An Online Learning Algorithm for Bilinear Models · Yuanbin Wu Shiliang Sun An Online Learning...

Preview:

Citation preview

An Online Learning Algorithm for Bilinear Models

Yuanbin Wu Shiliang Sun

East China Normal University

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 1 / 27

Introduction

Bilinear modelsOnline learningRegret analysis

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 2 / 27

Introduction: bilinear models

Linear model for multi-class classification

h(x) = arg maxy∈Y

w⊺φ(x, y)

Matrix form linear model

h(x) = arg maxy∈Y

Tr(W ⊺Φ(x , y))

Bilinear model

h(x) = arg maxy∈Y

α⊺Φ(x, y)β

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 3 / 27

Introduction: bilinear models

Linear model for multi-class classification

h(x) = arg maxy∈Y

w⊺φ(x, y)

Matrix form linear model

h(x) = arg maxy∈Y

Tr(W ⊺Φ(x , y))

Bilinear model

h(x) = arg maxy∈Y

α⊺Φ(x, y)β

Matrix feature

Rank 1 constraint on W

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 3 / 27

Introduction: online learning

Online convex optimization Convexity is violated by rank constraints Ω1 = W |rank(W ) ≤ 1 is not a convex set

The primal dual perspective can help The dual problem is always convex

Gradients for matrix norms Singular value decomposition

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 4 / 27

Introduction: regret analysis

The regret of an online algorithm w.r.t. strategy U

RN (U ) = 1N

N∑t=1

Lt(Wt)−1N

N∑t=1

Lt(U ).

Bound of the Hessian (strongly smoothness)

f (x + y) ≤ f (x) +∇f (x)⊺y + β

2∥y∥2

Can we have similar bounds for rank constrained problems?

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 5 / 27

Outlines

1 Bilinear Model

2 Online Learning Algorithm

3 Regret Analysis

4 Experiments

5 Conclusion

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 6 / 27

Bilinear Model

DefinitionWe define the bilinear model with discriminant function

h(x) = arg maxy∈Y

α⊺Φ(x, y)β

where α ∈ Rm , β ∈ Rn . The model parameter W = αβ⊺ is a rank 1matrix.

Why the bilinear formulation semantic relations among features more compact model

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 7 / 27

Bilinear Model

Example: sequential labelling The linear model:

h(x) = arg maxy∈Y

n∑i=1

w⊺ Φ(x, yi , yi−1)

The bilinear model:

h(x) = arg maxy∈Y

n∑i=1

α⊺[

ζ(x, yi)⊗ ζ(x, yi−1)]

β

Number of parameters from O(n2) to O(n)

… …y0 y1 yi yn-1 yn

x

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 8 / 27

Bilinear Model

Example: sequential labelling The linear model:

h(x) = arg maxy∈Y

n∑i=1

w⊺ Φ(x, yi , yi−1)

[yiyi−1 BB BI BO IB II IO OB OI OO0 0 1 0 0 0 0 0 0

]⇒

[B I OB 0 0 1I 0 0 0O 0 0 0

]=

[B 1I 0O 0

] [B I O0 0 1

].

Φ(x, yi , yi−1) Φ(x, yi , yi−1) ζ1(x, yi) ζ⊺2 (x, yi−1)

The bilinear model:

h(x) = arg maxy∈Y

n∑i=1

α⊺ [

ζ(x, yi) ⊗ ζ(x, yi−1)]

β

Number of parameters from O(n2) to O(n)

… …y0 y1 yi yn-1 yn

x

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 8 / 27

Bilinear Model

Example: sequential labelling The linear model:

h(x) = arg maxy∈Y

n∑i=1

w⊺ Φ(x, yi , yi−1)

The bilinear model:

h(x) = arg maxy∈Y

n∑i=1

α⊺[

ζ(x, yi)⊗ ζ(x, yi−1)

Number of parameters from O(n2) to O(n)

… …y0 y1 yi yn-1 yn

x

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 8 / 27

Bilinear Model

Example: sequential labelling The linear model:

h(x) = arg maxy∈Y

n∑i=1

w⊺ Φ(x, yi , yi−1)

The bilinear model:

h(x) = arg maxy∈Y

n∑i=1

α⊺[

ζ(x, yi)⊗ ζ(x, yi−1)]

β

Number of parameters from O(n2) to O(n)

… …y0 y1 yi yn-1 yn

x

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 8 / 27

Bilinear Model

Example: sequential labelling The linear model:

h(x) = arg maxy∈Y

n∑i=1

w⊺ Φ(x, yi , yi−1)

The bilinear model:

h(x) = arg maxy∈Y

n∑i=1

α⊺[

ζ(x, yi)⊗ ζ(x, yi−1)]

β

Number of parameters from O(n2) to O(n)

… …y0 y1 yi yn-1 yn

x

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 8 / 27

Online Learning Algorithm

Large margin optimization problem

minW =αβ⊺∈Ω1

12∥W ∥2F + C

N∑j=1

[1− ⟨W , ∆Φj⟩]+,

where ∆Φj ≜ Φ(x j , yj)− Φ(x j , h(x j)),Ω1 is the set of rank 1 matrices.

Biconvex problem

minα,β

12∥α∥2 + 1

2∥β∥2 + C

N∑j=1

[1− α⊺∆Φjβ]+,

blockwise coordinate descent degenerated cases: only solve a 0-order model on ζ(x, yi)

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 9 / 27

Online Learning Algorithm

Large margin optimization problem

minW =αβ⊺∈Ω1

12∥W ∥2F + C

N∑j=1

[1− ⟨W , ∆Φj⟩]+,

where ∆Φj ≜ Φ(x j , yj)− Φ(x j , h(x j)),Ω1 is the set of rank 1 matrices.

Biconvex problem

minα,β

12∥α∥2 + 1

2∥β∥2 + C

N∑j=1

[1− α⊺∆Φjβ]+,

blockwise coordinate descent degenerated cases: only solve a 0-order model on ζ(x, yi)

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 9 / 27

Online Learning Algorithm

Our plan: from the dual mirror descent style updates

Wt−1∇F−−−−→ Θt−1y−ηt∇Lt

Wt∇F∗←−−−− Θt

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 10 / 27

Online Learning Algorithm

Define F1(W ) = 12∥W ∥

2F if W ∈ Ω1, +∞ otherwise.

The dual problem

D(η)=N∑

j=1ηj − max

W ∈Ω1

⟨W ,N∑

j=1ηj∆Φj⟩ − 1

2∥W ∥2F

=

N∑j=1

ηj − F∗1 (ΘN ), ηj ∈ [0, C ].

whereΘN = ΘN−1 + ηN ∆ΦN (gradients of hinge loss, mirror space)

F∗1 (Θ) = max

W ∈Ω1⟨W , Θ⟩ − 1

2∥W ∥2F (the Frenchel dual)

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 11 / 27

Online Learning Algorithm

Define F1(W ) = 12∥W ∥

2F if W ∈ Ω1, +∞ otherwise.

The dual problem

D(η)=N∑

j=1ηj − max

W ∈Ω1

⟨W ,N∑

j=1ηj∆Φj⟩ − 1

2∥W ∥2F

=

N∑j=1

ηj − F∗1 (ΘN ), ηj ∈ [0, C ].

whereΘN = ΘN−1 + ηN ∆ΦN (gradients of hinge loss, mirror space)

F∗1 (Θ) = max

W ∈Ω1⟨W , Θ⟩ − 1

2∥W ∥2F (the Frenchel dual)

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 11 / 27

Online Learning Algorithm

Define F1(W ) = 12∥W ∥

2F if W ∈ Ω1, +∞ otherwise.

The dual problem

D(η)=N∑

j=1ηj − max

W ∈Ω1

⟨W ,N∑

j=1ηj∆Φj⟩ − 1

2∥W ∥2F

=

N∑j=1

ηj − F∗1 (ΘN ), ηj ∈ [0, C ].

whereΘN = ΘN−1 + ηN ∆ΦN (gradients of hinge loss, mirror space)

F∗1 (Θ) = max

W ∈Ω1⟨W , Θ⟩ − 1

2∥W ∥2F (the Frenchel dual)

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 11 / 27

Online Learning Algorithm

The dual problem D(η) =∑N

j=1 ηj − F∗1 (ΘN )

ΘN = ΘN−1 + ηN ∆ΦN F∗1 (Θ) = max

W∈Ω1⟨W , Θ⟩ − 1

2∥W ∥2F

A series of dual problems Dt+1(η) =∑t

j=1 ηj − F∗1 (Θt), t = 1, 2, . . . , N

uses Wt−1 = αt−1β⊺t−1 to predict xt , yt = h(xt);

sets the dual variable ηt as

ηt =

0 yt = yt

C yt = yt

updates Wt :

Wt =∇F∗1 (Θt) = arg max

W∈Ω1⟨W , Θt⟩ −

12∥W ∥2

F

σ1 =σ2= σ1u1v⊺1

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 12 / 27

Online Learning Algorithm

The dual problem D(η) =∑N

j=1 ηj − F∗1 (ΘN )

D(η) =∑N

j=1 ηj − 12∥ΘN∥22

ΘN = ΘN−1 + ηN ∆ΦN F∗1 (Θ) = max

W∈Ω1⟨W , Θ⟩ − 1

2∥W ∥2F

Proposition: F∗1 (Θ) = 1

2∥Θ∥22 = 1

2∥Θ∥2s(∞) = 1

2σ1(Θ)2

SVD has property of “the best low rank approximation”

A series of dual problems Dt+1(η) =∑t

j=1 ηj − F∗1 (Θt), t = 1, 2, . . . , N

uses Wt−1 = αt−1β⊺t−1 to predict xt , yt = h(xt);

sets the dual variable ηt as

ηt =

0 yt = yt

C yt = yt

updates Wt :

Wt =∇F∗1 (Θt) = arg max

W∈Ω1⟨W , Θt⟩ −

12∥W ∥2

F

σ1 =σ2= σ1u1v⊺1

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 12 / 27

Online Learning Algorithm

The dual problem D(η) =∑N

j=1 ηj − F∗1 (ΘN )

D(η) =∑N

j=1 ηj − 12∥ΘN∥22

ΘN = ΘN−1 + ηN ∆ΦN F∗1 (Θ) = max

W∈Ω1⟨W , Θ⟩ − 1

2∥W ∥2F

A series of dual problems Dt+1(η) =∑t

j=1 ηj − F∗1 (Θt), t = 1, 2, . . . , N

uses Wt−1 = αt−1β⊺t−1 to predict xt , yt = h(xt);

sets the dual variable ηt as

ηt =

0 yt = yt

C yt = yt

updates Wt :

Wt =∇F∗1 (Θt) = arg max

W∈Ω1⟨W , Θt⟩ −

12∥W ∥2

F

σ1 =σ2= σ1u1v⊺1

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 12 / 27

Online Learning Algorithm

The dual problem D(η) =∑N

j=1 ηj − F∗1 (ΘN )

D(η) =∑N

j=1 ηj − 12∥ΘN∥22

ΘN = ΘN−1 + ηN ∆ΦN F∗1 (Θ) = max

W∈Ω1⟨W , Θ⟩ − 1

2∥W ∥2F

A series of dual problems Dt+1(η) =∑t

j=1 ηj − F∗1 (Θt), t = 1, 2, . . . , N

uses Wt−1 = αt−1β⊺t−1 to predict xt , yt = h(xt);

sets the dual variable ηt as

ηt =

0 yt = yt

C yt = yt

updates Wt :

Wt =∇F∗1 (Θt) = arg max

W∈Ω1⟨W , Θt⟩ −

12∥W ∥2

F

σ1 =σ2= σ1u1v⊺1

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 12 / 27

Online Learning Algorithm

The dual problem D(η) =∑N

j=1 ηj − F∗1 (ΘN )

D(η) =∑N

j=1 ηj − 12∥ΘN∥22

ΘN = ΘN−1 + ηN ∆ΦN F∗1 (Θ) = max

W∈Ω1⟨W , Θ⟩ − 1

2∥W ∥2F

A series of dual problems Dt+1(η) =∑t

j=1 ηj − F∗1 (Θt), t = 1, 2, . . . , N

uses Wt−1 = αt−1β⊺t−1 to predict xt , yt = h(xt);

sets the dual variable ηt as

ηt =

0 yt = yt

C yt = yt

updates Wt :

Wt =∇F∗1 (Θt) = arg max

W∈Ω1⟨W , Θt⟩ −

12∥W ∥2

F

σ1 =σ2= σ1u1v⊺1

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 12 / 27

Online Learning Algorithm

The dual problem D(η) =∑N

j=1 ηj − F∗1 (ΘN )

D(η) =∑N

j=1 ηj − 12∥ΘN∥22

ΘN = ΘN−1 + ηN ∆ΦN F∗1 (Θ) = max

W∈Ω1⟨W , Θ⟩ − 1

2∥W ∥2F

A series of dual problems Dt+1(η) =∑t

j=1 ηj − F∗1 (Θt), t = 1, 2, . . . , N

uses Wt−1 = αt−1β⊺t−1 to predict xt , yt = h(xt);

sets the dual variable ηt as

ηt =

0 yt = yt

C yt = yt

updates Wt :

Wt =∇F∗1 (Θt) = arg max

W∈Ω1⟨W , Θt⟩ −

12∥W ∥2

F

σ1 =σ2= σ1u1v⊺1

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 12 / 27

Online Learning Algorithm

The dual problem D(η) =∑N

j=1 ηj − F∗1 (ΘN )

D(η) =∑N

j=1 ηj − 12∥ΘN∥22

ΘN = ΘN−1 + ηN ∆ΦN F∗1 (Θ) = max

W∈Ω1⟨W , Θ⟩ − 1

2∥W ∥2F

A series of dual problems Dt+1(η) =∑t

j=1 ηj − F∗1 (Θt), t = 1, 2, . . . , N

uses Wt−1 = αt−1β⊺t−1 to predict xt , yt = h(xt);

sets the dual variable ηt as

ηt =

0 yt = yt

C yt = yt

updates Wt :

Wt =∇F∗1 (Θt) = arg max

W∈Ω1⟨W , Θt⟩ −

12∥W ∥2

F

σ1 =σ2= σ1u1v⊺1

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 12 / 27

Online Learning Algorithm

uses Wt−1 = αt−1β⊺t−1 to predict x t ,

yt = h(x t) = arg maxy∈Y

α⊺t−1∆Φt(x t , y)βt−1

sets the dual variable ηt as

ηt =

0 yt = yt

C yt = yt

updates Wt :

Θt= Θt−1 + ηt∆Φt =p∑

i=1σiuiv⊺i

Wt= σ1u1v⊺1

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 13 / 27

Online Learning Algorithm

Wt = ∇F∗1 (Θt) = σ1u1v⊺1

Full SVD is expensive, only needs the leading singular vectors

Power iteration if σ1(Θ) = σ2(Θ)

α(τ+1) = Θ⊺Θα(τ),α(τ+1)

∥α(τ+1)∥→ u1

β(τ+1) = ΘΘ⊺β(τ),β(τ+1)

∥β(τ+1)∥→ v1

Initial value and normalization⋆ Θt = Θt−1 + ηt∆Φt

⋆ if ∆Φt is “small”, αt is close to αt−1⋆ if ∆Φt is “sparse”, normalization could be efficient

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 14 / 27

Online Learning Algorithm

Wt = ∇F∗1 (Θt) = σ1u1v⊺1

Full SVD is expensive, only needs the leading singular vectorsPower iteration

if σ1(Θ) = σ2(Θ)

α(τ+1) = Θ⊺Θα(τ),α(τ+1)

∥α(τ+1)∥→ u1

β(τ+1) = ΘΘ⊺β(τ),β(τ+1)

∥β(τ+1)∥→ v1

Initial value and normalization⋆ Θt = Θt−1 + ηt∆Φt

⋆ if ∆Φt is “small”, αt is close to αt−1⋆ if ∆Φt is “sparse”, normalization could be efficient

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 14 / 27

Online Learning Algorithm

Wt = ∇F∗1 (Θt) = σ1u1v⊺1

Full SVD is expensive, only needs the leading singular vectorsPower iteration

if σ1(Θ) = σ2(Θ)

α(τ+1) = Θ⊺Θα(τ),α(τ+1)

∥α(τ+1)∥→ u1

β(τ+1) = ΘΘ⊺β(τ),β(τ+1)

∥β(τ+1)∥→ v1

Initial value and normalization⋆ Θt = Θt−1 + ηt∆Φt

⋆ if ∆Φt is “small”, αt is close to αt−1⋆ if ∆Φt is “sparse”, normalization could be efficient

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 14 / 27

Regret Analysis

The regret w.r.t. strategy U

RN (U ) = 1N

N∑t=1

Lt(Wt)−1N

N∑t=1

Lt(U ).

Wt are weights at each roundLt is the hinge loss

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 15 / 27

Regret Analysis

Previous analysis (mirror descent)

Wt−1∇F−−−−→ Θt−1y−ηt∇Lt

Wt∇F∗←−−−− Θt

If Lt is convex and F is strongly convex, then RN (U ) = O( 1√N

)

In bilinear model F1(W ) = 1

2∥W ∥2F if W ∈ Ω1, +∞ otherwise.

not convex F∗∗

1 (W ) = 12∥W ∥

22 = F1

The analysis of mirror descent is not directly applicable

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 16 / 27

Regret Analysis

Previous analysis (mirror descent)

Wt−1∇F−−−−→ Θt−1y−ηt∇Lt

Wt∇F∗←−−−− Θt

F1(W ) = 12∥W ∥

2F, W ∈ Ω1

If Lt is convex and F is strongly convex, then RN (U ) = O( 1√N

)

In bilinear model F1(W ) = 1

2∥W ∥2F if W ∈ Ω1, +∞ otherwise.

not convex F∗∗

1 (W ) = 12∥W ∥

22 = F1

The analysis of mirror descent is not directly applicable

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 16 / 27

Regret Analysis

Lower bound of dual objective + weak dualityBound the increase of the dual objective

∆t= Dt+1(η1, . . . , ηt)−Dt(η1, . . . , ηt−1)

= C − 12∥Θt−1 + C∆Φt∥22 + 1

2∥Θt−1∥22.

By the Taylor expansion:

12∥Θ + E∥22 ≤

12∥Θ∥22 + ⟨∇∥Θ∥2, E⟩+ vec(E)⊺H (Θ)vec(E)

where Θ = Θ + θE , θ ∈ (0, 1)

Bound the Hessian term

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 17 / 27

Regret Analysis

Our result (by bounding the Hessian) If σ1(Θ) = σ2(Θ) > 0,

12∥Θ + E∥2

2 ≤12∥Θ∥2

2 + ⟨∇∥Θ∥2, E⟩+ ∥E∥2F

2l1− σ2

σ1

where [σ1, . . . , σl ] = σ(Θ), Θ = Θ + θE , θ ∈ (0, 1)

Known result on Schatten norm (Ball et al., 1994; Kakade et al., 2012):

Schatten norm: ∥Θ∥s(p) = ∥σ(Θ)∥p, ∥Θ∥s(∞) = ∥Θ∥2 = σ1(Θ) for p ∈ [2,∞], 1

p + 1q = 1,

12∥Θ + E∥2

s(p) ≤12∥Θ∥2

s(p) + ⟨∇∥Θ∥s(p), E⟩+∥E∥2

s(q)

2(q − 1).

The bound is trivial if p =∞.

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 18 / 27

Regret Analysis

Our result (by bounding the Hessian) If σ1(Θ) = σ2(Θ) > 0,

12∥Θ + E∥2

2 ≤12∥Θ∥2

2 + ⟨∇∥Θ∥2, E⟩+ ∥E∥2F

2l1− σ2

σ1

where [σ1, . . . , σl ] = σ(Θ), Θ = Θ + θE , θ ∈ (0, 1)

Known result on Schatten norm (Ball et al., 1994; Kakade et al., 2012): Schatten norm: ∥Θ∥s(p) = ∥σ(Θ)∥p, ∥Θ∥s(∞) = ∥Θ∥2 = σ1(Θ)

for p ∈ [2,∞], 1p + 1

q = 1,

12∥Θ + E∥2

s(p) ≤12∥Θ∥2

s(p) + ⟨∇∥Θ∥s(p), E⟩+∥E∥2

s(q)

2(q − 1).

The bound is trivial if p =∞.

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 18 / 27

Regret Analysis

Our result (by bounding the Hessian) If σ1(Θ) = σ2(Θ) > 0,

12∥Θ + E∥2

2 ≤12∥Θ∥2

2 + ⟨∇∥Θ∥2, E⟩+ ∥E∥2F

2l1− σ2

σ1

where [σ1, . . . , σl ] = σ(Θ), Θ = Θ + θE , θ ∈ (0, 1)

Known result on Schatten norm (Ball et al., 1994; Kakade et al., 2012): Schatten norm: ∥Θ∥s(p) = ∥σ(Θ)∥p, ∥Θ∥s(∞) = ∥Θ∥2 = σ1(Θ) for p ∈ [2,∞], 1

p + 1q = 1,

12∥Θ + E∥2

s(p) ≤12∥Θ∥2

s(p) + ⟨∇∥Θ∥s(p), E⟩+∥E∥2

s(q)

2(q − 1).

The bound is trivial if p =∞.

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 18 / 27

Regret Analysis

Proposition (Regret)Assume for all Θ = Θt−1, E = C∆Φt , the bound of Hessian holds. Then

RN (U ) ≤ 12CN

∥U∥2F + 2lCN

N∑t=1

∥∆Φt∥2F1− σt

2σt

1

.

The role of σt1

σt2

the speed of power iteration the regret bound

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 19 / 27

Regret Analysis

Bound σ1σ2

: margin requirement + “σ1 is uniformly greater than σ2”

PropositionAssume that supj,W ∥∆Φj∥2 ≤ M1, supj,W ∥∆Φj∥k(2) ≤ M2. If M1 > M2

2and ∃W has margin γ w.r.t. ∥ · ∥s(1), where γ ∈ (M2

2 , M1), then

σt2

σt1≤ M2 − γ

γ.

CorollaryThe regret is bounded by

RN (U ) ≤ 12CN

∥U∥2F + 2Cl2M 21

γ

2γ −M2.

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 20 / 27

Experiments

Two sequential labelling tasks Chinese words segmentation Text chunking

Baselines Linear model (structured perceptron) Blockwise coordinate descent of the biconvex problem Batch learner (CRF+L2, CRF+L1)

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 21 / 27

Experiments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

89.7 92.0 92.7 93.2 93.5 93.8 94.0 94.1 94.4 94.4

pku

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

91.5 93.3 94.5 95.1 95.7 95.8 96.1 96.2 96.4 96.5

msr

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

87.5 89.6 90.7 91.5 92.1 92.5 92.7 93.5 93.8 94.0

cityu

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

88.5 91.1 92.6 93.3 93.8 93.9 93.9 94.0 94.1 94.2

as

bol bcd sp

Figure: Chinese word segmentation.Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 22 / 27

Experiments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

90.2 91.4 92.2 92.7 92.8 93.0 93.2 93.3 93.4 93.6

Chunking

bol bcd sp

Figure: Text chunking.

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 23 / 27

Experiments

Compared with linear models When the training set is small, the advantage of bol is more obvious The model is more compact

Compared with blockwise coordinate descent Prevent attracting by solutions of 0-order model.

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 24 / 27

Experiments

0 20 40 60 80 1000.00

0.05

0.10

0.15

0.20

0.25

0.30bol

crf2

crf1

0 20 40 60 80 1000.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040bol

sp

bcd

Figure: Convergence.

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 25 / 27

Conclusion

An online learning algorithm for bilinear modelA second order approximation of the squared spectral normFuture works

rank k constraints roughly, needs to compute the leading k singular vectors

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 26 / 27

Thanks

Yuanbin Wu Shiliang Sun An Online Learning Algorithm for Bilinear Models 27 / 27

Recommended