Chapter 6 Earth resource satellites operating in the optical spectrum Introduction to Remote Sensing...

Preview:

Citation preview

Chapter 6Chapter 6

Earth resource satellites operating in Earth resource satellites operating in the optical spectrumthe optical spectrum

Introduction to Remote SensingInstructor: Dr. Cheng-Chien Liu

Department of Earth Sciences

National Cheng-Kung University

Last updated: 28 May 2003

6.16.1 Introduction Introduction

Remote sensing + space exploration Remote sensing + space exploration (RS+SE) (RS+SE) interest and application over a interest and application over a wider range of disciplineswider range of disciplines

Current applicationCurrent application New technology New technology new or improved new or improved

satellite/sensor satellite/sensor new applicationnew application The most important outcome of RS+SEThe most important outcome of RS+SE

observing earth observing earth earth systemearth system

6.16.1 Introduction (cont.) Introduction (cont.)

This chapter This chapter optical range optical range 0.3 0.3 m~14 m~14 m m• Landsat

• Spot

• NOAA series

6.2 Early history of space imaging6.2 Early history of space imaging

Ludwig Bahrmann (1891): New or Ludwig Bahrmann (1891): New or improved apparatus for obtaining Bird’s improved apparatus for obtaining Bird’s eye photographic viewseye photographic views

Alfred Maul (1907): gyrostabilizationAlfred Maul (1907): gyrostabilization Alfred Maul (1912): 41kg, 200Alfred Maul (1912): 41kg, 200mmmm x 250 x 250 mmmm, ,

790m790m 1946~1950: V2 rockets1946~1950: V2 rockets 1960~ : TIROS-1, early weather satellite1960~ : TIROS-1, early weather satellite

• Not just look at but also look through

6.2 Early history of space imaging 6.2 Early history of space imaging (cont.)(cont.)

1960s: Mercury, Gemini, Apollo1960s: Mercury, Gemini, Apollo• Alan Shepard, 1961, 70 mm, 150 photos• John Glenn, 1962, 35 mm, 48 photos.• Later Mercury missions: 70 mm, 80 mm• Gemini GT-4 mission: formal experiment

directed at geologyTectonics, volcanology, geomophology.1:2,400 1100 photos

• Apollo 9: 4 camera array, electrically triggered. 140 sets of imagery

6.2 Early history of space imaging 6.2 Early history of space imaging (cont.)(cont.)

Skylab 1973Skylab 1973• Earth Resources Experiment Package (EREP)

6-camera multi-spectral arrayA long focal length “earth terrain” cameraA 13-channel multispectral scannerA pointable spectroradiometerTwo microwave systems.

• 35,000 images

U.S.-USSR Apollo-Soyuz Test Project U.S.-USSR Apollo-Soyuz Test Project (ASTP)(ASTP)

6.3 Landsat satellite program 6.3 Landsat satellite program overviewoverview

Earth Resources Technology Satellite Earth Resources Technology Satellite (ERTS) 1967(ERTS) 1967• ERTS-1, 1972~1978

• Nimbus weather satellite modified

• Experimental system test feasibility

• Open skies principle

Landsat-2, 1975 (ERTS-2)Landsat-2, 1975 (ERTS-2)

6.3 Landsat satellite program 6.3 Landsat satellite program overview (cont.)overview (cont.)

Table 6.1: Characteristics of Landsat Table 6.1: Characteristics of Landsat 1~61~6• Return Beam Vidicon (RBV) camera systems

• Multispectral Scanner system (MSS)

• Thematic Mapper (TM)

• Enhanced Thematic Mapper (ETM)

Table 6.2: Sensors used on Landsat 1~6 Table 6.2: Sensors used on Landsat 1~6 missionsmissions

6.4 Orbit characteristic of Landsat-1, 6.4 Orbit characteristic of Landsat-1, -2, and –3-2, and –3

Fig 6.1: Landsat –1, -2, and –3 observatory Fig 6.1: Landsat –1, -2, and –3 observatory configurationconfiguration• 3m x 1.5m, 4m width of solar panels, 815 kg, 900 km• Inclination = 90

• To= 103 min/orbit

Fig 6.2: Typical Landsat-1, -2 and –3 daily Fig 6.2: Typical Landsat-1, -2 and –3 daily orbit patternorbit pattern• Successive orbits are about 2760km

• Swath: 185km

• Orbital procession 18 days for coverage repetition 20 times of global coverage per year

6.4 Orbit characteristic of Landsat-1, 6.4 Orbit characteristic of Landsat-1, -2, and –3 (cont.)-2, and –3 (cont.)

Sun-synchronous orbitSun-synchronous orbit• 9:42 am early morning skies are generally

clearer than later in the day

• Pros: repeatable sun illumination conditions on the same day in every year

• Cons: variable sun illumination conditions with different locations and seasons variations in atmospheric conditions

6.5 Sensors onboard Landsat-1, -2 6.5 Sensors onboard Landsat-1, -2 and –3and –3

3-Channel RBV3-Channel RBV• 185km x 185 km

• Ground resolution: 80m

• Spectral bands: 1: 0.475 m~0.575 m (green) 2:0.580 m~0.680 m (red)

3: 0.690 m~0.830 m (NIR)• Expose photosensitive surface scan video

signal• Pros:

Greater cartographic fidelityReseau grid geometric correction in the recording process

6.5 Sensors onboard Landsat-1, -2 6.5 Sensors onboard Landsat-1, -2 and –3 (cont.)and –3 (cont.)

3-Channel RBV (cont.)3-Channel RBV (cont.)• Landsat-1: malfunction only 1690 scenes• Landsat-2 only for engineering evaluation

only occasionally RBV imagery was obtained.• Landsat-3

Single broad band (0.505~0.75 u m)2.6 times of resolution improved: 30m double fTwo-camera side-by-side configuration with side-lap and

end-lap. (Fig 6.4)Fig 6.5: Landsat-3 RBV image

6.5 Sensors onboard Landsat-1, -2 6.5 Sensors onboard Landsat-1, -2 and –3 (cont.)and –3 (cont.)

4 Channel MSS4 Channel MSS• 185km x 185km

• Ground resolution: 79m

• Spectral band:Band 4: 0.5 m ~ 0.6 m (green)Band 5: 0.6 m ~ 0.7 m (red)Band 6: 0.7 m ~ 0.8 m (NIR)Band 7: 0.8 m ~ 0.9 m (NIR)Band 8: 10.4~12.6 um Landsat-3, failedBand 4~7 band 1~4 in Landsat-4, -5Fig 6.6: Comparison of spectral bands

6.5 Sensors onboard Landsat-1, -2 6.5 Sensors onboard Landsat-1, -2 and –3 (cont.)and –3 (cont.)

4 Channel MSS (cont.)4 Channel MSS (cont.)• Fig 6.7: Landsat MSS operating configuration

Small TFOV use an oscillating scan mirror

• A-to-D converter (6 bits)Pixel width: 56m x 79m set by the pixel sampling rate (Fig 6.8)Each Landsat MSS scene 185km x 185km

2340 scan lines, 3240 pixels per line, 4 bands Enormous data

Fig 6.9: Full-frame, band 5, Landsat MSS scene Parallelogram earth’s rotation 15 steps Tick marks Lat. Long. Annotation block

• Color composite: band 4 (b), band 5 (g), band 7(r)(Fig 6.6)

6.5 Sensors onboard Landsat-1, -2 6.5 Sensors onboard Landsat-1, -2 and –3 (cont.)and –3 (cont.)

Data distributionData distribution• Experiment transitional operational

• NASA NOAA NASA

USGS EOSAT USGS

Landsat-1,-2,-3 Landsat-4,-5,-6 Landsat-7Department of Interior Department of Commerce Department of Defense

• Data receiving station

• Data reprocessing

• Data catalogue

6.6 Landsat MSS image 6.6 Landsat MSS image interpretationinterpretation

Applications: Applications: • agriculture, botany cartography, civil engineering,

environmental monitoring, forestry, geography, geology, geophysics, land resources analysis, land use planning, oceanography, water resource analysis

Comparison of Landsat & airborne imageComparison of Landsat & airborne image• Table 6.4• Resolution• Coverage• Complementary not replacement• 2-D, non-stereo mode

6.6 Landsat MSS image 6.6 Landsat MSS image interpretation (cont.)interpretation (cont.)

Characteristics of MSS imageCharacteristics of MSS image• Effective resolution 79m, (30m for Landsat-3)

but linear feature with sharp contrast can be seen

• 1-D displacement relief (in E-W direction)• Limited area can be viewed in stereo study

topographic• High altitude + low TFOV little RD

planimeter mapE.g. World Bank, USGS. DMA, petroleum company

6.6 Landsat MSS image 6.6 Landsat MSS image interpretation (cont.)interpretation (cont.)

Characteristics of MSS image (cont.)Characteristics of MSS image (cont.)• Band 5 (red) better atmospheric penetration detecting cultural features

• Band 4 (green) deep, clear water penetration

• Band 6, 7 lineating water bodies (dark)

• The largest single use of Landsat MSS data geologic studies band 5.7

6.6 Landsat MSS image 6.6 Landsat MSS image interpretation (cont.)interpretation (cont.)

Fig 6.10 : four Landsat MSS bandsFig 6.10 : four Landsat MSS bands• Extent of the urban area (B4, 5, light)• Major road (B4, 5 light, not B6, B7 dark)• Airport• Asphalt-surfaced runways• Four major lakes and connected river (B6, 7 dark)

mid-July algae green B4: similar to the surrounding agricultural land

• Agricultural field. (B5, 6, 7)• Forest (B4, 5 dark) winter images are preferred

6.6 Landsat MSS image 6.6 Landsat MSS image interpretation (cont.)interpretation (cont.)

Fig 6.11: Landsat MSS band 5Fig 6.11: Landsat MSS band 5• December image

20 cm snow covered all water bodies are frozenSnow covered upland and valley floors light toneSteep, tree-covered valley sides dark tone

• September imageIdentify forest area

6.6 Landsat MSS image 6.6 Landsat MSS image interpretation (cont.)interpretation (cont.)

A hit-or-miss propositionA hit-or-miss proposition• Some events leave lingering trace• Fig 6.12: Landsat MSS band 7

July image 200 m3/secMarch image 1300 m3/sec once every four years

• Fig 6.13: Mississippi River DeltaSilt flow but vague boundary band 5Delineation of the boundary band 7

• Fig 6.14: short-lived phenomenaActive forest fire in AlaskaVolcanic eruption on Kunashir Island

6.6 Landsat MSS image 6.6 Landsat MSS image interpretation (cont.)interpretation (cont.)

A hit-or-miss proposition (cont.)A hit-or-miss proposition (cont.)• Fig 6.15: Extensive geologic features visible on MSS

San Andreas fault, Six solid dots earthquake > 6.0

• Fig 6.16: Landsat MSS band 666-km-wide Manicouagan ring 212-million-year-old meteorite

impact crater

• Fig 6.17: Landsat MSS images of Mt. St. Helens before and after its 1980 eruptions

• Fig 6.18: Landsat MSS image of Maritoba, Canada, showing tornado and hail scar

• Fig 6.19: Landsat MSS image of East kalimantan, Indonesia, showing tropical deforestation

6.7 Orbit characteristics of Landsat-6.7 Orbit characteristics of Landsat-4 and -54 and -5

Fig 6.20: Sun-synchronous orbit of Fig 6.20: Sun-synchronous orbit of Landsat-4 and –5Landsat-4 and –5• Altitude: 900 705km

Retrievable by the space shuttleGround resolutions

• Inclination 98.20 T=99min 14.5 orbit/day• 9:45 am• Fig 6.21: adjacent orbit space = 2752km

• 16-day repeat cycle• 8-day phase between Landsat-4 and –5 (Fig 6.22)

6.8 6.8 Sensors onboard Landsat-4 and -5Sensors onboard Landsat-4 and -5

Fig 6.23: Landsat-4 and –5 observatory Fig 6.23: Landsat-4 and –5 observatory configurationconfiguration• MSS, TM

• 2000 kg, 1.5x2.3m solar panels x 4 on one side

• High gain antenna Tracking and Data Relay Satellite system (TDRSS)

• Direct transmission X-band and S-bandMSS: 15 MbpsTM: 85 Mbps

6.8 6.8 Sensors onboard Landsat-4 and –5 Sensors onboard Landsat-4 and –5 (cont.)(cont.)

MSSMSS• Same as previous except for larger TFOV for keeping

the same ground resolution (79m 82m)• Renumber bands

TMTM• 7 bands (Table 6.4)• DN: 6 8 bits• Ground resolution: 30m (thermal band: 120m)• Geometric correction Space Oblique Mercator

(SOM) cartographic projection

6.8 6.8 Sensors onboard Landsat-4 and –5 Sensors onboard Landsat-4 and –5 (cont.)(cont.)

TM (cont.)TM (cont.)• Bi-directional scan the rate of oscillation of mirror

dwelling time geometric integrity signal-to-noise• Detector:

MSS: 6x4=24TM: 16x6+4x1=100

• Fig 6.24: Thematic Mapper optical path and projection of IFOV on earth surface

• Fig 6.25: Schematic of TM scan line correction process

6.9 Landsat TM Image 6.9 Landsat TM Image interpretationinterpretation

Pros:Pros:• Spectral and radiometric resolution• Ground resolution

Fig 6.26: MSS vs TMFig 6.26: MSS vs TM Fig 6.27: All seven TM bands for a Fig 6.27: All seven TM bands for a

summertime image of an urban fringe areasummertime image of an urban fringe area• Lake, river, ponds: b1,2 > b3 > b4=b5=b7=0• Road urban streets: b4 min• Agricultural crops: b4 max• Golf courses

6.9 Landsat TM Image 6.9 Landsat TM Image interpretation (cont.)interpretation (cont.)

Fig 6.27 (cont.)Fig 6.27 (cont.)• Glacial ice movement: upper right lower left

Drumlins, scoured bedrock hillsBand 7 resample from 120m to 30m

Plate 12 + Table 6.5: TM band color Plate 12 + Table 6.5: TM band color combinationscombinations• (a): normal color mapping of water sediment

patterns• (b): color infrared mapping urban features and

vegetation types• (c)(d): false color

6.9 Landsat TM Image 6.9 Landsat TM Image interpretation (cont.)interpretation (cont.)

Fig 6.28: Landsat TM band 6 (thermal Fig 6.28: Landsat TM band 6 (thermal infrared) imageinfrared) image• Correlation with field observations 6 gray

levels 6T

Plate 13: color-composite Landsat TM Plate 13: color-composite Landsat TM imageimage• Extremely hot blackbody radiation

thermal infrared• TM bands 3, 4 and 7

6.9 Landsat TM Image 6.9 Landsat TM Image interpretation (cont.)interpretation (cont.)

Fig 6.29: Landsat TM band 5 (mid-Fig 6.29: Landsat TM band 5 (mid-infrared) imageinfrared) image• Timber clear-cutting

Fig 6.30: Landsat TM band 3, 4 and 5 Fig 6.30: Landsat TM band 3, 4 and 5 compositecomposite• Extensive deforestation.

Fig 6.31: Landsat TM band 4 image Fig 6.31: Landsat TM band 4 image mapmap• 13 individual TM scenes + mosaic

6.10 Landsat-6 planned mission6.10 Landsat-6 planned mission

A failed missionA failed mission Enhanced Thematic Mapper (ETM)Enhanced Thematic Mapper (ETM)

• TM+ panchromatic band (0.5~0.9 m) with 15m resolution.

• Set 9-bit A-to-D converter to a high or low gain 8-bit setting from the ground.Low reflectance water high gainBright region deserts low gain

6.11 Landsat ETM image simulation 6.11 Landsat ETM image simulation

Fig 6.32: Landsat ETM imagesFig 6.32: Landsat ETM images

6.12 Landsat-76.12 Landsat-7

Launch: 1999Launch: 1999 Web site: Web site: http:/http://landsat.gsfc.nasa.gov/landsat.gsfc.nasa.gov LandsatLandsat 7 handbook 7 handbook LandsatLandsat 7 in orbit 7 in orbit Depiction of Depiction of LandsatLandsat 7 7

6.12 Landsat-7 (cont.)6.12 Landsat-7 (cont.)

Landsat 7 OrbitLandsat 7 Orbit• Orbital paths

• Swath

• Swath pattern

Landsat dataLandsat data• http://landsat.gsfc.nasa.gov/main/data.html

6.12 Landsat-7 (cont.)6.12 Landsat-7 (cont.)

PayloadPayload• Enhanced Thematic Mapper Plus (ETM+)

Dual mode solar calibratorData transmission

TDRSS or stored on board.

GPS subsequent geometric processing of the data

• High Resolution Multi-spectral Stereo Imager (HRMSI)5m panchromatic band10m ETM bands 1~4Pointable revisit time (<3 days) Stereo imaging.00~380 cross-track and 00~300 along-track

6.12 Landsat-7 (cont.)6.12 Landsat-7 (cont.)

ApplicationApplication• Monitoring Temperate Forests

• Mapping Volcanic Surface Deposits

• Three Dimensional Land Surface Simulations

6.13 SPOT Satellite Program6.13 SPOT Satellite Program

BackgroundBackground• French+Sweden+Belgium• 1978• Commercially oriented program

SPOT-1SPOT-1• French Guiana, Ariane Rocket• 1986• Linear array sensor+pushbroom scanning+pointable• Full-scene stereoscopic imaging

6.13 SPOT Satellite Program (cont.)6.13 SPOT Satellite Program (cont.)

SPOT-2SPOT-2• 1990

SPOT-3SPOT-3• 1993

6.14 Orbit characteristics of SPOT-1, 6.14 Orbit characteristics of SPOT-1, -2 and -3-2 and -3

OrbitOrbit• Circular, near-polar, sun-synchronous orbit• Altitude: 832km

• Inclination: 98.70

• Descend across the equator at 10:30AM• Repeat: 26 days• Fig 6.33: SPOT revisit pattern at latitude 450

and 00

At equator: 7 viewing opportunities existAt 450: 11 viewing opportunities exist

6.15 Sensors onboard SPOT-1, -2 6.15 Sensors onboard SPOT-1, -2 and -3and -3

Configuration (Fig 6.34)Configuration (Fig 6.34)• 223.5m, 1750 kg, solar panel: 15.6m

• Modular design

High Resolution Visible (HRV) imaging High Resolution Visible (HRV) imaging systemsystem• 2-mode

10m-resolution panchromatic mode (0.51~0.73m)20m-resolution color-infrared mode. (0.5~0.59m,

0.61~0.68m, 0.79~0.89m)

6.15 Sensors onboard SPOT-1, -2 6.15 Sensors onboard SPOT-1, -2 and –3 (cont.)and –3 (cont.)

HRV (cont.)HRV (cont.)• Pushbroom scanning

No moving part (mirror) lifespanDwell time Geometric error

• 4-CCD subarray6000-element subarray panchromatic mode, 10m

Three 3000-element subarrays multi-spectral mode, 20m

8-bit, 25 Mbps

• Twin-HRV instrumentsIFOV (for each instrument) 4.130

Swath: 60km 2 - 3km = 117km (Fig 3.36)TFOV (for each instrument) 270=0.6045 (Fig 3.35)

6.15 Sensors onboard SPOT-1, -2 6.15 Sensors onboard SPOT-1, -2 and –3 (cont.)and –3 (cont.)

HRV (cont.)HRV (cont.)• Data streams

Although 2-mode can be operated simultaneously, only one mode data can be transmitted limitation of data stream

• Stereoscopic imagingOff-nadir viewing capability (Fig 6.37)Frequency revisit schedule (Fig 6.33)Base-height ratio latitude

0.75 at equator, 0.5 at 450

• ControlGround control station Toulouse, France observation sequenceReceiving station Tordouse or Kiruna, Sweden

Tape recorded onboard Transmitted within 2600km-radius around the station

6.16 SPOT HRV image 6.16 SPOT HRV image interpretationinterpretation

Fig 6.38: SPOT-1 panchromatic imageFig 6.38: SPOT-1 panchromatic image• 10m-resolution

Cf: Landsat MSS 80m

Cf: Landsat TM 30m (Fig 6.26)Cf: Landsat ETM 15m (Fig 6.32)

• Fig 6.39: SPOT-1 panchromatic image• Plate14: merge of multispectral & panchromatic data• Fig 6.40: SPOT-1 panchromatic image stereopair• Plate 15: Perspective view of Alps

SPOT stereopair + parallax calculationPlate 23

• Fig 6.41: before and after the earthquake

6.17 SPOT –4 and –56.17 SPOT –4 and –5

SPOT –4SPOT –4• Launched 1998

• Vegetation Monitoring Instrument (VMI)Swath: 2000km daily global coverageResolution: 1km

Spectral band: b(0.43~0.47m), g(0.5~0.59m), r(0.61~0.68m), N-IR(0.79~0.89m), mid-IR(1.58~1.75m)

6.17 SPOT –4 and –5 (cont.)6.17 SPOT –4 and –5 (cont.)

SPOT – 5SPOT – 5• Launched 2002

• Vegetation Monitoring Instrument (VMI)Swath: 2000km daily global coverageResolution: 1km

Spectral band: b(0.43~0.47m), g(0.5~0.59m), r(0.61~0.68m), N-IR(0.79~0.89m), mid-IR(1.58~1.75m)

6.18 Meteorological Satellite6.18 Meteorological Satellite

MetsatsMetsats• Coarse spatial resolution land-oriented

system

• Very high temporal resolution of global coverage

• NOAA satellites sun-synchronous

• GOES geostationary 36,000km altitude

• DMSP

6.18 Meteorological Satellite (cont.)6.18 Meteorological Satellite (cont.)

NOAA satellitesNOAA satellites• Advanced Very High Resolution Radiometer

(AVHRR)NOAA –6 ~ -12. (N-S)

Even: 7:30AM crossing time Odd: 2:30 AM crossing time

Table 6.6: characteristics of NOAA-6 ~ -12

• Fig 6.42: Example coverage of the NOAA AVHRRGround resolution: 1.1km at nadir

• AVHRR dataLACGAC

• Fig 6.43: Comparison of Spectral sensitivity

6.18 Meteorological Satellite (cont.)6.18 Meteorological Satellite (cont.)

NOAA satellites (cont.)NOAA satellites (cont.)• Fig 6.44: AVHRR images

A: distortion wide angle of viewB: geometric correction

• Plate 16: NOAA AVHRR band 4 thermal image of the Great Lakes

• Fig 6.45: AVHRR images of the Mississippi Delta(a): present and past channels, future Atchafalaya(b): Channel–1 (red), silky material visible(c): Channel–2 (Near-IR), light tone higher & drier(d): Channel–4 (thermal –IR) light tone cooler

Plumes of cooler river water

6.18 Meteorological Satellite (cont.)6.18 Meteorological Satellite (cont.)

NOAA satellites (cont.)NOAA satellites (cont.)• Plate 17: springtime NOAA-8 AVHRR color

composite• Applications of AVHRR in monitoring vegetation

Use Ch-1 (0.58~0.68 m) and Ch-2 (0.73~1.10 m)A simple vegetation index VI=Ch2-Ch1

Normalized difference vegetation index NDVI = (Ch2-Ch1)/(Ch2+Ch1)Vegetated areas large VI

Clouds, water, snow negative VIRock, Bare soil VI 0

For global vegetation NDVI preferred compensate the charging illumination conditions

Plate 18: color-coded NDVI Select the highest NDVI during that period

6.18 Meteorological Satellite (cont.)6.18 Meteorological Satellite (cont.)

NOAA satellites (cont.)NOAA satellites (cont.)• Applications of AVHRR in monitoring

vegetation (cont.)Applications: vegetation seasonal dynamics at global and

continental scale, tropical forest clearance, leaf area index measurement, biomass estimation, percentage ground cover determination, photosynthetically active radiation estimation

Other factors that might influence NDVI Incident solar radiation Radiometric response of the sensor Atmospheric effect and viewing angle need further research

6.18 Meteorological Satellite (cont.)6.18 Meteorological Satellite (cont.)

GOES (Geostationary Operational GOES (Geostationary Operational Environmental Satellites)Environmental Satellites)• NOAA + NASA• 1974• 36,000km

• USRS, ESA, NSDA• Fig 6.46: GOES –2 visible band (0.55~0.7 m)• Frequency: 2/hour• VI (daytime), IR (day and night)

6.18 Meteorological Satellite (Cont.)6.18 Meteorological Satellite (Cont.)

Defense Meteorological Satellite Defense Meteorological Satellite Program (DMSP)Program (DMSP)• 1973

• 0.4~1.1 m (VI+N-IR)

• Nighttime visible band tune the amplifiers

• Fig 6.47: DMSP nighttime image

• Fig 6.48: Maps of population distribution

6.19 Ocean monitoring satellites6.19 Ocean monitoring satellites

Ocean Ocean LandLand• 2/3, but comparatively little is know

Seasat (see Seasat (see §§8.9)8.9) Nimbus –7Nimbus –7

• CZCS (Coastal Zone Color Scanner) 1978~1986• Proof of concept mission• Table 6.7: CZCS bands narrow bandwidth• 825m resolution at nadir, 1566km swath • Map phytoplankton concentrations and inorganic

suspended matter• N-IR separate water from land

6.19 Ocean monitoring satellites 6.19 Ocean monitoring satellites (cont.)(cont.)

JapanJapan• Marine Observation Satellite (MOS)-1: 1987• MOS-1b: 1990• Table 6.8: Instruments included in MOS-1 and

MOS-1b4-Channel Multi-spectral Electronic Self-Scanning

Radiometer (MESSR)4-Channel Visible and Thermal Infrared Radiometer

(VTIR)2-Channel Microwave Scanning Radiometer (MSR)

• 909km altitude, revisit period:17days

6.19 Ocean monitoring satellites 6.19 Ocean monitoring satellites (cont.)(cont.)

Sea-viewing Wide-Field-of-View Sensor Sea-viewing Wide-Field-of-View Sensor (SeaWiFS)(SeaWiFS)• 8-channel across-track scanner (0.402~0.885 m)• Ocean biogeochemistry• NASA-orbital science corporation (OSC)• 1998 – date• Data

LAC: 1.13km

GAC: 4.52km

• 705km altitude, 2800km swath

6.20 Earth Observing System6.20 Earth Observing System

Mission to Planet Earth (MTPE)Mission to Planet Earth (MTPE)• Aims: providing the observations,

understanding, and modeling capabilities needed assess the impacts of natural events and human-induced activities on the earth’s environment

• Data and information system: acquire, archive and distribute the data and information collected about the earth

• Further international understanding of the earth as a system

6.20 Earth Observing System (cont.)6.20 Earth Observing System (cont.)

EOS (Table 6.9)EOS (Table 6.9)• ASTER• CERES• MISR• MODIS• MOPITT

MODIS (Table 6.10)MODIS (Table 6.10)• Table 6.10• Terra: 2000• Aqua: 2002

6.21 Fine-resolution satellite system6.21 Fine-resolution satellite system

CORONACORONA• 1960 – 1972, declassified in 1995

• KH-1 ~ KH-4B ~ KH-5Camera + filmBand and resolution

• Web site: http://earthexplorer.usgs.gov

• Impacts

6.21 Fine-resolution satellite system 6.21 Fine-resolution satellite system (cont.)(cont.)

IKONOSIKONOS• 1999 by Space imaging• Bands and resolution

1m-resolution 0.45 – 0.90 m

4m-resolution 0.45 – 0.52 m 0.52 – 0.60 m 0.63 – 0.69 m 0.76 – 0.90 m

• Orbit: sun-synchronous• Repeat coverage: 1.5 (1m) ~ 3 (4m) days

6.21 Fine-resolution satellite system 6.21 Fine-resolution satellite system (cont.)(cont.)

OrbView–3 and –4OrbView–3 and –4• http://www.orbimage.com

• OrbView-2: SeaWiFS

• Will be launched soon!

• Similar bands and resolution as IKONOS

OrbView–4OrbView–4• 200 spectral channels in the range 0.45 – 2.5

m at 8m resolution

6.21 Fine-resolution satellite system 6.21 Fine-resolution satellite system (cont.)(cont.)

QuickBirdQuickBird• 2001 by EarthWatch Inc.

• Bands and resolution61cm-resolution

0.45 – 0.89 m

2.44m-resolution 0.45 – 0.52 m 0.52 – 0.60 m 0.63 – 0.69 m 0.76 – 0.89 m

Recommended