Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Preview:

Citation preview

Jan M. Rabaey

The Devices

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Goal of this chapter

• Present intuitive understanding of device operation

• Introduction of basic device equations

• Introduction of models for manual analysis

• Introduction of models for SPICE simulation

• Analysis of secondary and deep-sub-microneffects

• Future trends

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

The Diode

n

p

p

n

B A SiO2Al

A

B

Al

A

B

Cross-section of pn-junction in an IC process

One-dimensionalrepresentation diode symbol

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Depletion Region

hole diffusionelectron diffusion

p n

hole driftelectron drift

ChargeDensity

Distancex+

-

ElectricalxField

x

PotentialV

W2-W1

(a) Current flow.

(b) Charge density.

(c) Electric field.

(d) Electrostaticpotential.

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Diode Current

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Models for Manual Analysis

VD

ID = IS(eVD/T – 1)+

VD

+

+

–VDon

ID

(a) Ideal diode model (b) First-order diode model

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Junction Capacitance

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Diode Switching Time

Vsrc

t = 0

V1

V2

VD

Rsrc

t = T

ID

Time

VD

ON OFF ON

Space chargeExcess charge

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Secondary Effects

–25.0 –15.0 –5.0 5.0

VD (V)

–0.1

I D (A

)0.1

0

0

Avalanche Breakdown

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Diode Model

ID

RS

CD

+

-

VD

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

SPICE Parameters

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

The MOS Transistor

n+n+

p-substrate

Field-Oxyde

(SiO2)

p+ stopper

Polysilicon

Gate Oxyde

DrainSource

Gate

Bulk Contact

CROSS-SECTION of NMOS Transistor

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Cross-Section of CMOS Technology

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

MOS transistors Types and Symbols

D

S

G

D

S

G

G

S

D D

S

G

NMOS Enhancement NMOS

PMOS

Depletion

Enhancement

B

NMOS withBulk Contact

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

n+n+

p-substrate

Field-Oxyde

(SiO2)

p+ stopper

Polysilicon

Gate Oxyde

DrainSource

Gate

Bulk Contact

CROSS-SECTION of NMOS Transistor

Transistor: No Voltages

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Transistor “Off” Vgs<Vt

Vgd

Vgs

Ids

Vds

I=V/R

No Channel exists: Enhancement mode transistor

R

n+n+

p-substrate

DSG

B

VGS

+

-

Depletion

Region

n-channel

Vds does not matter

Ids

Threshold Voltage: Concept

n+n+

p-substrate

DSG

B

VGS

+

-

Depletion

Region

n-channel

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

The Threshold Voltage

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

GND

Out

?A

B

Body Effect

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

n+n+

p-substrate

DSG

B

VGS

+

-

Depletion

Region

n-channel

Channel Formation Vgs>Vt

Vgd

Vgs

Ids

Vds

I=V/R

Positive Charge on Gate:Channel exists, but no current

since Vds = 0

R

Ids

Current-Voltage Relations

n+n+

p-substrate

D

SG

B

VGS

xL

V(x) +–

VDS

ID

MOS transistor and its bias conditions

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Linear Region Vgs>Vt & Vgd>Vt

Positive Charge on Gate:Channel exists, Current Flows

since Vds > 0Ids = k’(W/L)((Vgs-Vt)Vds-Vds

2/2)

R

Vgd

Vgs

Ids

Vds

I=V/R

R= 1/(k’(W/L)(Vgs-Vt))

n+n+

p-substrate

DSG

B

VGS

+

-

Depletion

Region

n-channel

Ids

Transistor in Saturation

n+n+

S

G

VGS

D

VDS > VGS - VT

VGS - VT+-

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Saturation: Vgs>Vt & Vgd<Vt

Positive Charge on Gate:Channel exists, Current Flows

since Vds > 0But: channel is “pinched off”

Ids = (k’/2)(W/L)(Vgs-Vt)2

Vgdn+n+

p-substrate

DSG

B

VGS

+

-

Depletion

Region

n-channel

Vgs

Ids

“constant current source”

Ids

Vds

Vgs

Ids

Current-Voltage Relations

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

I-V Relation

0.0 1.0 2.0 3.0 4.0 5.0

VDS (V)

1

2

I D (

mA

)

0.0 1.0 2.0 3.0VGS (V)

0.010

0.020

÷ I

D

VT

SubthresholdCurrent

Triode Saturation

VGS = 5V

VGS = 3V

VGS = 4V

VGS = 2V

VGS = 1V

(a) ID as a function of VDS (b) ID as a function of VGS

(for VDS = 5V).

Sq

ua

re D

ep

end

en

ce

VDS = VGS-VT

NMOS Enhancement Transistor: W = 100 m, L = 20 m

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

A model for manual analysis

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Saturation Effects

Which is the resistor?

Discharge of 1pf capacitor, with Vgs of 3,4,5 volts. Also, 12k resistor.

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Regions of Operation Summary

REGION NMOSVtn = .7vk’ = 80A/V2

PMOSVtp = -.7vk’ = 27mA/V2

Off Vgs<Vtn

Ids=0Vgs>Vtp

Ids=0

Linear Vgs>Vtn & Vgd>Vtn Vgs<Vt & Vgd<Vtp

Ids= k’(W/L)(Vgs-Vt)Vds-Vds2/2)

Saturation Vgs>Vtn & Vgd<Vtn Vgs<Vtp & Vgd>Vtp

Ids= (k’/2)(W/L)(Vgs-Vt)2(1+Vds)

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Computed Curves

Vgs = 5v

Vgs = 4.5v

Vgs = 4.0v

Linear Resistor

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Spice Curves

Vgs = 5v

Vgs = 4v

Vgs = 3v

Vgs = 2v

Vgs = 1v

Fitting level-1 model for manual analysis

VGS = 5 V

VDS = 5 V VDS

ID

Long-channel

approximation

Short-channelI-V curve

Region of

matching

Select k’ and such that best matching is obtained @ Vgs= Vds = VDD

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Retrofitted Level 1 Parameters1.2um CMOS

NMOS» VTO = 0.743 V

» K’ = 19.6 A/V2 (20 vs 80) = 0.06 V-1

PMOS» VTO = -0.739 V

» K’ = 5.4 A/V2 (5 vs 27) = 0.19 V-1

Dynamic Behavior of MOS Transistor

DS

G

B

CGDCGS

CSB CDBCGB

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

The Gate Capacitance

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Average Gate Capacitance

Most important regions in digital design: saturation and cut-off

Different distributions of gate capacitance for varying

operating conditions

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Diffusion Capacitance

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

The Sub-Micron MOS Transistor

• Threshold Variations

• Parasitic Resistances

• Velocity Sauturation and Mobility Degradation

• Subthreshold Conduction

• Latchup

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Parasitic Resistances

W

LD

Drain

Draincontact

Polysilicon gate

DS

G

RS RD

VGS,eff

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Velocity Saturation (2)

VDS (V)

I D (

mA

)

Lin

ea

r D

ep

en

de

nc

e

VGS = 5

VGS = 4

VGS = 3

VGS = 2

VGS = 1

0.0 1.0 2.0 3.0 4.0 5.0

0.5

1.0

1.5

(a) ID as a function of VDS (b) ID as a function of VGS(for VDS = 5 V).

0.0 1.0 2.0 3.0VGS (V)

0

0.5

I D (

mA

)

Linear Dependence on VGSDigital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Sub-Threshold Conduction

0.0 1.0 2.0 3.0VGS (V)

10 12

10 10

10 8

10 6

10 4

10 2

ln(I

D)

(A)

Subthreshold exponential region

Linear region

VT

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Latchup

(a) Origin of latchup (b) Equivalent circuit

VDD

Rpsubs

Rnwell p-source

n-source

n+ n+p+ p+ p+ n+

p-substrateRpsubs

Rnwell

VDD

n-well

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

SPICE MODELS

Level 1: Long Channel Equations - Very Simple

Level 2: Physical Model - Includes VelocitySaturation and Threshold Variations

Level 3: Semi-Emperical - Based on curve fittingto measured devices

Level 4 (BSIM): Emperical - Simple and Popular

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

MAIN MOS SPICE PARAMETERS

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

SPICE Parameters for Parasitics

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

SPICE Transistors Parameters

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Technology Evolution

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Spice Parameters for Parasitics

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Process Variations

Devices parameters vary between runs and even on the same die!

Variations in the process parameters, such as impurity concentration den-sities, oxide thicknesses, and diffusion depths. These are caused by non-uniform conditions during the deposition and/or the diffusion of theimpurities. This introduces variations in the sheet resistances and transis-tor parameters such as the threshold voltage.

Variations in the dimensions of the devices, mainly resulting from thelimited resolution of the photolithographic process. This causes (W/L)variations in MOS transistors and mismatches in the emitter areas ofbipolar devices.

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Impact of Device Variations

1.10 1.20 1.30 1.40 1.50 1.60

Leff (in mm)

1.50

1.70

1.90

2.10

De

lay

(nse

c)

–0.90 –0.80 –0.70 –0.60 –0.50

VTp (V)

1.50

1.70

1.90

2.10

De

lay

(nse

c)

Delay of Adder circuit as a function of variations in L and VT

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Recommended