Bernoulli Beams & Trusses

Preview:

DESCRIPTION

ELEMENTOS FINITOS

Citation preview

Basically, bars oriented in two dimensional Cartesian system.

Trusses support compressive and tensile forces only, as in bars.

Translate the local element matrices into the structural (global) coordinate system.

2D TRUSSES

CONSIDER A TYPICAL 2D TRUSS IN GLOBAL X-Y PLANE

Local system:

𝑒′=[𝑒 β€² 1𝑒 β€² 2]Global system:

𝑒=[𝑒1𝑒2𝑒3𝑒4 ]

𝑒′=[𝑒 β€²1=𝑒1βˆ— cosπœƒ+𝑒2βˆ— sin πœƒ  π‘’β€² 2=𝑒3βˆ—cosπœƒ+𝑒4βˆ— sinπœƒ ]=[cosπœƒ sinπœƒ 0000cosπœƒ sin πœƒ ]βˆ— [𝑒1𝑒2𝑒3𝑒4]

(π‘₯1 , 𝑦1)

(π‘₯2, 𝑦 2)

πœƒ

=m=

cosπœƒ=   l  =π‘₯2βˆ’ π‘₯1𝑙𝑒

𝑒′=[π‘™π‘š000 0 π‘™π‘š]βˆ—[𝑒1𝑒2𝑒3𝑒4 ] 𝑒′=πΏβˆ—π‘’

𝑙𝑒=√(π‘₯2βˆ’π‘₯1)2+(𝑦2βˆ’π‘¦1)

2

STIFFNESS MATRIX

Strain Energy:

π‘‘π‘ˆ=12βˆ—πœŽ π‘₯βˆ—πœ€π‘₯βˆ— π΄βˆ—π‘‘π‘₯

π‘ˆ=𝑒 β€² π‘‘βˆ—πΎ β€²βˆ—π‘’ β€²Energy for the local system:

𝑒′=πΏβˆ—π‘’

)

π‘ˆ=𝑒  π‘‘βˆ—(πΏπ‘‘βˆ—πΎ β€²βˆ—πΏ)βˆ—π‘’

K

𝐾=πΈβˆ—π΄π‘™π‘’ [ 𝑙0π‘š00000 ]βˆ—[ 1 βˆ’1

βˆ’1 1 ]βˆ—[π‘™π‘š0000 π‘™π‘š]

Stiffness matrix for the local system:

𝐾 β€²=πΈβˆ—π΄π‘™π‘’

βˆ—[ 1 βˆ’1βˆ’1 1 ]

…

𝐾=πΈβˆ—π΄π‘™π‘’ [ π‘™βˆ’π‘™

π‘šβˆ’π‘šβˆ’π‘™ π‘™βˆ’π‘šπ‘š ]βˆ—[π‘™π‘š0000 π‘™π‘š]

𝐾=πΈβˆ—π΄π‘™π‘’

βˆ— [ 𝑙2 π‘™βˆ—π‘š βˆ’ 𝑙2βˆ’ π‘™βˆ—π‘šπ‘šβˆ—π‘™ π‘š2 βˆ’π‘šβˆ—π‘™βˆ’π‘š2

βˆ’π‘™2βˆ’ π‘™βˆ—π‘š

βˆ’π‘šβˆ—π‘™βˆ’π‘š2

𝑙2 π‘™βˆ—π‘šπ‘™βˆ—π‘šπ‘š2 ]

Stiffness matrix for the global system

STRESSES AT THE ELEMENT

𝜎=πΈβˆ—πœ€ 𝜎=πΈβˆ—π‘’ β€² 2βˆ’π‘’ β€²1

π‘™π‘’πœŽ=

πΈπ‘™π‘’βˆ— [βˆ’1 1 ]βˆ—[𝑒 β€² 1𝑒 β€² 2]

𝑒′=πΏβˆ—π‘’

𝜎=πΈπ‘™π‘’βˆ— [βˆ’π‘™βˆ’π‘šπ‘™π‘š ]βˆ— [𝑒1𝑒2𝑒3𝑒4 ]

Local system:

Global system:

BERNOULLI BEAMSβ€’ Beams are subject to transverse loading. including

transverse forces and moments that result in transverse deformation.

β€’ They are deflection in the y direction (w), and rotation in the x-y plane with respect to the z axis.

β€’ Each two-noded mean element has total of four degrees of freedrom(DOFs)

INTRODUCTIONβ€’ The Euler-Bernoulli beam

theory assumes that undeformed plane sections remain plane under deformation.

w= deflectionβ€’ Strain are defined as:

STRAIN ENERGY

Taking :

Inertia:Then strain energy:

SHAPE FUNCTION CONSTRUCTION

β€’ As there are four DOFs for a beam element, there should be four shape functions.

Shape functions:

For N1:

SHAPE FUNCTION CONSTRUCTION For N2:

For N3:

SHAPE FUNCTION CONSTRUCTIONFor N4:

The shape functions defined as:

The transverse displacement is interpolated by Hermite shape functions as:

Taking :

Then:

The strain energy is obtained as:

We know that:

STIFFNESS MATRIX

Deriving shape functions:

Each element of the matrix is integrated between [-1,1]:

The stiffness matrix is:

Recommended