Lecture 1: Bio-molecules and intermolecular interactions · Lecture 1: Bio-molecules and...

Preview:

Citation preview

Lecture 1: Bio-molecules and intermolecular interactions

Bio-molecules: DNA, proteins, lipids

Short range Interactions: hydrogen bonding, ionic

interaction, crosslinking

Large scale phenomena: protein aggregation, phase transitions, large scale patterns, etc.

J. X. Tang, Brown University 1

2

Biology in action: neutrophil chasing bacteria

Movie taken in film by David Rogers, Tufts University, 1970s J. X. Tang, Brown University

3

Listerial motility and reconstituted mimics

J. Theriot Lab Website, Stanford Univ.

Weisner and Carlier, J. Cell Biol., 2004

Borisy Lab Website, Northwestern Univ.

J. X. Tang, Brown University

Polymers-An ultra brief introduction •  Linear polymers

–  Polyethylene CH3-CH2-CH2-…-CH2-CH2-CH3, formed by conservative addition (CH2=CH2 + CH2=CH2 -> CH3-CH2-CH=CH2)

–  Polyethylene glycol (PEG) HO-CH2-CH2-O-CH2-CH2-O-… -O-CH2-CH2-O-CH2-CH2-OH, formed by condensation (HO-CH2-CH2-OH+ HO-CH2-CH2-OH -> HO-CH2-CH2-O-CH2-CH2-OH+H2O)

•  Crosslinked polymers –  Isomers in crude oil –  Rubber (vulcanization, 1839, Goodyear) –  Polyacrylamide

J. X. Tang, Brown University 4

Biopolymers: proteins, polynucleotides & polysaccharides

•  Poly-amino acids (proteins)

•  Poly-nucleotides (DNA, RNA)

•  Poly-sugars (glycopolymers, or polysaccharides)

J. X. Tang, Brown University 5

Peptides to protein-an overview •  Categorizing 20 amino acids (Cell-A molecular

approach, by COOPER, pp49) –  hydrophobic or nonpolar –  neutral but polar –  acidic (anionic) –  basic (cationic)

•  Peptide bond:

J. X. Tang, Brown University 6

Levels of protein structure – Primary structure – Secondary structure – Tertiary structure – Quaternary structure

J. X. Tang, Brown University 7

Nucleic acids •  DNA (deoxyribonucleic acid) & RNA

(ribonucleic acid) are both polymers of nucleic acids)

•  Nucleotide = nucleoside + phosphate •  Nucleoside = nitrogenous base (purine or

pyrimidine) + pentose sugar •  Polycondensation (3’ and 5’)

J. X. Tang, Brown University 8

DNA on genetics •  Codon •  Base pairing •  Supercoiling and recognition •  A, B, & Z-forms •  DNA mechanics-bending and twisting

stiffness, extensibility •  Replication folk •  Topoisomerases and helicases

J. X. Tang, Brown University 9

10

Cytoskeleton and its major components

J. X. Tang, Brown University

Actin in Cells

•  Alberts et al., Molecular Biology of the Cell

Role of actin in cell motility

•  Protrusion •  Attachment •  Retraction •  Repeat Protrusion Albert et al, Molecular Biology of the Cell

13

Microtubule network is essential for cell functions

http://www.probes.com/servlets/photo?fileid=g001163

http://www.itg.uiuc.edu/exhibits/gallery/pages/image-66.htm

J. X. Tang, Brown University

14

Dynamic assembly of microtubules

Protofilament

Tubulin Dimer

α Tubulin β Tubulin

GTP Cap

(-)end

(+)end

Microtubule Microtubule (MT) diameter: 24 nm length: many mmJ. X. Tang, Brown University

15

Specific Topic Electrostatics and depletion effect on actin

bundle formation and large actin granules

Stress fibers filapodia J. X. Tang, Brown University

Atomic structure of F-actin

16 J. X. Tang, Brown University

Holmes et al. Nature, 1990

17

Physical Parameters of F-actin

•  Length 0-30 µm •  Diameter 8 nm •  Persistence length

17 µm •  370 G-actin/µm •  MW=42,000

dalton/G-actin

J. X. Tang, Brown University

18

Polymerization of Actin

•  G-F transition •  Condensation model

(F. Oosawa, 1960s) •  Binding energy ~14 kBT •  Critical concentration <1 µM, or 0.04 mg/ml

•  ATP hydrolysis

J. X. Tang, Brown University

19

Polyelectrolyte nature of F-actin •  Counterion layer

•  Counterion condensation (Oosawa-Manning Theory)

•  Delocalized binding •  Significance of

polyvalency •  Attractive interaction •  Competition effects •  … Tang & Janmey, JBC, 1996, 271, 8556 Tang et al, Biophys J., 2002 Wen & Tang, Phys Rev Lett, 2006

J. X. Tang, Brown University

20

Ion-mediated formation of actin bundles

Tang et al., 1996, Ber. Bunsen-ges. Phys Chem., 100, 796

J. X. Tang, Brown University

21

Entropy driven lateral aggregation

•  Osmotic effect •  Steric exclusion •  Depletion force •  Macromolecular

crowding

Tang et al., 1997, Biochem., 36, 12600 Hosek & Tang, 2004, PRE, 65, 051907

J. X. Tang, Brown University

22

Transition between isotropic & nematic phases

L. Onsager, 1949, Ann. NY Acad. Sci., 51, 627

J. X. Tang, Brown University

23

Isotropic-nematic transition of F-actin

Selected publications on actin I-N transition:

• Suzuki, Maeda, Ito, Biophys. J. 1991 • Furukawa, Kundra & Fechheimer, Biochem, 1993 • Coppin & Leavis, Biophys J, 1992 • Kas et al., Biophys J., 1996 …

A. isotropic phase B. nematic phase

Fluorescence images of labeled actin filaments embedded in the network of unlabelled filaments

J. X. Tang, Brown University

24

nx and ny (index of refraction) x-axis is the slow axis

Dn=nx-ny>0 (birefringence) Dd=Dnxd (retardance)

Optical birefringence-an essential measurement of molecular alignment

The “pol-scope” technology • insertion of adjustable compensators (LC materials) • imaging transmitted light intensity of 4 settings • instant calculation of birefringence at microscopic scales

Ref: Oldenbourg and Mei, J. Microscopy, 1995

J. X. Tang, Brown University

25

The I-N Phase Transition of F-actin determined by the optical birefringence measurements

Isotropic

Nematic

Viamontes, Narayanan, Sandy & Tang, Phys. Rev. E, 73, 061901 (2006)

J. X. Tang, Brown University

26

F-actin I-N Transition-from Continuous to First Order

Isotropic Transition Region Nematic

Average Filament Length = 11 µm

Average Filament Length = 1 µm

J. X. Tang, Brown University

27

Discontinuous in Concentration and Alignment

Viamontes, Oakes & Tang, Phys. Rev. Lett., 97, 118103 (2006)

J. X. Tang, Brown University

28

Growth kinetics I: Nucleation and Growth

Nucleation and Growth

Growth, fusion & growth Growth Kinetics J. X. Tang, Brown University

29

Growth kinetics II: Spinodal decomposition

Key findings: Characteristic size 20 µm X 10 µm Slow growth in late stage ~t1/3

Metastability

Spinodal Decomposition

J. X. Tang, Brown University

Oakes, P., W., Viamontes, J., & Tang, J. X., Phys Rev E., 2007, 75:061902.

Lecture Summary

•  Brief intro on biomolecules & biopolymers •  Various interactions and forces •  Self-assembly of actin and tubulin filaments •  Patterns and structures formed by actin

filaments and various interactions involved.

J. X. Tang, Brown University 30

Key References •  1. Tang, J.X. and P.A. Janmey, Polyelectrolyte Nature of F-actin and

Mechanism of Actin Bundle Formation. Journal of Biological Chemistry, 1996. 271: p. 8556-8563.

•  2. Viamontes, J., P.W. Oakes, and J.X. Tang, Isotropic to nematic liquid crystalline phase transition of F-actin varies from continuous to first order. Phys Rev Lett, 2006. 97(11): p. 118103.

•  3. Oakes, P., W., Viamontes, J., and Tang, J. X., Growth of tactoidal droplets during the first order isotropic to nematic phase transition of F-actin, Phys Rev E., 2007, 75:061902.

J. X. Tang, Brown University 31

Recommended