High-Order Similarity Relations in Radiative Transfer Shuang Zhao 1, Ravi Ramamoorthi 2, and Kavita...

Preview:

Citation preview

High-Order Similarity Relations in Radiative Transfer

Shuang Zhao1, Ravi Ramamoorthi2, and Kavita Bala1

1Cornell University2University of California, San Diego

Translucency is everywhere

Food

Skin

Jewelry

Architecture

Slide courtesy of Ioannis Gkioulekas

Rendering translucency

Radiativetransfer

Scatteringparam.

Appearance

Rendering translucency

Radiativetransfer

Scatteringparam. 2

Appearance 2

Radiativetransfer

Scatteringparam. 1

Appearance 1

Radiativetransfer

Scatteringparam. 1

Appearance 1

Radiativetransfer

Scatteringparam. 2

Appearance 2

≈≠

First-order methods

Scatteringparam. 1

Scatteringparam. 2

Scatteringparam. 1

Scatteringparam. 2

First-order approx.

Approx. identical appearance

Cheaper to render

Limitedaccuracy

[Frisvad et al. 2007] [Arbree et al. 2011][Wang et al. 2009][Jensen et al. 2001]

Similarity theory

Scatteringparam. 1

Scatteringparam. 2

First-order approx.First-ordermethods

Scatteringparam. 1

Scatteringparam. 2

First-order approx.

Similaritytheory

[Wyman et al. 1989]

Scatteringparam. 1

Scatteringparam. 2

Similarityrelations

Similarity theory

Similaritytheory

[Wyman et al. 1989]

Scatteringparam. 1

Scatteringparam. 2

Similarityrelations

Provide fundamental insights into thestructure of material parameter space

Similarity theory

Similaritytheory

[Wyman et al. 1989]

Scatteringparam. 1

Scatteringparam. 2

Similarityrelations

Originates in applied optics[Wyman et al. 1989]

Similar ideas explored in neutron transfer(Condensed History Monte Carlo)

[Prinja & Franke 2005], [Bhan & Spanier 2007], …

Our contribution

Introducing high-ordersimilarity theory tocomputer graphics

Novel algorithmsbenefiting forward &

inverse rendering

Our contribution: forward rendering

BetteraccuracyOur

approach

User-specified(balancing performance and accuracy)

Approx. identical appearance

Cheaper to render

Scatteringparam. 2

100 ~ 200 lines of MATLAB code

Scatteringparam. 1

Up to 10X speedup

Our contribution: inverse rendering

Parameter space 1

Reparameterize

Parameter space 2

Gradient descent methods perform

much better

Background

Material scattering parameters

Extinction coefficient

Scattering coefficient

Phase function

Light particle

Absorption coefficient

AbsorbedScatteredInteraction

Phase function

Scattered

Probability density for , parameterized as

Isotropic scattering

Forward

Forward scattering

Forward

Similarity Theory

nth Legendremoment

Phase function moments

Legendrepolynomial

For a phase function

“Average cosine”

Similarity relations

Low-frequency radiance

Band-limited up to order-N in spherical harmonics domain

[Wyman et al. 1989]

Order-N similarity relation[W

yman et al. 1989]

Similarity relations

identical appearance

Derivationin the paper

Radiancelow-frequency

everywhere

Order-N similarity relation

Similarity relations

Higher order,Better accuracy

Approximatelyidentical appearanceRadiance

low-frequencyeverywhere

Challenge

Order-N similarity relation

Order-N similarity relation

Original(given)

Altered(unknown)

??

Solving forAltered Parameters

The problem

Altered parameters ?

??O

rder

-N

sim

ilarit

y re

latio

nC

onstraints

Forward

Original parameters

The problem

Altered parameters ??

Ord

er-N

si

mila

rity

rela

tion

Ord

er-N

si

mila

rity

rela

tion

Forward

Original parameters

The problem

Altered parameters ??

Ord

er-N

si

mila

rity

rela

tion

Forward

Original parameters

Altered phase function

Altered parameters ?

Altered parameters ?

Forward

Original parameters

Remainingunknown

Altered phase function

Altered parameters ?

Forward

Original parameters

Remainingunknown

Legendre moments of

Legendre moments of

Altered phase function

Altered parameters ?

Altered parameters ?

Order-1

Order-2

Order-3

Order-4…

Finding highest satisfiable order N

Normalizationconstraint

Finding order N

Given desired Legendre moments

(Truncated Hausdorff moment problem)[Curto and Fialkow 1991]

Phase functionHankel matrices builtusing are

positive semi-definiteexists

Existence condition

Does phase function exist?

Finding order N

Altered parameters ?

Order-1

Order-2

Order-3

Order-4…

Finding highest satisfiable order N

Altered phase function

Altered parameters ?

Order-3

Order-3

Problem: not uniquely specified

Invalid Valid Valid

Constructing altered phase function

-1 10

Need:has Legendre moments

non-negative

Represent as a tabulated function with pieces

?…

-1 10

Constructing altered phase function

Need:

Represent as a tabulated function with pieces

?Const.

Constructing altered phase function

Solve subject to

Smoothness term(favoring “uniform” solutions)

-1 10

Good

-1 10

Bad

Constructing altered phase function

Solve subject to

Quadratic programming

• Standard problem

• Solvable with many tools/libraries• MATLAB, Gurobi, CVXOPT, …

• Our MATLAB code is available online

Constructing altered phase function

Altered parameters ?

Order-3

ValidInvalid Valid

Our approach

Forward

Altered parameters

Constructing altered phase function

Summary

Forward

Original parameters

Forward

Altered parameters

Forward

Altered parameters

Compute order NSolve optimization

Application:Forward Rendering

Our contribution: forward rendering

BetteraccuracyOur

approach

Approx. identical appearance

Cheaper to render

Scatteringparam. 2

Scatteringparam. 1

Effort-free speedups!

User-specified(balancing performance and accuracy)

Application: forward rendering

0 1

No changein parameters

large

Better accuracyLower speedup

small

Worse accuracyGreater speedup

Perform test renderings to find optimal

Reuse for high-resolution renderings or videos

is a good start

Experimental Results

Performance vs. accuracy

α = 0.05 (44 min, 8.0X)

Relative error 0%

30%

Reference (350 min)

Performance vs. accuracy

Reference (350 min) α = 0.05 (44 min, 8.0X)

Relative error

α = 0.10 (63 min, 5.6X)

Relative error 0%

30%

0%

30%

Performance vs. accuracy

α = 0.20 (103 min, 3.4X)

Relative error

α = 0.30 (126 min, 2.8X)

Relative error 0%

30%

α = 0.10 (63 min, 5.6X)

Relative error

α = 0.10 (63 min, 5.6X)

Relative error

Visually identical

Power of high-order relations

Used by first-order methods:

Altered parameters(Order-1)

Forward

Forward

Original parameters

Reduced scatteringcoefficient

Satisfies order-1similarity relation

Power of high-order relations

Altered parameters(Order-3)

Forward

Forward

Original parameters

Altered parameters(Order-1)

Forward

Power of high-order relations

Altered parameters(Order-3)

Original parameters

Altered parameters(Order-1)

Original parameters

Altered parameters(Order-1)

Altered parameters(Order-3)

426 min (reference) 119 min (3.6X) 115 min (3.7X)

More renderings

Reference473 min

Ours178 min (2.7X)

Reference23 min

Ours20 min

Equal-timeEqual-sample

Conclusion

Order-N similarity relation

Introducing high-ordersimilarity relations to graphics

Proposing a practical algorithmto solve for altered parameters

?Original Altered

• Picking automatically and adaptively

• Alternative versions of similarity theory

Future work

Thank you!

High-Order Similarity Relationsin Radiative Transfer

Shuang Zhao1, Ravi Ramamoorthi2, Kavita Bala1

1Cornell University, 2University of California, San Diego

Project website: (MATLAB code available!)

www.cs.cornell.edu/projects/translucency

Funding:NSF IIS grants 1011832, 1011919, 1161645Intel Science and Technology Center – Visual Computing

Reference

Ours (3.7X

)

Extra Slides

Order-1 similarity relation

Order-1 similarity relation

Reducedscattering coefficient

Special case (used by diffusion methods):

Order-N similarity relation

Prior work: solving for altered parameters

[Wyman et al. 1989]

fixed such that

given by the user

Discrete scattering angle [Prinja & Franke 2005]

Represent as the sum of delta functions

“Spiky” phase functions do not perform as well as“uniform” ones for rendering applications

Constructing altered phase function

Represent as a tabulated function with pieces

Quadratic programming

Solve subject to

Hankel matrices built using being positive semi-definite

Existence condition

Performance vs. accuracy

Reference (350 min)

Discarded Slides