Lecture12

Preview:

Citation preview

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 1

MODULE 3

FUNCTION OF A RANDOM VARIABLE AND ITS

DISTRIBUTION

LECTURES 12-16

Topics

3.1 FUNCTION OF A RANDOM VARIABLE

3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF

A RANDOM VARIABLE

3.3 EXPECTATION AND MOMENTS OF A RANDOM

VARIABLE

3.4 PROPERTIES OF RANDOM VARIABLES HAVING

THE SAME DISTRIBUTION

3.5 PROBABILITY AND MOMENT INEQUALITIES 3.5.1 Markov Inequality 3.5.2 Chebyshev Inequality

3.5.3 Jensen Inequality 3.5.4 ๐‘จ๐‘ด-๐‘ฎ๐‘ด-๐‘ฏ๐‘ด inequality

3.6 DESCRIPTIVE MEASURES OF PROBABILITY

DISTRIBUTIONS 3.6.1 Measures of Central Tendency

3.6.1.1 Mean 3.6.1.2 Median 3.6.1.3 Mode

3.6.2 Measures of Dispersion

3.6.2.1 Standard Deviation 3.6.2.2 Mean Deviation 3.6.2.3 Quartile Deviation 3.6.2.4 Coefficient of Variation

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 2

3.7 MEASURES OF SKEWNESS

3.8 MEASURES OF KURTOSIS

MODULE 3

FUNCTION OF A RANDOM VARIABLE AND ITS

DISTRIBUTION

LECTURE 12

Topics

3.1 FUNCTION OF A RANDOM VARIABLE

3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF

A RANDOM VARIABLE

3.1 FUNCTION OF A RANDOM VARIABLE

Let ๐›บ,โ„ฑ,๐‘ƒ be a probability space and let ๐‘‹ be random variable defined on ๐›บ,โ„ฑ,๐‘ƒ .

Further let โ„Ž:โ„ โ†’ โ„ be a given function and let ๐‘:๐›บ โ†’ โ„be a function of random

variable ๐‘‹, defined by ๐‘ ๐œ” = โ„Ž ๐‘‹ ๐œ” ,๐œ” โˆˆ ๐›บ. In many situations it may be of interest

to study the probabilistic properties of ๐‘, which is a function of random variable ๐‘‹. Since

the variable ๐‘ takes values in โ„, to study the probabilistic properties of ๐‘, it is necessary

that ๐‘โˆ’1 ๐ต โˆˆ โ„ฑ,โˆ€๐ต โˆˆ โ„ฌ1, i.e., ๐‘ is a random variable. Throughout, for a positive integer

๐‘˜,โ„๐‘˜ will denote the ๐‘˜-dimensional Euclidean space and โ„ฌ๐‘˜ will denote the Borel sigma-

field in โ„๐‘˜ .

Definition 1.1 Let ๐‘˜ and ๐‘š be positive integers. A function โ„Ž:โ„๐‘˜ โ†’ โ„๐‘š is said to be a Borel function if

โ„Žโˆ’1 ๐ต โˆˆ โ„ฌ๐‘˜ ,โˆ€๐ต โˆˆ โ„ฌ๐‘š . โ–„

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 3

The following lemma will be useful in deriving conditions on the function โ„Ž:โ„ โ†’ โ„ so

that ๐‘:๐›บ โ†’ โ„, defined by ๐‘ ๐œ” = โ„Ž ๐‘‹ ๐œ” ,๐œ” โˆˆ ๐›บ, is a random variable. Recall that, for

a function ฮจ:๐ท1 โ†’ ๐ท2 and ๐ด โŠ† ๐ท2, ฮจโˆ’1 ๐ด = ๐œ” โˆˆ ๐ท1: ฮจ ๐œ” โˆˆ ๐ด .

Lemma 1.1

Let ๐‘‹:๐›บ โ†’ โ„ and โ„Ž:โ„ โ†’ โ„ be given functions. Define ๐‘:๐›บ โ†’ โ„ by ๐‘ ๐œ” =

โ„Ž ๐‘‹ ๐œ” ,๐œ” โˆˆ ๐›บ. Then, for any ๐ต โŠ† โ„,

๐‘โˆ’1 ๐ต = ๐‘‹โˆ’1 โ„Žโˆ’1 ๐ต .

Proof. Fix ๐ต โŠ† โ„. Note that โ„Žโˆ’1 ๐ต = ๐‘ฅ โˆˆ โ„: โ„Ž ๐‘ฅ โˆˆ ๐ต . Clearly

โ„Ž ๐‘‹ ๐œ” โˆˆ ๐ต โ‡” ๐‘‹ ๐œ” โˆˆ โ„Žโˆ’1 ๐ต .

Therefore,

๐‘โˆ’1 ๐ต = ๐œ” โˆˆ ๐›บ: ๐‘ ๐œ” โˆˆ ๐ต

= ๐œ” โˆˆ ๐›บ: โ„Ž ๐‘‹ ๐œ” โˆˆ ๐ต

= ๐œ” โˆˆ ๐›บ: ๐‘‹ ๐œ” โˆˆ โ„Žโˆ’1 ๐ต

= ๐‘‹โˆ’1 โ„Žโˆ’1 ๐ต . โ–„

Theorem 1.1

Let ๐‘‹ be a random variable defined on a probability space ๐›บ,โ„ฑ,๐‘ƒ and let โ„Ž:โ„ โ†’ โ„ be

a Borel function. Then the function ๐‘:๐›บ โ†’ โ„, defined by ๐‘ ๐œ” = โ„Ž ๐‘‹ ๐œ” ,๐œ” โˆˆ ๐›บ, is a

random variable.

Proof. Fix ๐ต โˆˆ โ„ฌ1. Since โ„Ž is a Borel function, we have โ„Žโˆ’1 ๐ต โˆˆ โ„ฌ1. Now using the

fact that ๐‘‹ is a random variable it follows that

๐‘โˆ’1 ๐ต = ๐‘‹โˆ’1 โ„Žโˆ’1 ๐ต โˆˆ โ„ฑ.

This proves the result. โ–„

Remark 1.1

(i) Let โ„Ž:โ„ โ†’ โ„ be a continuous function. According to a standard result in

calculus inverse image of any open interval ๐‘Ž, ๐‘ ,โˆ’โˆž โ‰ค ๐‘Ž < ๐‘ โ‰ค โˆž, under

continuous function โ„Ž is a countable union of disjoint open intervals. Since โ„ฌ1

contains all open intervals and is closed under countable unions it follows that

โ„Žโˆ’1 ๐‘Ž, ๐‘ โˆˆ โ„ฌ1 , whenever โˆ’โˆž โ‰ค ๐‘Ž < ๐‘ โ‰ค โˆž . Now on employing the

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 4

arguments similar to the one used in proving Theorem 1.1, Module 2 (also see

Theorem 1.2, Module 2) we conclude that โ„Žโˆ’1 ๐ต โˆˆ โ„ฌ1,โˆ€๐ต โˆˆ โ„ฌ1. It follows

that any continuous function โ„Ž:โ„ โ†’ โ„ is a Borel function and thus, in view of

Theorem 1.1, any continuous function of a random variable is a random

variable. In particular if ๐‘‹ is a random variable then ๐‘‹2 , ๐‘‹ , max ๐‘‹, 0 , sin๐‘‹

and cos๐‘‹ are random variables.

(ii) Let โ„Ž:โ„ โ†’ โ„ be a strictly monotone function. Then, for โˆ’โˆž โ‰ค ๐‘Ž < ๐‘ โ‰ค โˆž,

โ„Žโˆ’1 ๐‘Ž, ๐‘ is a countable union of intervals and therefore โ„Žโˆ’1 ๐‘Ž, ๐‘ โˆˆ โ„ฌ1, i.e.,

โ„Ž is a Borel function. It follows that if ๐‘‹ is a random variable and if โ„Ž:โ„ โ†’ โ„

is strictly monotone then โ„Ž(๐‘‹) is a random variable. โ–„

A random variable ๐‘‹ takes values in various Borel sets according to some probability law

called the probability distribution of random variable ๐‘‹ . Clearly the probability

distribution of a random variable of absolutely continuous/discrete type is described by

its distribution function (d.f.) and/or by its probability density function/probability mass

function (p.d.f/p.m.f.). For a given Borel function โ„Ž:โ„ โ†’ โ„, in the following section, we

will derive probability distribution of โ„Ž(๐‘‹) using the probability distribution of random

variable ๐‘‹. โ–„

3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF A

RANDOM VARIABLE

In our future discussions when we refer to a random variable, unless otherwise stated, it

will be either of discrete type or of absolutely continuous type. The probability

distribution of a discrete type random variable will be referred to as a discrete

(probability) distribution and the probability distribution of a random variable of

absolutely continuous type will be referred to as an absolutely continuous (probability)

distribution.

The following theorem deals with discrete probability distributions.

Theorem 2.1 Let ๐‘‹ be a random variable of discrete type with support ๐‘†๐‘‹ and p.m.f. ๐‘“๐‘‹(โ‹…) . Let

โ„Ž:โ„ โ†’ โ„ be a Borel function and let ๐‘:๐›บ โ†’ โ„ be defined by ๐‘ ๐œ” = โ„Ž ๐‘‹ ๐œ” ,๐œ” โˆˆ ฮฉ.

Then ๐‘ is a random variable of discrete type with support ๐‘†๐‘ = โ„Ž ๐‘ฅ :๐‘ฅ โˆˆ ๐‘†๐‘‹ and p.m.f.

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 5

๐‘“๐‘ ๐‘ง = ๐‘“๐‘‹ ๐‘ฅ , if ๐‘ง โˆˆ ๐‘†๐‘๐‘ฅโˆˆ๐ด๐‘ง

0, otherwise

= ๐‘ƒ ๐‘‹ โˆˆ ๐ด๐‘ง , if ๐‘ง โˆˆ ๐‘†๐‘0, otherwise

,

where ๐ด๐‘ง = ๐‘ฅ โˆˆ ๐‘†๐‘‹ : โ„Ž ๐‘ฅ = ๐‘ง . Proof. Since โ„Ž is a Borel function, using Theorem 1.1, it follows that ๐‘ is a random

variable. Also ๐‘‹ is of discrete implies that ๐‘†๐‘‹ is countable which further implies that ๐‘†๐‘

is countable. Fix ๐‘ง0 โˆˆ ๐‘†๐‘, so that ๐‘ง0 = โ„Ž ๐‘ฅ0 for some ๐‘ฅ0 โˆˆ ๐‘†๐‘‹ .

Then

๐‘‹ = ๐‘ฅ0 = ๐œ” โˆˆ ๐›บ:๐‘‹ ๐œ” = ๐‘ฅ0 โŠ† ๐œ” โˆˆ ๐›บ: โ„Ž ๐‘‹ ๐œ” = โ„Ž ๐‘ฅ0

= โ„Ž ๐‘‹ = โ„Ž ๐‘ฅ0

= ๐‘ = ๐‘ง0 ,

and

๐‘‹ โˆˆ ๐‘†๐‘‹ = ๐œ” โˆˆ ๐›บ: ๐‘‹ ๐œ” โˆˆ ๐‘†๐‘‹ โŠ† ๐œ” โˆˆ ๐›บ: โ„Ž ๐‘‹ ๐œ” โˆˆ ๐‘†๐‘

= โ„Ž ๐‘‹ โˆˆ ๐‘†๐‘

= ๐‘ โˆˆ ๐‘†๐‘ .

Therefore,

๐‘ƒ ๐‘ = ๐‘ง0 โ‰ฅ ๐‘ƒ ๐‘‹ โˆˆ ๐‘ฅ0 > 0, (since ๐‘ฅ0 โˆˆ ๐‘†๐‘‹),

and ๐‘ƒ ๐‘ โˆˆ ๐‘†๐‘ โ‰ฅ ๐‘ƒ ๐‘‹ โˆˆ ๐‘†๐‘‹ = 1.

It follows that ๐‘†๐‘ is countable, ๐‘ƒ ๐‘ = ๐‘ง > 0,โˆ€๐‘ง โˆˆ ๐‘†๐‘ and ๐‘ƒ ๐‘ โˆˆ ๐‘†๐‘ = 1, i. e., ๐‘ is

a discrete type random variable with support ๐‘†๐‘.

Moreover, for ๐‘ง โˆˆ ๐‘†๐‘,

๐‘ƒ ๐‘ = ๐‘ง = ๐‘ƒ ๐œ” โˆˆ ๐›บ:โ„Ž ๐‘‹ ๐œ” = ๐‘ง

= ๐‘ƒ ๐‘‹ = ๐‘ฅ

๐‘ฅโˆˆ๐ด๐‘ง

= ๐‘“๐‘‹ ๐‘ฅ

๐‘ฅโˆˆ๐ด๐‘ง

= ๐‘ƒ ๐‘‹ โˆˆ ๐ด๐‘ง .

Hence the result follows. โ–„

The following corollary is an immediate consequence of the above theorem.

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 6

Corollary 2.1

Under the notation and assumptions of Theorem 2.1, suppose that โ„Ž:โ„ โ†’ โ„ is one-one

with inverse function โ„Žโˆ’1:๐ท โ†’ โ„, where ๐ท = โ„Ž ๐‘ฅ : ๐‘ฅ โˆˆ โ„ . Then ๐‘ is a discrete type

random variable with support ๐‘†๐‘ง = โ„Ž ๐‘ฅ :๐‘ฅ โˆˆ ๐‘†๐‘‹ and p.m.f.

๐‘“๐‘ ๐‘ง = ๐‘“๐‘‹ โ„Ž

โˆ’1 ๐‘ง , if ๐‘ง โˆˆ ๐‘†๐‘0, otherwise

= ๐‘ƒ ๐‘‹ = โ„Žโˆ’1 ๐‘ง , if ๐‘ง โˆˆ ๐‘†๐‘0, otherwise

. โ–„

Example 2.1

Let ๐‘‹ be a random variable with p.m.f.

๐‘“๐‘‹ ๐‘ฅ =

1

7, if ๐‘ฅ โˆˆ โˆ’2,โˆ’1, 0, 1

3

14, if ๐‘ฅ โˆˆ 2, 3

0, otherwise

.

Show that ๐‘ = ๐‘‹2 is a random variable. Find its p.m.f. and distribution function.

Solution. Since โ„Ž ๐‘ฅ = ๐‘ฅ2, ๐‘ฅ โˆˆ โ„, is a continuous function and ๐‘‹ is a random variable,

using Remark 1.1 (i) it follows that ๐‘ = โ„Ž ๐‘‹ = ๐‘‹2 is a random variable. Clearly

๐‘†๐‘‹ = โˆ’2,โˆ’1, 0, 1, 2, 3 and ๐‘†๐‘ = 0, 1, 4, 9 . Moreover,

๐‘ƒ ๐‘ = 0 = ๐‘ƒ ๐‘‹2 = 0 = ๐‘ƒ ๐‘‹ = 0 =1

7,

๐‘ƒ ๐‘ = 1 = ๐‘ƒ ๐‘‹2 = 1 = ๐‘ƒ ๐‘‹ โˆˆ โˆ’1, 1 =1

7+

1

7=

2

7,

๐‘ƒ ๐‘ = 4 = ๐‘ƒ ๐‘‹2 = 4 = ๐‘ƒ ๐‘‹ โˆˆ โˆ’2, 2 =1

7+

3

14=

5

14,

and ๐‘ƒ ๐‘ = 9 = ๐‘ƒ ๐‘‹2 = 9 = ๐‘ƒ ๐‘‹ โˆˆ โˆ’3, 3 = 0 +3

14=

3

14โˆ™

Therefore the p.m.f. of ๐‘ is

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 7

๐‘“๐‘ ๐‘ง =

1

7, if ๐‘ง = 0

2

7, if ๐‘ง = 1

5

14, if ๐‘ง = 4

3

14, if ๐‘ง = 9

0, otherwise

,

and the distribution function of ๐‘ is

๐น๐‘ ๐‘ง =

0, if ๐‘ง < 01

7, if 0 โ‰ค ๐‘ง < 1

3

7, if 1 โ‰ค ๐‘ง < 4

11

14, if 4 โ‰ค ๐‘ง < 9

1, if z โ‰ฅ 9

โˆ™ โ–„

Example 2.2

Let ๐‘‹ be a random variable with p.m.f.

๐‘“๐‘‹ ๐‘ฅ = ๐‘ฅ

2550, if ๐‘ฅ โˆˆ ยฑ 1, ยฑ2,โ‹ฏ , ยฑ50

0, otherwise

.

Show that ๐‘ = ๐‘‹ is a random variable. Find its p.m.f., and distribution function.

Solution. As โ„Ž ๐‘ฅ = ๐‘ฅ ,๐‘ฅ โˆˆ โ„, is a continuous function and ๐‘‹ is a random variable,

using Remark 1.1 (i), ๐‘ = ๐‘‹ is a random variable. We have ๐‘†๐‘‹ = ยฑ 1, ยฑ2,โ‹ฏ , ยฑ50

and ๐‘†๐‘ = 1, 2,โ‹ฏ , 50 . Moreover, for ๐‘ง โˆˆ ๐‘†๐‘,

๐‘ƒ ๐‘ = ๐‘ง = ๐‘ƒ ๐‘‹ = ๐‘ง = ๐‘ƒ ๐‘‹ โˆˆ โˆ’๐‘ง, ๐‘ง = โˆ’๐‘ง

2550+

๐‘ง

2550=

๐‘ง

1275โˆ™

Therefore the p.m.f. of ๐‘ is

๐‘“๐‘ ๐‘ง =

๐‘ง

1275, if ๐‘ง โˆˆ 1, 2,โ‹ฏ , 50

0, otherwise,

and the distribution function of ๐‘ is

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 8

๐น๐‘ ๐‘ง =

0, if ๐‘ง < 11

1275, if 1 โ‰ค ๐‘ง < 2

๐‘– ๐‘– + 1

2550, if ๐‘– โ‰ค ๐‘ง < ๐‘– + 1, ๐‘– = 2, 3,โ‹ฏ ,49

1, if ๐‘ง โ‰ฅ 50

. โ–„

Example 2.3

Let ๐‘‹ be a random variable with p.m.f.

๐‘“๐‘‹ ๐‘ฅ = ๐‘›๐‘ฅ ๐‘๐‘ฅ 1 โˆ’ ๐‘ ๐‘›โˆ’๐‘ฅ , if ๐‘ฅ โˆˆ 0, 1,โ‹ฏ ,๐‘›

0, otherwise

,

where ๐‘› is a positive integer and ๐‘ โˆˆ 0,1 . Show that ๐‘Œ = ๐‘› โˆ’ ๐‘‹ is a random variable.

Find its p.m.f. and distribution function.

Solution. Note that ๐‘†๐‘‹ = ๐‘†๐‘Œ = 0, 1,โ‹ฏ , ๐‘› and โ„Ž ๐‘ฅ = ๐‘› โˆ’ ๐‘ฅ, ๐‘ฅ โˆˆ โ„ , is a continuous

function. Therefore ๐‘Œ = ๐‘› โˆ’ ๐‘‹ is a random variable. For ๐‘ฆ โˆˆ ๐‘†๐‘Œ

๐‘ƒ ๐‘Œ = ๐‘ฆ = ๐‘ƒ ๐‘‹ = ๐‘› โˆ’ ๐‘ฆ = ๐‘›

๐‘› โˆ’ ๐‘ฆ ๐‘๐‘›โˆ’๐‘ฆ 1 โˆ’ ๐‘ ๐‘ฆ =

๐‘›๐‘ฆ 1 โˆ’ ๐‘ ๐‘ฆ๐‘๐‘›โˆ’๐‘ฆ .

Thus the p.m.f. of ๐‘Œ is

๐‘“๐‘Œ ๐‘ฆ = ๐‘›๐‘ฆ 1 โˆ’ ๐‘ ๐‘ฆ๐‘๐‘›โˆ’๐‘ฆ , if ๐‘ฆ โˆˆ 0, 1,โ‹ฏ ,๐‘›

0, otherwise,

and the distribution function of ๐‘Œ is

๐น๐‘Œ ๐‘ฆ =

0, if ๐‘ฆ < 0๐‘๐‘› , if 0 โ‰ค ๐‘ฆ < 1

๐‘›๐‘— 1 โˆ’ ๐‘ ๐‘—๐‘๐‘›โˆ’๐‘—

๐‘–

๐‘—=0

, if ๐‘– โ‰ค ๐‘ฆ < ๐‘– + 1, ๐‘– = 1,2,โ‹ฏ ,๐‘› โˆ’ 1

1, if ๐‘ฆ โ‰ฅ ๐‘›

. โ–„

The following theorem deals with probability distribution of absolutely continuous type

random variables.

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 9

Theorem 2.2

Let ๐‘‹ be a random variable of absolutely continuous type with p.d.f. ๐‘“๐‘‹(โ‹…) and support

๐‘†๐‘‹ . Let ๐‘†1, ๐‘†2,โ‹ฏ , ๐‘†๐‘˜ , be open intervals in โ„ such that ๐‘†๐‘– โˆฉ ๐‘†๐‘— = ๐œ™, if ๐‘– โ‰  ๐‘— and ๐‘†๐‘– =๐‘˜๐‘–=1

๐‘†๐‘‹ . Let โ„Ž:โ„ โ†’ โ„ be a Borel function such that, on each ๐‘†๐‘– ๐‘– = 1,โ€ฆ ,๐‘˜ ,โ„Ž: ๐‘†๐‘– โ†’ โ„ is

strictly monotone and continuously differentiable with inverse function โ„Ž๐‘–โˆ’1(โ‹…) . Let

โ„Ž ๐‘†๐‘— = โ„Ž ๐‘ฅ :๐‘ฅ โˆˆ ๐‘†๐‘— so that โ„Ž ๐‘†๐‘— ๐‘— = 1,โ€ฆ ,๐‘˜ is an open interval in โ„ . Then the

random variable ๐‘‡ = โ„Ž ๐‘‹ is of absolutely continuous type with p.d.f.

๐‘“๐‘‡ ๐‘ก = ๐‘“๐‘‹

๐‘˜

๐‘—=1

โ„Ž๐‘—โˆ’1 ๐‘ก

๐‘‘

๐‘‘๐‘กโ„Ž๐‘—โˆ’1 ๐‘ก ๐ผโ„Ž ๐‘†๐‘— (๐‘ก).

Proof. We will provide an outline of the proof which may not be rigorous. Let ๐น๐‘‡(โ‹…) be

the distribution function of ๐‘‡. For ๐‘ก โˆˆ โ„ and ฮ” > 0,

๐น๐‘‡ ๐‘ก + ฮ” โˆ’ ๐น๐‘‡ ๐‘ก

ฮ”=๐‘ƒ ๐‘ก < โ„Ž ๐‘‹ โ‰ค ๐‘ก + ฮ”

ฮ”

= ๐‘ƒ ๐‘ก < โ„Ž ๐‘‹ โ‰ค ๐‘ก + ฮ”,๐‘‹ โˆˆ ๐‘†๐‘—

ฮ”

๐‘˜

๐‘—=1

โˆ™

Fix ๐‘— โˆˆ 1,โ€ฆ ,๐‘˜ . First suppose that โ„Ž๐‘— (โ‹…) is strictly decreasing on ๐‘†๐‘— . Note that ๐‘‹ โˆˆ

๐‘†๐‘— = โ„Ž ๐‘‹ โˆˆ โ„Ž ๐‘†๐‘— and โ„Ž ๐‘†๐‘— is an open interval. Thus, for ๐‘ก belonging to the exterior

of โ„Ž ๐‘†๐‘— and sufficiently small ฮ” > 0 , we have ๐‘ƒ ๐‘ก < โ„Ž ๐‘‹ โ‰ค ๐‘ก + ฮ”,๐‘‹ โˆˆ ๐‘†๐‘— = 0.

Also, for ๐‘ก โˆˆ โ„Ž ๐‘†๐‘— and sufficiently small ฮ” > 0,

๐‘ƒ ๐‘ก < โ„Ž ๐‘‹ โ‰ค ๐‘ก + ฮ”,๐‘‹ โˆˆ ๐‘†๐‘— = ๐‘ƒ โ„Ž๐‘—โˆ’1 ๐‘ก + ฮ” โ‰ค ๐‘‹ < โ„Ž๐‘—

โˆ’1 ๐‘ก .

Thus, for all ๐‘ก โˆˆ โ„, we have

๐‘ƒ ๐‘ก < โ„Ž ๐‘‹ โ‰ค ๐‘ก + ฮ”,๐‘‹ โˆˆ ๐‘†๐‘—

ฮ”=๐‘ƒ โ„Ž๐‘—

โˆ’1 ๐‘ก + ฮ” โ‰ค ๐‘‹ < โ„Ž๐‘—โˆ’1 ๐‘ก ๐ผโ„Ž ๐‘†๐‘— (๐‘ก)

ฮ”

=1

ฮ” ๐‘“๐‘‹ ๐‘ง ๐‘‘๐‘ง

โ„Ž๐‘—โˆ’1(๐‘ก)

โ„Ž๐‘—โˆ’1(๐‘ก+ฮ”)

๐ผโ„Ž ๐‘†๐‘— (๐‘ก)

ฮ”โ†“0 โˆ’๐‘“๐‘‹ โ„Ž๐‘—

โˆ’1 ๐‘ก ๐‘‘

๐‘‘๐‘กโ„Ž๐‘—โˆ’1 ๐‘ก ๐ผโ„Ž ๐‘†๐‘— ๐‘ก . (2.1)

Similarly if โ„Ž๐‘— is strictly increasing on ๐‘†๐‘— then, for all ๐‘ก โˆˆ โ„, we have

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 10

๐‘ƒ ๐‘ก < โ„Ž ๐‘‹ โ‰ค ๐‘ก + ฮ”,๐‘‹ โˆˆ ๐‘†๐‘—

ฮ”=๐‘ƒ โ„Ž๐‘—

โˆ’1 ๐‘ก < ๐‘‹ โ‰ค โ„Ž๐‘—โˆ’1 ๐‘ก + ฮ” ๐ผโ„Ž ๐‘†๐‘— (๐‘ก)

ฮ”

=1

ฮ” ๐‘“๐‘‹ ๐‘ง ๐‘‘๐‘ง

โ„Ž๐‘—โˆ’1(๐‘ก+ฮ”)

โ„Ž๐‘—โˆ’1(๐‘ก)

๐ผโ„Ž ๐‘†๐‘— (๐‘ก)

ฮ”โ†“0 ๐‘“๐‘‹ โ„Ž๐‘—

โˆ’1 ๐‘ก ๐‘‘

๐‘‘๐‘กโ„Ž๐‘—โˆ’1 ๐‘ก ๐ผโ„Ž ๐‘†๐‘— ๐‘ก . (2.2)

Note that if โ„Ž is strictly decreasing (increasing) on ๐‘†๐‘— then ๐‘‘

๐‘‘๐‘กโ„Ž๐‘—โˆ’1 ๐‘ก < > 0 on ๐‘†๐‘— . Now

on combining (2.1) and (2.2) we get, for all ๐‘ก โˆˆ โ„,

๐‘ƒ ๐‘ก < โ„Ž ๐‘‹ โ‰ค ๐‘ก + ฮ”,๐‘‹ โˆˆ ๐‘†๐‘—

ฮ”

ฮ”โ†“0 ๐‘“๐‘‹ โ„Ž๐‘—

โˆ’1 ๐‘ก ๐‘‘

๐‘‘๐‘กโ„Ž๐‘—โˆ’1 ๐‘ก ๐ผโ„Ž ๐‘†๐‘— ๐‘ก ,

โ‡’๐น๐‘‡ ๐‘ก + ฮ” โˆ’ ๐น๐‘‡ ๐‘ก

ฮ”

ฮ”โ†“0 ๐‘“๐‘‹ โ„Ž๐‘—

โˆ’1 ๐‘ก

๐‘˜

๐‘—=1

๐‘‘

๐‘‘๐‘กโ„Ž๐‘—โˆ’1 ๐‘ก ๐ผโ„Ž ๐‘†๐‘— ๐‘ก .

Similarly one can show that, for all ๐‘ก โˆˆ โ„,

limฮ”โ†‘0

๐น๐‘‡ ๐‘ก + ฮ” โˆ’ ๐น๐‘‡ ๐‘ก

ฮ”= ๐‘“๐‘‹ โ„Ž๐‘—

โˆ’1 ๐‘ก

๐‘˜

๐‘—=1

๐‘‘

๐‘‘๐‘กโ„Ž๐‘—โˆ’1 ๐‘ก ๐ผโ„Ž ๐‘†๐‘— ๐‘ก . (2.3)

It follows that the distribution function of ๐‘‡ is differentiable everywhere on โ„ except

possibly at a finite number of points (on boundaries of intervals โ„Ž ๐‘†1 ,โ‹ฏ , โ„Ž ๐‘†๐‘˜ of ๐‘†๐‘‡).

Now the result follows from Remark 4.2 (vii) of Module 2 and using (2.3). โ–„

The following corollary to the above theorem is immediate.

Corollary 2.2

Let ๐‘‹ be a random variable of absolutely continuous type with p.d.f. ๐‘“๐‘‹(โ‹…) and support

๐‘†๐‘‹ . Suppose that ๐‘†๐‘‹ is a finite union of disjoint open intervals in โ„ and let โ„Ž:โ„ โ†’ โ„ be a

Borel function such that โ„Ž is differentiable and strictly monotone on ๐‘†๐‘‹ (i.e., either

โ„Žโ€ฒ ๐‘ฅ < 0,โˆ€๐‘ฅ โˆˆ ๐‘†๐‘‹ or โ„Žโ€ฒ ๐‘ฅ > 0,โˆ€๐‘ฅ โˆˆ ๐‘†๐‘‹). Let ๐‘†๐‘‡ = โ„Ž ๐‘ฅ :๐‘ฅ โˆˆ ๐‘†๐‘‹ . Then ๐‘‡ = โ„Ž ๐‘‹ is a

random variable of absolutely continuous type with p.d.f.

๐‘“๐‘‡ ๐‘ก = ๐‘“๐‘‹ โ„Žโˆ’1 ๐‘ก

๐‘‘

๐‘‘๐‘กโ„Žโˆ’1 ๐‘ก , if ๐‘ก โˆˆ ๐‘†๐‘‡

0, otherwiseโˆ™ โ–„

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 11

It may be worth mentioning here that, in view of Remark 4.2 (vii) of Module 2, Theorem

2.2 and Corollary 2.2 can be applied even in situations where the function โ„Ž is

differentiable everywhere on ๐‘†๐‘‹ except possibly at a finite number of points.

Example 2.4

Let ๐‘‹ be random variable with p.d.f.

๐‘“๐‘‹ ๐‘ฅ = ๐‘’โˆ’๐‘ฅ , if ๐‘ฅ > 00, otherwise

,

and let ๐‘‡ = ๐‘‹2

(i) Show that ๐‘‡ is a random variable of absolutely continuous type;

(ii) Find the distribution function of ๐‘‡ and hence find its p.d.f.;

(iii) Find the p.d.f. of ๐‘‡ directly (i.e., without finding the distribution function of

๐‘‡).

Solution. (i) and (iii). Clearly ๐‘‡ = ๐‘‹2 is a random variable (being a continuous function

of random variable ๐‘‹). We have ๐‘†๐‘‹ = ๐‘†๐‘‡ = 0, โˆž . Also โ„Ž ๐‘ฅ = ๐‘ฅ2, ๐‘ฅ โˆˆ ๐‘†๐‘‹ , is strictly

increasing on ๐‘†๐‘‹ with inverse function โ„Žโˆ’1 ๐‘ฅ = ๐‘ฅ, ๐‘ฅ โˆˆ ๐‘†๐‘‡ . Using Corollary 2.1 it

follows that ๐‘‡ = ๐‘‹2 is a random variable of absolutely continuous type with p.d.f.

๐‘“๐‘‡ ๐‘ก = ๐‘“๐‘‹ ๐‘ก ๐‘‘

๐‘‘๐‘ก ๐‘ก , if ๐‘ก > 0

0, otherwise

= ๐‘’โˆ’ ๐‘ก

2 ๐‘ก, if ๐‘ก > 0

0, otherwise

.

(ii) We have ๐น๐‘‡ ๐‘ก = ๐‘ƒ ๐‘‹2 โ‰ค ๐‘ก , ๐‘ก โˆˆ โ„. Clearly, for ๐‘ก < 0,๐น๐‘‡ ๐‘ก = 0. For ๐‘ก โ‰ฅ 0,

๐น๐‘‡ ๐‘ก = ๐‘ƒ โˆ’ ๐‘ก โ‰ค ๐‘‹ โ‰ค ๐‘ก

= ๐‘“๐‘‹ ๐‘ฅ ๐‘‘๐‘ฅ

๐‘ก

โˆ’ ๐‘ก

= ๐‘’โˆ’๐‘ฅ๐‘‘๐‘ฅ

๐‘ก

0

= 1 โˆ’ ๐‘’โˆ’ ๐‘ก .

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 12

Therefore the distribution function of ๐‘‡ is

๐น๐‘‡ ๐‘ก = 0, if ๐‘ก < 0

1 โˆ’ ๐‘’โˆ’ ๐‘ก , if ๐‘ก โ‰ฅ 0 .

Clearly ๐น๐‘‡ is differentiable everywhere except at ๐‘ก = 0. Therefore, using Remark 4.2

(vii) of Module 2, we conclude that the random variable ๐‘‡ is of absolutely continuous

type with p.d.f. ๐‘“๐‘‡ ๐‘ก = ๐น๐‘‡โ€ฒ ๐‘ก , if ๐‘ก โ‰  0 . At ๐‘ก = 0 we may assign any arbitrary non-

negative value to ๐‘“๐‘‡ 0 . Thus a p.d.f. of ๐‘‡ is

๐‘“๐‘‡ ๐‘ก = ๐‘’โˆ’ ๐‘ก

2 ๐‘ก, if ๐‘ก > 0

0, otherwise

. โ–„

Example 2.5

Let ๐‘‹ be a random variable with p.d.f.

๐‘“๐‘‹ ๐‘ฅ =

๐‘ฅ

2, if โˆ’ 1 < ๐‘ฅ < 1

๐‘ฅ

3, if 1 โ‰ค ๐‘ฅ < 2

0, otherwise

,

and let ๐‘‡ = ๐‘‹2

(i) Show that ๐‘‡ is a random variable of absolutely continuous type;

(ii) Find the distribution function of ๐‘‡ and hence find its p.d.f;

(iii) Find the p.d.f. of ๐‘‡ directly (i.e., without finding the distribution function of

๐‘‡).

Solution. (i) and (iii). Clearly ๐‘‡ = ๐‘‹2 is a random variable (being a continuous function

of random variable ๐‘‹ ). We have ๐‘†๐‘‹ = โˆ’1, 0 โˆช 0, 2 = ๐‘†1 โˆช ๐‘†2 , say. Also โ„Ž ๐‘ฅ =

๐‘ฅ2 , ๐‘ฅ โˆˆ ๐‘†๐‘‹ , is strictly decreasing in ๐‘†1 = โˆ’1, 0 with inverse function โ„Ž1โˆ’1 ๐‘ก =

โˆ’ ๐‘ก;โ„Ž ๐‘ฅ = ๐‘ฅ2 , ๐‘ฅ โˆˆ ๐‘†๐‘‹ , is strictly increasing in ๐‘†2 = 0, 2 , with inverse function

โ„Ž2โˆ’1 ๐‘ก = ๐‘ก; โ„Ž ๐‘†1 = 0, 1 and โ„Ž ๐‘†2 = 0, 4 . Using Theorem 2.2 it follows that

๐‘‡ = ๐‘‹2 is a random variable of absolutely continuous type with p.d.f.

๐‘“๐‘‡ ๐‘ก = ๐‘“๐‘‹ โˆ’ ๐‘ก ๐‘‘

๐‘‘๐‘ก โˆ’ ๐‘ก ๐ผ 0,1

๐‘ก + ๐‘“๐‘‹ ๐‘ก ๐‘‘

๐‘‘๐‘ก ๐‘ก ๐ผ 0,4

๐‘ก

=

1

2, if 0 < ๐‘ก < 1

1

6, if 1 < ๐‘ก < 4

0, otherwise

โˆ™

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 13

(ii) We have ๐น๐‘‡ ๐‘ก = ๐‘ƒ ๐‘‹2 โ‰ค ๐‘ก , ๐‘ก โˆˆ โ„ . Since ๐‘ƒ ๐‘‹ โˆˆ โˆ’1, 2 = 1 , we have

๐‘ƒ ๐‘‡ โˆˆ 0, 4 = 1.

Therefore, for ๐‘ก < 0, ๐น๐‘‡ ๐‘ก = ๐‘ƒ ๐‘‡ โ‰ค ๐‘ก = 0 and, for ๐‘ก โ‰ฅ 4, ๐น๐‘‡ ๐‘ก = ๐‘ƒ ๐‘‡ โ‰ค ๐‘ก = 1.

For ๐‘ก โˆˆ [0,4), we have

๐น๐‘‡ ๐‘ก = ๐‘ƒ โˆ’ ๐‘ก โ‰ค ๐‘‹ โ‰ค ๐‘ก

= ๐‘“๐‘‹ ๐‘ฅ

๐‘ก

โˆ’ ๐‘ก

๐‘‘๐‘ฅ

=

|๐‘ฅ|

2๐‘‘๐‘ฅ, if 0 โ‰ค ๐‘ก < 1

๐‘ก

โˆ’ ๐‘ก

|๐‘ฅ|

2๐‘‘๐‘ฅ

1

โˆ’1

+ ๐‘ฅ

3๐‘‘๐‘ฅ,

๐‘ก

1

if 1 โ‰ค ๐‘ก < 4

.

Therefore, the distribution function of ๐‘‡ is

๐น๐‘‡ ๐‘ก =

0, if ๐‘ก < 0๐‘ก

2, if 0 โ‰ค ๐‘ก < 1

๐‘ก + 2

6, if 1 โ‰ค ๐‘ก < 4

1, if ๐‘ก โ‰ฅ 4

โˆ™

Clearly ๐น๐‘‡ is differentiable everywhere except at points 0, 1 and 4. Using Remark 4.2

(vii) of Module 2 it follows that the random variable ๐‘‡ is of absolutely continuous type

with a p.d.f.

๐‘“๐‘‡ ๐‘ก =

1

2, if 0 < ๐‘ก < 1

1

6, if 1 < ๐‘ก < 4

0, otherwise

โˆ™ โ–„

Note that a Borel function of a discrete type random variable is a random variable of

discrete type (see Theorem 1.1). Theorem 2.2 provides sufficient conditions under which

a Borel function of an absolutely continuous type random variable is of absolutely

continuous type. The following example illustrates that, in general, a Borel function of an

absolutely continuous type random variable may not be of absolutely continuous type.

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 14

Example 2.6

Let ๐‘‹ be a random variable of absolutely continuous type with p.d.f.

๐‘“๐‘‹ ๐‘ฅ = ๐‘’โˆ’๐‘ฅ , if ๐‘ฅ > 00, ๐‘ otherwise

,

and let ๐‘‡ = ๐‘ฅ , where, for ๐‘ฅ โˆˆ โ„, ๐‘ฅ denotes the largest integer not exceeding ๐‘ฅ. Show

that ๐‘‡ is a random variable of discrete type and find its p.m.f.

Solution. For ๐‘Ž โˆˆ โ„, we have

๐‘‡โˆ’1 โˆ’โˆž,๐‘Ž = โˆ’โˆž, ๐‘Ž + 1 โˆˆ โ„ฌ1.

It follows that ๐‘‡ is a random variable. Also ๐‘†๐‘‹ = 0, โˆž . Since ๐‘ƒ ๐‘‹ โˆˆ ๐‘†๐‘‹ = 1 , we

have ๐‘ƒ ๐‘‡ โˆˆ 0, 1, 2,โ‹ฏ = 1. Also, for ๐‘– โˆˆ 0, 1, 2,โ€ฆ .

๐‘ƒ ๐‘‡ = ๐‘– = ๐‘ƒ( ๐‘– โ‰ค ๐‘‹ < ๐‘– + 1 )

= ๐‘“๐‘‹ ๐‘ฅ ๐‘‘๐‘ฅ

๐‘–+1

๐‘–

= ๐‘’โˆ’๐‘ฅ๐‘‘๐‘ฅ

๐‘–+1

๐‘–

= 1 โˆ’ ๐‘’โˆ’1 ๐‘’โˆ’๐‘–

> 0.

Consequently the random variable ๐‘‡ is of discrete type with support ๐‘†๐‘‡ = 0, 1, 2,โ€ฆ and

p.m.f.

๐‘“๐‘‡ ๐‘ก = ๐‘ƒ ๐‘‡ = ๐‘ก = 1 โˆ’ ๐‘’โˆ’1 ๐‘’โˆ’๐‘ก , if ๐‘ก โˆˆ 0 ,1, 2,โ€ฆ 0 , otherwise

. โ–„