Modeling Current Transformer (CT) Saturation for · PDF file1 Modeling Current Transformer...

Preview:

Citation preview

H I G H - P O W E R E D R E S E A R C

H F

OR

TH

E R

EA

L W

OR

LD

December2011Issue…

1 ModelingCurrentTransformer(CT) SaturationforDetailedProtectionStudies

6 TheWoundRotor(WR)andSquirrel Cage(SQ)InductionMachineModels inthePSCAD®Library

9 NewPTConnections

11 MeettheTeam!

12 PSCAD®2012TrainingSessionsDecember 2011

ThePSCAD®MasterLibrarycontainsanumberofmodelsthatcouldbeusedfordetailedprotectionsystemanalysis. Themostimportantofthesemodelsarethecurrenttransformermodels.Currenttransformersaturationisassociatedwithmanyprotectionproblemsencounteredinpowersystems.CTsaturationisacomplexphenomenonandaccuratemodelinginasimulationenvironmentischallenging.ThemodelsavailableinPSCAD®arebasedontheadvancedmathematicalmodelsproposedbyJilesandAthertonandcommonlyreferredtoasthe

‘Jiles-AthertontheoryofFerromagnetichysteresis.’

ThesedevelopedmodelshavebeenextensivelytestedwithfieldrecordingsincollaborationswithCT,relayandprotectionequipmentvendors.

ThiscaseisusedtoillustratetheeffectsofCTsaturation.ThekeyparametersthatimpactCTsaturationarediscussedinanefforttoguidePSCAD®userswhomayusethismodelfortheirsimulations.

GeneralTheory ThemagneticcharacteristicoftheCTisshowninFigure1(hysteresisnotshown).Inthelinearregion,theCTwillbehavealmostlikeanidealratiochanger.Thatis,theCTsecondarycurrentisanidenticalbutscaleddownreplicaoftheprimarycurrent.However,IftheCTsaturates,morecurrentisrequiredtomagnetizethecoreandasaresultthesecondarycurrent(IS)availableasinputstotherelay

maynotbeanidenticalscaleddownreplicaoftheactualprimarycurrent(IP).Thiscanleadtoprotectionissuesandshouldbegivendueconsideration.

SystemOverview TheACsystemshowninFigure2consistsoftwo230kV,60HzThevaninvoltagesources,a75MVAloadandthree230kVtransmissionlines(125km,75kmand200km).Asinglephase(PhaseA)togroundfaultisappliedbetweenthefirsttwotransmissionlines.

ModelingCurrentTransformer(CT)SaturationforDetailedProtectionStudiesDr. Dharshana Muthumuni, Lisa Ruchkall, and Dr. Rohitha Jayasinghe, Manitoba HVDC Research Centre

Figure1 IM–Fluxcurve

2   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

CurrentTransformerSaturation CTsaturationcanbeexplainedusingthesimplifiedequivalentcircuitshowninFigure3.

Inthelinearregionofoperation,magnetizingcurrent(IM1)isverysmallandhenceIP–IMisapproximatelyequaltoIP.ThusISwouldbeascaleddownversion(byafactorofN).IftheCTsaturates,themagnetizingcurrentincreases(IM2).Asaresult,onlyapartofIPisavailablefortransformationtothesecondary.Inthissimulationcase,afaultissimulatedonthetransmissionlineandtheCTisattheendoftheline(whereIabcismeasured).

Note:Figure4showshowtheCTmodelisusedinPSCAD®.Notealsothattheinputprimarycurrent(Iabc)isinkiloampsandthesecondarycurrent(Isabc)isinamps.TheCTsaremodeledas(independent)blocksanddonothavetobeconnectedtotheelectriccircuit.

ThisrepresentationisvalidsincetheCTisessentiallyashortcircuit(inseries)fromtheprimarypowersystemnetworkperspective.

KeyParametersImpactingCTSaturationThefollowingcanhaveasignificantimpactonCTsaturationandshouldbegivendueconsiderationinasimulationstudy:

1) DCoffsetintheprimarysidefaultcurrent.2)RemnantfluxontheCTpriortothefault(ifany).3)Secondarysideimpedanceincludingthoseof therelay,connectingwiresandCTsecondary impedance-thisparameterplaysamajorrolein thelevelofsaturationtheCTwillbesubjectedto.

Illustrativesimulationresultsarepresentedinthefollowingsectionstohighlightsomeofthekeypoints.

Figure2 ACsystemmodel

Figure3 SchematicrepresentationofCT(left)andthesimplifiedequivalentcircuit(right)

Figure4 CTPSCAD®implementation

D E C E M B E R 2 0 1 1 3

Case1–Impact of DC offset in the primary fault current:ThepointonthevoltagewaveformattheinstantofthefaultdeterminestheleveloftheDCoffsetintheprimarycurrent.ThemaximumDCoffsetwilloccurwhenthefaultisappliedatavoltageminimum(t=0.49167s).TheresultsinFigure5aoccurwhentheDCoffsetissignificant.

Ascanbeseen,theDCoffsetcausestheflux(Figure5b)tobedrivendownandintosaturation.TheCThassaturatedafterabouttwocycles.ThereductionofthesecondarycurrentisevidentfromFigure5a.

ThesimulationresultsinFigure5bdemonstrateasituationwhenthereisnoDCoffset(faultisappliedatt=0.4876s,voltagemaximum).Ascanbeseen,theCTdoesnotgointosaturationandonlyasmallamountofmagnetizingcurrentisrequiredtomagnetizethecore.Therefore,thesecondarycurrentisanexactbutscaleddownreplicaoftheprimarycurrent.

InFigure5aalsonotetheremnantfluxintheCTcoreoncethefaultiscleared.EffectsofremnantfluxwillbediscussedinCase2.

Figure5a DCoffsetpresent Figure5b NoDCoffsetpresent

Main : Graphs

0.450 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850

-200

-100

0

100

200

Volta

ge (k

V)

Vabc

-30

-20

-10

0

10

20

Sec.

Cur

rent

(A)

Ia_sec

-6.0

-4.0

-2.0

0.0

2.0

4.0

Pri.

Cur

rent

(kA)

Iabc

-1.00

-0.50

0.00

0.50

1.00

1.50

Flux

den

sity

(T)

B

Main : Graphs

0.450 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850

-200 -150 -100 -50

050

100150200

Volta

ge (k

V)

Vabc

-30

-20

-10

0

10

20

Sec.

Cur

rent

(A)

Ia_sec

-6.0

-4.0

-2.0

0.0

2.0

4.0

Pri.

Cur

rent

(kA)

Iabc

-2.00

-1.50

-1.00

-0.50

0.00

0.50

Flux

den

sity

(T)

B

Main : Graphs

0.450 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850

-200

-100

0

100

200

Volta

ge (k

V)

Vabc

-30

-20

-10

0

10

20

Sec.

Cur

rent

(A)

Ia_sec

-6.0

-4.0

-2.0

0.0

2.0

4.0

Pri.

Cur

rent

(kA)

Iabc

-1.00

-0.50

0.00

0.50

1.00

1.50

Flux

den

sity

(T)

B

Main : Graphs

0.450 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850

-200 -150 -100 -50

050

100150200

Volta

ge (k

V)

Vabc

-30

-20

-10

0

10

20

Sec.

Cur

rent

(A)

Ia_sec

-6.0

-4.0

-2.0

0.0

2.0

4.0

Pri.

Cur

rent

(kA)

Iabc

-2.00

-1.50

-1.00

-0.50

0.00

0.50 Fl

ux d

ensi

ty (T

)B

Impact of DC offset in the primary fault current...

4   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

Note:theB-HlooptrajectoryoftheCTduringthefaultisshowninFigure6.TheformationoftheminorB-HloopsandhysteresisareaccuratelymodeledbasedontheJiles-Athertontheoryofferromagnetichysteresis.SuchdetailedrepresentationsoftheCTbehaviorarenecessaryfordetailedprotectionsystemanalysis,suchas:

•CTresponseduringautoreclose•ProtectionschemeswithCTsoperatinginparallel –6CTsinparallelinathree-phasetransformer differentialscheme –3CTsinparallelinanearthfaultrelayscheme – CTconnectionsingeneratorprotections

Case2–Reclosing the line while the fault is still present (auto reclose):Inthefirstfaultevent,saturationhadtakenapproximatelytwocycles.Ifthelineisreclosedwhilethefaultisstillpresent,theCTmaysaturatemuchfasterduetothepresenceoftheremnantflux.ThisisdemonstratedinFigure7.Ascanbeseen,thesaturationoccursinapproximatelyhalfacycle,possiblybeforetherelayhadtimetorespond.

Figure7 Case2results

Figure6 B-Hlooptrajectory

D E C E M B E R 2 0 1 1 5

Figure8 Case3results

Case3–Effect of the secondary impedance:TheCTsecondarysideburdenimpedancehasasignificantimpactonCTsaturation.InCase1,theburdenwassetto2.5Ω.TheresultsshowninFigure8wereobtainedbyreducingtheburdento0.5Ωinthesimulation.Ascanbeseenfromtheresults,thefluxisnotdrivendownasfar.ItalsotakesalongertimefortheCTtobecomesaturated(approximately6cycles).

Note:TheCTmodelusedintheexamplecaseisthatofasingleCToperatingindependentlyofanyotherCTsintheprotectionscheme.Ingeneral,aprotectionschememayhaveanumberofCTsoperatinginparallel.TheresponseofoneCTmayimpactthebehaviouroftheotherandthus,shouldbeappropriatelymodeled.ContactthePSCAD®TechnicalSupportTeamformoreinformationonspecificmodels.

Main : Graphs

0.450 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850

-30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 5.0

10.0 15.0

A

Ia_sec

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

kA

Iabc

-2.00

-1.50

-1.00

-0.50

0.00

Flu

x de

n

B

The response of one CT may impact the behaviour of the other and should be appropriately modeled…

6   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L6   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

Dr. Dharshana Muthumuni, Manitoba HVDC Research Centre

TheinductionmachinemodelsaretwoofthemostwidelyusedcomponentsfromthePSCAD®MasterLibrary. ThePSCAD®libraryhastwoinductionmotormodels:

1)Squirrelcageinductionmachinemodel representingadoublecagedesign–(SQ).2)Woundrotorinductionmachinemodel–(WR).

TheTechnicalSupportTeamreceivesquestionsfromourusersastowhichmodeltheyshouldusetorepresentasetofspecificdataprovidedbytheequipmentvendor.ThegoalofthistechnicalnoteistoprovidethenecessaryinformationtohelpPSCAD®userswhenfacedwithsuchquestions.

Mathematically,theSQcagemachinecanberepresentedbytheWRmachine.TheWRmodelcouldalsobeusedtorepresentadoublecageSQmachine.Thetwoexamplesbelowwilldescriberelevantdataentryconsiderationsandalsocompareresultsforvalidationpurposes.

Thesimplesimulationcaseshownbelowisusedtohighlightthekeypoints.ASQmachineandaWRmachinewithcomparableparameters(identicalratingsanddata)areconnectedtothesamesupplysource(60Hz,0.69kV).

Example1:Modelingasinglecageinductionmachine TheSQcagemachinemodelortheWRmachinemodelmaybeusedtorepresentasinglecage(SQ)machine(IM_study_01.pscx).

Theequivalentcircuitofadoublecagedesign(asimplementedinPSCAD®)squirrelcagemachineisshownbelowinFigure2.

Theequivalentcircuitofawoundrotormachinemodel(singlerotorwinding)isshowninFigure3.

TousetheSQcagemachinemodeltorepresentasinglecagemachine:

–Makethe‘secondcageresistance’(RC2)and the‘secondcageunsaturatedreactance’(XLC2) relativelylarge(comparedtotheotherleakage inductances/resistances).Inthiscase,thevalues usedareRC2 =5PUandXLC2 =5PU,whichismuch largerthanRC1 =0.0507PUandXMR =0.091PU.–GivetheSQcage‘rotorunsaturatedmutual reactance’(XMR)thesamevalueastheWR ‘rotorleakagereactance’(XLR).

TheWoundRotor(WR)andSquirrelCage(SQ)InductionMachineModelsinthePSCAD®Library

Figure1 Circuitdiagram(WR–top,SQcage–bottom)

Figure2 SQcage(doublecage)equivalentcircuit

Figure3 WRIM(singlewinding)equivalentcircuit

TIN1

0.0

0.0 I M

W

S

T Motor

RRL

S

TL

I M W

TIN2 X 2

W *

0.2 TIN1

0

0

Timed Breaker Logic

Open@t0 BRK

BRK

X 2 W2

* 0.2

TIN2

RS

RC1

XLS

XLC2

RC2

XMR

XM

RS XLS

XLR

RR

XM

N O V E M B E R 2 0 0 9 7D E C E M B E R 2 0 1 1 7

Figure4showsthedataentryfortheSQcage(left)andWRmodels(right).Byusingequivalentvalues,bothmodelsshowcomparablebehaviour(Figure5)andrepresentasinglecagemachinedesign.

ThesimulationresultsshowninFigure5showthatthespeed(W–WR,W2–SQcage)andtorque(T–WR,T2–SQcage)ofbothmachinesareidentical.Thus,anyoneoftheinductionmachinemodelsmaybeusedtorepresentasinglecageinductionmachine.

Example2:Modelingadoublecageinductionmachine. TheWRmachinemodelcanbesetuptorepresentadoublecageSQcagemachine(IM_study_02.pscx).

IntheWRmodel,selectthe“No.ofRotorSquirrelCages=1”,asshowninFigure6.TheequivalentcircuitrepresentationisasinFigure7.

Figure4 SQcageandWRsetupconfiguration

Figure5 Simulationresults(IM_study_06_a.pscx)

Figure6 WRconfiguration

Simulation Results

time(s) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.0

1.10

PU

W W2

-0.10

0.80

PU

Te Te2

 

Figure7 WRIM(No.ofrotorsquirrelcages=1)equivalentcircuit

RS

RR

RLR

XLS

XLC1

RC1

XMR

XM

8   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

Figure8showsthedataentryfortheWRmodel.Withtheappropriatedata,theSQcageandWRmachinemodelswillgiveidenticalresults(Figure9).

Conclusions Ascanbeseenfromtheresults,aSQcageandWRmachinemodeldeliverequivalentresultswhenconfiguredproperly.Hence,aSQcagemachinemodelcanbeaccuratelyrepresentedusingaWRmachinemodel.PSCAD® users are encouraged to use the WRIM model due to its more conventional and straight forward parameter configuration.

PSCAD®Cases:IM_study_01.pscxandIM_study_02.pscx

Figure8 WRsetupconfiguration

Figure9 Simulationresults(IM_study_06_b.pscx)

A SQ cage and WR machine model deliver equivalent results when configured properly…

D E C E M B E R 2 0 1 1 9

NewPTConnectionsDr. Namal Fernando, Manitoba Hydro

Background Generator and transformer protection upgrade at Seven Sisters generation station.Therearesixunitsandtheexistingelectromechanicalrelaysarebeingreplacedwithmulti-functionaldigitalrelays.Theprojectincludesreplacementoflineendpotentialtransformers;theexistingtwopotentialtransformers(i.e.opendeltawithphaseBgrounded)arebeingreplacedwiththreepotentialtransformers(groundedwye).Thereisonlyonesynchronizingsystemforallsixunits.Incomingvoltagereferenceislinevoltage;phaseABwithBatgroundpotential.

Problem Sincethenewdesignincludesthreepoten-tialtransformerswithneutralgrounded,wecouldnotconnectdirectlytotheexistingsynchronizersystem.TheexistingsystemisbasedonphaseBatgroundpotentialandcommontoalltheunits,whereastheunitswiththenewprotectiondesignwillhaveneutralpointgrounded(i.e.,forunitswithnewprotectiondesign,thephaseBisnolongeratgroundpotential).

Solution InstallanisolatingtransformerbetweenthelinevoltageABandtheincomingvoltageinputtothesynchronizersystem.

PSCAD®Application ItiswellknownthatPTsshouldbeconnectedincorrectphasesequence.Whilethecorrectconnectionscanbedeterminedthroughsimplehandcalculationsbyconstructingrelevantphasordiagrams(Figure1),thisisnotalwaysstraightforward.

Therearemanyinstanceswhereincorrectconnec-tionshavecausedunittrippingatthecommissioningandtestingstage.Thiscouldcreateaheadacheforallinvolvedandtheconsequencescanbesignificant.PSCAD®providesasimpleandefficientwaytoverifythenewconnections.WeusedasimplePSCAD®simulationcircuittoverifythatthePTconnectionscorrespondingtotherunningandincomingvoltagestothesynchronizerareconnectedproperly.

Ea

D

0.155559 30

Figure1 Phasordiagram

1 0   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L1 0   P U L S E   T H E M A N I T O B A H V D C R E S E A R C H C E N T R E J O U R N A L

ThePSCAD®caseusedforthestudyisshowninthefigurebelow.Thesimulationisnotcomplex.However,wefindthistobeausefulengineeringapplication.TheschematicdiagramsareshowninFigures2and3.

TheimportantdataforthissimulationisjustthePTvoltage(turns)ratios.Otherdetails,suchassaturation,etc.arenotimportantforthisbasicanalysis.

Figure2 NewPTconnection

Figure3 OldPTconnection

PUBLICATIONAGREEMENT#41197007RETURNUNDELIVERABLECANADIANADDRESSESTO

MANITOBAHVDCRESEARCHCENTRE211COMMERCEDRIVE

WINNIPEGMBR3P1A3CANADA

T+12049891240F+12049891277info@pscad.com

D E C E M B E R 2 0 1 1 1 1

JuanCarlosGarciaAlonso,P.Eng.Power System Simulation & Studies Engineer

JuanCarlos(JC)receivedhisElectricalEngineeringdegreefromtheNationalUniversityofColombia,Bogota,Colombiain1996andsubsequentlyreceivedhisM.Sc.degreefromtheUniversityofManitoba,Canada.HedesignedpowertransformerswithPauwelsTransformersinWinnipegandin2006joinedtheMHRC.JCparticipatesinvariousengineeringserviceprojectsintheareasofinsulationcoordination,VSCs,protectionandsuperconductivemagneticdevices,amongothers.HismainfocusduringthisperiodhasbeenwritingnewmodelsformagneticsimulationwithPSCAD®.

JCcanbefoundenjoyinghisfavouriteoutdooractivities,suchasrockclimbing,canoeingandhiking.

ArashDarbandiEngineering Application Specialist

ArashreceivedhisElectricalEngineeringdegreefromtheUniversityofManitoba,Canadain2010andiscurrentlypursuinghisM.Sc.atthesameuniversity.Inhisshorttimeherewithus,ArashhasimprovedthelinefeaturesoftwareofourIceVisionsystemanddevelopedanewalgorithmtoimprovetheexistingsoftware.ArashassistedwiththeLineFaultLocator(LFL)productbydevelopingnewfactoryacceptancetestsfortheLFL,improvingsoftwarequal-ityandperformance.Arashiscurrentlyinvolvedwiththebatteryre-purposingresearchprojectdevelopingapowerelectronicgridinterconnectionandareactivepowerstudy.Heisalsoperformingreactivepowerstudiesindifferentplants,aswellasprovidingrecommendationstoclientstoimprovetheirsystemperformance.

Arashenjoysahealthyandactivelifestyle,volunteeringwiththeUniversityofManitobaSatelliteteamastheirTechnicalCoordinator,andtravellinginternationallytoexperiencecultureandcuisine.

Manitoba HVDC Research Centre

MeettheTeam!

TheManitobaHVDCResearchCentrepridesitselfonitsexcellentcustomersupportandservice.Oursuccessisadirectresultofourclientfocusedefforts.Wearecommittedtoprovidingourclientswiththebestpossiblesupporttoensureoptimumsuccesswithourproductsandservices.“MeettheTeam”willbearegularlypublishedadditiontothePulseNewslettertointroduceourexperiencedteammembers.ThispublicationfeaturesJuanCarlosGarciaAlonsoandArashDarbandi;justafewofthedynamicstaffmemberswearefortunatetohaveattheManitobaHVDCResearchCentre(MHRC).

Puls

eis

dis

trib

ute

df

ree

of

char

ge

and

isp

ost

ede

lect

ron

ical

lya

tww

w.h

vdc.

caI

fyo

uw

ou

ldli

ket

or

ecei

vea

co

py

ofP

uls

e,p

leas

ese

nd

us

ane

mai

lto

info

@h

vdc.

caA

rtic

les

and

su

bm

issi

on

sad

dre

ssin

gt

he

use

of

PSC

AD

®in

th

ere

alw

orl

da

rea

lway

sw

elco

me.

©20

11M

anit

ob

aH

VD

CR

esea

rch

Cen

tre,

ad

ivis

ion

of

Man

ito

ba

Hyd

roIn

tern

atio

nal

Ltd

.Pr

inte

din

Can

ada

ExpandingKnowledgeThefollowingcoursesareavailable,aswellascustom training courses–pleasecontacttraining@pscad.comformoreinformation.

FundamentalsofPSCAD®andApplicationsIncludesdiscussionofACtransients,faultandprotection,transformersaturation,windenergy,FACTS,distributedgeneration,andpowerqualitywithpracticalexamples. Duration: 3 Days

AdvancedTopicsinPSCAD®SimulationIncludescustomcomponentdesign,analysisofspecificsimulationmodels,HVDC/FACTS,distributedgeneration,machines,powerquality,etc. Duration: 2–4 Days

HVDCTheory&ControlsFundamentalsofHVDCTechnologyandapplicationsincludingcontrols,modelingandadvancedtopics. Duration: 4–5 Days

ACSwitchingStudyApplicationsinPSCAD®Fundamentalsofswitchingtransients,modelingissuesofpowersystemequipment,straycapacitances/inductances,surgearresterenergyrequirements,batchmodeprocessingandrelevantstandards,directconversionofPSS/EfilestoPSCAD®. Duration: 2–3 Days

DistributedGeneration&PowerQualityIncludeswindenergysystemmodeling,integrationtothegrid,powerqualityissues,andotherDGmethodssuchassolarPV,smalldieselplants,fuelcells. Duration: 3 Days

LightningCoordination&FastFrontStudiesSubstationmodelingforafastfrontstudy,representingstationequipment,straycapacitances,relevantstandards,transmissiontowermodelforflash-overstudies,surgearresterrepresentationanddata. Duration: 2 Days

MachineModelingincludingSRRInvestigationandApplicationsTopicsincludemachineequations,exciters,governors,etc.,initializationofthemachineanditscontrolstoaspecificloadflow.AlsodiscussedaretypicalapplicationsandSSRstudieswithseriescompensatedlinesasthebasecase. Duration: 2 Days

ModelingandApplicationofFACTSDevicesFundamentalsofsolid-stateFACTSsystems.Systemmodeling,controlsystemmodeling,convertermodeling,andsystemimpactstudies. Duration: 2–3 Days

TransmissionLines&ApplicationsinPSCAD®

Modelingoftransmissionlinesintypicalpowersystemstudies.Historyandfundamentalsoftransmissionlinemodeling,discussiononmodels,suchasPhase,Modal,BergeronandPIintermsofaccuracy,typicalapplications,limitations,etc.,examplecasesanddiscussionontranspo-sition,standardconductors,treatmentsofgroundwire,cross-bondingofcables,etc. Duration: 3 Days

WindPowerModelingandSimulationusingPSCAD®

Includeswindmodels,aero-dynamicmodels,machines,softstartinganddoublyfedconnections,crowbarprotection,lowvoltageridethroughcapability. Duration: 3 Days

ConnectwithUs!January11–13,20122012PSCAD®andRTDSAsiaConferencewww.nayakpower.comBangalore,India

January18–22,2012Elecrama–2012www.elecrama.com/elecrama2012/index.aspxMumbai,India

January24–26,2012DistribuTECHConference&Exhibitionwww.distributech.com/index.htmlSanAntonio,Texas,USA|Booth#4541

March27–30,20122012PSCADEuropeanUserGroupMeetingtraining@pscad.comCastelldefels,Spain

June3–6,2012AWEAWindpower2012Conference&Exhibitionwww.windpowerexpo.orgAtlanta,Georgia,USA|Booth#7513

August27–31,2012CIGRESession44andTechnicalExhibitionwww.cigre.org/gb/events/sessions.aspParis,France

Moreeventsareplanned!Pleaseseewww.pscad.comformoreinformation.

PSCAD® Training Sessions

Hereareafewofthetrainingcoursescurrentlyscheduled.Additionalopportunitieswillbeaddedperiodically,sopleaseseewww.pscad.comformoreinformationaboutcourseavailability.

April17–19,2012FundamentalsofPSCAD®andApplications

May15–17,2012HVDCTheoryandControls

September11–13,2012FundamentalsofPSCAD®andApplications

September18–20,2012WindPowerModeling&SimulationusingPSCAD®

November27–29,2012HVDCTheoryandControls

AlltrainingcoursesmentionedaboveareheldattheManitobaHVDCResearchCentreInc.Winnipeg,Manitoba,Canadatraining@pscad.com www.pscad.com

PleasevisitNayakCorporation'swebsitewww.nayakcorp.comforcoursesintheUSA.

For more information on dates, contact training@pscad.com today!

Recommended