13901 Understanding and Applying Dacs

Preview:

Citation preview

The World Leader in High-Performance Signal Processing Solutions

Understanding and Applying DACs

DACs: Not Just For Level Setting Anymore

Conduit from Digital to AnalogApplications

Communications –Wireless, OpticalConsumer – Audio, VideoIndustrial – Controls, InterfaceInstrumentation – Settings, Signals

TopicsWhat they are / doHow they workCare and Feeding

SpecificationsSelectionApply

Applications

MSB

LSB

VREF

N-BITDAC

+FS

0 OR –FS

RANGE(SPAN)

ANALOGOUTPUT

DIGITALINPUTN-BITS

Basic DAC with External Reference(ANALOG)

REFERENCEINPUTVDD

DIGITALINPUT DAC

VSS

VREF

ANALOGOUTPUT

GROUND(MAY BE INTERNALLY CONNECTED TO VSS)

Transfer Function: Ideal Unipolar 3-bit DAC

DAC’s create a correspondence between Digital Input and Analog OutputUnipolar or BipolarLinear or Non-LinearQuantization UncertaintyMonotonic

DIGITAL INPUT (STRAIGHT BINARY)

ANALOGOUTPUT

000 001 010 011 100 101 110 111

FS

0

7/8

3/4

5/8

QuantizationUncertainty

1/23/81/4

1/8

Offset and Gain Error

ACTUAL

OFFSETERROR

WITH GAIN ERROR:OFFSET ERROR = 0ZERO ERROR RESULTSFROM GAIN ERROR

ACTUAL

IDEAL IDEAL

ZERO ERROR ZERO ERROR

NO GAIN ERROR:ZERO ERROR = OFFSET ERROR

0 0

–FS –FS

+FS+FS

DAC Integral Linearity Errors(Same Converter on Both Graphs)

END POINT METHOD BEST STRAIGHT LINE METHOD

LINEARITYERROR ≈ X/2

INPUT

OUTPUT

LINEARITYERROR = X

INPUT

DAC Differential Nonlinearity

DIGITAL INPUT

ANALOGOUTPUT

FS

d

d

1 LSB,DNL = 0

2 LSB,DNL = +1 LSB

1 LSB,DNL = 0

–1 LSB,DNL = –2 LSB

1 LSB,DNL = 0

1 LSB,DNL = 0

2 LSB,DNL = +1 LSB

NON-MONOTONIC IFDNL < –1 LSB

BIT 2 IS 1 LSB HIGHBIT 1 IS 1 LSB LOW

000 001 010 011 100 101 110 111DIGITAL INPUT

ANALOGOUTPUT

FS

000 001 010 011 100 101 110 111

NON- MONOTONIC

DAC’s are a Sampled Data System

LPFORBPF

N-BITADC DSP N-BIT

DAC

LPFORBPF

fs fs

fa

AMPLITUDEQUANTIZATION

DISCRETETIME SAMPLING

fa

1fs

ts=

t

Alias Images in the Time DomainSignal (A) = fa SIGNAL (B) (= fs – fa )

1fs t

NOTE: fa IS SLIGHTLY LESS THAN fs

DAC sin x/x Roll Off(Amplitude Normalized)

SAMPLEDSIGNAL

t

0.5fc fc 1.5fc 2fc 2.5fc 3fc

A = sin π f

fcπ ffc

f

A

1–3.92dB

RECONSTRUCTEDSIGNAL

1fc

t

IMAGESIMAGES

IMAGES

0

DAC Settling Time

DEADTIME

RECOVERYTIME

LINEARSETTLING

SLEWTIME

t = 0

ERROR BAND

ERROR BAND

SETTLING TIME (INPUT TO OUTPUT)

SETTLINGTIME (OUTPUT)

DAC Transitions (Showing Glitch)

IDEAL TRANSITIONTRANSITION WITHUNIPOLAR (SKEW)

GLITCH

t

TRANSITION WITHDOUBLET GLITCH

t t

Calculating Net Glitch Impulse Area

+V1

A1

A2 t–V2

t1 t2

V1· t12

PEAK GLITCH IMPULSE AREA = A1 ≈

V2· t22

V1· t12

NET GLITCH IMPULSE AREA = A1 – A2 ≈ –

Effect of Code-Dependent Glitches on Spectral Output

+ FULL SCALE

fO = 3MHz

fS = 10MSPSMIDSCALE

– FULL SCALE

0 1 2 3 4 5 6 7 8 9 10

fS

2fOfS – 2fO

AMPLITUDECANNOTBE FILTEREDfO fS – fO

FREQUENCY (MHz)fS2

Typical DAC DNL Errors(Exaggerated)

OUT OUT

IN IN

MIDSCALE DNL 1/4FS, 3/4FS DNL

(A) (B)

The World Leader in High-Performance Signal Processing Solutions

DAC Architectures

Voltage Output Thermometer DAC: The Kelvin Divider ("String DAC")

Switches are Basic DAC Building BlockEqual ResistancesMonotonicity is Inherent

3-TO-8DECODER

3-BITDIGITALINPUT

ANALOGOUTPUT

V REF

8TO

SWITCHES

R

R

R

R

R

R

R

R

A Slight Modification to a String DACYields a "Digital Potentiometer"

3-TO-8DECODER

3-BITDIGITALINPUT

TAP

8

TOSWITCHES

TERMINAL A

R

R

R

R

R

R

R

TERMINAL B

High Speed Thermometer DAC with Complementary Current Outputs

3-BITDIGITALINPUT

3-TO-7DECODER

I I I I I II

CURRENTOUTPUTSMAY HAVE

COMPLIANCEOF 1 OR 2 V

OUTPUT OUTPUT

A B C D E F G

TOSWITCHES

7

PMOS Transistor Current Switches

RL

+VS

RL

Voltage-Mode Binary Weighted Resistor DAC

R/8 R/4 R/2 R

V

V

REF

OUT

MSBLSB

Adapted from: B. D. Smith, "Coding by Feedback Methods," Proceedings of the I. R. E., Vol. 41, August 1953, pp. 1053-1058

Current-Mode Binary Weighted DACs(A) RESISTOR (B) CURRENT SOURCE

I/2 I/4 I/8

LSB

IVREF

MSB LSB

R 2R 4R 8R

VREF

MSB LSB

R 2R 4R 8R

MSB

DIFFICULT TO FABRICATE IN ICFORM DUE TO LARGE RESISTOR OR CURRENT RATIOS FOR HIGH RESOLUTIONS

CURRENT OUTPUTSINTO VIRTUAL GROUNDS

Voltage-Mode R-2R Ladder Network DAC

2R

R R R

2R 2R 2R 2R

V

V

REF

OUT

MSBLSB

Adapted from: B. D. Smith, "Coding by Feedback Methods," Proceedings of the I. R. E., Vol. 41, August 1953, pp. 1053-1058

Current-Mode R-2R Ladder Network Resistor-Based DAC

2R

RRR

2R2R2R2R

VREF

MSB LSB

CURRENTOUTPUT

INTOVIRTUALGROUND

<< R

*

* GAIN TRIM IF REQUIRED

VREF can be AC allowing 4 quadrant Multiplication

3-Bit Switched Capacitor DAC

_

+C/ 4C/ 2C C/ 4

AIN

VREF

SIN

SC

S1 S2 S3 S4

BIT1(MSB)

BIT2 BIT3(LSB)

A

CTOTAL = 2C

SWITCHES SHOWN IN TRACK (SAMPLE) MODE

Equal Current Sources Switchedinto an R-2R Ladder Network

I I I I

OUTPUT

MSB

R R R

2R 2R 2R 2R2R

LSB

Adapted from: Bernard M. Gordon and Robert P. Talambiras, "Signal Conversion Apparatus,"U.S. Patent 3,108,266, filed July 22, 1955, issued October 22, 1963

Binary-Weighted Current SourcesSwitched into a Load

R (CAN BE EXTERNAL)

OUTPUT

I I/2 I/4 I/8

MSB LSB

Segmented Voltage Output DACsKELVIN-VARLEY DIVIDER

("STRING DAC")VREF

(A)

VREF

OUTPUT

KELVIN DIVIDER ANDR-2R LADDER NETWORK

NOTE:MSB OF R-2R LADDER

ON RIGHT

IF THE R-2R LADDER NETWORKIS MONOTONIC, THE

WHOLE DAC ISMONOTONIC

OUTPUT

(B)

A

B

A

B

A

B

A

B

A

A

B A

B

Segmented Unbuffered String DACs Use Patented Architecture

R

R

R

R

R

R

R

R

R8

VREF

6364

VREF

5564

VREF

5464

VREF

5364

VREF

5264

VREF

5164

VREF

5064

VREF

4964

VREF

4864

VREF

4064

VREF

3264

VREF

2464

VREF

1664

VREF

864

VREF

R

5564

VREF

4864

VREF

R

R OUTPUT

R

R

R

R

Dennis Dempsey and Christopher Gorman, "Digital-to-Analog Converter,"U.S. Patent 5,969,657, filed July 27, 1997, issued October 19, 1999.

Segmented Current Output DACs:(A) Resistor-Based, (B) Current-Source Based

R R R R R R R 2R2R 2R 2R 2R

R R RVREF

-3-BIT MSB THERMOMETER DAC 4-BIT R-2R DAC

CURRENTOUTPUT

CURRENT

I I I I I I I I4

I2

I8

I16

-3-BIT MSB THERMOMETER DAC 4- BIT BINARY DAC

OUTPUT

(A)RESISTOR

BASED

IOUT

IOUT

IOUT

(B)CURRENT-SOURCEBASED

IOUT

AD9775 TxDAC™ 14-Bit CMOS DAC Core

CLOCK

14-BITLATCH

51-BITLATCH

31CURRENTSWITCHES

15CURRENT

5 BINARYCURRENTSWITCHES

BITS 1-5DECODE

5-TO-31

BITS 6-9DECODE

4-TO-15

5 5

15154

31 315

14

CURRENTOUTPUT

FS =2mA-20mA

SWITCHES

I = 512 LSB

I = 32 LSB

I = 1 LSB

5

NOTE: Differential Outputs Not Shown

Analog Filter Requirements for fo = 10MHZ: fc = 30MSPS, and fc = 60MSPS

fCLOCK = 30MSPS

dB

IMAGE

10 20 30 40 50 60 70 80

fo

ANALOG LPF

10 20 30 40 50 60 70 80

IMAGE

ANALOGLPF

FREQUENCY (MHz)

IMAGEIMAGEIMAGE

IMAGE

fo

fCLOCK = 60MSPS

dB

A

B

Oversampling Interpolating DAC

DIGITALINTERPOLATION

FILTERDAC

ANTI-IMAGINGFILTER

N-BITS@ fs

N-BITS@ K fs

(FROM PLL CLOCK MULTIPLIER)Kfs

ANALOGOUTPUT

fsfs2

(B): OVERSAMPLINGWITH INTERPOLATION

Anti-imaging Filter Response(A):NYQUIST

ffKfsKfs

2

Example of 2x LowPass Interpolation

Sigma-Delta DACsSINGLE BIT

N-BITS @ fsN-BITS @ K fs ANALOG SIGNAL:

2 LEVELS

ANALOGOUTPUTDIGITAL

INTERPOLATIONFILTER

DIGITALΣ∆

MODULATOR

1-BITDAC

ANALOGOUTPUTFILTER

1- BIT @ KfS

MULTIBIT

N-BITS @ fsN-BITS @ K fs ANALOG SIGNAL:

2M LEVELS

ANALOGOUTPUTDIGITAL

INTERPOLATIONFILTER

DIGITAL

Σ∆

MODULATOR

M-BITDAC

ANALOGOUTPUTFILTER

M- BITS @ KfS

MULTIBIT

Double-Buffered DAC Permits ComplexInput Structures and Simultaneous Update

OUTPUTDIGITALINPUT INPUT STRUCTURE:

MAY BE SERIAL,PARALLEL, BYTE-WIDE,

ETC.

OUTPUT LATCHTRANSFERS DATA

TO DAC -TIMING IS

INDEPENDENT OFINPUT

DAC

OUTPUT STROBE -MAY GO TO MANY DACs

fc = SAMPLING FREQUENCY

The World Leader in High-Performance Signal Processing Solutions

DAC Applications

LCD Backlight Adjustment using Digital Potentiometer

ADCAmbient

Light Sensor

Micro-controller

TIA

AD5245 ADM8846White LED

Driver

Rset

uC

Power Supplies

Inlet Fan Side

SMBus

VoltageMonitoring

2.5V

5V

1.2V5V ON1.2V ON

uC RESETuC WDI

12V

Power Brick ON

Back-Plane 3.3V

48V

Zone 2Thermal

Exhaust Fan Side

Zone 1Thermal

ADM1060 Sequencer

Digital Pots Used To Margin Supplies

Digital Pots Used To Margin Supplies

Power Supply Margining Using Digital Potentiometers

Dynamic Biasing of DSP Core Voltage

Output Voltage of ADP3051

FB Pin of ADP3051

Rbot

Rtop Rdigipot

Rin AD525850kΩ ± 30%

25kΩ ± 1%

22kΩ±1%

Adding Rtop to improve system tolerance

Min MaxStartup Voltage 1.112 1.220Adjustment Range 0.800 1.326

Streaming Digital Video Distribution System

DSP or Video

Processor

6-CHVideo DAC

Host CPU with digital video

storage

PCI Bus

SDRAM FLASH

EMIFADV7322

VideoAmp

VideoAmp

VideoAmpVideo

Port

VideoAmp

VideoAmp

VideoAmp

SDTV

HDTV

AD8061

Component YPrPb

Y

Pr

Pb

AD8061

AD8061

AD8061

AD8061

AD8061

Automatic Gain Control of VGA for RF Transmitter

AD5620

Thermal & System Management:Wireless Transmitter

0

90 ∑

BPFBPFMIXER RF AMP

LPF

TxDAC

TxDAC

VC_TCXO

ADT7516

AD8349 I/Q MODULATORLPF

ADL 5330IF AMP

DACA

DACB

DACC

AIN1

Fundamental DDS Architecture

Angleto

AmplitudeConverter

D-bitsDAC

Accumulator

TuningWord

IN

SampledSineWave

P-bitsN-bits

N-bits

CLOCK

Fundamental DDS ArchitectureSine Wave Synthesis

TuningWord

IN

Angleto

AmplitudeConverter

D-bits DAC

Accumulator

SampledSineWave

Phase Truncated Phase Quantized Amplitude Sampled Sine Wave

Phas

e

- Amplitude +

Angle to AmplitudeTransformation

P-bitsN-bits

N-bits

2N

0

Phas

e

2P

0

Fo = FsT / 2N

Fundamental DDS Architecture

The “Phase Wheel” Concept:C = 32

Accumulator capacity

T = 5Tuning word value

N = 5Accumulator bits

For this particular case, one revolution around the phase wheel requires 6.4 clock cycles (C/T=6.4).

0

32 = 2N = C

1

2

4

31

T2T

3T

8

16

24

4T5T

6T

3

5

7T

0

+1

-1

A M

P L

I T

U D

E

P H A S E

Instantaneous value ofthe accumulator output.

DDS as a Building BlockClock Generator

DAC

Clock IN (f)

DDS Core

(digital)Tuning Word

COS

SIN

PLL(M)

M x f

ReconstFilter

DC Reference

Clock OUT

COMPARATOR

FrequencyReference

SINEWAVE: - High frequency resolution - Programmable

CLOCK: - Precise frequency - Low jitter

DDS as a Building BlockDigital Modulator

FSK Modulator

DAC

Clock IN (f)

DDS Core

(digital)

Tuning Word #1(f1)

COS

SIN

PLL(M)

M x f

FrequencyReference

FSK Out

MUX

FSK Data(0,1)

f1

f2

Tuning Word #2(f2)

0

1

DDS as a Building BlockDigital Quadrature Modulator

DAC

Clock IN(f)

DDS Core

(digital)Tuning Word(carrier=ωc)

COS(ωc)

PLL(M)

M x f

FrequencyReference

ModulatedOutput

Digital Modulator

SIN(ωc)

Sampler

"I" Signal

"Q" Signal

Frequency Sweep/Burst GeneratorsAD5930 – Low Power DDS

FSTART

FSTART

FSTART

10G Optical Transceiver

10G LDDAND

LASER

PIN/APDAND TIA

IRXP

IMODMON

IMPD

IBIASMON

AINMUX

SDA

VLSRBIASVLSRPWRMON

VXLOPMON

IBIAS

IMOD

SCL

REFOUT/REFIN

AD539x-3AVDD

DVDD AVDD

REFIN

AD7994

12-BITADC

TIAs

I2CBUS

3V

CONTROLLERSDA SCL

0377

3-0-

062

Industrial PLC I/O card

High Voltage MEMs Actuator

DAC’s Abound

DAC’s are EverywhereADI has the broadest and deepest selectionTools, education, etc. on ADI website – www.analog.com

On to your questions

THANK YOU

Recommended