59
ESSENTIAL CALCULUS ESSENTIAL CALCULUS CH12 Multiple CH12 Multiple integrals integrals

ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Embed Size (px)

Citation preview

Page 1: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

ESSENTIAL CALCULUSESSENTIAL CALCULUS

CH12 Multiple CH12 Multiple integralsintegrals

Page 2: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

In this Chapter:In this Chapter:

12.1 Double Integrals over Rectangles

12.2 Double Integrals over General Regions

12.3 Double Integrals in Polar Coordinates

12.4 Applications of Double Integrals

12.5 Triple Integrals

12.6 Triple Integrals in Cylindrical Coordinates

12.7 Triple Integrals in Spherical Coordinates

12.8 Change of Variables in Multiple Integrals

Review

Page 3: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.1, P665

(See Figure 2.) Our goal is to find the volume of S.

}),(),,(0),,{( 3 RyxyxfzRzyxs

Page 4: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.1, P667

Page 5: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.1, P667

Page 6: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.1, P667

5. DEFINITION The double integral of f over the rectangle R is

if this limit exists.

ij

m

i

n

jRyx

AjyijxifdAyxfii

),(lim),(

1

*

1

*

0,max

Page 7: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.1, P668

AyxfdAyxfm

i

n

jji

Rnm

),(lim),(

1 1,

Page 8: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.1, P668

If f (x, y) ≥ 0, then the volume V of the solid that lies above the rectangle R and below the surface z=f (x, y) is

R

dAyxfv ),(

Page 9: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.1, P669

MIDPOINT RULE FOR DOUBLE INTEGRALS

where xi is the midpoint of [xi-1, xi] and yj is the midpoint of [yj-1, yj ].

AyxfdAyxf ji

m

i

n

jR

),(),(1 1

Page 10: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.1, P672

10. FUBINI’S THEOREM If f is continuous on the rectangle R={(x, y} │a ≤ x≤ b, c ≤ y ≤d} , then

More generally, this is true if we assume that f is bounded on R, is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

b

a

d

c

d

c

b

aR

dxdyyxfdydxyxfdAyxf ),(),(),(

Page 11: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.1, P673

R

b

a

d

cdyyhdxxgdAyhxg )()()()( where R ],[],[ dcbaR

Page 12: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.2, P676

Page 13: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.2, P676

Page 14: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.2, P677

Page 15: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.2, P677

Page 16: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.2, P677

3.If f is continuous on a type I region D such that

then

)}()(,),{( 21 xgyxgbxayxD

D

b

a

xg

xgdydxyxfdAyxf

2

1

),(),(

Page 17: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.2, P678

Page 18: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.2, P678

D

d

c

yh

yhdxdyyxfdAyxf

)(

)(

2

1

),(),(

where D is a type II region given by Equation 4.

Page 19: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.2, P681

Page 20: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.2, P681

D D D

dAyxgdAyxfdAyxgyxf ),(),()],(),([

D D

dAyxfcdAyxcf ),(),(

D g

dAyxgdAyxf ),(),(

6.

7.

If f (x, y) ≥ g (x, y) for all (x, y) in D, then

8.

If D=D1 U D2, where D1 and D2 don’t overlap except perhaps on their boundaries (see Figure 17), then

D D D

dAyxfdAyxfdAyxf1 2

),(),(),(

Page 21: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

D

DAdA )(1

Chapter 12, 12.2, P682

Page 22: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.2, P682

11. If m≤ f (x, y) ≤ M for all (x ,y) in D, then

D

DMAdAyxfDmA )(),()(

Page 23: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.3, P684

Page 24: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.3, P684

Page 25: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.3, P684

Page 26: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.3, P684

r2=x2+y2 x=r cosθ y=r sinθ

Page 27: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.3, P685

Page 28: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.3, P686

2. CHANGE TO POLAR COORDINATES IN A DOUBLE INTEGRAL If f is continuous on a polar rectangle R given by 0≤a≤r≤b, a≤θ≤β, where 0≤β-α≤2 , then

R

b

ardrdrrfdAyxf

)sin,cos(),(

Page 29: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.3, P687

3. If f is continuous on a polar region of the form

then

)()(,),{( 21 hrhrD

D

h

hrdrdrrfdAyxf

)(

)(

2

1

)sin,cos(),(

Page 30: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.5, P696

3. DEFINITION The triple integral of f over the box B is

if this limit exists.

B

l

i

m

jijkijkijk

n

kijk

zyxVzyxfdVzyxf

kii 1 1

**

1

*

0,,max),,(lim),,(

Page 31: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.5, P696

B

l

i

m

jkj

n

ki

nmlVzyxfdVzyxf

1 1 1,,

),,(lim),,(

Page 32: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.5, P696

4. FUBINI’S THEOREM FOR TRIPLE INTEGRALS If f is continuous on therectangular box B=[a, b]╳ [c, d ]╳[r, s], then

B

s

r

d

c

b

adxdydzzyxfdVzyxf ),,(),,(

Page 33: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.5, P697

dAdzzyxfdVzyxfE D

yxu

yxu

),(

),(

2

1

),,(),,(

Page 34: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.5, P697

b

a

xg

xg

yxu

yxuE

dzdydxzyxfdVzyxf)(

)(

),(

),(

2

1

2

1

),,(),,(

Page 35: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.5, P698

d

c

xh

xh

yxu

yxuE

dzdxdyzyxfdVzyxf)(

)(

),(

),(

2

1

2

1

),,(),,(

Page 36: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.5, P698

dAdxzyxfdVzyxfE D

yxu

yxu

),(

),(

2

1

),,(),,(

Page 37: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.5, P699

dAdyzyxfdVzyxfE D

yxu

yxu

),(

),(

2

1

),,(),,(

Page 38: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.5, P700

E

dVEV )(

Page 39: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.6, P705

Page 40: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.6, P705

To convert from cylindrical to rectangular coordinates, we use the equations

1 x=r cosθ y=r sinθ z=z

whereas to convert from rectangular to cylindrical coordinates, we use

2. r2=x2+y2 tan θ= z=zx

y

Page 41: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.6, P706

Page 42: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.6, P706

Page 43: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.6, P706

Page 44: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.6, P707

formula for triple integration in cylindrical coordinates.

E

h

h

rru

rrurdzdrdzrrfdVzyxf

)(

)(

)sin,cos(

)sin,cos(

2

1

2

1

),sin,cos(),,(

Page 45: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.7, P709

0p 0

Page 46: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.7, P709

Page 47: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.7, P709

Page 48: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.7, P709

Page 49: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.7, P710

Page 50: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.7, P710

cossinpx sinsinpy cospz

Page 51: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.7, P710

2222 zyxp

Page 52: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.7, P711

FIGURE 8Volume element in sphericalcoordinates: dV=p2sinødpdΘd ø

Page 53: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.7, P711

where E is a spherical wedge given by

E

dVzyxf ),,(

d

c

b

addpdppsomppf

sin)cos,sin,cossin( 2

},,),,{( dcbpapE

Formula for triple integration in spherical coordinates

Page 54: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.8, P716

Page 55: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.8, P717

Page 56: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.8, P718

7. DEFINITION The Jacobian of the transformation T given by x= g (u, v) and y= h (u, v) is

u

y

v

x

v

y

u

x

v

y

u

yv

x

u

x

vu

yx

),(

),(

Page 57: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.8, P719

9. CHANGE OF VARIABLES IN A DOUBLE INTEGRAL Suppose that T is a C1

transformation whose Jacobian is nonzero and that maps a region S in the uv-plane onto a region R in the xy-plane. Suppose that f is continuous on R and that R and S are type I or type II plane regions. Suppose also that T is one-to-one, except perhaps on the boundary of . S. Then

R S

dudvvu

yxvuyvuxfdAyxf

),(

),()),(),,((),(

Page 58: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.8, P721

Let T be a transformation that maps a region S in uvw-space onto a region R in xyz-space by means of the equations

x=g (u, v, w) y=h (u, v, w) z=k (u, v, w)

The Jacobian of T is the following 3X3 determinant:

12.

w

z

v

z

u

zw

y

v

y

u

yw

x

v

x

u

x

wvu

zyx

),,(

),,(

Page 59: ESSENTIAL CALCULUS CH12 Multiple integrals. In this Chapter: 12.1 Double Integrals over Rectangles 12.2 Double Integrals over General Regions 12.3 Double

Chapter 12, 12.8, P722

R

dVzyxf ),,(13.

s

dudvdwwvu

zyxwvuzwvuywvuxf

),,(

),,()),,(),,,(),,,((