Carbon Nanotube Field-Effect Transistors and their possible applications

Preview:

DESCRIPTION

D.L. Pulfrey. Department of Electrical and Computer Engineering University of British Columbia Vancouver, B.C. V6T1Z4, Canada. pulfrey@ece.ubc.ca. http://nano.ece.ubc.ca. Carbon Nanotube Field-Effect Transistors and their possible applications. Day 4B, May 30, 2008, Pisa. - PowerPoint PPT Presentation

Citation preview

1

Carbon Nanotube Field-Effect Carbon Nanotube Field-Effect

TransistorsTransistors

and their possible applications and their possible applications

D.L. Pulfrey

Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouver, B.C. V6T1Z4, Canada

pulfrey@ece.ubc.ca

http://nano.ece.ubc.ca

Day 4B, May 30, 2008, Pisa

2

Single-Walled Carbon NanotubeSingle-Walled Carbon Nanotube

2p orbital, 1e-

(-bonds)

Hybridized carbon atom graphene monolayer carbon nanotube

L.C. Castro

3

Chiral tubeChiral tube

a2

a1 (5,2) Tube(5,2) Tube

Structure (n,m):Structure (n,m):

VECTOR NOTATION FOR NANOTUBESVECTOR NOTATION FOR NANOTUBES

Adapted from Richard Martel

Zig-zag (6,0)Zig-zag (6,0)

Armchair (3,3)Armchair (3,3)

4

From: Dresselhaus, Dresselhaus & Eklund. 1996 Science of Fullerenesand Carbon Nanotubes. San Diego, Academic Press. Adapted from Richard Martel.

Armchair

Zig-Zag

Chiral

CHIRAL NANOTUBESCHIRAL NANOTUBES

5

Carbon Nanotube PropertiesCarbon Nanotube Properties

• Graphene sheet 2D E(k//,k)

– Quantization of transverse wavevectors

k (along tube circumference)

Nanotube 1D E(k//)

• Nanotube 1D density-of-states derived from [E(k//)/k]-1

• Get E(k//) vs. k(k//,k) from Tight-Binding Approximation

6

E-EE-EFF (eV) (eV) vsvs. k. k|||| (1/nm)(1/nm)

(5,0) semiconducting (5,5) metallic

Eg/2

eV (nm)

80

2

d

.

d

aE CC

g

7

• low m* - maybe good for tunneling transistor to reduce sub-threshold slope

• low m* and long mfp - high mobility - good for ION, gm, fT

- high conductivity - good for interconnects

- also, may help collection in polymer solar cells

• m*e = m*h - ambipolar conduction, maybe good for electroluminescence

• cylindrical shape - good for combating SCE

Properties relevant to devices discussed at PisaProperties relevant to devices discussed at Pisa

Other device possibilities:Other device possibilities:

• molecular size - may be useful as a molecular sensor

• biological compatibility - perhaps devices can be assembled via biological recognition.

8

Metallic CNTs Metallic CNTs as as

interconnectsinterconnects

T. Iwai et al., (Fujitsu), 257, IEDM, 2005

9

CNT-assisted organic-cell photovoltaicsCNT-assisted organic-cell photovoltaics

Keymakis, APL, 80, 112, 2002

10

Is there a DIGITAL future for nanotubes?Is there a DIGITAL future for nanotubes?

11

Tennenhouse04

12

H. Dai, APS, March, 2006

13

Fabricated Carbon Nanotube FETsFabricated Carbon Nanotube FETs

20nm -ve SB20nm -ve SBR.V. Seidel et al., Nano Letters, Dec. 2004

50nm MOS50nm MOSA. Javey et al., Stanford

14Small m*: sub-threshold slope Small m*: sub-threshold slope improvementimprovement

Non-thermionic process:

S < 60 mV/dec !!

J. Appenzeller et al., IEEE TED, 4, 481, 2005

15

Carbon Nanotube FETs for HFCarbon Nanotube FETs for HF

300 nm SB-CNFET300 nm SB-CNFETA. Le Louarn et al., APL, 90, 233108, 2007

Single-tube drawbacks:

Imax ~ A

Zout ~ k

16

High-frequency Carbon Nanotube FETHigh-frequency Carbon Nanotube FET

A. Le Louarn et al., APL, 233108, 2007

17

Experimental results for fExperimental results for fTT

"Ultimate"

18

• Need full QM treatment to compute:

-- Q(z) within barrier regions

-- Q in evanescent states (MIGS)

-- resonance, coherence

-- S D tunneling.

Schrödinger-Schrödinger-Poisson SolverPoisson Solver

D.L. John et al., Nanotech04, 3, 65, 2004.

19

Schrödinger-Poisson Schrödinger-Poisson NormalizationNormalization

S DCNT

Unbounded plane waves

)()()(

2)(

:currentLandauer andcurrent PD equatingby J.m Find

),( :define Instead,

:ionnormalizat spatial doCannot

**

1-

2

*

Q(z,E)n(z,E)ETEfq

EI

zzi

m

qEI

Ezn

dz

SL

PD

z

20

kx

kx

kz

E

METAL (many modes)

CNT (few modes)

Doubly degenerate lowest mode

MODE CONSTRICTIONMODE CONSTRICTIONandand

TRANSMISSIONTRANSMISSION

T

21

Quantized Quantized ConductanceConductance

E DSee dEEfEfETM

h

qI )}(- )(){(

2

In the low-temperature limit:

Mh

qG

T

qVdEEfEfE DSSDS

2

D

2

1 if

- )}(- )({

Interfacial G: even when transport is ballistic in CNT

155 S for M=2

22

Carbon nanotube FETs: model Carbon nanotube FETs: model structuresstructures

C-CNFETC-CNFETD.L. Pulfrey et al., IEEE TNT, 2007

SB-CNFETSB-CNFETK. Alam et al., APL, 87, 073104, 2005

23

Propagation velocity and fPropagation velocity and fTT

dEEzQEzvEzQEzvi

dEEzQEzQzQ

E

DbSbD

E

DSCNT

),(),(),(),(

),(),()(

CC

z sig

D

z

CNT

D

G

TSD

zv

dz

i

dzzQ

i

Q

)(

)(

1

24

Image charges in transistorsImage charges in transistors

QB QC

BJT: qb < |qe| max,max, bsigb

e

inbsig vv

q

q

Q

Qvv

C

BJT

FET: qg |qe| max,bsig vv

+

_

+

+

_

QB+qb QC+qcqe

+

+

+

+_

_

_

qeQS+qs QD+qd

QG+qg

FET

+

+ +++ _

__

25Comparison of vComparison of vbandband::Si NW, Si planar and Si NW, Si planar and

CNTCNT

Si NW and planar SiJ.Wang et al.,

APL, 86, 093113, 2005

(11,0) CNTTight-binding

vb,max (CNT) higher by factor of ~ 5

26

FET StatusW

(um)Lg

(nm)Tox (nm)

gm (mS)

Cgg (aF)

Ft (THz)

               

Si MOS Exptl. (IBM) 80 27 1.05 108 52 0.33

C-CN coax Theor. (UBC) 80 7 2 448 37 1.93

Si MOSFET and CNFET: Si MOSFET and CNFET: comparisoncomparison

S. Lee et al., IEDM, 241, 2005

CN oxide Gate

27

AMBIPOLAR CONDUCTIONAMBIPOLAR CONDUCTION

Experimental data:M. Radosavljevic et al., arXiv: cond-mat/0305570 v1

Vds= - 0.4VVgs= -0.15+0.05+0.30

28

SOURCE

DRAIN

Ambipolar CNFET Gate-controlled light emission

McGuire and Pulfrey, Nanotechnology, 17, 5805, 2006

Mobile electroluminescence and the LETMobile electroluminescence and the LET

29

Source Drain

Gate

Analyte

Spectrometer and/or Photodetector

Biomolecular sensing schemesBiomolecular sensing schemes

1. Electroluminescence

VGS

VDS

++

30

CARBON NANOTUBES:

• size compatibility with biomolecules,

• exposed surface,

• interactions that modify band structure,

• change in LDOS.

CN biomolecular sensorsCN biomolecular sensors

Gruner, Anal. Bioanal. Chem., 384, 322, 2006

31

Biomolecular sensing schemesBiomolecular sensing schemes

2. Conductance

Star et al., Nano Lett., 3(4), 459, 2003

32

Alanine-Glutamine, Glycine-Glutamine: - reduces muscle  wasting in inactive patients.Arginine-Glutamine: - maintains muscle mass- boosts mucosal immunity.

Sensing amino acids, dipeptidesSensing amino acids, dipeptides

Protein building blocks

Glutamine-Glutamine:- aids glutathione biosynthesis.Tyrosine-Tyrosine:- restores Phe:Tyr ratios in patients with renal disease.

33

Simulation approachSimulation approach

Molecular Dynamics

GROMACS

Density Functional Theory

ATOMISTIX• Transport

• Current

• Electroluminescence

• Atomic positions

• Electronic band structure

• LDOS as f(E, r, θ, z)

Non-Equilibrium Green's Function

ATOMISTIX

34

(12,11) CNs

Dipeptides:

Asparagine (hydrophilic)

Isoleucine (hydrophobic)

MD resultsMD results

Abadir et al., IJHSE, accepted.

35

Single-biomolecule detectionSingle-biomolecule detection

Asparagine (top) and isoleucine (bottom) adsorbed on CNT between Al electrodes

Abadir et al., IEEE NANO Conf.

36

Self-assemblySelf-assembly of of

DNA-templated DNA-templated CNFETsCNFETs

K. Keren et al., Science, 302, 1380, 2003

Recommended