µ¦´ Á ¦µ³®r¨³¤ ´ ·· ¨ ° Á °¦rÁ 䡨µ ·¨µÃ Á¤°¦ °r ¸É ... ·...

Preview:

Citation preview

2553

2553

SYNTHESIS AND MECHANICAL PROPERTIES OF A THERMO - REVERSIBLE

THERMOPLASTIC ELASTOMER

By

Pensri Anurak

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree

MASTER OF ENGINEERING

Department of Materials Science and Engineering

Graduate School

SILPAKORN UNIVERSITY

2010

……...........................................................

( . )

.......... .................... . ...........

1. .

2. .

....................................................

( . )

............/......................../..............

....................................................

( . )

............/......................../..............

.................................................... ....................................................

( . ) ( . )

............/......................../.............. ............/......................../..............

51402227 :

: / / /

:

. : . . . .

. 129

(soft segment) p-toluenesulfonyl isocyanate (PTSI)

(hard segment) (ENR)

3 20, 34, 45 mol%

ENR

latex NH4OH silica gel (70-230 mesh)

2 (diamine)

PTSI

FT-IR, 1H-NMR, TGA, DSC, SEM, DMA FT-IR 1H-NMR FT-IR

S=O hard segment

TGA 2

240-320 C 350-500 C

TPEs SEM

hard segment DSC

DMA TPEs Tg hard segment

(-NH-CO-NH-SO2-) (G'

tan ) TPEs thermo-sensitive

2553

........................................

1. ....................................... 2. .......................................

51402227 : MAJOR : POLYMER SCIENCE AND ENGINEERING KEY WORDS : NATURAL RUBBER/ EPOXIDIZED NATURAL RUBBER/THERMOPLASTIC ELASTOMER/ THERMO-REVERSIBLE

PENSRI ANURAK : SYNTHESIS AND MECHANICAL PROPERTIES OF A THERMO-REVERSIBLE THERMOPLASTIC ELASTOMER. THESIS ADVISORS : ASST. PROF. WANCHAI LERDWIJITJARUD, Ph.D., AND AMNARD SITTATTRAKUL, Ph.D. 129 pp.

The aim of this research is to study the synthesis of a thermo-reversible thermoplastic elastomer based on natural rubber. In this study, a novel thermoplastic elastomer (TPE) was prepared by using natural rubber (NR) as soft segment and p-toluenesulfonyl isocyanate (PTSI) as hard segment. In the first step, the epoxidized natural rubber (ENR) was prepared from the reaction of NR latex with formic acid and hydrogen peroxide. The epoxidation level was varied at approximately 20, 34, and 45 mole% and the degree of modification is quantitatively controlled by epoxidation reaction. The ENR latex was further reacted with NH4OH by using silica gel (70-230 mesh) as a catalyst for the opening of epoxide rings to yield diamino compounds. The final step, the product obtained after ring opening reaction was reacted with PTSI (hard segment) for synthesis of TPEs. The natural rubber, ENRs, the product obtained after ring opening reaction, and TPEs were characterized by using FT-IR, 1H-NMR, TGA, DSC, SEM, and dynamic mechanical analyses. It was found that the completion of each modification step was confirmed by FT-IR and 1H-NMR spectra. FTIR spectra also showed a shift of S=O stretching to lower frequency with increasing hard segment content as a result of the formation of hydrogen bonds between sulfonylurea hard segments. TGA analysis showed that a two-step decomposition around 240-320 C and 350-500 C which referred to the decomposition of sulfonylurea hard segment and natural rubber soft segment, respectively. The SEM analysis showed that the phase-separated morphology in TPEs. The micrographs show a randomly dispersion of hard domains in a continuous rubber matrix. The glass transition (Tg) of TPEs was elevated to higher temperatures with increasing hard segment content. Because of the introduction of sulfonylurea groups (-NH-CO-NH-SO2-) which are prone to hydrogen-bonding networks. The DMA results indicate that the dynamic mechanical properties (G and tan ) of TPEs were changed with temperature which might be ascribed to the thermo-sensitive characteristic of hydrogen-bonds.

Department of Materials Science and Engineering Graduate School, Silpakorn University Academic Year 2010

Student's signature...................................................

Thesis Advisors' signature 1. …………………………… 2. .........................................

.

.

- ( )

Dynamic mechanical analysis (DMA)

....................................................................................................................

...............................................................................................................

.....................................................................................................................

............................................................................................................................

...............................................................................................................................

1 ............................................................................................................................. 1

................................................................ 1

...................................................................................... 2

....................................................................... 2

......................................................................... 3

.................................................................................... 3

............................................................................................... 4

2 ...................................................................................... 5

(natural rubber) ............................................................................... 5

................................................................ 5

............................................................ 8

.................................................. 9

......................................................................... 10

................................... 12

............................................ 12

.................... 13

......... 14

(HTNR) ...... 22

(CTNR) ...... 22

..... 24

(Thermoplastic Elastomer; TPE) ........................ 24

.............. 25

.......................................... 28

(block copolymer) ............... 28

..................... 30

.................................................. 30

.................... 32

.............................................................................................. 34

.................... 36

................................. 38

................................................................... 39

............................................................................ 40

........ 41

3 ........................................................................................................... 43

.................................................................................... 43

.................................................................................... 43

................................................................................ 44

............................................................................................ 45

(ENR) ........................................... 47

ENR ........................................................ 47

1,2-amino alcohol ................................................................ 47

1,2-diamine .......................................................................... 48

(hard segment) ....... 49

............................................................ 50

(Thermal properties) ................................ 51

(Dynamic mechanical testing) .................... 52

...................................................................... 52

Dynamic mechanical analyzing ........................................ 53

.............................................. 53

4 ....................................................................... 55

FT-IR

1H-NMR ................................................................................................ 55

(ENR) ........................................... 55

ENR ........................................................ 59

1,2-amino alcohol .......................................................... 59

1,2-diamine .................................................................... 62

hard segment ......................... 64

........................................................................... 67

TGA ............................... 67

DSC ......................... 71

.................................................................. 72

Dynamic mechanical analysis (DMA) ....... 75

5 .............................................................................. 83

................................................................................................ 83

.......................................................................................................... 84

............................................................................................................................. 86

.................................................................................................................................. 91

FT-IR spectra .................................................................. 92

1H-NMR spectrum ......... 100

TGA DTG thermogram .......................................... 108

DSC thermogram ............................................................ 116

DMA thermogram ......................................................... 124

.............................................................................................................................. 129

1 ENR............................................ 21

2 ..... 42

3 ............................ 49

4 ENR 3

1H-NMR spectra 2.7 ppm 5.1 ppm .......................... 57

5 1,2-amino alcohol 1,2-diamine

absorbance FT-IR spectra .. 64

6 hard segment

1H-NMR TGA............................................... 67

7 thermal decomposition ................... 70

8 (dynamic property) ............. 82

1 (Hevea Brasiliensis) .................................................... 6

2 (cis-1,4-polyisoprene) ...................... 7

3 cyclized NR .................................................................................... 9

4 depolymerization NR ultraviolet nitrobenzene .... 10

5 LNR phenylhydrazine/oxygen ................................... 11

6 hydrogenation .............................................................. 12

7 epoxidation peracid ....................................... 15

8 (side reaction) epoxidation NR 17

9 ................................. 18

10 glass transition temperature (Tg)

................................................................... 19

11 (calibration curve) (mole %)

IR ............................................................ 20

12 flexural modulus

thermoplastic elastomer .................................................................................. 26

13 SBS PS physical crosslink ( )

PB rubbery phase ( ) .................................................................... 28

14 block copolymer ................................................................. 28

15 S-B-S block copolymer ................................... 29

16 ....... 39

17 ................ 46

18 Fourier Transform Infrared Spectrophotometer (Bruker Vertex70) ............ 50

19 Nuclear Magnetic Resonance Spectrometer (Bruker 300 Ultrasheild) ........ 50

20 (a) Thermogravimetric Analyzer (TGA/DSC1, Mettler Toledo, Switzerland),

(b) Differential Scanning Calorimeter (DSC1, Mettler Toledo,

Switzerland) ......................................................................................... 51

21 compression molding ............................. 52

22 ..................................................... 52

23 Dynamic Mechanical analyzer (SDTA861e, Mettler Toledo) ................... 53

24 Scanning Electron Microscope (MX-2000, CamScan) .............................. 54

25 FT-IR spectrum (NR) ENR 3 ........................ 56

26 1H-NMR spectrum (a) NR, (b) low-ENR, (c) med-ENR,

(d) high-ENR................................................................................................ 58

27 FT-IR spectrum 1,2-amino alcohol ENR 3 ............. 59

28 1H-NMR spectrum (a) high-1,2-amino alcohol, (b) med-1,2-amino alcohol,

(c) low-1,2-amino alcohol .................................................................... 61

29 FT-IR spectrum 1,2-diamine ENR 3 ....................... 62

30 1H-NMR spectrum (a) low-NR-NH2, (b) med-NR-NH2,

(c) high-NR-NH2 .......................................................................................... 63

31 FT-IR spectrum TPE ENR 3 ................................... 65

32 1H-NMR spectrum (a) low-NR-PTSI, (b) med-NR-PTSI,

(c) high-NR-PTSI .......................................................................................... 66

33 TGA thermogram (NR) ENR 3 .................... 68

34 TGA thermogram TPE 3 ............................................................ 69

35 TGA thermogram TPE 3 ............................................................ 70

36 DSC thermogram (NR), ENR, TPE ......... 71

37 SEM micrographs a) natural rubber, b) low-ENR, c) med-ENR,

d) high-ENR 500 ............................................................. 73

38 SEM micrographs a) low-NR-PTSI, b) med-NR-PTSI, c) high-NR-PTSI

500 .................................................................................. 74

39 SEM micrographs a) low-NR-PTSI, b) med-NR-PTSI, c) high-NR-PTSI

1,000 ............................................................................... 75

40 storage modulus (G ) ...... 77

41 storage modulus (G ) ENRs ..................................... 78

42 storage modulus (G ) TPEs ...................................... 80

43 tan ................................................................................ 82

44 FT-IR spectrum (NR) ............................................................... 93

45 FT-IR spectrum ENR low-ENR ...................................................... 93

46 FT-IR spectrum ENR med-ENR ...................................................... 94

47 FT-IR spectrum ENR high-ENR ..................................................... 94

48 FT-IR spectrum low-1,2-amino alcohol .................................................. 95

49 FT-IR spectrum med-1,2-amino alcohol .................................................. 95

50 FT-IR spectrum high-1,2-amino alcohol ................................................. 96

51 FT-IR spectrum low-1,2-diamine ............................................................ 96

52 FT-IR spectrum med-1,2-diamine ........................................................... 97

53 FT-IR spectrum high-1,2-diamine ........................................................... 97

54 FT-IR spectrum low-NR-PTSI ................................................................ 98

55 FT-IR spectrum med-NR-PTSI ................................................................ 98

56 FT-IR spectrum high-NR-PTSI ............................................................... 99

57 1H-NMR spectrum (NR) .......................................................... 101

58 1H-NMR spectrum low-ENR ......................................................................... 101

59 1H-NMR spectrum med-ENR ........................................................................ 102

60 1H-NMR spectrum high-ENR ....................................................................... 102

61 1H-NMR spectrum low-1,2-amino alcohol .................................................... 103

62 1H-NMR spectrum med-1,2-amino alcohol ................................................... 103

63 1H-NMR spectrum high-1,2-amino alcohol .................................................. 104

64 1H-NMR spectrum low-1,2-diamine .............................................................. 104

65 1H-NMR spectrum med-1,2-diamine ............................................................. 105

66 1H-NMR spectrum high-1,2-diamine ............................................................ 105

67 1H-NMR spectrum low-NR-PTSI .................................................................. 106

68 1H-NMR spectrum med-NR-PTSI ................................................................. 106

69 1H-NMR spectrum high-NR-PTSI ................................................................ 107

70 TGA thermogram ..................................................................... 109

71 TGA thermogram low-ENR .......................................................................... 109

72 TGA thermogram med-ENR ......................................................................... 110

73 TGA thermogram high-ENR ......................................................................... 110

74 TGA thermogram low-1,2-amino alcohol ..................................................... 111

75 TGA thermogram med-1,2-amino alcohol .................................................... 111

76 TGA thermogram high-1,2-amino alcohol .................................................... 112

77 TGA thermogram low-1,2-diamine ............................................................... 112

78 TGA thermogram med-1,2-diamine .............................................................. 113

79 TGA thermogram high-1,2-diamine .............................................................. 113

80 TGA thermogram low-NR-PTSI ................................................................... 114

81 TGA thermogram med-NR-PTSI .................................................................. 114

82 TGA thermogram high-NR-PTSI .................................................................. 115

83 DSC thermogram (NR) ............................................................ 117

84 DSC thermogram low-ENR ........................................................................... 117

85 DSC thermogram med-ENR .......................................................................... 118

86 DSC thermogram high-ENR ......................................................................... 118

87 DSC thermogram low-1,2-amino alcohol ...................................................... 119

88 DSC thermogram med-1,2-amino alcohol ..................................................... 119

89 DSC thermogram high-1,2-amino alcohol .................................................... 120

90 DSC thermogram low-1,2-diamine ................................................................ 120

91 DSC thermogram med-1,2-diamine ............................................................... 121

92 DSC thermogram high-1,2-diamine ............................................................... 121

93 DSC thermogram low-NR-PTSI .................................................................... 122

94 DSC thermogram med-NR-PTSI ................................................................... 122

95 DSC thermogram high-NR-PTSI .................................................................... 123

96 DMA thermogram (NR) ............................................................ 125

97 DMA thermogram low-ENR ........................................................................... 125

98 DMA thermogram med-ENR .......................................................................... 126

99 DMA thermogram high-ENR .......................................................................... 126

100 DMA thermogram low-NR-PTSI .................................................................... 127

101 DMA thermogram low-NR-PTSI .................................................................... 127

102 DMA thermogram low-NR-PTSI .................................................................... 128

1

1

1.1

(natural rubber; NR) (elastomer)

[1-3]

(vulcanization)

vulcanized rubber

(thermoset)

(degradation)

“ ” (thermoplastic elastomer; TPE)

[2, 4]

(crosslink) TPE (phase

separation) (crystallization) (ionic interactions)

2

(hydrogen bonding)

thermo-reversible crosslink crosslink

crosslink

(recycle)

TPE

TPE

TPE

1.2

1.2.1

(thermo-reversible)

1.2.2 (soft segment)

(hard segment)

1.3

(TPE)

(soft segment)

(hard segment) phase-separated

Tg

Tg

(physical crosslink)

(soft segment) TPE

3

(hard segment)

TPE

grafted

copolymer

TPE

TPE

TPE

1.4

TPE

p-toluenesulphonyl isocyanate (PTSI)

latex form

non-aqueous phase

TPE

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.4.1 (epoxidized natural rubber,

ENR) ENR 3

4

ENR FTIR 1H-NMR

1.5.4.2

2 (1,2-diamine)

FTIR 1H-NMR

1.5.4.3 hard segment

(TPE) p-toluenesulfonyl

isocyanate (PTSI) hard segment TPE

FTIR 1H-NMR

1.5.4.4 TPE

morphology

1.5.5

1.5.6

1.5.7

1.6

1.6.1

(thermo-reversible)

1.6.2 soft segment hard segment

5

2

2.1 (natural rubber)

2.1.1

(natural rubber; NR)

Hevea Brasiliensis (hevea)

Perthenium Argentatum (guayule) [5]

(latex) (dry rubber) 30%

(centrifuge)

60% (concentrated latex)

95 (

) cis-1,4-polyisoprene (C 5 H 8 ) n

50,000-3,000,000 60

1,300,000 [6] 2

(benzene), (hexane), (toluene)

(amorphous)

(crystalline)

(low temperature crystallization)

6

(strain-induced crystallization)

(tensile strength)

(tear resistance) (abrasion resistance)

(elasticity)

( )

(tack) (assemble)

[7]

1 (Hevea Brasiliensis) [8]

(NR)

( heat build up

)

(renewable material) [7,1]

(vulcanization)

7

(elastomer) [9]

C=CCH2

H

CH2

CH3n

~~

2 (cis-1,4-polyisoprene) [10]

[5]

- (tensile

strength)

- (tear resistance)

- (dynamic mechanical properties)

(elasticity) (heat build-up)

(tack)

(double bond)

( antidegradant)

[5]

8

(thermosetting polymer)

(degradation)

100% 2-3%

stress macromolecules

(crosslink)

glass crystalline domain

creep [9]

2.1.2

(chemical modification)

(physical modification)

[11]

(NR)

ageing

[12]

(chemical modification) (C=C)

latex (dry phase)

chlorinated rubber, hydrochlorinated rubber, cyclized

rubber, oxidized rubber

9

(cross-linking) (epoxidation)

(maleinisation) (grafting) (depolymerisation)

( )

( )

( )

( ) (

) [11]

3

[13]

2.1.2.1 (bond rearrangement)

carbon-carbon cross-

linking, cyclisation, cis, trans-isomerisation, depolymerisation cyclized

NR treat (proton donor) sulphuric

acid, sulphonic acid, stannic chloride

(cyclisation)

(NR latex)

70 C -100 C cyclized NR

40-50% 3 cyclized NR

blend

modulus, hardness specific gravity CH3H2

C

CH2

CH3

3 cyclized NR [12]

10

(liquid natural rubber; LNR)

(LNR) depolymerize

crosslink (Mw) 105 LNR

depolymerization

peptization (thermal) (mechanical) (photolysis)

(redox) LNR mechanochemical peptization

thermal depolymerization LNR

depolymerize, recombine, (crosslink)

LNR

mastication

photolysis solar radiation, ultraviolet light, visible light

nitrobenzene, hydrogen peroxide,

photosensitiser 4 depolymerization

ultraviolet nitrobenzene

4 depolymerization NR ultraviolet nitrobenzene [12]

11

reducing agent p-methyl-benzene

sulfinic acid, phenylhydrazine, sodium chlorite, sodium nitrite, sodium hypochlorite

oxidizing agent hydrogen peroxide

depolymerization phenylhydrazine/oxygen 5 LNR

(viscosity modifier) sealing agent

compatibilizer polyolefin blend blend

polypropylene/natural rubber (PP/NR) LNR compatibilizer

PP NR polyisoprene

blend HDPE/NR LNR plasticizer blend

40/60 LNR tensile strength elongation at break

5 LNR phenylhydrazine/oxygen [12]

12

(hydrogenated NR)

Hydrogenated NR

(degradation) hydrogenated NR

hydrogenated NR alternated copolymer ethylene propylene

6 hydrogenated NR 3

homogeneous heterogeneous hydrogenation

homogeneous catalyst organotransition metal cobalt (Co)

nickel (Ni) reducing agent R3Al n-BuLi

6 hydrogenation [13]

palladium calcium

carbonate heterogeneous hydrogenation homogeneous

hydrogenation chain scission

homogeneous hydrogenation

hydrogenation diimide

p-toluenesulfonyl hydrazine (TSH) Hydrogenated NR Tg

NR hydrogenated NR

2.1.2.2

(addition reaction) (substitution reaction) (olefinic double

bond)

chlorinated NR, hydrochlorinated NR, epoxidized NR (ENR)

chlorination hydrochlorination

13

latex chlorinated NR (CNR)

ageing

chlorination

(latex) chlorinated

NR NR chlorination

(chlorinated

natural rubber; CNR)

Zhong [13] CNR

NR latex stabilize

(1% potassium persulfate)

CNR

toluene hypochloric acid hypochorite

chlorination chlorination

pH 1 45

chlorination 60% chlorination

30%

chlorination

CNR

30% carbonide 360 C-700 C

CNR

100% 560 C Zhong

CNR 2

dehydrochlorination

14

(epoxy group)

(Epoxidized natural rubber; ENR)

(ENR)

[14-16] epoxidation

. . 1992 ENR

. . 1980 epoxidation

latex [12] ENR

cis-1,4-polyisoprene

(NR)

(epoxidation)

10-50 strength ENR

25 50 mole %

strain crystallization Tg

solubility parameter ENR

[17]

epoxidation

NR latex epoxidation NR latex

in situ epoxidation performic acid

formic acid hydrogen peroxide ENR

latex 20%

epoxidation NR

60%

peracid epoxidation

latex

epoxidation 7 in situ epoxidation

formic acid (HCOOH) hydrogen peroxide (H2O2)

rate-determining step performic acid (HCOOOH) (1)

15

( 7) isoprene unit NR

ENR 50 C

10-12 ENR

50 mole % H2O2 isoprene unit

epoxidation ENR performic acid

(HCOOOH) (2) NR

peracid (HCOOOH) in situ epoxidation

HCOOOH peracid

(1)

(2)

7 epoxidation peracid [12]

16

7

epxidation ENR 2 ENR25%

ENR50% ENR ENR

HCOOH H2O2 (ring-opening)

( 8) ENR

50 mole % ENR

elastic

gel ENR ( epoxidation

)

peel strength NR EPDM

Tg ENR

(mole %) 1 mole %

Tg 0.93 C [18] 10

Tg

ENR-25 Tg

-47 C ENR-50 Tg -22 C Tg

Tg

ENR damping

ENR ENR

ENR neutralize sodium

carbonate, magnesium oxide, calcium oxide calcium stearate ENR

semi-efficient vulcanisation (semi-EV)

efficient vulcanisation (EV) ENR 2

ageing ENR

ENR crosslink

aminosilane curing crosslink

cross-linking site carbon black ENR50

cure p-phenylenediamine (p-PDA) bisphenol-A ( )

17

cure cure

Tg Tg

crosslink bisphenol A

ENR 1

8 (side reaction) epoxidation NR [19]

epoxidation

-

ENR (HBr)

(a) Ring-opening reaction

(b) Cross-link of ENR

18

HBr

9 [20]

HBr

ENR 15

15 mole %

- DSC

DSC Tg (onset)

Tg ENR

1/Tg (onset) 10 Tg 0.85 K

1 mole % 3 0.2 K

DSC 0.25 mole %

Tg 10 C

Tg

19

10 glass transition temperature (Tg)

[18]

-

15 mole %

- IR spectroscopy :

870 cm-1 1,240 cm-1

(olefinic band) 830 cm-1

(calibration internal

standard) 11

870 cm-1 1,375 cm-1 C-H

[21]

100%870830

870

AAAepoxide

A870 A830 870 cm-1 830 cm-1

20

11 (calibration curve) (mole %)

IR [22]

-1H-NMR spectroscopy:

ENR CDCl3

epoxidation olefin proton 5.14 ppm

methine resonance 2.70 ppm

olefinic

epoxy methine proton epoxidation

Mole percent of epoxide = 10014.570.2

70.2 xAA

A

A2.70 A5.14

C=C isoprene unit [23]

Absorbance ratio=DCBA

BA/log/log

/log

21

20-75 mole %

1.5 mole %

- 13C-NMR spectroscopy:

chemical shift olefinic resonance

125 ppm oxirane carbon 64.5 ppm [24]

1H-NMR

64.5 ppm 125 ppm

Mole percent of epoxide = 1007.125,125,4.1245.64

5.64 xAAA

A124.4, A125 A125.7

A64.5

1 ENR [12]

ENR

Oil resistance, high strength ENR25, ENR50

Low gas permeability ENR25

Wet grip, low rolling

resistance

ENR25, ENR50

Damping

ENR25, ENR50

Adhesion

PVC ENR25, ENR50

22

(hydroxyl-

terminated liquid natural rubber; HTNR)

Ravindran [24] HTNR

depolymerization hydroxylation UV (photochemical)

UV HTNR

HTNR 2

(depolymerization) UV

(hydroxylation)

masticate 40 C

30 masticate toluene ( 10% w/v)

photochemical reactor

5% toluene stir

THF ( 25% toluene) methyl alcohol (

15% toluene) homogenizer

UV UV

UV 2

depolymerization hydroxylation

HTNR reagent

UV

HTNR

(carboxyl-

terminated liquid natural rubber; CTNR)

Dileep Avirah [25] CTNR

photochemical maleic anhydride (NR) masticate

CTNR

CTNR 2

(depolymerization) UV (photochemical)

maleic anhydride

(mastication) 50 C 30

23

toluene ( 10% w/v) UV UV

photochemical reactor depolymerization

50 maleic anhydride ( 20%

) methanol stir

UV (1-15 )

methanol

toluene/methanol (1:1 v/v) maleic

anhydride

CTNR

UV 10

FT-IR 1H-NMR depolymerization

maleic anhydride CTNR

.

[26]

(LENR)

(ENR) (H5IO6)

30 C 24

70 C (H2O2)

24

(CLNR) FT-IR 1H-NMR

(CLNR)

(TMAH)

24

2.1.2.3 (grafting)

vinyl monomer methyl

methacrylate (MMA) styrene graft

PMMA emulsion polymerization MMA hydroperoxide

NR latex stir tetraethylenepentamine

60-80% PMMA

hardness, modulus, abrasion, electrical

resistance impact PS

blend

latex (adhesive)

PVC [12]

2.2 (Thermoplastic elastomer; TPE)

(degradation)

“ Thermoplastic Elastomers; (TPEs) ”

physical crosslink

thermo-reversible crosslink

[27]

[1]

TPEs

glassy crystalline domains

crosslink

(large deformation)

25

stress

chemical crosslink

glassy crystalline domains

[2]

TPEs

( ) TPEs

TPEs

(blow molding machine)

(injection molding machine) (extruder) TPEs

TPEs

[7]

2.2.1

physical crosslink thermo-reversible network

TPEs (phase-separated)

hard segment

block graft polymerization [27]

- (hard, crystalline segment) TPEs

physical crosslink

glass transition temperature (Tg)

- (soft, elastic segment)

glass transition temperature (Tg)

Tg Tm

26

12

flexural modulus 3

(1) Tg

(stiff) (brittle)

(2) Tg

(3) modulus ( rubbery

plateau) vicous

fluid

12 flexural modulus

thermoplastic elastomer [27]

(hard phase)

hard phase

27

[27] hard segment

soft segment ( physical crosslink)

soft segment

soft segment hard segment TPEs

soft segment hard segment

TPEs

morphology [28]

TPEs hard segment crosslink

( )

hard segment physical crosslink TPEs hard

segment chemical crosslink

hard segment

[29]

- (ionic interaction)

- (hydrogen bond)

-

- hard segment

soft segment hard segment

- crosslink (covalent bond)

TPEs block copolymers

hard soft blocks polystyrene-polybutadiene-polystyrene triblock

copolymers (SBS) 13 Tg polystyrene

blocks rigid domains soft polybutadiene matrix cross-links

rubbery TPEs [1]

28

13 SBS PS physical crosslink ( ) PB

rubbery phase ( ) [30]

2.2.2

2.2.2.1 (block copolymer)

TPEs

block copolymer

linear block copolymer

star block copolymer linear

block (branch point)

polymerization block

copolymer 14

14 block copolymer [27]

29

- Anionic polymerization

block copolymer

block copolymer

TPEs SBS

- Cationic polymerization ( carbocationic

polymerization) polymerize anionic

polymerization styrenic TPEs isobutylene monomer

(S-B-S) 15

15 S-B-S block copolymer [31]

- Contrlled/living radical polymerization (CLRP)

TPEs CLRP

dynamic equilibrium free radical

free radical propagate terminate free

radical polymerization

- Polymerization with Ziegler-Nata catalyst

TPEs block polyolefin

thermoplastic elastomer olefins (TPOs) ethylene-propylene copolymer, ethylene-

higher -olefin copolymer

30

- Polyaddition multiblock

thermoplastic polyurethane diisocyanate, long-chain diol, chain extender

2.2.2.2

- Dynamic vulcanization thermoplastic

vulcanizates (TPVs)

- Esterification and polycondensation

polyamide elastomers

- Transesterification copolyester elastomers

(COPEs)

- Catalytic copolymerization of olefins reactor

thermoplastic polyolefins (RTPOs)

- Direct copolymerization copolymerization

ethylene methacrylic acid ionomeric TPEs

2.2.3

TPEs 5

1. Thermoplastic polyurethanes (TPUs)

2. Styrenic block copolymers (SBS)

3. Elastomeric alloy

4. Copolyester (COPs)

5. Polymer blends (1) Rubber-Polyolefin blends (TPOs)

(2) Thermoplastic Vulcanisates (TPVs)

TPEs 4 block copolymer

TPEs 4

31

TPEs

polyurethane

TPUs

compression set

diisocyanate polyether, polyester,

caprolactone glycol

styrene copolymer

TPEs block copolymer hard polystyrene segment

soft segment matrix polybutadiene, polyisoprene, ethylene-propylene,

ethylene-butylene tensile strength elongation SBR

styrene-

butadiene block copolymer

elastomeric alloys

elastomeric alloys

2 melt processible rubber (MPRs) thermoplastic vulcanizates (TPVs)

MPRs TPVs

copolyester

injection

molding, extrusion, rotational molding, flow molding, thermoforming, melt casting

dynamic properties modulus,

elongation, tear strength

32

[32]

2.2.3.1

(thermoplastic elastomer blends)

TPE

(immiscible)

TPE

morphology ( )

( ) (continuous phase)

[33]

[34]

(chemical cross-linking)

chain polymerization

PE, PP, PS, PET [35]

crosslink

33

rubbery polymer

stress

crosslink crosslink

crosslink Tg

[33]

crosslink

elastified thermoplastic impact-modified thermoplastic

NR/PP, NR/HDPE, NR/LLDPE, EPDM/PP polyolefin

TPE “ thermoplastic elastomer

olefins; (TPOs) ”

2

1. compatibilizer

compatibilizer block graft copolymer

compatibilizer (interfacial tension)

2. (crosslink)

dynamic vulcanization

vulcanizing agent

(curative) vulcanization

vulcanization crosslink

crosslink

34

dynamic vulcanization TPE

TPE

“thermoplastic vulcanisated; (TPVs)” TPVs TPE

crosslink TPVs

crosslink

compression set

TPVs TPEs TPUs TPEs

[36] TPVs dynamic vulcanization

rubbery polymer thermoplastic rubbery

polymer TPE

thermoplastic rubbery polymer

thermoplastic

3 [27]

2.2.3.2

(Block or segmented copolymers)

TPE

(hard segment)

(soft segment) segmented copolymer

block, graft, star-shaped copolymer

soft segment hard segment hard segment

(

) hard segment crosslink

( )

(

)

35

hard segment

crosslink

hard segment physical crosslink

hard segment

soft segment (network)

hard segment

crosslink

block copolymer

(triblock multiblock copolymer)

hard-soft-hard graft star-shaped

copolymer hard segment

TPE triblock copolymer

TPE styrene-butadiene-styrene (SBS) triblock copolymer

polystyrene (rigid) Tg hard segment

polybutadiene (flexible)

Tg soft segment hard segment

styrene block copolymer, thermoplastic

polyurethane (TPU), poly (ether ester) block copolymer (COPE), poly (ether amide) block

copolymer (COPA)

hard segment TPE

. . 2005 Peng Abetz [37]

polybutadiene 3

polybutadiene ( epoxidation)

( ring-opening) sulfonyl isocyanate

( sulfonyl isocyanate addition)

sulfonyl isocyanate hard segment

36

graft copolymer

polybutadiene sulfonyl urethane

1H-NMR, FTIR, DSC, DMA sulfonyl urethane

polybutadiene

polybutadiene thermo-reversible

crosslinking rubber TPE

polybutadiene

2.2.4

TPE

TPO TPV ( EA)

thermoplastic polyurethane (TPU), styrenic block copolymer, poly (ether ester) block

copolymer, poly (ether amide) block copolymer

TPE styrenic block

copolymer polystyrene (PS) hard segment soft segment

polybutadiene, poly (ethylene-propylene),

poly (ethylene-butylene), hydrogenated polyisoprene TPE

soft segment TPE

TPE

TPE

Thermoplastic polyurethane (TPU) TPE

TPE TPU

polyurethane (PU) hard segment polyester polyether

soft segment TPU

37

(TPU polyester) (TPU

polyether) TPU

thermoplastic copolyester

(COPE) thermoplastic copolyamide (COPA) hard segment

polyester polyamide TPE polyether soft

segment COPE

(creep) (fatigue)

COPE TPE COPA

(dynamic properties)

COPA TPE

TPE

TPE TPO TPV

(

polyolefin PP, PE) ( NR, EPDM)

TPO crosslink TPV crosslink

TPE

(grip),

(knob), (gasket)

38

2.3 (Thermoplastic Elastomer with

Natural Rubber; TPNR)

TPE

(compound)

TPE (reactive blending)

(twin-screw extrusion)

(internal mixer) TPE (phase)

TPE

TPE

TPE

TPE

TPE

39

[38]

16 [38]

2.3.1

TPE

NR/PP [39], NR/HDPE [40], NR/LLDPE [41]

(immisible blend)

compatibilizer

block

graft copolymer compatibilizer

Oommen Thomas [42] TPE

NR/ PMMA

natural rubber-g-poly (methyl methacrylate) (NR-g-PMMA) 10%

tensile strength 150% melt blending

230% solution blending tear strength Izod impact strength

40

graft copolymer

graft copolymer 10% compatibilizer

TPE

interphase

compatibilizer (phase

modification) TPE

Ibrahim [40, 41] liquid natural rubber (LNR)

compatibilizer NR/PP, NR/HDPE, NR/LLDPE

(LNR

LNR ) LNR ( –OH )

interaction

epoxidized natural rubber (ENR)

NR/PE

ENR maleic anhydride-graft-polyethylene (MA-g-PE) ( maleic modified PE)

tensile strength compatibilizer

NR/PP

ENR maleic modified PP tensile strength

NR/PP PP [39]

2.3.2

TPE segmented

copolymer

soft segment

hard

segement Ravindran [43]

(hydroxyl-terminated liquid natural rubber; HTNR)

hydrogen peroxide photochemical

depolymerization hydroxylation TPE

block copolymer Ravindran [44] block

41

copolymer HTNR poly (ethylene oxide) (PEO) toluene2,4-diisocyanate (TDI)

coupling agent HTNR

PEO

PEO TPE

(rubber-toughened plastic)

morphology

soft segment hard segment

Paul Nair TPE HTNR

polyurethane (PU) hard segment propylene

glycol-toluene diisocyanate (TDI) oligomer [45], 1,3-butanediol-TDI oligomer [46],

bisphenol A-TDI oligomer [47] PU hard segment

rigid

morphology Tg

DSC DMA hard segment

Ravindran hard

segment TPE

morphology

2.4

TPE TPE

TPE

( , shaping, vulcanization,

(scrap) ) TPE

TPE TPE

TPE

42

TPE

soft hard segment

TPE

TPE TPE

TPE TPE

(Tm)

crosslink

(Td)

TPE TPE TPE

( )

TPE

TPE

2

1. 1.

2. 2.

3.

3.

4.

4.

compression set (

)

5.

5.

6.

TPEs

6.

43

3

3.1

1. High ammonia natural rubber latex (60% DRC)

2. Polyoxyethylene (40) nonylphenyl ether [Igepal CO-890: Sigma-Aldrich, U.S.A.]

3. 98% Formic acid [UNIVAR: Merck, Germany]

4. 30% Hydrogen peroxide (UNILAB: Ajax Fine Finechem)

5. 99.5% Methanol (commercial grade: Union Intraco Co., Ltd.)

6. 98% Sulfuric acid (analytical reagent grade: Labscan Asia Co., Ltd.)

7. Sodium hydroxide [reagent grade: Ajax Fine Finechem]

8. Ammonium hydroxide [reagent grade: Mallinckrodt Baker, Inc.]

9. para-Toluenesulfonyl isocyanate (technical, 96% (HPLC): Sigma-Aldrich, U.S.A)

10. Silica gel [70-230 mesh ASTM: Merck, Germany]

11. Chloroform [analytical reagent grade]

12. Deuterated chloroform [Wilmad Labglass]

13. Distillate water

3.2

1. 3-Necked round bottom flask

2. Conical flask

3. Beaker

4. Pressure equalizing dropping funnel

5. Buckner funnel

6. Condenser

7. Conical flask with joint

8. Clamp/Clamp holder

44

9. Suction flask

10. Pipette

11. Burette

12. Hot plate with stirrer

13. Magnetic bar

14. 14. Mechanical stirrer

15. Stopper

16. Stirring rod

17. Thermometer

18. Vacuum oven with pump

19. Dropper

20. Water bath with temperature controller

21. pH indicator paper

22. Filter paper

23. Vial tube

24. Spatula

3.3

1. Differential scanning calorimeter (Mettler Toledo: DSC1, Switzerland)

2. Fourier transform infrared spectrometer (Bruker Optik GmbH: Vertex70, Germany)

3. Nuclear magnetic resonance spectrometer (Bruker: 300 Ultrasheild, Germany)

4. Thermogravimetric analyzer (Mettler Toledo: TGA/DSC1, Switzerland)

5. Dynamic mechanical analyzer (Mettler Toledo: SDTA861e, Switzerland)

6. Scanning electron Microscope (CamScan: MX-2000, England)

45

3.4

3 (1)

(ENR) (2) ENR

(-NH2) 2 (diamino compond) ENR latex

NH4OH, H2SO4, NaOH, NH4OH (3) p-toluenesulfonyl isocyanate

(PTSI) hard segment –NH2

3 17

hard segment

epoxidation ENR

epoxidation reagent (formic acid hydrogen

peroxide) ENR

reagent (HCOOH H2O2) epoxidation

epoxidation 8 epoxidation

reagent ( ) ENR

“NR” “low-ENR”, “med-ENR”, “high-ENR” ENR

(45% reagent), (75% reagent), (90% reagent)

“low-NR-NH2”, “med-NR-NH2”, “high-NR-NH2” ENR

2

“low-NR-PTSU”, “med-NR-PTSU”, “high-NR-PTSU”

ENR

PTSI

46

C CH

CH2 H2C *

H3C

*n

HCOOH+H2O

2

8 hr, 60 C

C CH

CH2 H2C CH2

H3C

*

O

C CH

CH2 *

H3C

n-xNR ENR

x

NH4OH (T

room; 10 days)

C CH

CH2 H2C CH2

H3C

*

C CH

H2C

H3C

x-yy

NH2 NH2 NH2NH2

CH2

C CH

H2C *

H3C

n-x

1.2x S NCOO

OH3C 24 hr, T

room

C CH

CH2 H2C CH2

H3C

*

C CH

H2C

H3C

x-yy

NH

CH2

C CH

H2C *

H3C

n-xNHNH

HN

SNHO

OCH3C

O

SNHO

OCH3C

O

SHN

O

OH3C C

SHN

O

OH3C

O

C

O

NR-PTSI

silica gel (70-230 mesh)

C CH

CH2 H2C CH2

H3C

*

C CH

H2C

H3C

x-yy

OH NH2 NH2OH

CH2

C CH

H2C *

H3C

n-x

1,2-amino alcohol

1,2-diamine

1. H2SO

4(60 C, 2 days)

2. NaOH (60 C, 3 days)

3. NH4OH (60 C, 5 days)

4. silica gel (70-230 mesh)

17

47

3.4.1 (Epoxidized natural rubber; ENR)

ENR (NR latex)

60% (dry rubber content; DRC) 84 conical flask

250 ml 30% (DRC)

non-ionic surfactant (Igepal CO-890) 2.5000 (5 phr)

84 ml stir 24

3

500 ml 98% HCOOH ( 3)

pressure equalizing dropping funnel stir

60 C reflux

condenser 3

30% H2O2 ( 3) pressure equalizing dropping funnel

( 20-30 / ) stir

8 sampling ENR latex

methanol

surfactant

ENR FT-IR 1H-NMR

3.4.2 ENR

3.4.2.1 1,2-amino alcohol

ENR ENR

latex 3 2000 ml

silica gel (70-230 mesh)

5.0000 (10% ) stir

30 (NH4OH)

700 ml (15 moles/isoprene unit) (10-15 C) pressure equalizing

dropping funnel stir mechanical stirrer

reflux 3 condenser 10

sampling 1,2-amino alcohol

48

60 C 1

methanol

FT-IR 1H-NMR

3.4.2.2 1,2-diamine

ENR

(-NH2) 2 1,2-amino alcohol latex

(centrifuge) (silica gel)

stir

1000 ml 1

( pH 10 8) 3

2000 ml (98% H2SO4) 5 M

pH 4

60 C reflux condenser

stir mechanical stirrer 2

NaOH pH 10 stir

mechanical stirrer 3 silica gel

(70-230 mesh) 5.0000 (10%wt) stir 30

NH4OH 700 ml (15 moles/isoprene unit)

pressure equalizing dropping funnel stir 60 C

mechanical stirrer reflux 5

centrifuge (silica gel)

stir 1

60 C 2

methanol

methanol

49

FT-IR 1H-NMR

3

reagent ENR NH4OH

/1 isoprene

unit H2O2/ 1

isoprene unit

HCOOH/

1 isoprene unit

low-ENR

(ENR-45%)

1.35

(3.82 ml)

0.135

(94.00 ml)

15

(700 ml)

med-ENR

(ENR-75%)

1.50

(4.25 ml)

0.150

(104.50 ml)

15

(700 ml)

high-ENR

(ENR-90%)

2.25

(6.40 ml)

0.225

(156.70 ml)

15

(700 ml)

3.4.3 (hard segment)

p-toluene sulfonyl isocyanate (PTSI)

hard segment amine group

(-NH2) ENR 1,2-diamine

( ) stir conical flask 500 ml

PTSI 1.2 moles/isoprene unit

stir PTSI

flask 24

methanol methanol

PTSI

FT-IR 1H-NMR

50

3.4.4

FT-IR 1H-NMR FT-IR

Fourier Transform Infrared Spectrophotometer Bruker Vertex70 ( 18)

TR 4000-600 cm-1

(resolution) 1 cm-1 1H-NMR Nuclear

Magnetic Resonance Spectrometer Bruker 300 Ultrasheild ( 19)

deuterated chloroform (CDCl3) tetramethylsilane (TMS)

18 Fourier Transform Infrared Spectrophotometer (Bruker Vertex70)

19 Nuclear Magnetic Resonance Spectrometer (Bruker 300 Ultrasheild)

51

3.4.5 (Thermal properties)

TGA DSC

Thermogravimetric analyzer TGA/DSC1 ( 20 a)

35 C 700 C

10 C/min (thermal transition)

Differential scanning calorimeter DSC1 ( 20 b) -85 C

100 C 10 C/min

2 (heat-cool-heat) thermal history

-85 C

100 C -85 C 100 C

20 (a) Thermogravimetric Analyzer (TGA/DSC1, Mettler Toledo, Switzerland),

(b) Differential Scanning Calorimeter (DSC1, Mettler Toledo, Switzerland)

(a) (b)

52

3.4.6 (Dynamic mechanical testing)

3.4.6.1

DMA

NR, ENR TPE

compression molding

5-7 mm 1-1.5 mm

3 stage hold 100 C 5,000 10

15,000 5 20,000

5

21 compression molding

22

53

3.4.6.2 Dynamic Mechanical Analyzing

-

5-7 1-1.5

- shear mode 5 Hz force

amplitude 5 N displacement amplitude 10 um -100 C

100 C 10 C/min

23 Dynamic Mechanical analyzer (SDTA861e, Mettler Toledo)

3.4.7

NR, ENR

TPE SEM

slit

SEM

30 100,

500, 1,000 15 kV

54

24 Scanning Electron Microscope (MX-2000, CamScan)

55

4

4.1 FT-IR 1H-NMR

4.1.1 (epoxidized natural rubber, ENR)

(ENR)

(HCOOH) (H2O2)

epoxidation 8 epoxidation

reagent ( ) ENR

25 FT-IR spectra (NR) ENR

FT-IR TR 3285, 2962, 2856,

1663, 1535, 1447, 1372 830 cm-1 stretching O-H N-H

( amide ), C-H stretching (-CH3), C-H

stretching (-CH2), C=C stretching, N-H (2 vibration), C-H bending (-CH2), C-H bending (-CH3),

C=C bending in-situ

epoxidation formic acid hydrogen peroxide

1,250 cm-1 870 cm-1

(symmetric stretching) (asymmetric stretching)

ENR 870 cm-1

830 cm-1 reagent

ENR

reagent isoprene unit

4

56

25 FT-IR spectrum (NR) ENR 3

epoxidation 17

H2O2 cure H2O2

oxidizing agent formic acid

ENR ENR 3

ENR cure H2O2

57

1H-NMR ( 26)

ENR

1H-NMR spectrum ENR 5.1 2.7 ppm

(vinylic proton) ENR

(oxirane proton) 1H-NMR spectrum NR

5.1 ppm 2.7 ppm

1.30, 1.58, 1.70, 2.05, 2.17 ppm methyl proton, methylene

proton ENR methyl proton, methylene proton

( ) ENR

1H-NMR spectra 2.7 5.1 ppm

(mole %) = 1001.57.2

7.2

III

7.2I 1.5I 1H-NMR spectra ENR 2.7 5.1 ppm

ENR reagent

3 high-ENR, med-ENR, low-ENR 45.36,

33.77, 20.00 mol%

4 NR ENR 3

1H-NMR spectra 2.7 ppm 5.1 ppm

1H-NMR spectrum

(mole %) I5.1 I2.7

NR 0 n/a 0

low-ENR 1.00 0.25 20.00

med-ENR 1.00 0.51 33.77

high-ENR 1.00 0.83 45.36

58

FT-IR

1H-NMR

(ENR)

26 1H-NMR spectrum (a) NR, (b) low-ENR, (c) med-ENR, (d) high-ENR

(d)

(c)

(b)

(a)

c

ba

c g

a

b e f

d

59

4.1.2 ENR

4.1.2.1 1,2-amino alcohol

1,2-amino alcohol

(NH4OH) nucleophilic reagent

silica gel 70-230 mesh

FT-IR 1H-NMR 27 FT-IR spectra

ENR ENR

1,2-amino alcohol 3,485-3,270 cm-1, 1,600-1,585

cm-1, 1,100 cm-1 stretching O-H N-H

(primary amines) bending N-H stretching

C-N

27 FT-IR spectrum 1,2-amino alcohol ENR 3

60

1H-NMR ( 28)

1H-NMR spectrum 1,2-amino alcohol

ENR 1.30, 1.50-1.60, 2.0, 2.7, 3.6-3.8 ppm

methyl proton [-CCH3-(OH)-CH(NH2)-], methylene proton [-CH2-CCH3(OH)-

CH(NH2)-CH2-] , amine proton (-NH2), methine proton

[-C-CH (NH2)], alcohol proton [-OH]

ENR (-OH) (-NH2)

-C-C-

silica gel (70-230 mesh)

2 (H+) silica gel Lewis acid

protonate (O) ( )

NH4OH

2 NH3 NH4OH attack

(-C-CH3) (-CH)

NH3 attack

–OH attack

NH3 methine

proton 2.7 ppm NH3

attack

61

28 1H-NMR spectrum (a) high-1,2-amino alcohol, (b) medium-1,2-amino alcohol,

(c) low-1,2-amino alcohol

(a)

(b)

(c)

c ng, m d

a, i

bf

e, h, j

62

4.1.2.2 1,2-diamine

diamine

1,2-amino alcohol

silica gel 29

FT-IR spectra diamine ENR

1,100 cm-1 stretching C-N 2

1,2-amino alcohol 1,250 cm-1

(symmetric stretching)

C-N C-N 2

( 5) imine diamine (-NH2)

1 2

ENR 1,2-amino alcohol diamine

FT-IR spectrum

870 cm-1

(asymmetric stretching)

29 FT-IR spectrum 1,2-diamine ENR 3

63

30 1H-NMR spectrum (a) low-NR-NH2, (b) med-NR-NH2, (c) high-NR-NH2

(c)

(b)

(a)

c g, m

a, i

d

b f

e, h, j

64

5 1,2-amino alcohol 1,2-diamine

ENR absorbance FT-IR spectra

A1100 (C-N stretch) /A1450 (CH3 bend) mole %

1,2-amino alcohol 1,2-diamine

high-ENR 37.98 62.36

med-ENR 33.86 57.28

low-ENR 29.56 54.31

1H-NMR ( 30)

1H-NMR spectrum 1,2-diamine

ENR 1.30, 1.50-1.60, 2.0, 2.7 ppm

methyl proton [-CCH3-(NH2)-CH(NH2)-], methylene proton [-CH2-CCH3(NH2)-CH(NH2)-CH2-]

, amine proton (-NH2), methine proton [-C-CH (NH2)]

2.0 2.7 ppm 1,2-diamine 1,2-amino alcohol

3.7 ppm

4.1.2 hard segment

diamine

solf segment para-toluenesulfonyl isocyanate (PTSI) hard

segment thermoplastic elastomer (TPE) PTSI

–NH2 2 ENR

(-NH-CO-NH-SO2-)

FT-IR 1H-NMR

FT-IR TPE 31

3,250 cm-1 ( ) stretching N-H

1,750 cm-1, 1,350 cm-1 1,160 cm-1

stretching C=O isocyanate (O=C=N)

(-NH2) urea-linkage S=O PTSI

65

S=O

hard segment (

) 1,356 (low-NR-PTSI), 1,349 (med-NR-PTSI),

1,349 cm-1

S=O H-N Peng Abetz [37]

C=O C=O H-N

C=O

1,750 (low-NR-PTSI),

1,747 (med-NR-PTSI), 1,744 (high-NR-PTSI)

1,640-1,600 cm-1 stretching C=C ( NR ),

C=C ( aromatic) N-H bending

860-580 cm-1 C=C

aromatic

31 FT-IR spectrum TPE ENR 3

66

32 1H-NMR spectrum (a) low-NR-PTSI, (b) med-NR-PTSI, (c) high-NR-PTSI

(a)

(b)

(c)

c qp

v

a

e

b, d

fs t

67

1H-NMR

32 1H-NMR spectra TPE p-toluenesulfohyl

isocyanate (PTSI) hard segment

1,2-diamino compound

(methyl proton) (2.45 ppm)

urea-linkage (methine proton) isocyanate

(4.17 ppm), (4.76 ppm)

(7.33 7.91 ppm) FT-IR 1H-NMR

isocyanate hard segment

1,2-diamino compound

[-NH-CO-NH-SO2-]

6 hard segment 1H-NMR TGA

Epoxide content

(mole %)

1H-NMR

I7.90ppm/I2.04ppm

(moel %)

I7.33 ppm /I2.04 ppm

(mole %)

I2.45ppm/I2.04ppm

(mole %)

low-ENR 20.00 23.90 20.41 20.32

med-ENR 33.77 40.98 33.33 46.30

high-ENR 45.36 49.40 40.23 53.76

4.2

4.2.1 TGA

TGA

33 (NR) ENR

(one-step decomposition) 384 C

ENR 3

387°C, 392°C, 394°C low-ENR

68

med-ENR high-ENR

10 C ENR

ENR

TPE

34 TGA themogram TPEs 3

2 (two-step decomposition) ( )

(-NH-CO-NH-SO2-) hard segment

240-320 C

hard segment (PTSI)

( 7)

[-NH-CO-NH-]

33 TGA thermogram (NR) ENR 3

69

34 TGA thermogram TPEs 3

TPEs

3 hard segment (PTSI)

1H-NMR

hard segment

soft segment

( )

soft segment

350-500 C [48]

TPE soft segment

p-toluenesulfonyl isocyanate (PTSI) hard segment

( )

( )

TPEs

ENRs ( 35)

hard segment

hard segment

70

(physical crosslink)

high-NR-PTSI

35 TGA thermogram NR, ENRs, TPEs

7 thermal decomposition

( C)

Weight loss (%) Onset Inflection point End set

NR 286.7 384.3 493.6 100.00

low-ENR 338.8 387.4 474.2 98.87

med-ENR 349.1 393.6 483.0 100.00

high-ENR 358.0 393.0 478.4 99.02

low-NR-PTSI 246.4

(1st)

341.7

(2nd)

291.4

(1st)

425.0

(2nd)

321.3

(1st)

473.3

(2nd)

34.84

(1st)

65.16

(2nd)

med-NR-PTSI 249.7

(1st)

355.9

(2nd)

297.0

(1st)

423.0

(2nd)

320.8

(1st)

462.3

(2nd)

62.20

(1st)

37.80

(2nd)

high-NR-PTSI 244.0

(1st)

360.7

(2nd)

294.4

(1st)

418.5

(2nd)

325.80

(1st)

457.0

(2nd)

65.16

(1st)

34.84

(2nd)

: (% weight loss) residue

71

4.2.2 DSC

36 DSC thermogram

(NR) glass transition temperature (Tg)

-64.8 C epoxidation ENR 3

Tg Tg low-ENR,

med-ENR, high-ENR -52.2, -36.3, -28.4 C

ENR 3

PTSI low-NR-PTSI, med-NR-PTSI, high-NR-PTSI

Tg -6.2, 12.0, 23.6 C

36 DSC thermogram (NR), ENR, TPE

72

DSC

ENR 3

PTSI hard segment Tg

hard segment

[-NH-CO-NH-SO2-]

(stiff)

Tg hard segment

DSC

hard segment TPE block

copolymer hard segment Tm

hard segment PTSI

4.3

(morphology)

(fracture surface) SEM 37 SEM

micrograph ENR 500

ENR

(continuous phase) (homogeneous)

73

37 SEM micrographs a) natural rubber, b) low-ENR, c) med-ENR, d) high-ENR

500

TPE

ENR 500 38 SEM

micrographs TPE

2 (soft segment)

hard domains

hard segment (agglomerate)

1,000 ( 39)

hard segment

hard segment ( )

( )

a b

c d

74

(two phase separation)

2 (two-stage decomposition) TGA

38 SEM micrographs a) low-NR-PTSI, b) med-NR-PTSI, c) high-NR-PTSI

500

SEM

hard segment

phase-separated

TGA TPE

2 (two-stage decomposition)

a b

c

75

39 SEM micrographs a) low-NR-PTSI, b) med-NR-PTSI, c) high-NR-PTSI

1000

4.4 Dynamic mechanical analysis (DMA)

DMA

5 Hz -100°C 100°C 40-43

40 storage modulus (G ) G

(

) stiffness

(-90 C -70 C) G (NR)

(ENR) (TPE) G

a b

c

76

2

( Tg)

free volume

ENRs TPEs

G ENRs

NR

free volume NR

G TPEs G TPE

(free volume )

G

( ) G TPEs ENRs

G G NR ENRs

1 MPa (rubber state)

( ) free volume NR ENRs

side

chain main chain [49] NR

G (

Tg) ENRs G NR

dipole-

dipole interaction free volume ENRs

NR

( glassy state ENRs NR) TPEs

stiffness NR ENRs TPEs

77

hard domains

physical crosslink soft segment (rubber phase)

soft segment

free volume TPEs

G TPEs NR ENRs

40 storage modulus (G )

G ENRs 41

8 ( -80 C) high-ENR G

low-ENR G high-ERN med-ENR G

high-ENR

dipole-dipole interaction

free volume

G low-ENR

78

(free volume

)

G high-ENR

med-ENR G

high-ENR

high-ENR

low-ENR G

G

ENR G

G

41 Storage modulus (G ) ENRs

79

G TPEs 42 8

( -80 C -20 C) low-NR-PTSI G

med-NR-PTSI high-NR-PTSI G

(free volume )

hard segment

hard segment

low-NR-PTSI hard segment

stiffness

G

high-NR-PTSI hard segment

(free volume )

G

( 25 C) med-NR-PTSI G high-NR-PTSI

low-NR-PTSI G med high-NR-PTSI hard

segment

( physical crosslink ) hard segment

crosslink

hard domains stiffness TPE G

[50] med-NR-PTSI G high-NR-PTSI

high-NR-PTSI

2

G low-NR-PTSI hard

segment

(physical crosslink )

G TPEs

G

low-NR-PTSI hard segment G

physical crosslink hard domains

80

high-NR-PTSI G

med-NR-PTSI crosslink

G

( 50 C) 8 G

TPEs high-NR-PTSI G

med-NR-PTSI low-NR-PTSI G

(physical crosslink) hard segment

soft segment

hard segment G

high-NR-PTSI low-NR-PTSI

hard segment G

42 Storage modulus (G ) NR TPEs

81

43 tan

DSC tan DMA Tg

G

(structural material)

glass transition

tan

Tg

-52.00°C ENR tan

Tg -43.20, -28.83,

-19.37°C TPEs tan

ENR 7.57, 54.16,

52.17°C

hard segment

hard domains

soft segment Tg TPEs

[50] hard segment high-NR-PTSI

transition 2 tan 2

transition relax ( )

transition (hard segment)

relax

82

43 tan

8 (dynamic mechanical properties)

Samples Tg (oC) G at -80°C

(MPa)

G at Tg

(MPa)

G at 25°C

(MPa)

G at 50°C

(MPa)

NR -52.0 1129 179 0.8 0.7

low-ENR -43.2 791 230 1.0 0.9

med-ENR -28.8 543 209 0.9 0.8

high-ENR -19.9 901 214 1.1 0.9

low-NR-PTSI 7.6 436 16 12.1 1.2

med-NR-PTSI 54.2 75 12 47.1 1.4

high-NR-PTSI 52.2 22 10 13.5 2.3

83

5

5.1

(thermo-reversible)

3

2

diamino compound hard segment

para-toluenesulfonyl isocyanate (PTSI)

hard segment 3 (mol%)

ENR 3 low-ENR (20.00 mol%), med-ENR (33.77 mol%),

high-ENR (45.36 mol%) hard segment

ENR

FT-IR 1H-NMR

FT-IR

S=O hard segment

hard segment 1H-NMR isocyanate

(-NH-CO-NH-SO2-)

DSC

Tg ENR

Tg hard segment -6.2, 12.0, 23.6 C

TGA

84

2

240-320°C

hard segment

350-500 C soft segment

two-step decomposition

2 (phase

separated) SEM

2

hard domain (continuous

phase) storage modulus (G ) tan

hard

segment thermo-reversible

5.2

ENR

hard segment

ENR

hard segment

H2SO4

(% yield)

hard segment

ENR

10-30 mol%

hard segment

compression molding

85

2

hard segment

physical crosslink

thermo-reversible

hard segment

hard segment

hard segment

86

1. Daniel Derouet, Punyanich Intharapat, Quang Ngoc Tran, Frederic Gohier, and Charoen

Nakason. “Graft copolymers of natural rubber and poly(dimethyl(acryloyloxymethyl)

phosphonate) (NR-g-PDMAMP) or poly(dimethyl (methacryloyloxyethyl)

phosphonate) (NR-g-PDMMEP) from photopolymerization in latex medium.”

European Polymer Journal 45 (2009): 820-836.

2. C. X. Sun, M. A. J. van der Mee, J. G. P. Goossens, and M. van Duin. “Thermoreversible

Cross-Linking of Maleated Ethylene/Propylene Copolymers Using Hydrogen-Bonding

and Ionic Interactions.” Macromolecules 39 (2006): 3441-3449.

3. W. Arayapranee1 and G. L. Rempel. “Properties of NR/EPDM Blends with or without Methyl

Methacrylate-Butadiene-Styrene (MBS) as a Compatibilizer.” International Journal of

Materials & Structural Reliability 5, 1 (2007): 1-12.

4. A.D. Drozdov, J. Christiansen. “Thermo-viscoplasticity of carbon black-reinforced

thermoplastic elastomers.” International Journal of Solids and Structures 46, 11-12

(2009): 2298-2308.

5. A.K Bhowmick and H.L. Stephens. Handbook of elastomers. New York: Marcel Dekker, Inc.,

2001.

6. . .

, 2550.

7. Rubber Technology Unit. [online]. Accessed 19 April 2009.

Available from http://rubber.sc.maidol.ac.th/RTU/information3_1.htm.

8. http://dbms.thailand.com/storefront/storefront.php. Accessed 20 April 2009.

9. C. Philippe, T. Francois, S. Z. Corinne, and L. Ludwik. “Self-healing and thermo-reversible

rubber from supramolecular assembly.” Nature Publishing Group 451, 21 (2008).

10. http://commons.wikimedia.org/wiki/Category:Hydrocarbons. Accessed 20 April 2009.

11. http://www.sc.mahidol.ac.th/tha/research/rubber.htm. Accessed 8 April 2010.

12. Azanam S. Hashim, S.K.Ong and R.S. Jessy. “A general review of recent developments

on chemical modification of NR.” Natuur Rubber 28, 4 (2002).

87

13. J.P. Zhong, S.D. Li, Y.C. Wei, Z. Peng, and H.P. Yu “Effects of stearates on the thermal

stability of chlorinated natural rubber from latex.” Journal Applied Polymer Science

73 (1999): p. 2863.

14. Y. Heping, L. Sidong, and P. Zheng. “Preparation and study of epoxidized natural rubber.”

Journal of Thermal Analysis and Calorimetry 58 (1999): 293-299.

15. Siti Zaleha Isa, Rosiyah Yahya, Aziz Hassan and M. Tahir. “The influence of temperature

and reaction time in the degradation of natural rubber latex.” The Malaysian Journal of

Analytical Sciences 11, 1 (2007): 42-47.

16. Rangrong Yoksan. “Epoxidized Natural Rubber for Adhesive Applications.” Kasetsart

Journal (Natural Science) 42 (2008): 325 – 332.

17. http://www.rubbercenter.org. Accessed 8 April 2010.

18. I.R. Gelling and M. Porter. Natural Rubber Science and Technology (Roberts A.D., ed.).

Oxford: Oxford University Press, 1988.

19. V. B. Nguyen and C. H. Chu. “Synthesis and Application of Epoxidized Natural Rubber.”

Journal of Macromolecular Science, Part A, 33, 12 (December 1996): p. 1949 – 1955.

20. D.R. Burfield, K.L. Lim, K.S. Law, and K. Sanglaw. “Epoxidation of natural rubber lattices:

Method of preparation and properties of Modified Rubbers.” Journal of Applied

Polymer Science 29 (1984): 1661-1673.

21. D.R. Burfield, K.L. Lim, K.S. Law, and K. Sanglaw. “Analysis of epoxidized natural rubber.

A comparative study of d.s.c., n.m.r., elemental analysis and direct titration methods.”

Polymer 25 (1984): p.995-998.

22. J.E. Davey and J.R. Loadman. “A chemical demonstration of the randomness of epoxidation

of natural rubber.” British Polymer 16 (1984): p.134-138.

23. Uthai Lairattanakul. “Preparation of photosensitive elastomer from liquid natural rubber.”

Journal of National Research Council of Thailand 25, 2 (1993).

24. T. Ravindran, M. R. Gopinathan Nayar, D. Joseph Francis. “Production of hydroxyl-

terminated liquid natural rubber - mechanism of photochemical depolymerization and

hydroxylation.” Journal of Applied Polymer Science 35 (1988): 1227-1239.

88

25. Dileep U. and Shanti A. Avirah. “The Use of Carboxy Terminated Liquid Natural Rubber

(CTNR) as an Adhesive in Bonding Rubber to Rigid and Non-Rigid Substrates.”

Journal of Elastomers and Plastics 35, 3 (2003): 227-234.

26. P. Chor.Wayakron, T. Oranee, and P. Pranee. “Preparation of Carboxyl-Terminated Liquid

Natural Rubber Using Hydrogen Peroxide.” NU Science Journal 3, 2 (2007):

137 – 148.

27. Jiri George Drobny. Handbook of thermoplastic elastomers. New York: William Andrew

Inc., 2007.

28. Werner Hofmann. Rubber technology handbook. Munich : Hanser Publishers, 1989.

29. J.A. Brydson. Rubber materials and their compounds. Norfolk: Elsevior Science Publishers

Ltd, 1988.

30. http://www.geocities.com/thaimafia/orchem/rubber.ppt. Accessed 19 April 2009.

31. Geoffrey Holden, Hans R. Kricheldorf, and Roderic P. Quirk. Thermorplastic Elastomers.

3nd ed. Munich: Carl Hanser Verlag., 2004.

32. http://machinedesign.com/BDE/materials/bdemat4/rvmat3e.html. Accessed 7 May 2010.

33. Charles A. Harper. Handbook of plastics, elastomers, and composites. New York: McGraw

Hill, Inc., 1992.

34. Anil K. Bhowmick and Howard L. Stephens. Handbook of elastomers. New York: Marcel

Dekker, Inc., 2001.

35. http://www.lasalle.edu/academ/chem/ms/polymersRus/Resources/Classification.htm.

Accessed 5 May 2010.

36. http://solutions.3m.com/wps/portal/3M/en_US/dyneon_fluoropolymers/Home/Custom_

Compounds/ Custom_Thermoplastic_Compounds/TPV. Accessed 7 May 2010.

37. C.C. Peng and V. Abetz. “A simple pathway toward quantitative modification of

polybutadiene: A new approach to thermoreversible cross-linking rubber comprising

supramolecular hydrogen-bonding network.” Macromolecules 38 (2005): 5575-80.

38. http://www.stkc.go.th/stportalDocument/stportal_1134713438.pdf. Accessed 19 April 2010.

89

39. N.R. Choudhury and A. K. Bhowmick. “Compatibilization of natural rubber-polyolefin

thermoplastic elastomer blends by phase modification.” Journal of Applied Polymer

Science 38 (1989): 1091-109.

40. A. Sahrim, A. Ibrahim, S. Che Som, S. Kohjiya, and J. R. Yoon. “Natural rubber-HDPE

blends with liquid natural rubber as a compatibilizer. I. Thermal and mechanical

properties.” Journal of Applied Polymer Science 51 (1994): 1357-63.

41. A. Ibrahim, A. Sahrim, and S. Che Som. “Blending of natural rubber with linear low-density

polyethylene.” Journal of Applied Polymer Science 58 (1995): 1125-33.

42. O. Zachariah and T. Sabu. “Mechanical properties and failure mode of thermoplastic

elastomers from natural rubber/ poly (methyl methacrylate)/ natural rubber-g-poly

(methyl methacrylate).” Journal of Applied Polymer Science 65 (1997): 1245-55.

43. T. Ravindran, M.R. Gopinathan Nayar, and D. Joseph Francis. “Production of hydroxyl-

terminated liquid natural rubber-mechanism of photochemical depolymerization and

hydroxylation.” Journal of Applied Polymer Science 35 (1988): 1227-39.

44. T. Ravindran, M.R. Gopinathan Nayar, and D. Joseph Francis. “Segmented block

copolymers based on liquid natural rubber.” Journal of Applied Polymer Science 42

(1991): 325-33.

45. C.J. Paul, M.R. Gopinathan Nair, N.R. Neelakantan, and Peter Koshy. “Segmented block

copolymers of natural rubber and propylene glycol-toluene diisocyanate oligomers.”

Polymer Engineering & Science 38 (1998): 440-51.

46. C.J. Paul, M.R. Gopinathan Nair, N.R. Neelakantan, Peter Koshy, Bhaskar B. Idage, and A.A.

Bhelhekar. “Segmented block copolymers of natural rubber and 1, 3-butanediol-

toluene diisocyanate oligomers.” Polymer 39 (1998): 6891-74.

47. C.J. Paul, M.R. Gopinathan Nair, Peter Koshy, and Bhaskar B. Idage. “Segmented block

copolymers of natural rubber and bisphenol A-toluene diisocyanate oligomers.”

Journal of Applied Polymer Science 74 (1999): 706-21.

48. . “ .”

, 2550, 40-42.

90

49. Y. Peng, S.G. Shi, and M.G Kim. “Effect to temperature on the dynamic mechanical

properties of resin film and wood.” Forest Products Journal 58 (2008): 68-74.

50. Y.W. Chang, J.K. Mishra, S.K. Kim, and D.K. Kim. “Effect of supramolecular hydrogen

boned network on the properties of maleated ethylene propylene diene

rubber/maleated high density polyethylene blend based thermoplastic elastomer.”

Materials Letters 60 (2006): 3118-3121.

92

FT-IR spectra

93

44 FT-IR spectrum (NR)

45 FT-IR spectrum ENR low-ENR

94

46 FT-IR spectrum ENR med-ENR

47 FT-IR spectrum ENR high-ENR

95

48 FT-IR spectrum low-1,2-amino alcohol

49 FT-IR spectrum med-1,2-amino alcohol

96

50 FT-IR spectrum high-1,2-amino alcohol

51 FT-IR spectrum low-1,2-diamine

97

52 FT-IR spectrum med-1,2-diamine

53 FT-IR spectrum high-1,2-diamine

98

54 FT-IR spectrum low-NR-PTSI

55 FT-IR spectrum med-NR-PTSI

99

56 FT-IR spectrum high-NR-PTSI

1H-NMR spectrum

101

57 1H-NMR spectrum (NR)

58 1H-NMR spectrum low-ENR

102

59 1H-NMR spectrum med-ENR

60 1H-NMR spectrum high-ENR

103

61 1H-NMR spectrum low-1,2-amino alcohol

62 1H-NMR spectrum med-1,2-amino alcohol

104

63 1H-NMR spectrum high-1,2-amino alcohol

64 1H-NMR spectrum low-1,2-diamine

105

65 1H-NMR spectrum med-1,2-diamine

66 1H-NMR spectrum high-1,2-diamine

106

67 1H-NMR spectrum low-NR-PTSI

68 1H-NMR spectrum med-NR-PTSI

107

69 1H-NMR spectrum high-NR-PTSI

TGA DTG thermogram

109

70 TGA thermogram

71 TGA thermogram low-ENR

110

72 TGA thermogram med-ENR

73 TGA thermogram high-ENR

111

74 TGA thermogram low-1,2-amino alcohol

75 TGA thermogram med-1,2-amino alcohol

112

76 TGA thermogram high-1,2-amino alcohol

77 TGA thermogram low-1,2-diamine

113

78 TGA thermogram med-1,2-diamine

79 TGA thermogram high-1,2-diamine

114

80 TGA thermogram low-NR-PTSI

81 TGA thermogram med-NR-PTSI

115

82 TGA thermogram high-NR-PTSI

DSC thermogram

117

83 DSC thermogram (NR)

84 DSC thermogram low-ENR

118

85 DSC thermogram med-ENR

86 DSC thermogram high-ENR

119

87 DSC thermogram low-1,2-amino alcohol

88 DSC thermogram med-1,2-amino alcohol

120

89 DSC thermogram high-1,2-amino alcohol

90 DSC thermogram low-1,2-diamine

121

91 DSC thermogram med-1,2-diamine

92 DSC thermogram high-1,2-diamine

122

93 DSC thermogram low-NR-PTSI

94 DSC thermogram med-NR-PTSI

123

95 DSC thermogram high-NR-PTSI

DMA thermogram

125

96 DMA thermogram (NR)

97 DMA thermogram low-ENR

G

G

Tan

G

G

Tan

126

98 DMA thermogram med-ENR

99 DMA thermogram high-ENR

G

G

G

Tan

Tan

G

127

100 DMA thermogram low-NR-PTSI

101 DMA thermogram med-NR-PTSI

G

G

Tan

G

G

Tan

128

102 DMA thermogram high-NR-PTSI

G

G

Tan

129

-

59/1 6

80130

(089) 173-0784

E-mail address bell-153@hotmail.com

. . 2547 -

. . 2551

. . 2551

. . 2551-2553

1. Pensri Anurak, Wanchai Lerdwijitjarud, and Amnard Sittattrakul, “Effect of Catalyst

Types on The Ring-Opening Reaction of Epoxidized Natural Rubber in Latex Form”,

The 1st National Research Symposium on Petroleum, Petrochemicals, and Advanced Materials

and The 16th PPC Symposium on Petroleum, Petrochemicals, and Polymer, April 22, 2010,

Bangkok, Thailand.

Recommended