1 - 17/04/2015 Department of Chemical Engineering Lecture 4 Kjemisk reaksjonsteknikk Chemical...

Preview:

Citation preview

1 - 04/18/23

Departm

ent of Chem

ical E

ngineering

Lecture 4

Kjemisk reaksjonsteknikk

Chemical Reaction Engineering

Review of previous lectures Stoichiometry Stoichiometric Table Definitions of Concentration Calculate the Equilibrium Conversion, Xe

2 - 04/18/23

Departm

ent of Chem

ical E

ngineering

Reactor Mole Balances in terms of conversion

Reactor Differential Algebraic Integral

A

0A

r

XFV

CSTR

A0A rdV

dXF

X

0 A0A r

dXFVPFR

Vrdt

dXN A0A

Vr

dXNt

X

0 A0A Batch

X

t

A0A rdW

dXF

X

0 A0A r

dXFWPBR

X

W2

3 - 04/18/23

Departm

ent of Chem

ical E

ngineering

dDcCbBaA

d

r

c

r

b

r

a

r DCBA

Da

dC

a

cB

a

bA

Last LectureRelative Rates of Reaction

3

4 - 04/18/23

Departm

ent of Chem

ical E

ngineering

BAA CkCr

βα

β

α

OrderRection Overall

Bin order

Ain order

Last LectureRate Laws - Power Law Model

4

C3BA2 A reactor follows an elementary rate law if the reaction orders just happens to agree with the stoichiometric coefficients for the reaction as written.e.g. If the above reaction follows an elementary rate law

2nd order in A, 1st order in B, overall third order

B2AAA CCkr

5 - 04/18/23

Departm

ent of Chem

ical E

ngineering

Last LectureArrhenius Equation

k Ae E RT

k is the specific reaction rate (constant) and is given by the Arrhenius Equation.

Where:

T k A

T 0 k 0

A1013

k

T5

6 - 04/18/23

Departm

ent of Chem

ical E

ngineering

These topics build upon one another

Mole Balance Rate Laws Stoichiometry

Reaction Engineering

6

7 - 04/18/23

Departm

ent of Chem

ical E

ngineering

How to find

rA f X

rA g Ci Step 1: Rate Law

Ci h X Step 2: Stoichiometry

rA f X Step 3: Combine to get

7

8 - 04/18/23

Departm

ent of Chem

ical E

ngineering

We shall set up Stoichiometry Tables using species A as our basis of calculation in the following reaction. We will use the stochiometric tables to express the concentration as a function of conversion. We will combine Ci = f(X) with the appropriate rate law to obtain -rA = f(X).

Da

dC

a

cB

a

bA

A is the limiting Reactant.

8

9 - 04/18/23

Departm

ent of Chem

ical E

ngineering

NA NA 0 NA 0X

Xa

b

N

NNXN

a

bNN

A

BAABB

0

0000

For every mole of A that react, b/a moles of B react. Therefore moles of B remaining:

Let ΘB = NB0/NA0

Then:

NB NA 0 B b

aX

NC NC 0 c

aNA 0X NA 0 C

c

aX

9

10 - 04/18/23

Departm

ent of Chem

ical E

ngineering

Species Symbol Initial Change Remaining

Batch System Stoichiometry Table

B B NB0=NA0ΘB -b/aNA0X NB=NA0(ΘB-b/aX)

A A NA0 -NA0X NA=NA0(1-X)

Inert I NI0=NA0ΘI ---------- NI=NA0ΘI

FT0 NT=NT0+δNA0X

Where: 0A

0i

0A

0i

00A

00i

0A

0ii y

y

C

C

C

C

N

N

1a

b

a

c

a

dan

d

C C NC0=NA0ΘC +c/aNA0X NC=NA0(ΘC+c/aX)

D D ND0=NA0ΘD +d/aNA0X ND=NA0(ΘD+d/aX)

10δ = change in total number of mol per mol A reacted

11 - 04/18/23

Departm

ent of Chem

ical E

ngineering

Constant Volume Batch

Note: If the reaction occurs in the liquid phaseor

if a gas phase reaction occurs in a rigid (e.g. steel) batch reactor

V V0Then

CA NA

VNA 0 1 X

V0

CA 0 1 X

CB NB

VNA 0

V0

B b

aX

CA 0 B

b

aX

etc.11

12 - 04/18/23

Departm

ent of Chem

ical E

ngineering

Suppose

rA kACA2CB

Batch: 0VV

Stoichiometry

12

rA kACA 02 1 X 2 B

b

aX

Equimolar feed:

B 1

Stoichiometric feed:

B b

a

13 - 04/18/23

Departm

ent of Chem

ical E

ngineering

A A FA0 -FA0X FA=FA0(1-X)

Species Symbol Reactor Feed Change Reactor Effluent

B B FB0=FA0ΘB -b/aFA0X FB=FA0(ΘB-b/aX)

i Fi0

FA 0

Ci00

CA 00

Ci0

CA 0

y i0

yA 0

Where:

Flow System Stochiometric Table

13

14 - 04/18/23

Departm

ent of Chem

ical E

ngineering

Species Symbol Reactor Feed Change Reactor Effluent

0A

0i

0A

0i

00A

00i

0A

0ii y

y

C

C

C

C

F

F

Where:

Flow System Stochiometric Table

Inert I FI0=A0ΘI ---------- FI=FA0ΘI

FT0 FT=FT0+δFA0X

C C FC0=FA0ΘC +c/aFA0X FC=FA0(ΘC+c/aX)

D D FD0=FA0ΘD +d/aFA0X FD=FA0(ΘD+d/aX)

1a

b

a

c

a

dand

A

A

FCConcentration – Flow System14

15 - 04/18/23

Departm

ent of Chem

ical E

ngineering

Species Symbol Reactor Feed Change Reactor Effluent

A A FA0 -FA0X FA=FA0(1-X)

B B FB0=FA0ΘB -b/aFA0X FB=FA0(ΘB-b/aX)

C C FC0=FA0ΘC +c/aFA0X FC=FA0(ΘC+c/aX)

D D FD0=FA0ΘD +d/aFA0X FD=FA0(ΘD+d/aX)

Inert I FI0=FA0ΘI ---------- FI=FA0ΘI

FT0 FT=FT0+δFA0X

0A

0i

0A

0i

00A

00i

0A

0ii y

y

C

C

C

C

F

F

1a

b

a

c

a

dWhere: and

A

A

FCConcentration – Flow System

Flow System Stochiometric Table

15

16 - 04/18/23

Departm

ent of Chem

ical E

ngineering

A

A

FCConcentration Flow System:

0Liquid Phase Flow System:

X1CX1FF

C 0A0

0AAA

X

a

bCX

a

b

V

N

V

NC B0AB

0

0ABB

Flow Liquid Phase

etc.16

Liquid Systems

17 - 04/18/23

Departm

ent of Chem

ical E

ngineering

BAA CkCr If the rate of reaction were

X

a

bX1Cr B

20AAthen we would have

XfrA This gives us

FA 0

rA

X17

Liquid Systems

18 - 04/18/23

Departm

ent of Chem

ical E

ngineering

For Gas Phase Flow Systems

We obtain:

0

0

0T

T0 T

T

P

P

F

F

Combining the compressibility factor equation of state with Z = Z0

CT P

ZRT

CT 0 P0

Z0R0T0

FT CTV

FT 0 CT 0V0

Stoichiometry:

18

19 - 04/18/23

Departm

ent of Chem

ical E

ngineering

T

T

P

P

F

FF

T

T

P

P

FF

FFC

T

jT

T

T

jjj

0

00

00

0

00

CB CT 0

FB

FT

P

P0

T0

T

CT 0 FT 0 0

For Gas Phase Flow Systems

19

20 - 04/18/23

Departm

ent of Chem

ical E

ngineering

XFFF 0A0TT The total molar flow rate is:

For Gas Phase Flow Systems

P

P

T

T

F

XFF 0

00T

0A0T0

P

P

T

TX

F

F1 0

00T

0A0

P

P

T

TXy1 0

00A0

P

P

T

TX1 0

00

Substituting FT gives:

20

21 - 04/18/23

Departm

ent of Chem

ical E

ngineering

21

For Gas Phase Flow Systems

22 - 04/18/23

Departm

ent of Chem

ical E

ngineering

Gas Phase Flow System:

Concentration Flow System:

0

00A

0

00

0AAA P

P

T

T

X1

X1C

PP

TT

X1

X1FFC

A

A

FC

P

P

T

TX1 0

00

0

0B0A

0

00

B0AB

B P

P

T

T

X1

Xab

C

P

P

TT

X1

Xab

FF

C

22

For Gas Phase Flow Systems

23 - 04/18/23

Departm

ent of Chem

ical E

ngineering

For Gas Phase Flow Systems

0

00

0

00

0

11 P

P

T

T

X

Xab

C

PP

TT

X

Xab

FF

CjAjA

jj

Cj=f(Fj, T, P) =f(x, T,P)

24 - 04/18/23

Departm

ent of Chem

ical E

ngineering

2

0

0

B2

0AAA T

T

P

P

X1

Xab

X1

X1Ckr

If –rA=kCACB

This gives us

FA0/-rA

X24

For Gas Phase Flow Systems

25 - 04/18/23

Departm

ent of Chem

ical E

ngineering

Consider the following elementary reaction with KC=20 dm3/mol and CA0=0.2 mol/dm3. Calculate Equilibrium Conversion or both a batch reactor (Xeb) and a flow reactor (Xef).

Example: Calculating the equilibrium conversion for gas phase reaction in a flow reactor, Xef

C

B2AAA K

CCkr

BA2

25

26 - 04/18/23

Departm

ent of Chem

ical E

ngineering

26

27 - 04/18/23

Departm

ent of Chem

ical E

ngineering

Consider the following elementary reaction with KC=20 m3/mol and CA0=0.2 mol/m3. Xe’ for both a batch reactor and a flow reactor.

Calculating the equilibrium conversion for gas phase reaction,Xe

C

B2AAA K

CCkr

BA2

27

Batch Reactor Example

28 - 04/18/23

Departm

ent of Chem

ical E

ngineering

Step 1:

dX

dt rAVNA 0

Lmol 2.0C 0A

KC 20 L mol

Step 2: rate law, BB2AAA CkCkr

Calculate Xe

B

AC k

kK

C

B2AAA K

CCkr

28

Batch Reactor Example

29 - 04/18/23

Departm

ent of Chem

ical E

ngineering

Symbol Initial Change Remaining

B 0 ½ NA0X NA0 X/2

A NA0 -NA0X NA0(1-X)

Totals: NT0=NA0 NT=NA0 -NA0 X/2

@ equilibrium: -rA=0 C

Be2Ae K

CC0

Ke CBe

CAe2

CAe NAe

VCA 0 1 Xe

CBe CA 0

X e

229

Calculate Xe

Batch Reactor Example

30 - 04/18/23

Departm

ent of Chem

ical E

ngineering Species Initial Change Remaining

A NA0 -NA0X NA=NA0(1-X)

B 0 +NA0X/2 NB=NA0X/2

NT0=NA0 NT=NA0-NA0X/2

Solution:

2Ae

BeC C

CK

C

Be2AeAA K

CCk0rAt equilibrium

0VV 2/BAStoichiometry

Constant volumeBatch

Calculating the equilibrium conversion for gas phase reaction

30

Batch Reactor Example

31 - 04/18/23

Departm

ent of Chem

ical E

ngineering

2e0A

e2

e0A

e0A

eX1C2

X

X1C2

XC

K

82.0202

X1

XCK2 2

e

e0Ae

X eb 0.703

BR Example Xeb

31

32 - 04/18/23

Departm

ent of Chem

ical E

ngineering

Gas Phase Example Xef

2A B

B2

1A

X ef ?

Rate law:

C

B2AAA K

CCkr

X eb 0.703

32

Solution:

33 - 04/18/23

Departm

ent of Chem

ical E

ngineering

Species Fed Change Remaining

A FA0 -FA0X FA=FA0(1-X)

B 0 +FA0X/2 FB=FA0X/2

FT0=FA0 FT=FA0-FA0X/2

Gas Flow Example Xef

33

34 - 04/18/23

Departm

ent of Chem

ical E

ngineering

A FA0 -FA0X FA=FA0(1-X)

B 0 FA0X/2 FB=FA0X/2

Stoichiometry: Gas isothermal T=T0, isobaric P=P0

V V0 1X

CA FA 0 1 X V0 1X

CA 0 1 X 1X

CB FA 0 X 2

V0 1X CA 0 1 X 2 1X

Gas Flow Example Xef

34

35 - 04/18/23

Departm

ent of Chem

ical E

ngineering

Pure A yA0=1, CA0=yA0P0/RT0, CA0=P0/RT0

C

0A

2

0AAA KX12

XC

X1

X1Ckr

2e

ee0AC

X1

X1XCK2

yA 0 1 1

2 1

1

2

@ eq: -rA=0

Gas Flow Example Xef

35

36 - 04/18/23

Departm

ent of Chem

ical E

ngineering

8dm

mol2.0

mol

dm202CK2

3

3

0AC

yA 0 11

2 1

1

2

8 Xe 0.5Xe

2

1 2Xe Xe2

8.5X e2 17X e 8 0

Gas Flow Example Xef

X ef 0.757Flow: Recall

X eb 0.70Batch:36

Recommended