ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles...

Preview:

Citation preview

ESSENTIAL CALCULUSESSENTIAL CALCULUS

CH12 Multiple CH12 Multiple integralsintegrals

In this Chapter:In this Chapter:

12.1 Double Integrals over Rectangles

12.2 Double Integrals over General Regions

12.3 Double Integrals in Polar Coordinates

12.4 Applications of Double Integrals

12.5 Triple Integrals

12.6 Triple Integrals in Cylindrical Coordinates

12.7 Triple Integrals in Spherical Coordinates

12.8 Change of Variables in Multiple Integrals

Review

Chapter 12, 12.1, P665

(See Figure 2.) Our goal is to find the volume of S.

}),(),,(0),,{( 3 RyxyxfzRzyxs

Chapter 12, 12.1, P667

Chapter 12, 12.1, P667

Chapter 12, 12.1, P667

5. DEFINITION The double integral of f over the rectangle R is

if this limit exists.

ij

m

i

n

jRyx

AjyijxifdAyxfii

),(lim),(

1

*

1

*

0,max

Chapter 12, 12.1, P668

AyxfdAyxfm

i

n

jji

Rnm

),(lim),(

1 1,

Chapter 12, 12.1, P668

If f (x, y) ≥ 0, then the volume V of the solid that lies above the rectangle R and below the surface z=f (x, y) is

R

dAyxfv ),(

Chapter 12, 12.1, P669

MIDPOINT RULE FOR DOUBLE INTEGRALS

where xi is the midpoint of [xi-1, xi] and yj is the midpoint of [yj-1, yj ].

AyxfdAyxf ji

m

i

n

jR

),(),(1 1

Chapter 12, 12.1, P672

10. FUBINI’S THEOREM If f is continuous on the rectangle R={(x, y} │a ≤ x≤ b, c ≤ y ≤d} , then

More generally, this is true if we assume that f is bounded on R, is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

b

a

d

c

d

c

b

aR

dxdyyxfdydxyxfdAyxf ),(),(),(

Chapter 12, 12.1, P673

R

b

a

d

cdyyhdxxgdAyhxg )()()()( where R ],[],[ dcbaR

Chapter 12, 12.2, P676

Chapter 12, 12.2, P676

Chapter 12, 12.2, P677

Chapter 12, 12.2, P677

Chapter 12, 12.2, P677

3.If f is continuous on a type I region D such that

then

)}()(,),{( 21 xgyxgbxayxD

D

b

a

xg

xgdydxyxfdAyxf

2

1

),(),(

Chapter 12, 12.2, P678

Chapter 12, 12.2, P678

D

d

c

yh

yhdxdyyxfdAyxf

)(

)(

2

1

),(),(

where D is a type II region given by Equation 4.

Chapter 12, 12.2, P681

Chapter 12, 12.2, P681

D D D

dAyxgdAyxfdAyxgyxf ),(),()],(),([

D D

dAyxfcdAyxcf ),(),(

D g

dAyxgdAyxf ),(),(

6.

7.

If f (x, y) ≥ g (x, y) for all (x, y) in D, then

8.

If D=D1 U D2, where D1 and D2 don’t overlap except perhaps on their boundaries (see Figure 17), then

D D D

dAyxfdAyxfdAyxf1 2

),(),(),(

D

DAdA )(1

Chapter 12, 12.2, P682

Chapter 12, 12.2, P682

11. If m≤ f (x, y) ≤ M for all (x ,y) in D, then

D

DMAdAyxfDmA )(),()(

Chapter 12, 12.3, P684

Chapter 12, 12.3, P684

Chapter 12, 12.3, P684

Chapter 12, 12.3, P684

r2=x2+y2 x=r cosθ y=r sinθ

Chapter 12, 12.3, P685

Chapter 12, 12.3, P686

2. CHANGE TO POLAR COORDINATES IN A DOUBLE INTEGRAL If f is continuous on a polar rectangle R given by 0≤a≤r≤b, a≤θ≤β, where 0≤β-α≤2 , then

R

b

ardrdrrfdAyxf

)sin,cos(),(

Chapter 12, 12.3, P687

3. If f is continuous on a polar region of the form

then

)()(,),{( 21 hrhrD

D

h

hrdrdrrfdAyxf

)(

)(

2

1

)sin,cos(),(

Chapter 12, 12.5, P696

3. DEFINITION The triple integral of f over the box B is

if this limit exists.

B

l

i

m

jijkijkijk

n

kijk

zyxVzyxfdVzyxf

kii 1 1

**

1

*

0,,max),,(lim),,(

Chapter 12, 12.5, P696

B

l

i

m

jkj

n

ki

nmlVzyxfdVzyxf

1 1 1,,

),,(lim),,(

Chapter 12, 12.5, P696

4. FUBINI’S THEOREM FOR TRIPLE INTEGRALS If f is continuous on therectangular box B=[a, b]╳ [c, d ]╳[r, s], then

B

s

r

d

c

b

adxdydzzyxfdVzyxf ),,(),,(

Chapter 12, 12.5, P697

dAdzzyxfdVzyxfE D

yxu

yxu

),(

),(

2

1

),,(),,(

Chapter 12, 12.5, P697

b

a

xg

xg

yxu

yxuE

dzdydxzyxfdVzyxf)(

)(

),(

),(

2

1

2

1

),,(),,(

Chapter 12, 12.5, P698

d

c

xh

xh

yxu

yxuE

dzdxdyzyxfdVzyxf)(

)(

),(

),(

2

1

2

1

),,(),,(

Chapter 12, 12.5, P698

dAdxzyxfdVzyxfE D

yxu

yxu

),(

),(

2

1

),,(),,(

Chapter 12, 12.5, P699

dAdyzyxfdVzyxfE D

yxu

yxu

),(

),(

2

1

),,(),,(

Chapter 12, 12.5, P700

E

dVEV )(

Chapter 12, 12.6, P705

Chapter 12, 12.6, P705

To convert from cylindrical to rectangular coordinates, we use the equations

1 x=r cosθ y=r sinθ z=z

whereas to convert from rectangular to cylindrical coordinates, we use

2. r2=x2+y2 tan θ= z=zx

y

Chapter 12, 12.6, P706

Chapter 12, 12.6, P706

Chapter 12, 12.6, P706

Chapter 12, 12.6, P707

formula for triple integration in cylindrical coordinates.

E

h

h

rru

rrurdzdrdzrrfdVzyxf

)(

)(

)sin,cos(

)sin,cos(

2

1

2

1

),sin,cos(),,(

Chapter 12, 12.7, P709

0p 0

Chapter 12, 12.7, P709

Chapter 12, 12.7, P709

Chapter 12, 12.7, P709

Chapter 12, 12.7, P710

Chapter 12, 12.7, P710

cossinpx sinsinpy cospz

Chapter 12, 12.7, P710

2222 zyxp

Chapter 12, 12.7, P711

FIGURE 8Volume element in sphericalcoordinates: dV=p2sinødpdΘd ø

Chapter 12, 12.7, P711

where E is a spherical wedge given by

E

dVzyxf ),,(

d

c

b

addpdppsomppf

sin)cos,sin,cossin( 2

},,),,{( dcbpapE

Formula for triple integration in spherical coordinates

Chapter 12, 12.8, P716

Chapter 12, 12.8, P717

Chapter 12, 12.8, P718

7. DEFINITION The Jacobian of the transformation T given by x= g (u, v) and y= h (u, v) is

u

y

v

x

v

y

u

x

v

y

u

yv

x

u

x

vu

yx

),(

),(

Chapter 12, 12.8, P719

9. CHANGE OF VARIABLES IN A DOUBLE INTEGRAL Suppose that T is a C1

transformation whose Jacobian is nonzero and that maps a region S in the uv-plane onto a region R in the xy-plane. Suppose that f is continuous on R and that R and S are type I or type II plane regions. Suppose also that T is one-to-one, except perhaps on the boundary of . S. Then

R S

dudvvu

yxvuyvuxfdAyxf

),(

),()),(),,((),(

Chapter 12, 12.8, P721

Let T be a transformation that maps a region S in uvw-space onto a region R in xyz-space by means of the equations

x=g (u, v, w) y=h (u, v, w) z=k (u, v, w)

The Jacobian of T is the following 3X3 determinant:

12.

w

z

v

z

u

zw

y

v

y

u

yw

x

v

x

u

x

wvu

zyx

),,(

),,(

Chapter 12, 12.8, P722

R

dVzyxf ),,(13.

s

dudvdwwvu

zyxwvuzwvuywvuxf

),,(

),,()),,(),,,(),,,((

Recommended