Deep Geothermal Resources: Estimated Temperatures on Top ... maps...2 T. 16 0. T. 1 9 N. T. 16 1N T....

Preview:

Citation preview

North Dakota Geological Survey100K Series: Bntu- g - MM Deep Geothermal Resources: Estimated Temperatures on Top of the Madison Group

Carto graphic Compilatio n: Elroy L. Kadrmas

Bottineau 100K Sheet, North Dakota

Edward C. Murphy, State GeologistLynn D. Helms, Director Dept. of Mineral Resources

1980 Magnetic NorthDeclination at Cen ter of Sheet Lorraine A. Manz

2011

11 o 30'

EE EE E

E

E

E

EE

E

E E

E

E

E

E

E E

E E

E EE

EE

E

E

E

E

E

E E

E

E

E

E

E E

E E

E E E E

E

E

E

EE

E E

EEE

E E

E

E

E

E

E

E

E

EE

E

EE

E

EE

E

E

E E

E E E

E

E

E

E

E E

E

E EE

E E

E

E

E

E

E E E

EE

E E

E

E

E

E E

E E

E

E

E

E

EE

E

E E

E

E E E

E

E

E

E

E

E

E E

E

E E

E

EE

E

E

E

E

E

E

E

E E EE

E E

E

E

E

E

E

E E

E E

E

E

E

E

E E

E E

E

E E

E E

E

E

E

E

EE E E

E E

E

E

E

E

E

E

E

E

E

E

E

E E

E E E

E

E

E

E

EE

E

E

E E

E

E

EE

E

EE E

E

E

E E

E

E

E E

E

E

E

EE

E

EE

E

E E

E

E

E

E

E

E

E

E

E

E

EE

E

E E

E

E

E

E

E

E

E

E E

E

E

E E

E

E EE

E

E E

E

E E

E

E

E

E

E

E

E

E E

E

E

E

E

E E

E

E

E

E

E

E

E

E

E

EE

E

EE

E

E

E

E E EE E

EE

E

E

E

E

E

E

E E

E

E E

E E

E E

E

E

E

E E

EE

EEE

E

E

E

E E

E

E E

E

E

E

E

E

E

E

E

E

E

E

E E

E

E

E

EE

E

E E

E

E

E

E

E E

EE

E

EE

E E

E

E

E

E E

EE E

E

EE

E E

E E

E

E

E

EE

E E

E

E

E

E E

E

EE E

E

E

E

E E E

E

E EE

E

E

E

E

E

E

E

E

E

E

EEE

E

E

E

E

E

E

E E

E E

E E

E E

E

E

E

E

E

EE

E

E

E EE

E

EE E

E

E

E

E

E

E E

E E

E

E

E E

E

EE

E

E

E

E

E

E

E

E

E

E E

E

E

E E

E

E

E

E

E

EE E

EE E

E

E

E

E

E

E

E

EE

E E

E

E

E E

EE

E

E

E

E

E E

E E

E

EE E

E

E E

E

E

E

E E

E

E

E

E

E

E

EE

E

EE

E

E

E E E E

E

E

E

E

E E

E

E

E E E

E

E

E

E

E

E

E

E

E

E E

E

E E

E

E

E

E E

E E E

E

E

E

E

E

E

E E

E E

E

EE

E

E

E

E

E

E

E E E

E

EE

EE

E E E

EE

E

E

E

E E

E

EE

E

E

E

E

E

E EE

E E EE E

E

E

E

E

E E E

E

E

E E

E

E

E E

EE EE

E

E

E

E

EE

E

E

E

E

E

E E E

EEE

EE E

E

E

E

E E

E E E

E

E

E E

E

E

E E

E

E

E

E

E

E

E

EE

E

E

E

E

E

E E

E E

E E

E E

E E E

E

EE E E

E

E

E E

EE

E

E

E

E

E

E E

E

E

E

E E

E

E

E

E

EEE

E

E E E

E

E

E

E E

E E

E E

E

E

E

E

E

E

EEE

E E E

E

EE

EE

EE

EE

E

E

E

E

E

E

E

E E E

E EE

E

E

E

EE

E

E

E

E

E

E

E E

E

E

E

E

E

E

E E E

E

E E

E E

E

E

E

E

E

E

E E

E E

E

E EE

E E

E

E E

EE

E

E E

E

E

E

E

E

E E

E

E E

EEE

E

E

E E E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E E

EE

E

E

E EE

E

E

E

E

E

E

E E

E E

E E

EE

E

E

E

E

E

E

E

E

E E

E

E E

E E E

E E

E

E

E

E

E

E

E

E

E

E E

E

EE

E

E

E E

E E E

E

E

E

E

E E

E

E

E

E EE

E E E

E

E E

E

EE E

E

EE E

E

E

E E E

E

E

E

E

E

E E

E

E

E E E

E E

EE

E

E E

E

EE

E

E EE

E

E E

E

E EE

E

E

EE

E

E E

E

E

E

E

EE

E

E

E

E

E

E E

E

E E

E

E

E E E

E

E

E

E

E

EEE

E

E

E

EE

E

E

E

E

E

E

E

E

E E

E

EE

E E

E

EE E E

E

E

E

E

E

E

E

E

E

EE

E

E E E

E

E

E E

E

E

E E

E

E

E

EE

E

E

E

E

E

E

E

E

E E

E

E

E

E

E E EE

E

E E E

E

E

E

E E

E

E

E E

E

E

E EE

E

E

E E

E

E

E

E

EE

EE

E

E

E E

E

E

E

E

E

E E E

E

E E

E

E E E

E

E E

E

E E

E

EEE

E

E E

E

E

E

E

E

E

E

E E

E

E

E

E

E

E

E

EE

E

E

E

E

E

E

E

E

EE

E

E

E

E E

E

E

E E

EE

E

E E

E

E

E EE

EEE

E E

E

E

E

E

E

E

E E E

E

E

E

E

E E E

E E

E

E E

E

E

E

E E

EE

EE

E

E

E

E

E EE

E

EE

E

E

E

E EE

E E

E

E

E E

E

E E E E

E

E E

E

E

E E

E

E E

E

E EE

E

E

EE

E

EE EEE

E

E E

E E

E

E

E

E E

E

E

E

E EE

EEE

E

E

E

E

E

E

E E

E

E EE

E EE

E

E

E

E

E

E

E

E EE E

E

E

EE

E EE

E

E

E

E

E

EE

E

E

E

E

E

E E

E E E

E

E

E

E

E

E

E E

EEE

E

E EE E

E E

E

E

EE

E E E

E

E

E

E

E

E

E

E

E

E E

E

E

E

E

EE

E

EE

EE

E

E

E

E

E

E

E

E

E E

E

E E

E

E

E

E

E

E

E E

E

E

E

E E

E

E

EE E

E E

E E

E

E

E

E

EE

E

E E

E

EE

E

E

E

E

E

E

E E

E E

E

E

E E

E

E

E

E

E E

E

E

E

E

E

E

E

E

E

E

E

E

E

E E E

E

E

E E

E

E E E

E

EE E

E E E E

E E

E E

E

E

E

E

EE

E E

EEE

E

E

E E

E

E EE

E

E

E

EE E

E

E

E

E

E EE

EE

E

E E E

E

EE

E

E

E E

E

E E

E

E

EE

E

E

E

E

E

E E

E

E E E

E E

E E

E

E

E E

E E E

E E

E

E E E

E

E

E

E E

EE

E

E E

E

E E E

E

E

E

E

E

E

E

E E

E E

E

E

E E

E

E

E

E

E

E

E

EE

E

E

E E

E

E

E E E

E E

E

E

E

E

E

E E

E

EE

E

E

E

E

E

E

E E E E

E

EE E

E

E

E E E

E

E E

E

E

E

E

E E

E E

E

E E

EE

EE E

E

EE

E

E

E

E

E

E

EE

E

E E

E

E

E E

EE

E

E

E E

E

E

E E

E E

E

E

EE

E

E

E

E

E

EE

E E E

E

E

E

E

E

E

E E

E E EE

E E

E

E

E E

E

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Landa

Upham

Kramer

Overly

Souris

Bantry

Newburg

Gardena

Dunseith

Westhope

Bottineau

WillowCity

Oak Creek

Stone Cr ee k

Ox Creek

Mud Creek

Mi ller Creek

Boun

d ar y

Creek

De ep Ri v e r

Mineral Cre e k

L aPo rte C oul

ee

Boun da ry Creek

Bou ndary Cre ek

Sp ring C oulee

Wil low C

reek

Sna ke Cr eek

I ndi an

Creek

Wol f C reek

Mud C

reek

Wil low Lake

Carpenter Lake

LordsLake

Souris

SourisWillow

River

Lake Metigoshe

Lake Metigoshe

LoonLake

Deep R iver

LongLake

Lyde Lake

DuckLake

BoundaryLake

River

Ox Creek

Wil low

Ross Lake

BerryLake

Horseshoe LakeGrassLake

Creek

HartleyLake

Butte Lake

Lords Lake

LakeThomas Hemming

Lake

RabbLake

Long Lake

PelicanLake

LeeLake

Lagerquist Lake

BergenLake

GriggLake

Is land Lake

Juneau Lake

HellickLake Long Lake

Klebe Lake

SandLakeLake

Klingenberg

BittenerLakeSivertson

Lake

CassidyLake

RoseLake

Walker Lake

Bigham Lake

Myer Lake

LongLake

LakeDana

LakeBennett

SchutteLake

LakeCou thard

EldridgeLake

MudLake

MudLake

LakeFrancis

LakeBessie

Creek

LakeHarman

Smith srundLake

NorbergLake

Little H orseshoe Lake

LakeTaylor

Plat te Lake

SchmidtLake

BlackLake

Lockhar tLake

StrawberryLake

HartsLake

GordonLake

Car lis leLake

-1500

-1100

-2000

£¤

!(

BOTTINEAU COPIERCE CO

ROLETTE COMCHENRY CO

BOTTINEAU COMCHENRY CO

BOTT

INEA

U CO

ROLE

TTE

CO

3

!(17

!(5

!(3

!(60

!(60

281

!(5

!(43!(43

!(14

!(14

!(5

!(14

"

"

"

1

1

6

61

1

6

1

1

1

1

1

1

1

1

1

6

61

1

6

16 1

1

1

1

6

61

6

61

1 1 1

6

1

1

6

1

1

1

1 6

6

6

1

6

1

6

6

1

6

6

1 1

6

1

1

6

1

6

11

6

1

6

6

1

1

1

6

1

6

1

6

6

6

1

6

66

6

6

6

6

6

6

666 6

6

6

6

3136

3636

31

36

3636

36

36

36

31

36

36

31

31

36

36

36

36

36

31

31 31

31 36

36 36

36 3631

36

36

31

36

36

31

36

36

36

36

31

3636

36

36

36

31

31

36

36

36

36

36

31

36

36 36

36

31

31

31

36

36

31

31

36

36 3131

31 31 36

31

31

31

3131 31

31

31

31 3131

31

31

31

31

31

31

31

31

31

31

31

31

101o 00 '49o 00 '

100o 00 '49o 00 '

101o 00 '48o 30 '

100o 00 '48o 30 '

R. 79 W.

T. 16

4 N.

T. 16

2 N.

T. 16

0 N.

T. 15

9 N.

T. 16

1 N.

R. 77 W. R. 76 W. R. 75 W. R. 74 W. R. 73 W.

R. 80 W. R. 78 W.R. 79 W. R. 77 W. R. 76 W. R. 75 W. R. 74 W. R. 73 W.

T. 16

3 N.

R. 78 W.R. 80 W.

T. 15

8 N.

R. 72 W.

T. 16

4 N.

T. 16

2 N.

T. 16

0 N.

T. 15

9 N.

T. 16

1 N.

T. 16

3 N.

T. 15

8 N.

Geothermal energy is a renewable resource capable of producing an uninterrupted supply of electrical powerand heat. In stable sedimentary basins, low-temperature geothermal energy (<40°C) is extracted from theshallow subsurface (~2-200 m [8-600 feet]) for use in domestic and commercial heating and cooling systems.Historically, deeper, hotter resources in these regions have not been developed because they typically lack oneor more of the essential requirements that make high-temperature geothermal resources technically andeconomically viable.

Conventional methods of electricity generation using geothermal energy rely on hot (>100°C) relativelyshallow (<3,000 m [10,000 feet]), easily developed hydrothermal resources. Generally associated with activeplate boundaries and/or volcanism, these high-grade hydrothermal systems are characterized by high thermalgradients, and highly fractured, porous reservoir rocks through which natural waters or s team can freelycirculate. Large-scale, cos t-effective electric power generation usually requires fluid temperatures above150°C but smaller systems based on standard binary-cycle technology are capable of producing electricityusing geothermal fluids at temperatures as low as 100°C.

Natural sources of high-grade hydrothermal energy are geographically limited. In the U.S. they are restrictedto the western states and currently represent less than 1% of the nation’s electrical power generating capacity.Yet the amount of heat at depths less than 10,000 m (30,000 feet) below the surface of the continental U.S. issubstantial. By replicating natural hydrothermal conditions it is possible, in some regions, to turn this heat intoan economically viable resource. In 2005 an 18-member MIT-led interdisciplinary panel conducted acomprehensive technical and economic assessment of geothermal energy as a viable source of energy for theU.S. (Tester and others, 2006). The study estimated that, based on current technology, geothermal energycould be producing more than 100GW of affordable electricity by 2050, equivalent to roughly 10% of theU.S.’ present-day capacity. Enhanced (or engineered) geothermal systems (EGS) are engineered reservoirs designed to produce energy asheat or electricity from geothermal resources that are otherwise not economical due to lack of water and/orpermeability (U.S. Department of Energy, 2008). EGS technology uses adaptations of techniques developedin the oil and gas , and mining industries to fracture hot, low-porosity rocks in the deep subsurface and extractthe heat with water via a sys tem of injection and production wells.

With infrastructures already in place and the abundance of horizontally drilled and/or artificially stimulatedwells, hydrocarbon fields are prime candidates for the application of EGS technology. Of particular interestare those wells regarded as marginal or unproductive because they produce too much water. Geothermalwaters that are coproduced with oil and gas are an expensive waste product that in North Dakota mus t bedisposed of by re-injection into the subsurface. If sufficiently hot (>100°-150°C) and available in sufficientquantity, however, these waters may be capable of generating cost-effective electricity (McKenna and others ,2005).

The Miss issippian-age Madison Group is the second-shallowest of four major geothermal aquifers that occurin the Williston Basin. The map shows calculated temperatures (°C) for the top of the Madison Group inthe vicinity of B ottineau in north-central North Dakota.

There are no data sets for North Dakota that list accurate temperatures for Paleozoic rocks. Bottom holetemperatures from oil well logs are unreliable and to assume that a simple linear relationship exists betweentemperature and depth would be incorrect. Although grossly linear the geothermal gradient in the upperlithosphere is significantly affected by thermal variables (heat flow and thermal conductivity) in the earth’scrust and any method used to accurately calculate subsurface temperatures must take these factors intoaccount. Provided the subsurface stratigraphy is known, Gosnold (1984) showed that at a given depth (Z) the temperature (T) can be represented by the following equation:

Rock units and thicknesses were obtained from oil well log tops (July 2011 update). The map was compiledusing approximately 630 data points (wells). Table 1 . Thermal conductivity estimates for principal lithostratigraphic units overlying the Madison Groupin the Williston Basin.

1 T hermal conductivi ties were estimated u sing data from temperature-dep th logs fo r Hess Corporation’s Tioga-Madison Unit O-143HRwell in SW4, NW4, Sec. 17, T158N, R94W (Kenmare 100k sheet).

5756

585960

Temperature/oC

45464748

5352

545556

4948

505152

For the data set used to produce this map To and K were assumed to be constants. Mean surface temperature

n

i 1T = To + Zi(Q/Ki)

Where:To = Surface temperature (in °C) Zi = Thickness of the overlying rock layer (in meters)Ki = Thermal conductivity of the overlying rock layerN = Number of overlying rock layersQ = Regional heat flow

Geologic SymbolsTop of Madison Group (feet above sea level)Data Points!

ReferencesBlackwell, D.D., and R ichards , M., 2 004, Geother mal map of North America: American Associatio n of Petroleum Geologists , 1 sheet, scale 1:6,500,000.

Gosnold,W.D. J r. , 198 4, Geothermal resource assessment for North Dakota. Final repo rt: U.S Dep artment o f Energy Bulletin No. 84-04 -MMRRI- 04.

McKenn a, J. , Black well, D., Mo yes, C., and Patterson, P.D., 2 005, Geoth er mal electric power supply poss ible from Gulf Coas t, Midcontinent oil f ield waters:Oil & Gas Journal, Sept. 5, 2005 p . 34-40.

Tester, J. W., Anderso n, B., Batch elor, A., Blackwell, D., DiPippo, R., Drake, E., Garnish, J. , Livesay, B., Moore, M.C., Nicho ls , K., Petty, S ., Tokso z, N., Veatch, R., Aug ustine,C., B ar ia, R ., Murphy, E., Neg rar u, P., R ichards , M., 2006., The future of geothermal energy: Impact of enhanced geoth er mal sys tems (EGS) on the United States in the 2 1st century :Massach usetts Institute of Technology, DOE Contract DE- AC07 -05ID14517, Final Repo rt.

U.S. Department of En erg y, 2 008, Enhanced geothermal sys tems: http //wwwl.eere.energy.g ov/geothermal/enchanced _geothermal_systems.html (Ver sion 11 May 2 010retrieved 24 October 2 011).

http//wwwl.eer e.energy.go v/g eo th ermal/en ch an ced_g eo thermal_sy stems.html

Other FeaturesWater Coun ty Boundary Paved RoadWater - Intermit tent £¤281 US Highway

State Highway!(5Unpaved Road

Marsh/WetlandWaterway - Intermit tentWaterway - Perennial

Section CornersE

Mercato r Projection 1927 Nor th American DatumStandard parallel 48o 30' Centr al mer idian 100o 30'

0 1 2 3 4

Miles

Scale 1:100,000

Bottineau 1 00K Sheet, North Dakota Adjoining 100 K Maps

Estimated regional s teady state heat flow Q = 70.0 mW/m2 (Blackwell and Richards, 2004).

(http://www.ndsu.edu/ndsco) . Thermal conductivities (K) for formations overlying the Madison Group areshown in Table 1 .

(To = 8.0°C [46.4°F]) was calculated from statewide average annual bare and turf soil temperatures at 79North Dakota Agricultural Network climate monitoring stations for the period 1991 to 2010http//wwwl.ndsu.edu/ndsco

Recommended