + nxjwxixj

w + nxjwxj

=fxif.

At a maximum of wxi we have wxixj = 0 hence

wxi

n∑j=1

1 + nδi,jw + nxjwxj

=fxif.

By the inequality of arithmetic and geometric means

n∑j=1

1 + nδi,jw + nxjwxj

≥n∑

j=1

1

w + nxjwxj

≥ nn∏

j=1

(w + nxjwxj )−1n = nf −

1n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 41 / 63

Page 109: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for (P3)

Hence, at a positive maximum of wxi we have

wxi ≤1

nf

1n−1fxi = (f

1n )xi ≤ [f

1n ]1;[0,1]n .

Problem: We have no boundary condition for w , how do we know wxi attains amaximum or minimum?

Recall

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

When f ≡ 1, the solution of (P3) that we care about is w ≡ 1. For any C > 0

w(x) =n∏

i=1

(1 + Cx−1i )

1n

is an unbounded solution of (P3).

Calder (UC Berkeley) Numerical schemes September 9, 2015 42 / 63

Page 110: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for (P3)

Hence, at a positive maximum of wxi we have

wxi ≤1

nf

1n−1fxi = (f

1n )xi ≤ [f

1n ]1;[0,1]n .

Problem: We have no boundary condition for w , how do we know wxi attains amaximum or minimum?

Recall

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

When f ≡ 1, the solution of (P3) that we care about is w ≡ 1. For any C > 0

w(x) =n∏

i=1

(1 + Cx−1i )

1n

is an unbounded solution of (P3).

Calder (UC Berkeley) Numerical schemes September 9, 2015 42 / 63

Page 111: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for (P3)

Hence, at a positive maximum of wxi we have

wxi ≤1

nf

1n−1fxi = (f

1n )xi ≤ [f

1n ]1;[0,1]n .

Problem: We have no boundary condition for w , how do we know wxi attains amaximum or minimum?

Recall

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

When f ≡ 1, the solution of (P3) that we care about is w ≡ 1. For any C > 0

w(x) =n∏

i=1

(1 + Cx−1i )

1n

is an unbounded solution of (P3).

Calder (UC Berkeley) Numerical schemes September 9, 2015 42 / 63

Page 112: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Extension property for (P3)

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

LemmaLet f ≥ 0 be continuous on [0, 1]n and let u be the solution of (P1). Then

w(x) =u(x)

n(x1 · · · xn)1n

can be extended to a continuous function w ∈ C ((−∞, 1]n) satisfying

w(x) = w(x+) for all x ∈ (−∞, 1]n ,

where x+ = (max(x1, 0), . . . ,max(xn , 0)). Furthermore, if we extend f by settingf (x) := f (x+) then w is a viscosity solution of

n∏i=1

(w + nxiwxi ) = f in (−∞, 1]n .

Calder (UC Berkeley) Numerical schemes September 9, 2015 43 / 63

Page 113: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for (P3)

The extension property allows us to complete the regularity result.

Theorem

Let f be a nonnegative function for which f1n ∈ C 0,1([0, 1]n), and let w be the maximal

bounded viscosity solution of (P3). Then w ∈ C 0,1([0, 1]n) and

[w ]1;[0,1]n ≤√n [f

1n ]1;[0,1]n . (5)

Theorem is sharp: When f (x) = (x1 · · · xn)n−1, w(x) = 1n

(x1 · · · xn)1−1n 6∈ C 0,1([0, 1]n).

Since v = x1 · · · xnwn we have the following corollary.

Corollary

Let v be the maximal viscosity solution of (P2). Then v ∈ C 0,1([0, 1]n) and

[v ]1;[0,1]n ≤ C‖fn−1n ‖L∞([0,1]n )‖f

1n ‖C0,1([0,1]n ). (6)

Calder (UC Berkeley) Numerical schemes September 9, 2015 44 / 63

Page 114: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Regularity for (P3)

The extension property allows us to complete the regularity result.

Theorem

Let f be a nonnegative function for which f1n ∈ C 0,1([0, 1]n), and let w be the maximal

bounded viscosity solution of (P3). Then w ∈ C 0,1([0, 1]n) and

[w ]1;[0,1]n ≤√n [f

1n ]1;[0,1]n . (5)

Theorem is sharp: When f (x) = (x1 · · · xn)n−1, w(x) = 1n

(x1 · · · xn)1−1n 6∈ C 0,1([0, 1]n).

Since v = x1 · · · xnwn we have the following corollary.

Corollary

Let v be the maximal viscosity solution of (P2). Then v ∈ C 0,1([0, 1]n) and

[v ]1;[0,1]n ≤ C‖fn−1n ‖L∞([0,1]n )‖f

1n ‖C0,1([0,1]n ). (6)

Calder (UC Berkeley) Numerical schemes September 9, 2015 44 / 63

Page 115: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Numerical scheme for (P3)An upwind scheme for (P3) uses backward difference quotients

(S3)n∏

i=1

(wh(x) + nxiD

−i wh(x)

)= f (x) for x ∈ [0, 1]nh .

We define wh by taking the largest solution of (P2) at each x ∈ [0, 1]nh .Notice

wh(0) = f (0)1n .

When f ≡ 1, wh ≡ 1 which is the exact solution of (P3).

The scheme can be solved efficiently in a single pass, and in dimension n = 2 thescheme can be solved in closed form

wh(x) = C +√

D2 + (2x1 + h)(2x2 + h)h2f (x),

whereC = x1(2x2 + h)wh(x − he1) + x2(2x1 + h)wh(x − he2),

andD = x1(2x2 + h)wh(x − he1)− x2(2x1 + h)wh(x − he2).

Calder (UC Berkeley) Numerical schemes September 9, 2015 45 / 63

Page 116: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Numerical scheme for (P3)An upwind scheme for (P3) uses backward difference quotients

(S3)n∏

i=1

(wh(x) + nxiD

−i wh(x)

)= f (x) for x ∈ [0, 1]nh .

We define wh by taking the largest solution of (P2) at each x ∈ [0, 1]nh .Notice

wh(0) = f (0)1n .

When f ≡ 1, wh ≡ 1 which is the exact solution of (P3).

The scheme can be solved efficiently in a single pass, and in dimension n = 2 thescheme can be solved in closed form

wh(x) = C +√

D2 + (2x1 + h)(2x2 + h)h2f (x),

whereC = x1(2x2 + h)wh(x − he1) + x2(2x1 + h)wh(x − he2),

andD = x1(2x2 + h)wh(x − he1)− x2(2x1 + h)wh(x − he2).

Calder (UC Berkeley) Numerical schemes September 9, 2015 45 / 63

Page 117: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Numerical scheme for (P3)An upwind scheme for (P3) uses backward difference quotients

(S3)n∏

i=1

(wh(x) + nxiD

−i wh(x)

)= f (x) for x ∈ [0, 1]nh .

We define wh by taking the largest solution of (P2) at each x ∈ [0, 1]nh .Notice

wh(0) = f (0)1n .

When f ≡ 1, wh ≡ 1 which is the exact solution of (P3).

The scheme can be solved efficiently in a single pass, and in dimension n = 2 thescheme can be solved in closed form

wh(x) = C +√

D2 + (2x1 + h)(2x2 + h)h2f (x),

whereC = x1(2x2 + h)wh(x − he1) + x2(2x1 + h)wh(x − he2),

andD = x1(2x2 + h)wh(x − he1)− x2(2x1 + h)wh(x − he2).

Calder (UC Berkeley) Numerical schemes September 9, 2015 45 / 63

Page 118: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Convergence rate

Since (P3) has a zeroth order term of the correct sign, and w and wh are Lipschitzcontinuous on [0, 1]n we can prove

Theorem

Suppose that f ∈ C 0,1([0, 1]n) and f > 0. Then

|w(x)− wh(x)| ≤ C√h for all x ∈ [0, 1]nh , (7)

where C = C(n, [f ]1;[0,1]n ,min[0,1]n f

).

Calder (UC Berkeley) Numerical schemes September 9, 2015 46 / 63

Page 119: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Directed Hamiltonians

All of the PDE in this talk have a common useful property.

H (x , u(x),Du(x)) = 0.

DefinitionWe say that H (x , z , p) is directed if

H (x , z , p) ≤ H (x , z , q) whenever pi ≤ qi for all i .

Recall:

(P1) H (x , z , p) = (p1)+ · · · (pn)+ − f (x)

(P2) H (x , z , p) = (p1)+ · · · (pn)+ − zn−1f (x)

(P3) H (x , z , p) =n∏

i=1

(z + nxipi)+ − f (x)

Calder (UC Berkeley) Numerical schemes September 9, 2015 47 / 63

Page 120: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Directed Hamiltonians

All of the PDE in this talk have a common useful property.

H (x , u(x),Du(x)) = 0.

DefinitionWe say that H (x , z , p) is directed if

H (x , z , p) ≤ H (x , z , q) whenever pi ≤ qi for all i .

Recall:

(P1) H (x , z , p) = (p1)+ · · · (pn)+ − f (x)

(P2) H (x , z , p) = (p1)+ · · · (pn)+ − zn−1f (x)

(P3) H (x , z , p) =n∏

i=1

(z + nxipi)+ − f (x)

Calder (UC Berkeley) Numerical schemes September 9, 2015 47 / 63

Page 121: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Monotone (upwind) scheme for directed H

A monotone scheme for a directed Hamiltonian H is always to use backward differences

H (x , u(x),D−u(x)) = 0,

whereD−u(x) = (D−1 u(x), . . . ,D−n u(x)).

Indeed, if u ≥ v and u(x) = v(x) then D−i u(x) ≤ D−i v(x) for all i and

H (x , u(x),D−u(x)) ≤ H (x , v(x),D−v(x)),

which is exactly monotonicity of the scheme.

Calder (UC Berkeley) Numerical schemes September 9, 2015 48 / 63

Page 122: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Monotone (upwind) scheme for directed H

A monotone scheme for a directed Hamiltonian H is always to use backward differences

H (x , u(x),D−u(x)) = 0,

whereD−u(x) = (D−1 u(x), . . . ,D−n u(x)).

Indeed, if u ≥ v and u(x) = v(x) then D−i u(x) ≤ D−i v(x) for all i and

H (x , u(x),D−u(x)) ≤ H (x , v(x),D−v(x)),

which is exactly monotonicity of the scheme.

Calder (UC Berkeley) Numerical schemes September 9, 2015 48 / 63

Page 123: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Convergence rate

(S)

uh + H (D−uh) = f for x ∈ (0, 1]nh

uh = g for x ∈ Γh ,

(H)

u + H (Du) = f in (0, 1]n

u = g on Γ,

Theorem ([Crandall and Lions, 1984, Souganidis, 1985])

Assume H ∈ C 0,1(Rn) is directed and f , g ∈ C 0,1([0, 1]n). Let uh be a solution of (S)and let u be a viscosity solution of (H). If u ∈ C 0,1([0, 1]n) and

suph>0

supx 6=y

|uh(x)− uh(y)||x − y | <∞,

then|uh − u| ≤ C

√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 49 / 63

Page 124: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proof that uh ≤ u + C√h

For α > 0 setΦ(x , y) = uh(x)− u(y)− α

2|x − y |2,

and let (xα, yα) ∈ (0, 1]nh × (0, 1]n such that Φ(xα, yα) = max[0,1]nh×[0,1]n Φ.

Setϕ(x) =

α

2|x − yα|2 −

α

2|xα − yα|2 + uh(xα).

Then ϕ(xα) = uh(xα) and uh(x) ≤ ϕ(x) for all x ∈ [0, 1]nh . Since H is directed

f (xα) = uh(xα) + H (D−uh(xα)) ≥ uh(xα) + H (D−ϕ(xα)).

Since H ∈ C 0,1(Rn) and D−ϕ(xα) = pα − αh2

(1, . . . , 1) where pα = α(xα − yα)

uh(xα) + H (pα) ≤ f (xα) + Cαh.

Let ψ(y) = α2|xα − y |2. Since u + ψ has a minimum at yα and −Dψ(yα) = pα

u(yα) + H (pα) ≥ f (yα).

Hence: uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Calder (UC Berkeley) Numerical schemes September 9, 2015 50 / 63

Page 125: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proof that uh ≤ u + C√h

For α > 0 setΦ(x , y) = uh(x)− u(y)− α

2|x − y |2,

and let (xα, yα) ∈ (0, 1]nh × (0, 1]n such that Φ(xα, yα) = max[0,1]nh×[0,1]n Φ.

Setϕ(x) =

α

2|x − yα|2 −

α

2|xα − yα|2 + uh(xα).

Then ϕ(xα) = uh(xα) and uh(x) ≤ ϕ(x) for all x ∈ [0, 1]nh .

Since H is directed

f (xα) = uh(xα) + H (D−uh(xα)) ≥ uh(xα) + H (D−ϕ(xα)).

Since H ∈ C 0,1(Rn) and D−ϕ(xα) = pα − αh2

(1, . . . , 1) where pα = α(xα − yα)

uh(xα) + H (pα) ≤ f (xα) + Cαh.

Let ψ(y) = α2|xα − y |2. Since u + ψ has a minimum at yα and −Dψ(yα) = pα

u(yα) + H (pα) ≥ f (yα).

Hence: uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Calder (UC Berkeley) Numerical schemes September 9, 2015 50 / 63

Page 126: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proof that uh ≤ u + C√h

For α > 0 setΦ(x , y) = uh(x)− u(y)− α

2|x − y |2,

and let (xα, yα) ∈ (0, 1]nh × (0, 1]n such that Φ(xα, yα) = max[0,1]nh×[0,1]n Φ.

Setϕ(x) =

α

2|x − yα|2 −

α

2|xα − yα|2 + uh(xα).

Then ϕ(xα) = uh(xα) and uh(x) ≤ ϕ(x) for all x ∈ [0, 1]nh . Since H is directed

f (xα) = uh(xα) + H (D−uh(xα)) ≥ uh(xα) + H (D−ϕ(xα)).

Since H ∈ C 0,1(Rn) and D−ϕ(xα) = pα − αh2

(1, . . . , 1) where pα = α(xα − yα)

uh(xα) + H (pα) ≤ f (xα) + Cαh.

Let ψ(y) = α2|xα − y |2. Since u + ψ has a minimum at yα and −Dψ(yα) = pα

u(yα) + H (pα) ≥ f (yα).

Hence: uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Calder (UC Berkeley) Numerical schemes September 9, 2015 50 / 63

Page 127: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proof that uh ≤ u + C√h

For α > 0 setΦ(x , y) = uh(x)− u(y)− α

2|x − y |2,

and let (xα, yα) ∈ (0, 1]nh × (0, 1]n such that Φ(xα, yα) = max[0,1]nh×[0,1]n Φ.

Setϕ(x) =

α

2|x − yα|2 −

α

2|xα − yα|2 + uh(xα).

Then ϕ(xα) = uh(xα) and uh(x) ≤ ϕ(x) for all x ∈ [0, 1]nh . Since H is directed

f (xα) = uh(xα) + H (D−uh(xα)) ≥ uh(xα) + H (D−ϕ(xα)).

Since H ∈ C 0,1(Rn) and D−ϕ(xα) = pα − αh2

(1, . . . , 1) where pα = α(xα − yα)

uh(xα) + H (pα) ≤ f (xα) + Cαh.

Let ψ(y) = α2|xα − y |2. Since u + ψ has a minimum at yα and −Dψ(yα) = pα

u(yα) + H (pα) ≥ f (yα).

Hence: uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Calder (UC Berkeley) Numerical schemes September 9, 2015 50 / 63

Page 128: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proof that uh ≤ u + C√h

For α > 0 setΦ(x , y) = uh(x)− u(y)− α

2|x − y |2,

and let (xα, yα) ∈ (0, 1]nh × (0, 1]n such that Φ(xα, yα) = max[0,1]nh×[0,1]n Φ.

Setϕ(x) =

α

2|x − yα|2 −

α

2|xα − yα|2 + uh(xα).

Then ϕ(xα) = uh(xα) and uh(x) ≤ ϕ(x) for all x ∈ [0, 1]nh . Since H is directed

f (xα) = uh(xα) + H (D−uh(xα)) ≥ uh(xα) + H (D−ϕ(xα)).

Since H ∈ C 0,1(Rn) and D−ϕ(xα) = pα − αh2

(1, . . . , 1) where pα = α(xα − yα)

uh(xα) + H (pα) ≤ f (xα) + Cαh.

Let ψ(y) = α2|xα − y |2. Since u + ψ has a minimum at yα and −Dψ(yα) = pα

u(yα) + H (pα) ≥ f (yα).

Hence: uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Calder (UC Berkeley) Numerical schemes September 9, 2015 50 / 63

Page 129: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proof that uh ≤ u + C√h

For α > 0 setΦ(x , y) = uh(x)− u(y)− α

2|x − y |2,

and let (xα, yα) ∈ (0, 1]nh × (0, 1]n such that Φ(xα, yα) = max[0,1]nh×[0,1]n Φ.

Setϕ(x) =

α

2|x − yα|2 −

α

2|xα − yα|2 + uh(xα).

Then ϕ(xα) = uh(xα) and uh(x) ≤ ϕ(x) for all x ∈ [0, 1]nh . Since H is directed

f (xα) = uh(xα) + H (D−uh(xα)) ≥ uh(xα) + H (D−ϕ(xα)).

Since H ∈ C 0,1(Rn) and D−ϕ(xα) = pα − αh2

(1, . . . , 1) where pα = α(xα − yα)

uh(xα) + H (pα) ≤ f (xα) + Cαh.

Let ψ(y) = α2|xα − y |2. Since u + ψ has a minimum at yα and −Dψ(yα) = pα

u(yα) + H (pα) ≥ f (yα).

Hence: uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Calder (UC Berkeley) Numerical schemes September 9, 2015 50 / 63

Page 130: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proof that uh ≤ u + C√h

Since Φ(x , y) = uh(x)− u(y)− α2|x − y |2

max[0,1]n

h

(uh − u) ≤ Φ(xα, yα) ≤ uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Since Φ(xα, xα) ≤ Φ(xα, yα) and u ∈ C 0,1([0, 1]n)

uh(xα)− u(xα) ≤ uh(xα)− u(yα)− α

2|xα − yα|2

or α

2|xα − yα|2 ≤ u(xα)− u(yα) ≤ C |xα − yα|.

Hence |xα − yα| ≤ C/α. Therefore

max[0,1]n

h

(uh − u) ≤ C

(1

α+ αh

).

The best possible choice for α is α = 1/√h which yields

uh − u ≤ C√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 51 / 63

Page 131: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proof that uh ≤ u + C√h

Since Φ(x , y) = uh(x)− u(y)− α2|x − y |2

max[0,1]n

h

(uh − u) ≤ Φ(xα, yα) ≤ uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Since Φ(xα, xα) ≤ Φ(xα, yα) and u ∈ C 0,1([0, 1]n)

uh(xα)− u(xα) ≤ uh(xα)− u(yα)− α

2|xα − yα|2

or α

2|xα − yα|2 ≤ u(xα)− u(yα) ≤ C |xα − yα|.

Hence |xα − yα| ≤ C/α.

Therefore

max[0,1]n

h

(uh − u) ≤ C

(1

α+ αh

).

The best possible choice for α is α = 1/√h which yields

uh − u ≤ C√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 51 / 63

Page 132: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proof that uh ≤ u + C√h

Since Φ(x , y) = uh(x)− u(y)− α2|x − y |2

max[0,1]n

h

(uh − u) ≤ Φ(xα, yα) ≤ uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Since Φ(xα, xα) ≤ Φ(xα, yα) and u ∈ C 0,1([0, 1]n)

uh(xα)− u(xα) ≤ uh(xα)− u(yα)− α

2|xα − yα|2

or α

2|xα − yα|2 ≤ u(xα)− u(yα) ≤ C |xα − yα|.

Hence |xα − yα| ≤ C/α. Therefore

max[0,1]n

h

(uh − u) ≤ C

(1

α+ αh

).

The best possible choice for α is α = 1/√h which yields

uh − u ≤ C√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 51 / 63

Page 133: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Sketch of proof that uh ≤ u + C√h

Since Φ(x , y) = uh(x)− u(y)− α2|x − y |2

max[0,1]n

h

(uh − u) ≤ Φ(xα, yα) ≤ uh(xα)− u(yα) ≤ f (xα)− f (yα) + Cαh.

Since Φ(xα, xα) ≤ Φ(xα, yα) and u ∈ C 0,1([0, 1]n)

uh(xα)− u(xα) ≤ uh(xα)− u(yα)− α

2|xα − yα|2

or α

2|xα − yα|2 ≤ u(xα)− u(yα) ≤ C |xα − yα|.

Hence |xα − yα| ≤ C/α. Therefore

max[0,1]n

h

(uh − u) ≤ C

(1

α+ αh

).

The best possible choice for α is α = 1/√h which yields

uh − u ≤ C√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 51 / 63

Page 134: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Convergence rate for (S3)

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

The proof that |w − wh | ≤ C√h is similar, with the extension property replacing the

boundary condition.

Zeroth order term: Notice we can write (P3) as H (x , u,Du) = f (x) where

H (x , z , p) =n∏

i=1

(z + nxipi)

Therefore

∂zH (x , z , p) = H (x , z , p)

n∑i=1

1

z + nxipi

≥ nH (x , z , p)

(n∏

i=1

1

z + nxipi

) 1n

= nH (x , z , p)n−1n

= nf (x)n−1n .

Proof requires f ≥ m > 0.

Calder (UC Berkeley) Numerical schemes September 9, 2015 52 / 63

Page 135: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Convergence rate for (S3)

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

The proof that |w − wh | ≤ C√h is similar, with the extension property replacing the

boundary condition.Zeroth order term: Notice we can write (P3) as H (x , u,Du) = f (x) where

H (x , z , p) =n∏

i=1

(z + nxipi)

Therefore

∂zH (x , z , p) = H (x , z , p)

n∑i=1

1

z + nxipi

≥ nH (x , z , p)

(n∏

i=1

1

z + nxipi

) 1n

= nH (x , z , p)n−1n

= nf (x)n−1n .

Proof requires f ≥ m > 0.

Calder (UC Berkeley) Numerical schemes September 9, 2015 52 / 63

Page 136: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Convergence rate for (S3)

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n .

The proof that |w − wh | ≤ C√h is similar, with the extension property replacing the

boundary condition.Zeroth order term: Notice we can write (P3) as H (x , u,Du) = f (x) where

H (x , z , p) =n∏

i=1

(z + nxipi)

Therefore

∂zH (x , z , p) = H (x , z , p)

n∑i=1

1

z + nxipi

≥ nH (x , z , p)

(n∏

i=1

1

z + nxipi

) 1n

= nH (x , z , p)n−1n

= nf (x)n−1n .

Proof requires f ≥ m > 0.Calder (UC Berkeley) Numerical schemes September 9, 2015 52 / 63

Page 137: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Convergence rate for (S2)

(P3)n∏

i=1

(w + nxiwxi ) = f in (0, 1]n (P2)

vx1 · · · vxn = vn−1f in (0, 1]n

v = 0 on Γ

Recall v = x1 · · · xnwn . This identity approximately holds for wh and vh :

Lemma

Assume f ∈ C 0,1([0, 1]n) and f > 0. Then

|x1 · · · xnwh(x)n − vh(x)| ≤ Ch for all x ∈ [0, 1]nh , (8)

whereC = C

(n, [f ]1;[0,1]n , min

[0,1]nf).

The rate of convergence |nnvh(x)− u(x)n | ≤ C√h follows from the lemma and the rate

|wh(x)− w(x)| ≤ C√h.

Calder (UC Berkeley) Numerical schemes September 9, 2015 53 / 63

Page 138: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Outline

1 IntroductionMotivating example: Image retrievalNon-dominated sorting

2 Continuum limit for nondominated sortingHamilton-Jacobi equation for layersPDE-based ranking

3 Numerical schemesAn O(h1/n) schemeTwo (formally) O(h) schemesRegularityConvergence rates

4 Experimental results

5 References

Calder (UC Berkeley) Numerical schemes September 9, 2015 54 / 63

Page 139: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Test cases

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) u1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) u2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) u3

We consider 3 test cases:

u1(x) = n maxi∈1,...,n

(xi −

1

2

)+

∏j 6=i

xj

1n

u2(x) =1

k + 1(x1 · · · xn)

1n

(n∑

j=1

sin(kxj )2 + nk

)(k = 20)

u3(x) = n(x1 · · · xn)1n

(C maxx1, . . . , xn+

n∑j=1

xj

)(C = 10)

Calder (UC Berkeley) Numerical schemes September 9, 2015 55 / 63

Page 140: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

n=2 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order2.5× 10−2 7.1× 10−2 2.1× 10−2 6.7× 10−2

6.3× 10−3 3.4× 10−2 0.54 5.7× 10−3 0.93 3.3× 10−2 0.511.6× 10−3 1.6× 10−2 0.51 1.5× 10−3 0.97 1.6× 10−2 0.503.9× 10−4 8.2× 10−3 0.50 3.8× 10−4 0.98 8.2× 10−3 0.509.8× 10−5 4.1× 10−3 0.50 9.7× 10−5 0.99 4.1× 10−3 0.502.4× 10−5 2.0× 10−3 0.50 2.4× 10−5 1.00 2.0× 10−3 0.50

n=3 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order5× 10−2 3.1× 10−1 9.1× 10−2 2.1× 10−1

2.5× 10−2 2.3× 10−1 0.41 5.3× 10−2 0.79 1.7× 10−1 0.341.3× 10−2 1.8× 10−1 0.38 3.0× 10−2 0.80 1.3× 10−1 0.346.3× 10−3 1.4× 10−1 0.36 1.7× 10−2 0.82 1.1× 10−1 0.333.1× 10−3 1.1× 10−1 0.35 9.5× 10−3 0.84 8.5× 10−2 0.331.6× 10−3 8.5× 10−2 0.34 5.3× 10−3 0.85 6.7× 10−2 0.33

n=4 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order2.5× 10−1 1.1× 10−0 3.8× 10−1 4.9× 10−1

1.3× 10−1 7.9× 10−1 0.46 2.4× 10−1 0.68 4.1× 10−1 0.266.3× 10−2 6.0× 10−1 0.40 1.5× 10−1 0.64 3.5× 10−1 0.253.1× 10−2 4.7× 10−1 0.36 9.5× 10−2 0.70 2.9× 10−1 0.251.6× 10−2 3.7× 10−1 0.32 5.7× 10−2 0.72 2.5× 10−1 0.257.8× 10−3 3.1× 10−1 0.29 3.4× 10−2 0.75 2.1× 10−1 0.25

Calder (UC Berkeley) Numerical schemes September 9, 2015 56 / 63

Page 141: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

n=2 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order2.5× 10−2 9.5× 10−2 2.4× 10−2 2.4× 10−2

6.3× 10−3 4.6× 10−2 0.53 6.1× 10−3 0.99 5.9× 10−3 1.011.6× 10−3 2.3× 10−2 0.50 1.6× 10−3 0.97 1.4× 10−3 1.023.9× 10−4 1.1× 10−2 0.50 4.1× 10−4 0.98 3.5× 10−4 1.029.8× 10−5 5.6× 10−3 0.50 1.0× 10−4 0.99 8.8× 10−5 1.002.4× 10−5 2.8× 10−3 0.50 2.6× 10−5 1.00 2.2× 10−5 0.99

n=3 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order5× 10−2 3.6× 10−1 6.6× 10−2 5.6× 10−2

2.5× 10−2 2.8× 10−1 0.39 4.8× 10−2 0.46 4.0× 10−2 0.481.3× 10−2 2.2× 10−1 0.36 2.4× 10−2 1.02 2.0× 10−2 1.016.3× 10−3 1.7× 10−1 0.35 1.2× 10−2 0.94 1.0× 10−2 0.963.1× 10−3 1.3× 10−1 0.34 6.2× 10−3 0.98 5.3× 10−3 0.971.6× 10−3 1.1× 10−1 0.34 3.2× 10−3 0.96 2.7× 10−3 0.96

n=4 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order2.5× 10−1 1.6× 10−0 4.0× 10−1 3.1× 10−1

1.3× 10−1 1.2× 10−0 0.42 3.9× 10−1 3.8× 10−1

6.3× 10−2 6.9× 10−1 0.79 1.4× 10−1 1.49 1.1× 10−1 1.813.1× 10−2 5.3× 10−1 0.37 7.2× 10−2 0.93 5.8× 10−2 0.881.6× 10−2 4.3× 10−1 0.30 3.7× 10−2 0.94 3.0× 10−2 0.967.8× 10−3 3.4× 10−1 0.28 1.9× 10−2 0.98 1.5× 10−2 0.96

Calder (UC Berkeley) Numerical schemes September 9, 2015 57 / 63

Page 142: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

n=2 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order2.5× 10−2 8.3× 10−2 7.5× 10−2 3.1× 10−2

6.3× 10−3 4.2× 10−2 0.49 1.9× 10−2 1.00 8.0× 10−3 0.981.6× 10−3 2.1× 10−2 0.50 4.7× 10−3 1.00 2.0× 10−3 1.003.9× 10−4 1.1× 10−2 0.50 1.2× 10−3 1.00 5.0× 10−4 1.009.8× 10−5 5.3× 10−3 0.50 2.9× 10−4 1.00 1.3× 10−4 1.002.4× 10−5 2.7× 10−3 0.50 7.4× 10−5 1.00 3.1× 10−5 1.00

n=3 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order5× 10−2 3.0× 10−1 2.6× 10−1 1.3× 10−1

2.5× 10−2 2.5× 10−1 0.31 1.3× 10−1 0.96 6.8× 10−2 0.951.3× 10−2 2.0× 10−1 0.32 6.7× 10−2 0.99 3.5× 10−2 0.976.3× 10−3 1.6× 10−1 0.33 3.3× 10−2 0.99 1.8× 10−2 0.983.1× 10−3 1.2× 10−1 0.33 1.7× 10−2 1.00 8.8× 10−3 0.991.6× 10−3 9.9× 10−2 0.33 8.4× 10−3 1.00 4.4× 10−3 1.00

n=4 (S1) (S2) (S3)Mesh size h `∞ Error Order `∞ Error Order `∞ Error Order2.5× 10−1 8.5× 10−1 1.4× 10−0 6.3× 10−1

1.3× 10−1 6.6× 10−1 0.37 7.7× 10−1 0.84 3.8× 10−1 0.736.3× 10−2 5.5× 10−1 0.26 4.1× 10−1 0.89 2.1× 10−1 0.863.1× 10−2 4.6× 10−1 0.25 2.2× 10−1 0.94 1.1× 10−1 0.911.6× 10−2 3.9× 10−1 0.25 1.1× 10−1 0.98 5.6× 10−2 0.967.8× 10−3 3.2× 10−1 0.25 5.5× 10−2 0.99 2.8× 10−2 0.99

Calder (UC Berkeley) Numerical schemes September 9, 2015 58 / 63

Page 143: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Outline

1 IntroductionMotivating example: Image retrievalNon-dominated sorting

2 Continuum limit for nondominated sortingHamilton-Jacobi equation for layersPDE-based ranking

3 Numerical schemesAn O(h1/n) schemeTwo (formally) O(h) schemesRegularityConvergence rates

4 Experimental results

5 References

Calder (UC Berkeley) Numerical schemes September 9, 2015 59 / 63

Page 144: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Adhar, G. (2007).Parallel algorithms for chains and anti-chains of points on a plane.In International Conference on Parallel and Distributed Systems (ICPADS),volume 2, pages 1–7.

Aldous, D. and Diaconis, P. (1999).Longest increasing subsequences: from patience sorting to theBaik-Deift-Johansson Theorem.Bulletin of the American Mathematical Society, 36(4):413–432.

Bardi, M. and Dolcetta, I. (1997).Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations.Springer.

Calder, J. (2015a).A direct verification argument for the Hamilton-Jacobi equation continuum limit ofnondominated sorting.arXiv preprint:1508.01565.

Calder, J. (2015b).Numerical schemes and rates of convergence for the Hamilton-Jacobi equationcontinuum limit of nondominated sorting.arXiv preprint:1508.01557.

Calder (UC Berkeley) Numerical schemes September 9, 2015 60 / 63

Page 145: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Calder, J., Esedoglu, S., and Hero, A. O. (2014).A Hamilton-Jacobi equation for the continuum limit of non-dominated sorting.SIAM Journal on Mathematical Analysis, 46(1):603–638.

Calder, J., Esedoglu, S., and Hero, A. O. (2015).A PDE-based approach to nondominated sorting.SIAM Journal on Numerical Analysis, 53(1):82–104.

Crandall, M. G. and Lions, P.-L. (1984).Two approximations of solutions of Hamilton-Jacobi equations.Mathematics of Computation, 43(167):1–19.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).A fast and elitist multiobjective genetic algorithm: NSGA-II.IEEE Transactions on Evolutionary Computation, 6(2):182–197.

Hammersley, J. (1972).A few seedlings of research.In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics andProbability, volume 1, pages 345–394.

Hero, A. (2003).Gene selection and ranking with microarray data.In IEEE International Symposium on Signal Processing and its Applications,volume 1, pages 457–464.

Calder (UC Berkeley) Numerical schemes September 9, 2015 61 / 63

Page 146: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Hsiao, K.-J., Calder, J., and Hero III, A. O. (2015a).Pareto-depth for multiple-query image retrieval.IEEE Transactions on Image Processing, 24(2):583–594.

Hsiao, K.-J., Xu, K., Calder, J., and Hero, A. (2012).Multi-criteria anomaly detection using Pareto Depth Analysis.In Advances in Neural Information Processing Systems 25, pages 854–862.

Hsiao, K.-J., Xu, K., Calder, J., and Hero, A. (2015b).Multi-criteria similarity-based anomaly detection using Pareto Depth Analysis.IEEE Transactions on Neural Networks and Learning Systems.To appear.

Lou, R. and Sarrafzadeh, M. (1993).An optimal algorithm for the maximum three-chain problem.SIAM Journal on Computing, 22(5):976–993.

Papadias, D., Tao, Y., Fu, G., and Seeger, B. (2005).Progressive skyline computation in database systems.ACM Transactions on Database Systems (TODS), 30(1):41–82.

Pevzner, P. (2000).Computational Molecular Biology.The MIT Press.

Calder (UC Berkeley) Numerical schemes September 9, 2015 62 / 63

Page 147: Numerical Schemes for the Hamilton-Jacobi Equation ...jwcalder/NumSchemeTalk.pdf · Multi-query image retrieval Problem:Find images in a dataset S that are similar to multiple query

Prahofer, M. and Spohn, H. (2000).Universal distributions for growth processes in 1+ 1 dimensions and randommatrices.Physical review letters, 84(21):4882–4885.

Souganidis, P. E. (1985).Approximation schemes for viscosity solutions of Hamilton-Jacobi equations.Journal of differential equations, 59(1):1–43.

Viennot, G. (1984).Chain and antichain families, grids and Young tableaux.In Orders: description and roles, volume 99 of North-Holland Mathematics Studies,pages 409–463.

Calder (UC Berkeley) Numerical schemes September 9, 2015 63 / 63