ASD vs LRFD - · PDF file01/06/2016 · 3 ASD and LRFD Major Differences • Load...

Preview:

Citation preview

1

AISC

LRFD and ASD

Source: GT

STRUDL Users GroupLas Vegas, Nevada, 2005

Hamid Zand

2

AISC ASD and LRFD

AISC =

American Institute of SteelConstruction

ASD =

Allowable Stress DesignAISC Ninth Edition

LRFD

=

Load and Resistance Factor DesignAISC Third Edition

3

ASD and LRFD Major Differences

Load

Combinations and load factors•

ASD results are based on the stresses and LRFD results are based on the forces and moments capacity

Cb

computation

4

ASD Load Combinations

1.0D

+ 1.0L•

0.75D

+ 0.75L

+ 0.75W

0.75D

+ 0.75L

+ 0.75E

D

=

dead loadL

=

live loadW

=

wind loadE

=

earthquake load

5

LRFD Load Combinations

1.4D•

1.2D

+ 1.6L

1.2D

+ 1.6W + 0.5L•

1.2D

±

1.0E

+ 0.5L

0.9D

±

(1.6W or 1.0E)

D

=

dead loadL

=

live loadW

=

wind loadE

=

earthquake load

6

Deflection Load Combinations for ASD and LRFD

1.0D

+ 1.0L•

1.0D

+ 1.0L

+ 1.0W

1.0D

+ 1.0L

+ 1.0E

D

=

dead loadL

=

live loadW

=

wind loadE

=

earthquake load

7

Forces and Stresses

ASD =

actual stress values are compared to the AISCallowable stress values

LRFD

=

actual forces and momentsare compared to the AISClimiting forces and momentscapacity

8

Slenderness Ratio

CompressionKL/r

200

TensionL/r

300

9

Tension Members

Check L/r

ratio•

Check Tensile Strength based on the cross-

section’s Gross Area•

Check Tensile Strength based on the cross-

section’s Net Area

10

Tension Members

ASDft

= FX/Ag

Ft

Gross Area

ft

= FX/Ae

Ft

Net Area

LRFD

Pu

= FX

ϕt Pn

= ϕt Ag Fy

ϕt

= 0.9 for Gross Area

Pu

= FX

ϕt Pn

= ϕt Ae

Fu

ϕt

= 0.75 for Net Area

11

Tension Members

ASD (ASD Section D1)

Gross Area Ft

= 0.6Fy

Net Area

Ft

= 0.5Fu

LRFD (LRFD Section D1)

Gross Area ϕt Pn

= ϕt Fy

Ag

ϕt

= 0.9Net Area

ϕt Pn

= ϕt Fu Ae

ϕt

= 0.75

12

Compare ASD to LRFD

ASD

1.0D

+ 1.0LLRFD

1.2D

+ 1.6L

0.6Fy

(ASD)

×

(1.5)

= 0.9Fy

(LRFD)

0.5Fu

(ASD)

×

(1.5)

= 0.75Fu

(LRFD)

ASD ×

(1.5)

= LRFD

13

Tension Members

X

Y

Z

FIXED JOINT

-400.

o

14

Tension Members•

Member is 15 feet long

Fixed at the top of the member and free at the bottom•

Loadings are:

Self weight•

400 kips tension force at the free end

Load combinations based on the ASD and LRFD codes

Steel grade is A992•

Design based on the ASD and LRFD codes

15

Tension Members

ASD

W18x46

Actual/Allowable Ratio = 0.989

LRFD

W10x49

Actual/Limiting Ratio = 0.989

16

Tension Members

ASDW18x46

Area = 13.5 in.2

FX = 400.688 kips

Ratio = 0.989

LRFDW10x49

Area = 14.4 in.2

FX = 640.881 kips

Ratio = 0.989

17

Tension MembersLoad Factor difference between LRFD and ASD

640.881 / 400.688 = 1.599Equation Factor difference between LRFD and ASD

LRFD = (1.5) ×

ASD

Estimate required cross-sectional area for LRFD

LRFD W10x49 Area = 14.4 in.2

Area for LRFD 135 640881400 688

1015

0 9890 989

14 395. ..

.

...

.

18

Tension MembersCode Check based on the ASD9 and using W10x49

FX = 400.734 kips

Ratio = 0.928

Load Factor difference between LRFD and ASD640.881 / 400.734 = 1.599

LRFD W10x49

Ratio = 0.989

LRFD Ratio computed from ASD 0 928 640881400 734

1015

0 989. ..

.

..

19

Tension MembersASD

Example # 1Live Load = 400 kips

W18x46

Actual/Allowable Ratio = 0.989LRFD

Example # 1Live Load = 400 kips

W10x49

Actual/Limiting Ratio = 0.989Example # 2

Dead Load = 200 kipsLive Load = 200 kips

W14x43

Actual/Limiting Ratio = 0.989Code check W14x43 based on the ASD9

W14x43

Actual/Allowable Ratio = 1.06

20

Compression Members

Check KL/r

ratio•

Compute Flexural-Torsional Buckling and Equivalent (KL/r)e

Find Maximum of KL/r

and (KL/r)e

Compute Qs

and Qa

based on the b/t

and h/tw

ratios•

Based on the KL/r

ratio, compute allowable

stress in ASD or limiting force in LRFD

21

Compression Members

ASD

fa

= FX/Ag

Fa

LRFD

Pu

= FX

ϕc Pn

= ϕc Ag FcrWhere

ϕc

= 0.85

22

Limiting Width-Thickness Ratios for Compression Elements

ASD

b/t

=

h/tw

=

LRFD

b/t

=

h/tw

=

95 / Fy

056. /E Fy

253 / Fy

149. /E Fy

23

Limiting Width-Thickness Ratios for Compression Elements

Assume E

= 29000 ksiASD

b/t

=

h/tw

=

LRFD

b/t

=

h/tw

=

95 / Fy

9536. / Fy

253 / Fy

25374. / Fy

24

Compression Members

ASD KL/r

C′c

(ASD E2-1 or A-B5-11)

LRFD (LRFD A-E3-2)

F

QKL r

CF

KL rC

KL r

C

ac

y

c c

12

53

38 8

2

2

3

3

/

/ /

F Q FcrQ

yc 0 658

2

.

Where C EQFc

y

2 2

Where c

yKLr

FE

c Q 15.

25

Compression Members

ASD KL/r

> C′c

(ASD E2-2)

LRFD (LRFD A-E3-3)

F E

KL ra

1223

2

2

/Where C E

QFcy

2 2

c Q 15.

F Fcrc

y

08772

.

Where c

yKLr

FE

26

Compression Members

LRFDF Fcr

cy

08772

. Where

cyKL

rFE

FKLr

FE

Fcr

y

y

08772

.

F E

KL rcr

0877 2

2.

/

F

EKL rcr

2017123

2

2

./

27

Compression Members

ASD LRFD

Fcr

/ Fa

= 1.681

LRFD Fcr

= ASD Fa

×

1.681

F E

KL ra

1223

2

2

/ F

EKL rcr

2017123

2

2

./

28

Compression Members

ASD

(ASD C-E2-2)

LRFD

λc

= Maximum of

( λcy

, λcz

, λe )

KL rK L

rK L

rKLr

y Y

y

z z

z e/ , ,

WhereKLr

EFe e

29

Compression Members

LRFDWhere:

cy

y y

y

yK Lr

FE

cz

z z

z

yK Lr

FE

ey

e

FF

30

Compression Members

Flexural-Torsional Buckling

F

EC

K LGJ

I Iew

x x y z

2

210.

31

Qs

Computation

ASD

LRFD

When 95 195/ / / / /F k b t F ky c y c

Q b t F ks y c 1293 0 00309. . ( / ) /

When 056 103. / / . /E F b t E Fy y

Q b t F Es y 1415 0 74. . ( / ) /

k

h th t kc c

4 05 70 100.46.

// , .if otherwise

32

Qs

Computation

Assume E

= 29000 ksiASD

LRFD

When 95 195/ / / / /F k b t F ky c y c

Q b t F ks y c 1293 0 00309. . ( / ) /

When 9536 1754. / / . /F b t Fy y

Q b t Fs y 1415 0 004345. . ( / )

33

Qs

Computation

ASD

LRFD

When b t F ky c/ / / 195

Q k F b ts c y 26200 2/ /

When b t E Fy/ . / 103

Q E F b ts y 0 69 2. / /

34

Qs

Computation

Assume E

= 29000 ksiASD

LRFD

When b t F ky c/ / / 195

Q k F b ts c y 26200 2/ /

When b t Fy/ . / 1754

Q F b ts y 20010 2/ /

35

Qa

Computation

ASD

LRFD

b tf b t f

be

253 1 44 3.

( / )

b t Ef b t

Ef

be

191 1 0 34. .

( / )

Assume ksiE b tf b t f

e

29000 32526 1 57 9, . .( / )

36

Compression Members

X

Y

Z FIXED JOINT

-100.o

37

Compression Members•

Member is 15 feet long

Fixed at the bottom of the column and free at the top•

Loadings are:

Self weight•

100 kips compression force at the free end

Load combinations based on the ASD and LRFD codes

Steel grade is A992•

Design based on the ASD and LRFD codes

38

Compression Members

ASD

W10x49

Actual/Allowable Ratio = 0.941

LRFD

W10x54

Actual/Limiting Ratio = 0.944

39

Compression Members

ASDW10x49

Area = 14.4 in.2

FX

= 100.734 kips

Ratio = 0.941

LRFDW10x54

Area = 15.8 in.2

FX

= 160.967 kips

Ratio = 0.944

40

Compression MembersLoad Factor difference between LRFD and ASD

160.967 / 100.734 = 1.598Equation Factor difference between LRFD and ASD

LRFD Fcr

= (1.681) ×

ASD Fa

Estimate required cross-sectional area for LRFD

LRFD W10x54 Area = 15.8 inch

Area for LRFD 14 4 160 967100 734

101681

10085

0 9410 944

16 05. ..

..

..

.

..

41

Compression MembersCode Check based on the ASD9 and use W10x54

FX

= 100.806 kips

Ratio = 0.845

Load Factor difference between LRFD and ASD160.967 / 100.806 = 1.597

LRFD W10x54

Ratio = 0.944

LRFD Ratio computed from ASD 0845 160 967100806

101681

10085

0 944. ..

..

..

.

42

Compression MembersASD

Example # 1Live Load = 100 kips

W10x49

Actual/Allowable Ratio = 0.941LRFD

Example # 1Live Load = 100 kips

W10x54

Actual/Limiting Ratio = 0.944Example # 2

Dead Load = 50 kipsLive Load = 50 kips

W10x49

Actual/Limiting Ratio = 0.921Code check W10x49 based on the ASD9

W10x49

Actual/Allowable Ratio = 0.941

43

Flexural Members•

Based on the b/t

and h/tw

ratios determine the compactness of the cross-section

Classify flexural members as Compact, Noncompact, or Slender

When noncompact

section in ASD, allowable stress Fb

is computed based on the l/rt

ratio. l

is the laterally unbraced length of the compression flange. Also, Cb

has to be computed•

When noncompact

or slender section in LRFD, LTB, FLB,

and WLB are checked•

LTB for noncompact

or slender sections is computed using Lb

and Cb

. Lb

is the laterally unbraced

length of the compression flange

44

Flexural Members

ASD

fb

= MZ/SZ

Fb

LRFD

Mu

= MZ

ϕb Mn

Where ϕb

= 0.9

45

Limiting Width-Thickness Ratios for Compression Elements

ASD

LRFD

Assume E

= 29000 ksi

d t Fw y/ / 640

b t E Fy/ . / 0 38 h t E Fw y/ . / 376

b t Fy/ / 65

b t Fy/ . / 64 7 h t Fw y/ . / 640 3

46

Flexural Members Compact Section

ASD (ASD F1-1)

Fb

= 0.66Fy

LRFD (LRFD A-F1-1)

ϕb Mn

= ϕb Mp

= ϕb Fy ZZ

≤ 1.5Fy SZ

Where ϕb

= 0.9

47

Flexural Members Compact Section

X

Y

Z

FIXED JOINT

-15.00

-15.00

o

o

FIXED JOINT

Braced at 1/3 Points

48

Flexural Members Compact Section

Member is 12 feet long•

Fixed at both ends of the member

Loadings are:•

Self weight

15 kips/ft uniform load•

Load combinations based on the ASD and LRFD codes

Steel grade is A992•

Braced at the 1/3 Points

Design based on the ASD and LRFD codes

49

Flexural Members Compact Section

ASD

W18x40

Actual/Allowable Ratio = 0.959

LRFD

W18x40

Actual/Limiting Ratio = 0.982

50

Flexural Members Compact Section

ASDW18x40

Sz

= 68.4 in.3

MZ

= 2165.777 inch-kips

Ratio = 0.959

LRFDW18x40

Zz

= 78.4 in.3

MZ

= 3462.933 inch-kips

Ratio = 0.982

51

Flexural Members Compact Section

Load Factor difference between LRFD and ASD3462.933 / 2165.777 = 1.5989

Equation Factor difference between LRFD and ASDLRFD = (0.66Sz

)(1.5989) / (0.9Zz

) ×

ASD

Zz

LRFD W18x40

Zz

= 78.4 in.3

for LRFD 68 4 3462 9332165777

0 660 9

0 9590 982

78 3. ..

..

.

..

52

Flexural Members Compact Section

Code Check based on the ASD9, Profile W18x40MZ

= 2165.777 inch-kips

Ratio = 0.959

Load Factor difference between LRFD and ASD3462.933 / 2165.777 = 1.5989

LRFD W18x40 Ratio = 0.982

LRFD Ratio computed from ASD 0 959 3462 9332165777

0 660 9

68 478 4

0 981. ..

..

.

..

53

Flexural Members Compact Section

ASDExample # 1

Live Load = 15 kips/ftW18x40

Actual/Allowable Ratio = 0.959LRFD

Example # 1Live Load = 15 kips/ft

W18x40

Actual/Limiting Ratio = 0.982Example # 2

Dead Load = 7.5 kips/ftLive Load = 7.5 kips/ft

W18x40

Actual/Limiting Ratio = 0.859Code check W18x40 based on the ASD9

W18x40

Actual/Allowable Ratio = 0.959

54

Flexural Members Noncompact

Section

ASD•

Based on b/t, d/tw

and h/tw

determine if the section is noncompact

Compute Cb

Compute Qs

Based on the l/rt

ratio, compute allowable stress Fb

Laterally unbraced

length of the compression flange (l) has a direct effect on the equations of the noncompact

section

55

Flexural Members Noncompact Section

ASD

fb

= MZ/SZ

Fb

LRFD

Mu

= MZ

ϕb Mn

Where ϕb

= 0.9

56

Limiting Width-Thickness Ratios for Compression Elements

ASD

LRFD

65 95F b t Fy y

d t Fw y 640

0 38 083. / .E F b t E Fy L

376 57. .E F h t E Fy w y

h t Fw b 760

57

Limiting Width-Thickness Ratios for Compression Elements

Assume E

= 29000 ksiASD

LRFD

65 95F b t Fy y

d t Fw y 640

64 7 1413. / / . /F b t Fy L

640 3 970 7. / . /F h t Fy w y

h t Fw b 760

58

Flexural Members Noncompact Section

ASD

(ASD F1-3)

(ASD F1-2)

ASD Equations F1-6, F1-7, and F1-8 must to be checked.

F Fbt

Fb yf

fy

0 79 0 0022

. .

If minimum orL L

b

F d A Fb cf

y f y

76 20000

59

Flexural Members Noncompact Section

ASD

When

(ASD F1-6)

102 10 510 103 3

CF

lr

CF

b

y T

b

y

F

F l r

CF F Qb

y T

by y s

23 1530 10

0 62

3

/.

60

Flexural Members Noncompact Section

ASD

When

(ASD F1-7)

lr

CFT

b

y

510 103

F

C

l rF Qb

b

Ty s

170 100 6

3

2/.

61

Flexural Members Noncompact Section

ASD

For any value of l/rT

(ASD F1-8)FC

ld AF Qb

b

fy s

12 100 6

3

/.

62

Flexural Members Noncompact Section

LRFD

1. LTB, Lateral-Torsional Buckling

2. FLB, Flange Local Buckling

3. WLB, Web Local Buckling

63

Flexural Members Noncompact

Section

LRFD–

LTB

Compute Cb•

Based on the Lb

, compute limiting moment capacity. Lb

is the lateral unbraced

length of the compression flange,λ

= Lb

/ry•

Lb

has a direct effect on the LTB equations for noncompactand slender sections

FLB•

Compute limiting moment capacity based on the b/t

ratio of the flange, λ

= b/t–

WLB

Compute limiting moment capacity based on the h/tw

ratio of the web, λ

= h/tw

64

Flexural Members Noncompact Section

LRFD LTB (Table A-F1.1)

For λp

< λ

λr

(LRFD A-F1-2)

Where:Mp

= Fy

Zz

1.5Fy Sz

Mr

= FL

Sz

FL

= Smaller of (Fyf

Fr

) or Fyw

λ

= Lb

/ry

λp

=

M C M M M Mn b p p rp

r pp

176. E Fyf

65

Flexural Members Noncompact Section

LRFD LTB (Table A-F1.1)

Where:

λr

=

X1

=

X2

=

XF

X FL

L1

221 1

S

EGJA

z 2

42C

ISGJ

w

y

z

66

Flexural Members Noncompact Section

LRFD FLB (Table A-F1.1)

For λp

< λ

λr

(LRFD A-F1-3)Where:

Mp

= Fy

Zz

1.5Fy Sz

Mr

= FL

Sz

FL

= Smaller of (Fyf

Fr

) or Fyw

λ

= b/tλp

=λr

=

M M M Mn p p rp

r p

0 38. E Fy

083. E FL

67

Flexural Members Noncompact Section

LRFD WLB (Table A-F1.1)

For λp

< λ

λr

(LRFD A-F1-3)Where:

Mp

= Fy

Zz

1.5Fy Sz

Mr

= Re Fy

Sz

Re

= 1.0

for non-hybrid girder

M M M Mn p p rp

r p

68

Flexural Members Noncompact Section

LRFD WLB (Table A-F1.1)

λ = h/tw

λp

=

λr

=

376. E Fy

57. E Fy

69

Flexural Members Noncompact Section

ASD

LRFD

C M M M MM M

M M M C

b

b

175 105 0 3 2 3

10

1 2 1 22

1 2

1 2

. . . .

, .maxIf between and

CM

M M M MMMM

bA B C

A

B

C

12 52 5 3 4 3

..

max

max

absolute value of moment at quarter pointabsolute value of moment at centerlineabsolute value of moment at three quarter point

70

Flexural Members Noncompact Section

X

Y

Z

Roller

-12.00

-12.00

o

o

Pin

71

Flexural Members Noncompact

Section

Member is 12 feet long•

Pin at the start of the member

Roller at the end of the member•

Cross-section is W12x65

Loadings are:•

Self weight

12 kips/ft uniform load•

Load combinations based on the ASD and LRFD codes

Steel grade is A992•

Check code based on the ASD and LRFD codes

72

Flexural Members Noncompact Section

ASDW12x65

Cb

= 1.0Actual/Allowable Ratio = 0.988

LRFDW12x65

Cb

= 1.136Actual/Limiting Ratio = 0.971

Code check is controlled by FLB.Cb

= 1.0

Actual/Limiting Ratio = 0.973

73

Flexural Members Noncompact

Section

ASDExample # 1

Live Load = 12 kips/ftW12x65

Actual/Allowable Ratio = 0.988LRFD

Example # 1Live Load = 12 kips/ft

W12x65

Actual/Limiting Ratio = 0.971Example # 2

Dead Load = 6 kips/ftLive Load = 6 kips/ft

W12x65

Actual/Limiting Ratio = 0.85Code check W12x65 based on the ASD9

W12x65

Actual/Allowable Ratio = 0.988

74

Design for Shear

ASD

fv

= FY/Aw

Fv

= 0.4Fy

(ASD F4-1)

LRFD

Vu

= FY

ϕv

Vn

= ϕv

0.6Fyw Aw

(LRFD F2-1)

Where ϕv

= 0.9

h t Fw y/ 380

h t E Fw yw/ . / 2 45

75

Design for ShearAssume E

= 29000 ksi

ASD

fv

= FY/Aw

Fv

= 0.4Fy

(ASD F4-1)

LRFD

Vu

= FY

ϕv

Vn

= ϕv

0.6Fyw Aw

(LRFD F2-1)Where ϕv

= 0.9

h t Fw y/ 380

h t Fw yw/ . / 417 2

76

Design for ShearASD

fv

= FY/Ay

(ASD F4-2)

LRFD

Vu

= FY

ϕv

Vn

= ϕv

(LRFD F2-2)

Where ϕv

= 0.9

h t Fw y/ 380

2 45 307. / / . /E F h t E Fyw w yw

FF

C Fvy

v y 2 89

0 4.

.

0 62 45

.. /

/F A

E F

h tyw wyw

w

77

Design for Shear

LRFD

Vu

= FY

ϕv

Vn

= ϕv

(LRFD F2-3)

Where ϕv

= 0.9

307 260. / /E F h tyw w

A E

h tw

w

4 522

./

78

Design for Shear

X

Y

Z

FIXED JOINT

-15.00

-15.00

o

o

FIXED JOINT

Braced at 1/3 Points

79

Design for Shear•

Same as example # 3 which is used for design of flexural member with compact section

Member is 12 feet long•

Fixed at both ends of the member

Loadings are:•

Self weight

15 kips/ft uniform load•

Load combinations based on the ASD and LRFD codes

Steel grade is A992•

Braced at the 1/3 Points

Design based on the ASD and LRFD codes

80

Design for Shear

ASD (Check shear at the end of the member, equation “F4-1 Y”)

W18x40

Actual/Allowable Ratio = 0.8

LRFD (Check shear at the end of the member, equation “A-F2-1 Y”)

W18x40

Actual/Limiting Ratio = 0.948

81

Design for Shear

ASDW18x40

Ay

= 5.638 in.2

FY

= 90.241 kips

Ratio = 0.8

LRFDW18x40

Ay

= 5.638 in.2

FY

= 144.289 kips

Ratio = 0.948

82

Design for ShearCode Check based on the ASD9, Profile W18x40

FY

= 90.241 kips

Ratio = 0.8Load Factor difference between LRFD and ASD

144.289 / 90.241 = 1.5989Equation Factor difference between LRFD and ASD

LRFD = (0.4)(1.5989) /(0.6)(0.9) ×

ASD

LRFD W18x40 Ratio = 0.948

LRFD Ratio computed from ASD 08 144 28990 241

0 40 6

100 9

0 948. ..

.

...

.

83

Design for ShearASD

Example # 1Live Load = 15 kips/ft

W18x40

Actual/Allowable Ratio = 0.8LRFD

Example # 1Live Load = 15 kips/ft

W18x40

Actual/Limiting Ratio = 0.948Example # 2

Dead Load = 7.5 kips/ftLive Load = 7.5 kips/ft

W18x40

Actual/Limiting Ratio = 0.83Code check W18x40 based on the ASD9

W18x40

Actual/Allowable Ratio = 0.8

84

Combined Forces

ASD fa

/Fa

> 0.15

(ASD H1-1)

(ASD H1-2)

LRFD Pu

/ϕPn

≥ 0.2

(LRFD H1-1a)

fF

C f

fF

F

C ffF

a

a

my by

a

eyby

mz bz

a

ez

1 110.

fF

fF

fF

a

y

by

by

bz

bz0 610

..

PP

MM

MM

u

n

uy

b ny

uz

b nz

89

10.

85

Combined Forces

ASD fa

/Fa

0.15

(ASD H1-1)

LRFD Pu

/ϕPn

< 0.2

(LRFD H1-1a)

fF

fF

fF

a

a

by

by

bz

bz

10.

PP

MM

MM

u

n

uy

b ny

uz

b nz210

.

86

Combined Forces

X

Y

Z

87

Combined Forces•

3D Simple Frame

3 Bays in X direction

3 @ 15 ft•

2 Bays in Z direction

2 @ 30 ft•

2 Floors in Y direction

2 @ 15 ft

• Loadings

Self weight of the Steel•

Self weight of the Slab

62.5 psf•

Other dead loads

15.0 psf•

Live load on second floor

50.0 psf•

Live load on roof

20.0 psf•

Wind load in the X direction

20.0 psf•

Wind load in the Z direction

20.0 psf

88

Combined Forces ASD

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>< Active Units Weight Unit = KIP Length Unit = INCH >< >< Steel Take Off Itemize Based on the PROFILE >< Total Length, Volume, Weight, and Number of Members >< >< Profile Names Total Length Total Volume Total Weight # of Members >< W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 >< W12x58 1.4400E+03 2.4480E+04 6.9352E+00 4 >< W12x65 1.4400E+03 2.7504E+04 7.7919E+00 4 >< W12x72 2.1600E+03 4.5576E+04 1.2912E+01 12 >< W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 >< W8x40 1.4400E+03 1.6848E+04 4.7730E+00 4 >< W8x48 1.4400E+03 2.0304E+04 5.7521E+00 4 ><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>< ACTIVE UNITS WEIGHT KIP LENGTH INCH >< >< TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS >< >< LENGTH = 1.3320E+04 WEIGHT = 4.6566E+01 VOLUME = 1.6437E+05 ><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

89

Combined Forces LRFD

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>< Active Units Weight Unit = KIP Length Unit = INCH >< >< Steel Take Off Itemize Based on the PROFILE >< Total Length, Volume, Weight, and Number of Members >< >< Profile Names Total Length Total Volume Total Weight # of Members >< W10x33 3.6000E+03 3.4956E+04 9.9030E+00 16 >< W10x39 1.4400E+03 1.6560E+04 4.6914E+00 4 >< W10x49 7.2000E+02 1.0368E+04 2.9373E+00 4 >< W12x45 1.4400E+03 1.9008E+04 5.3850E+00 4 >< W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 >< W8x31 1.4400E+03 1.3147E+04 3.7246E+00 4 >< W8x40 1.4400E+03 1.6848E+04 4.7730E+00 8 >< ><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>< ACTIVE UNITS WEIGHT KIP LENGTH INCH >< >< TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS >< >< LENGTH = 1.3320E+04 WEIGHT = 3.3874E+01 VOLUME = 1.1957E+05 ><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

90

Combined Forces

ASD

WEIGHT = 46.566 kips

LRFD

WEIGHT = 33.874 kips

91

Deflection Design ASD

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>< Active Units Weight Unit = KIP Length Unit = INCH >< >< Steel Take Off Itemize Based on the PROFILE >< Total Length, Volume, Weight, and Number of Members >< >< Profile Names Total Length Total Volume Total Weight # of Members >< W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 >< W12x58 1.4400E+03 2.4480E+04 6.9352E+00 4 >< W12x65 1.4400E+03 2.7504E+04 7.7919E+00 4 >< W12x72 2.1600E+03 4.5576E+04 1.2912E+01 12 >< W14x43 1.4400E+03 1.8144E+04 5.1402E+00 4 >< W14x48 1.4400E+03 2.0304E+04 5.7521E+00 4 >< W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 ><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>< ACTIVE UNITS WEIGHT KIP LENGTH INCH >< >< TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS >< >< LENGTH = 1.3320E+04 WEIGHT = 4.6933E+01 VOLUME = 1.6566E+05 ><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

92

Deflection Design LRFD

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>< Active Units Weight Unit = KIP Length Unit = INCH >< >< Steel Take Off Itemize Based on the PROFILE >< Total Length, Volume, Weight, and Number of Members >< >< Profile Names Total Length Total Volume Total Weight # of Members >< W10x33 2.1600E+03 2.0974E+04 5.9418E+00 12 >< W10x49 1.4400E+03 2.0736E+04 5.8745E+00 8 >< W10x54 7.2000E+02 1.1376E+04 3.2228E+00 4 >< W12x40 1.4400E+03 1.6992E+04 4.8138E+00 4 >< W14x43 2.8800E+03 3.6288E+04 1.0280E+01 8 >< W14x48 1.4400E+03 2.0304E+04 5.7521E+00 4 >< W6x9 3.2400E+03 8.6832E+03 2.4600E+00 18 ><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>< ACTIVE UNITS WEIGHT KIP LENGTH INCH >< >< TOTAL LENGTH, WEIGHT AND VOLUME FOR SPECIFIED MEMBERS >< >< LENGTH = 1.3320E+04 WEIGHT = 3.8345E+01 VOLUME = 1.3535E+05 ><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

Recommended