Korean Compact Infrared Space Telescope,...

Preview:

Citation preview

MIRIS

D.-H. Lee1, W.-S. Jeong1, Y. Park1, C.H. Ree1, U.-W. Nam1, B. Moon1, S.-J. Park1, S.-M. Cha1, J. Pyo1, J.-H. Park1, K. Seon1, D. Lee1,2, S.-W. Rhee3,

J.-O. Park3, H.M. Lee4, T. Matsumoto4,5, W. Han1 & S. Matsuura5,

1

Korean Compact Infrared Space Telescope,

MIRIS

1 KASI, Korea, 2 UST, Korea, 3 KARI, Korea, 4 ASIAA, Taiwan, 5 ISAS/JAXA, Japan

MIRIS

Contents

2

1. Satellites for Space Observation in Korea

2. Science & Technology Satellite III

3. Overview of MIRIS Project

4. Development of MIRIS

5. Environment Test

6. Calibration of MIRIS

7. Launch Campaign

MIRIS

Space Observation Program in Korea

■Science & Technology Satellite Seriesl 1st satellite: FIMS (Far-ultraviolet IMaging Spectrograph) (2003)l 2nd Satellite: Observation of Space environment by Korean

Launcher Narol 3rd Satellite: MIRIS (Multipurpose Infrared Imaging System)

(Seon et al. 2011) ST-SAT II

MIRIS

■Primary & Secondary Payloads l MIRIS: first infrared camera in space

4

Science & Technology Satellite III

S-band Ant.

X-band Ant.

CSS MIRIS SOCSun-shade

Z X

Y x

y

z

MIRIS SOC

MIRIS

Specifications of MIRIS

■Specifications of Space Observation Cameral Wavelength: 0.9 ~ 2mm − Aperture: 80 mml Detector FOV: 3.67o x 3.67o (Pixel : 51.6 arcsec)

(c.f. Nyq. sampling @ 1.6mm = 4.1 arcsec) → limited by satellite stability

l Telescope & Sensor Temp.: 180K (Passive Cooling), 90Kl Filters (5 filters)

• I (1.05mm), H (1.6mm), blank• Pa a (1.876mm), Pa a Cont

MIRIS

Scientific Objectives (1/3)

■Paa Emission Line Survey : Galactic plane & WIM■ Origin of Warm Ionized Medium

l Previous study of WIM: Photoionization modell Recent study of WIM from FIMS: dust scatteringl Verification of the dust scattering theory

■ Physical properties of interstellar turbulencel Structure of WIMl Comparison between Paa (MIRIS) vs. Ha

• Monte-Carlo simulation§ Uniform dust distribution;

E(B-V) = 0.1§ Point source or Spherical

H II region

MIRIS

Scientific Objectives (2/3)

■Observation of Cosmic Infrared Background (CIB)l CIB from POPIII starsl Spectral peak of CIBl Large scale fluctuation of CIB

Matsumoto et al. 2005

Large-scale structure of CIB from IRTS observation

10

100

0.2 0.4 0.6 0.8 1 3 5

residual_summary

IRTS/NIRS

model by Totani et al. 2001

Totani et al. 2001

Bernstein et al. 2002

DIRBE/COBEWright and Rees 2000 Fazio et al. 2004

Madau and Pozzetti 2000

Cambrecy et al. 2001

Surf

ace b

rightn

ess

(nW

/m2/s

r)

Wavelength (mm)

MIRIS

Parameter Space of CIB

Spitzer / GOODS

Parameter space for MIRIS:

MIRIS

■Zodiacal foregroundl Calibration purpose: 2 orbits /dayl Simultaneous observation of NEP & SEP in 1 orbit l Monitoring of ZL in SEP and NEP: I & H bands ® Revision of ZL Model & Removal of ZL component

Scientific Objectives (3/3)

MIRIS

Optomechanical Design

■Optomechanicsl Outer & Inner partsl Dewar & coolerl Passive cooling: radiator, GFRP

supporter, winston cone baffle, thermal shield

MIRIS11

Optical Design

Specifications

Wavelength 0.9 – 2 um

Aperture 80 mm

Focal ratio f/2

Effective Focal Length

160 mm

Pixel FOV 51.6˝X 51.6˝

Detector FOV 3.67° x 3.67

Telescope Temperature

< 200K

Sensor/Filter Temperature

< 100K

Specifications of sensor

Sensor Model Teledyne PICNIC (MCT)

Pixel Size 40 um X 40 um

Sensor Dimension

256 X 256

Detecting Area 10.2 mm X 10.2 mm

MIRIS

■Thermal analysisl Worst hot & cold cases

in all directions

■FEM analysisl Safety factor > 4

in all directions

12

Mechanical & Thermal Analysis

Stress in x direction

MIRIS13

Parts of MIRIS

÷

Radiator

Thermal shield Box

GFRP pipe supporter

Bracket

Auxiliaryplate

Dewar

Cooler Box

Barrel

Winston cone baffle

MIRIS14

Assembly of Dewar

SOC filter SOC filter wheel

SOC dewar

MIRIS

■Confirmation of Passive Cooling : telescope < 200K

15

Environmental Test – Passive Cooling

SOC Radiator Cold Plate(Velvet-painted)

MIRIS

l Thermal cycles

16

Environmental Test – Thermal/Vacuum Test

Tem

pera

ture

(K)

160

180

200

220

240

260

280

300

320

T0 T1 T2 T3 T4 T5

Time(Hrs)0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Vac

uum

(Tor

r)

1e-71e-61e-51e-41e-31e-21e-11e+01e+11e+21e+31e+4

MIRIS

l Vibration/Shock Profile : MIRIS and E-Boxl Total Integration Dose Test: radiation exposure ~30K rad

17

Environmental Test – Vibration/Shock, TID Test

MIRIS

11g rms

E-Box

MIRIS

Calibration - Focus Test

18

■Beam profile: Gaussianl System MTF: ~30%

MIRIS

Calibration - Dark Test

■Gaussian: readout noise■Temperature variation: ~3K

l Increase of hot pixels: ~0.26%l Increase of noise < 1 ADUl No difference of dark on

temperature variation

Noise map

0.067 ADU/s

19

MIRIS

Calibration - Gain Estimation

■Mean-Variance Testl

l Readout noise (sr) : Gaussian – constantl Photon noise (sp) : Poissonian – increasing

■Mean-Variancel Readout noise ~ 45e-

l 45e- < 50e-

(performance estimation)

signal

Readout noise dominant

Photon noise

20

MIRIS

Calibration - Flat Data

■Uniform source by integration sphere■Flat fielding for H & Pa bands

l Deviation: reduction of 50%, 42% for H and Pa cont., respectively

l Flatness < 1%

Before AfterBefore AfterH Pa Cont.

21

MIRIS

MLI (Multi-Layer Insulation) Wrapping

22

MLI 30 layers

Heat-passplate

Interface plate

MIRIS

Final Functional Test

■ Imaging test : OK■ Operation of filter wheel : OK■ Cooler ON/OFF: OK■ SOH data: OK

23

MIRIS

Launch Campaign

24

MIRIS

Launch Campaign

25

MIRIS

Launch Campaign

26

MIRIS

Launch Campaign

27

M31

Orion Nebula

Rose Nebula

First Images

MIRIS29

AAQQ&&