1 Careful study of Ultrafast Magneto-Optics ITOH Lab. Yoshitaka Sakamoto ( 坂本 圭隆 )...

Preview:

Citation preview

1

Careful study ofCareful study of

Ultrafast Magneto-OpticsUltrafast Magneto-Optics

ITOH Lab. Yoshitaka Sakamoto

( 坂本 圭隆 )

[Referenece] “Ultrafast Magneto-Optics in Nickel: Magnetism or Optics?”

B.Koopmans, M.van Kampen et al. Phys.Rev.Lett. 85,844(2000)

2

ContentsContents

Introduction  ・ Background

  ・ Aim of the reference

Main talk  ・ light, Kerr effect, and TRMOKE

  ・ Measurement configuration

・ Predictable signal

  ・ Result and Analysis (in the reference)

Summary

3

BackgroundBackground

Problem:

10

100

1000

1980 2005

year

Clock per second

CPU speed

Writing speed to a RAM

・ storage

(capacity, writing speed)

・ spin memory

Solution:

(rapid writing by using light,

large capacity [lamellar magnetic layer])薄 層 磁 性 膜

⇒TRMOKE (time-resolved MO Kerr effect) is used.

4

Aim of the referenceAim of the reference

Cu 3nm

Cu(111)or(001)

Ni0~15nm

1.Ni thickness

2.field

3.temperature

MO

sig

nal

0 delay time0.5ps(10sec)

-12

Ultrafast demagnetization?

5

TRMOKE measurementTRMOKE measurement

T RT R M OM O K EK ETime-resolved Magnetic optical Kerr effect

時間分解 磁気光学 カー効果

pulse laser

time

amplitude

Kerr effect

polarization

is changed

Field H

reflection

pump pulse

6

PolarizationPolarization

x

→E(t) = E1 exp(-iωt) x

+E2 Eoexp(-iωt) y

^

^

E(t) = Eoexp(-iωt) x̂→

z

y

x

y

z

<<<<Linearly

Polarization

<<<<Elliptical

Polarization

: How a electromagnetic wave goes…

偏  光

7

Elliptical polarizationElliptical polarization

→E(t) = E1 exp(-iωt) x

+E2 exp(-iωt) y

^

^⇔

E(t) = ½(E1+E2)exp(-iωt) (x+iy)

+ ½(E1-E2)exp(-iωt) (x-iy)

^→ ^

^ ^

Elliptical Polarization>>>>>x

y

+ =

8

Magnet-Optic Kerr effectMagnet-Optic Kerr effect

Field H Field HField H

One of the Magnetic-Optics which contains many

property of the target.

Polar Kerr

effect

Longitudinal

Kerr effect

Transverse

Kerr effect極カー効果 縦カー効果 横カー効果

9

Reflective indexReflective indexN±=n±+iκ±N: complex refractive index   n: refractive index κ: extinction coefficient

複屈折率  屈折率  消光係数

ψ0 ψ1

ψ2

x

z

E0PE0S

E1S

E2S

E1P

E2P

rP=E0P

E1P―= ―――――tan(ψ0 + ψ2)tan(ψ0 - ψ2)

rS=E0S

E1S―= - ―――――sin(ψ0 + ψ2)sin(ψ0 - ψ2)

Complex reflective index of amplitude 複素振幅反射率

(Fresnel coefficient)

^

^

n0

N

10

Reflective index of amplitudeReflective index of amplitudefor Circular Polarized lightfor Circular Polarized light

r±= ―――N± - n0

N±+n0

r + :for right circular light

r - :for left circular light

^^

^^

^

≡r +exp(iθ + )

≡r -exp(iθ - )

ηK

θK = - ―――2

θ + -θ -

= ――――|r + |+^

|r + |- ^

|r - |^|r - |^

: Kerr rotation angle

: Kerr ellipticity

カー回転角

カー楕円率

11

Kerr rotation angle, elliptical indexKerr rotation angle, elliptical index

x

y

z

ΦK=θK+iηK

Rr

ηK=r /R

①Kerr rotation angle ②Kerr ellipticity:difference of phase shift :difference of reflectivity

complex Kerr rotation angle

R = R+ + R-

r = R+ - R-

位相差 反射率の違い

12

Kerr rotation and MagnetizationKerr rotation and Magnetization

θK∝M

ΦK∝M

ηK∝M

It is known that

Kerr rotation angle is proportional to

Magnetization. It is called “Magnetic Kerr

effect”.

13

Measurement configurationMeasurement configuration

Ti:sapph LASER (femto sec. pulse)

probe line

PEM

pump line

photodiode

delay stagetarget

polarizer

to amplifier

targetpump pulseprobe pulse

delay time

⇒   relaxation process

can be measured

14

In this paper…In this paper…

complex Kerr rotation

Ψ=Ψ’+ iΨ’’

Ψ’: Kerr rotation angle

Ψ’’: ellipticity

⊿Ψ=Ψ – Ψ0

Ψ0: original Kerr effect value

⊿Ψ’/Ψ’= Ψ’’/Ψ’’⊿ ~⊿ M/M

15

Result AResult A

Comparison of the induced ellipticity ( ψ’’/ψ⊿ 0’’, opencircles) and rotation ( ψ’/ψ⊿ 0’, filled diamonds) as a function of pump-probe delay time.

It is strange that the changing of the both ratio which

don’t same reaction if it is because of magnetism.

16

Result BResult B

(a)(b) dependence on the applied field

Instantaneous decrease of ΔΨ’’ doesn’t

relate to applied field.

delay1ps 200ps0ps 0ps

17

Result CResult C

(c)(d) Temperaure dependence at 4.6nm and no applied field.

(d) is well explained by a thermal softening

of the effective magnetic potintial.

delay1ps 200ps0ps 0ps

Pay attention

to the scale of y.

18

SummarySummary

☆ An instantaneous demagnetization is unlikely.

☆ Rough estimate of the spin relaxation is 0.5-1ps, and may be explained by a highly efficient spin-lattice relaxation.

☆ We should pay attention to the Kerr effect which is not always the reaction of magnetism.

19

20

Measurement methodMeasurement method

21

Argument for ultrafastArgument for ultrafast

No H dependence and

only a relatively weak T and dNi dependence.

state filling effects may well account for the

initial response in the TRMOKE experiments.

22

Argument for subnano signalArgument for subnano signal

Surprisingly appeared after 30ps.

strong dependence on applied field.

This can identified the oscillations as a precession

of M.

An intuitive illustration of the process is found by

solving the Landau-Lifshitz-Gilvert equation

in the limit of weak damping.

23

N±=n±+iκ±N: complex refractive index   n: refractive index κ: extinction coefficient

α±=2ωκ±/c複屈折率 

Rr

屈折率  消光係数

α: absorption coefficient   ω: frequency c: speed of light 吸収係数  周波数 光速

ηF=ωΔκ/2cηF: Faraday elliptical index

ファラデー楕円率

(=r /R)

R = R+ + R-

r = R+ - R-

CalculationCalculation

24

pump light

(pulse laser)

probe light

(pulse laser)

TRMOKE measurementTRMOKE measurement

25

Kerr effect and MagnetizationKerr effect and Magnetization

tanΦK== ――――――――――――――― ―――――――――――――――√εxx(cosψ0 +√ εxx cosψ2)√εxx(cosψ2 +√ εxx cosψ0)

εxy cosψ0

zz

yyyx

xyxx

00

0

0~

permittivity誘電率

※polar Kerr effect

εij = εij(M) change of Kerr effect depends ⇒

on magnetization.

26

Result DResult D

(e)(f) Ni thickness dependence at 300K and

2800Oe(e) and 0Oe(f).

With in a couple of picoseconds the excess

energy rapidly diffuses out of the Ni film.

27

☆ On about 100ps time scale, they have observed optically induced spin movement.

Recommended