ELECTRICAL MACHINES-IIfiles.teceee-in.webnode.in/200000077-ce6c2cf65e... · Overview of...

Preview:

Citation preview

UNIT‐3 Three Phase Induction Motor

ELECTRICAL MACHINES-II

Learning Outcomes

• At the end of the lecture, student should to:– Understand the principle and the nature of 3 phaseinduction machines.

– Perform an analysis on induction machines which isthe most rugged and the most widely used machine inindustry.

2Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

Contents

– Overview of Three‐Phase Induction Motor

– Construction & Principle of Operation

– Slip‐ Torque characteristics

– Equivalent Circuit 

– Losses & Efficiency

– Tests on 3Ph IM 

– Synchronous Induction Motor

– Double cage rotors

– Induction generator 

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College 3

Overview of Three‐Phase Induction Motor

• Induction motors are used worldwide in many residential, commercial, industrial, and utility applications. 

• Induction Motors transform electrical energy intomechanical energy.

• It can be part of a pump or fan, or connected to some otherform of mechanical equipment such as a winder, conveyor,or mixer.

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College 4

Introduction

General aspects• A induction machine can be used as either ainduction generator or a induction motor.

• Induction motors are popularly used in theindustry

• Main features: cheap and low maintenance

• Disadvantages: speed control is not easy

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College 5

Construction• The three basic parts of an AC motor are the rotor, stator, and 

enclosure.• The stator and the rotor are electrical circuits that perform as 

electromagnets.

7Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

Construction

Cutaway in a typical wound-rotor IM. Notice the brushes and the slip rings

Brushes

Slip rings

8Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

Construction (Stator construction)• The stator is the stationary electrical part of the motor.• The stator core of a National Electrical Manufacturers Association

(NEMA) motor is made up of several hundred thin laminations.• Stator laminations are stacked together forming a hollow cylinder. Coils 

of insulated wire are inserted into slots of the stator core.• Electromagnetism is the principle behind motor operation. Each 

grouping of coils, together with the steel core it surrounds, form an electromagnet. The stator windings are connected directly to the power source.

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College 9

Construction (Rotor construction)

• The rotor is the rotating part of the electromagnetic circuit.

• It can be found in two types:– Squirrel cage

– Wound rotor

• However, the most common type of rotor is the “squirrel cage” rotor.

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College 10

Construction (Rotor construction)

• Induction motor types:

Squirrel cage type:Rotor winding is composed of copper bars embedded in the rotor slots and shorted at both end by end ringsSimple, low cost, robust, low maintenance

Wound rotor type:Rotor winding is wound by wires. The winding terminals can be connected to external circuits through slip rings and brushes.Easy to control speed, more expensive.

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College 11

Construction

Squirrel cage rotor

Wound rotor

Notice the slip rings

12Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

Construction (Rotor construction)

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College 13

Wound Rotor

Squirrel-Cage Rotor

/rotor winding

Short circuits allrotor bars.

Construction (Enclosure)

• The enclosure consists of a frame (or yoke) and two endbrackets (or bearing housings). The stator is mounted inside theframe. The rotor fits inside the stator with a slight air gapseparating it from the stator. There is NO direct physicalconnection between the rotor and the stator.

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College 14

Stator

Rotor

Air gap

• The enclosure also protects the electricaland operating parts of the motor fromharmful effects of the environment in whichthe motor operates. Bearings, mounted onthe shaft, support the rotor and allow it toturn. A fan, also mounted on the shaft, isused on the motor shown below for cooling.

Construction (Enclosure)

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College 15

Nameplate

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College 16

Rotating Magnetic Field

• When a 3 phase stator winding is connected to a 3 phase voltage supply, 3 phase current will flow in the windings, which also will induced 3 phase flux in the stator. 

• These flux will rotate at a speed called a Synchronous Speed, ns. The flux is called as Rotating magnetic Field

• Synchronous speed: speed of rotating flux

• Where;  p = is the number of poles, and f  = the frequency of supply

pfns

120=

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College 17

18

AC Machine Stator

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

a Fc

-93 10 113 216-1.5

-1

-0.5

0

0.5

1

1.5

a’

c’ b’

b c

a

a’

c’ b’

b c

a

a’

c’ b’

b c

a

a’

c’ b’

b c

Fb

Fa F

FbFc

F

Fa

F

Fb

Fc Fc Fb

F

Space angle (θ) in degrees

FFa Fc

Fb

t = t0= t4

t = t1t = t2 t = t3

t = t0= t4

RMF(Rotating Magnetic Field)

1 Cycle

Amp

timet0t1 t2 t3 t4

t01 t12Currents in different phases of AC Machine

Principle of Operation• Torque producing mechanism

When a 3 phase stator winding is connected to a 3 phasevoltage supply, 3 phase current will flow in the windings,hence the stator is energized.A rotating flux Φ is produced in the air gap. The flux Φ inducesa voltage Ea in the rotor winding (like a transformer).The induced voltage produces rotor current, if rotor circuit isclosed.The rotor current interacts with the flux Φ, producing torque.The rotor rotates in the direction of the rotating flux.

21Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

Slip 

22Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

23Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

24Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

25Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

26Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

27```Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

Direction of Rotor Rotates

• Q: How to change the direction of

• rotation?

• • A: Change the phase sequence of the

• power supply.

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College 28

29

Power Flow Diagram

Pin (Motor)

Pin (Stator)

Pcore loss(Pc)

Pair Gap(Pag)

PdevelopedPmechanicalPconverted

(Pm)

Pout, Po

Pstator copper loss,

(Pscu)

Protor copper

loss (Prcu)Pwindage,

friction, etc(Pμ - Given)

θcos3 ss IV

sRI R

R''3 2

2

3 ⎟⎟⎠

⎞⎜⎜⎝

c

RM

RV ''3 2

RR RI

⎟⎠⎞

⎜⎝⎛ −

ssRI RR

1''3 2

Whp 7461 =

ss RI 23

Pin (Rotor)

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College 30

Power flow in induction motor

Power Flow Diagram• Ratio:

Pag Prcu Pm

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College 31

sRI R

R''3 2 ''3 2

RR RI ⎟⎠⎞

⎜⎝⎛ −

ssRI RR

1''3 2

s1 11

−s

1

1 s s−1

Ratio makes the analysis simpler to find the value of the particular power if we haveanother particular power. For example:

ss

PP

m

rcu

−=

1

Efficiency

WattxWhpxPIVP

otherwisePPPPPP

givenarePifPP

out

ssin

mo

lossesino

losses

in

out

746746cos3

,

,

%100

=×==

−=−=

×=

θ

η

μ

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College 32

Equivalent Circuit of Induction Machines• Conventional equivalent circuit

Note:● Never use three‐phase equivalent circuit. Always use per‐

phase equivalent circuit.

● The equivalent circuit always bases on the Y connection regardless of the actual connection of the motor.

● Induction machine equivalent circuit is very similar to the single‐phase equivalent circuit of transformer. It is composed of stator circuit and rotor circuit

33Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

Equivalent Circuit of Induction Machines

• Step1 Rotor winding is open(The rotor will not rotate)

• Note: – the frequency of E2 is the same as that of E1 since the rotor is at 

standstill. At standstill s=1.

34

f f

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

Equivalent Circuit of Induction Machines

35Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

Equivalent Circuit of Induction Machines

• Step2 Rotor winding is shorted(Under normal operating conditions, the rotor winding is shorted. The slip is s)

• Note: 

– the frequency of E2 is fr=sf because rotor is rotating.

36

f fr

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

Equivalent Circuit of Induction Machines• Step3 Eliminate f2

Keep the rotor current same:

37Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

Equivalent Circuit of Induction Machines

38Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

39

LOAD TEST ON 3 PHASE INDUCTION MOTOR

1. Torque, T= (T1~T2) x R x 9.81  ,   Nmwhere R is the radius of the brake drum in metre

2. Output Power PO = 2пNT  60    (watt)3. Input Power Pi = W1+W2    (watt)                               4. % Efficiency η = Po  Pi  x1005. % Slip = NS‐N    x100   where NS = 120f   P   (rpm)

NS

6. Power factor  cos ф = Pi    VL IL √3

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

40

SEPERATION OF LOSSES IN 3PHASE IM

VO IOWO=

W1+W2Wcu WO– Wcu

(watts)

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

41

NO LOAD AND BLOCKED ROTOR TEST ON THREE PHASE INDUCTION MOTOR 

NO LOAD TEST1.The output voltage is adjusted to its rated value using three phase variac.2.The readings of ammeter, voltmeter and wattmeter was noted.3.Reduce the output voltage of the variac to zero and switch OFF the supply.

BLOCKED ROTOR TEST1.The circuit in no load test is modified to conduct blocked rotor test replacings meters of appropriate ratings.2.Adjust the variac such that the ammeter reads the rated current.4.Note down the corresponding wattmeter and voltmeter readings.

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

42

EQUIVALENT CIRCUIT DETERMINATION:

ΦO = cos-1( WO )√3VLIL

ΦSC = cos-1( WSC )√3VSCISC

ISN = ISC ( VOC/VSC)PSN = PSC ( ISN/ISC)2

%SLIP = NS-N X100NS

IO = IW2 + Iμ2

IW = IOcosΦOIμ = IOsinΦORO = V1/IWXO = V1/ IμRO1 = R1 + R2’XO1 = X1 + X2’

FROM BLOCKED ROTOR TEST

ZO1 = VSC√3 ISC

WSC = 3 ISC2RO1

RO1 = WSC3ISC

2

XO1 = ZO12 – RO1

2

Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

43Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

INDUCTION GENERATOR

44Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

SYNCHRONOUS INDUCTION MOTOR

45Dr. K.Srinivasan,Prof/EEE/Tagore Engg College

Recommended