Rational Speculative Bubbles in an Exchange Rate Target Zone

Preview:

Citation preview

NB

ER

WO

RK

[NG

PA

PE}

SER

IES

RA

TIO

NA

L

SPE

aJL

TIV

E 3

JBB

LE

S IN

AN

E0(

CH

NG

E R

AT

E T

A3E

T Z

ON

E

Wif

lem

H.

Bei

ter

Paol

o A. Pesenti

Wor

kim

Paper No. 3467

NA

TIO

NA

L

JRE

PU O

F E

OJN

CM

IC R

ESE

AR

UI

1050

Mas

sach

uset

ts A

venu

e C

ambr

idge

, NA

02

138

Oct

ober

199

0

We

wou

ld l

Bce

to

than

k T

orst

en P

erss

on,

thri

stoç

tier

Sim

s,

the

part

icip

ants

at

the

War

wic

k Su

mse

r Res

earc

h W

orks

hop

on 'E

xcha

re R

ates

ax

Fina

ncia

l M

arke

ts",

Jul

y 9-

27,

1990

, in

par

ticul

ar P

enzo

Ave

sani

, G

iuse

ppe

Ber

tola

, A

rdy

Cap

lin,

Ber

nard

tmas

, M

arcu

s M

iller

, R

ick

van

der

Ploe

g,

Paul

Wel

ler

ani t

he p

artic

ipan

ts a

t the

Inte

rnat

iona

l Fi

nanc

e W

orks

hop

at Y

ale,

in

pa

rtic

ular

Gia

ncar

lo C

orse

tti, V

ittor

io G

rilli

, E

cidi

i Ham

ada

and

Nou

rie]

. R

oubi

ni.

Paol

o Pe

sent

i w

ould

lik

e to

ack

elge

fina

ncia

l su

ppor

t fr

om t

he

Mat

e pe

r gl

i St

udi

Mon

etar

i, B

anca

ri e

Fin

anzi

ari

L.

Ein

audi

, Rom

e.

Thi

s pa

per

is p

art o

f N

BE

R' s

res

earc

h pr

cgra

m i

n In

tern

atio

nal

Stis

lies.

ny

op

inio

ns e

ress

i are

thos

e of

the

auth

ors

and

not

thos

e of

the

Nat

iona

l B

erea

u of

Eco

nom

ic R

esea

rch.

NB

ER

Wor

king

Pa

per

#346

7 O

ctob

er 1

990

RA

TIO

NA

L S

PEJI

AT

IVE

JB

BL

ES

IN A

N E

XQ

1PN

GE

R

AT

E T

AJE

I Z

ON

E

The

rec

ent

theo

ry o

f ex

chan

ge

rate

dyn

amic

s w

ithin

a t

arge

t zon

e ho

lds

that

exc

iiari

je r

ates

und

er a

cur

renc

y ba

rd a

re l

ess

resp

ansi

ve to

furd

asen

tal

shoc

ks t

han

exch

ange

rate

s un

der

a fr

ee f

loat

, pr

ovid

ed t

hat

the

inte

rven

tion

rule

s of

the

Cen

tral

Ban

k(s)

are

cat

uwn

kncM

ledg

e.

The

se r

esul

ts a

re d

eriv

ed

afte

r hav

ing

assu

med

a p

rior

i th

at e

xces

s vo

latil

ity du

e to

ratio

nal b

ubbl

es

does

not

occ

ur in

the

for

eign

exc

hang

e m

arke

t. In

this

pape

r we

cons

ider

inst

ead

a se

tup

in w

hich

the

exis

tenc

e of

spe

cula

tive

beha

vior

is a

dat

um t

he

Cen

tral

Ban

k ha

s to

dea

l w

ith.

We

show

tha

t th

e de

fens

e of

the

targ

et z

one

in t

he p

rese

nce

of b

ubbl

es i

s vi

able

if

the

Cen

tral

Ban

k ac

com

imxl

ates

spec

ulat

ive

atta

cks w

hen

the

latte

r ar

e co

nsis

tent

with

the

sur

viva

l of

the

targ

et z

one

itsel

f an

d ex

pect

atio

ns a

re s

elf-

fulf

illir

. T

hese

reB

ults

hol

d

for

a la

rge

clas

s of

exn

geno

us a

nd f

unda

men

tal-

depe

nden

t bub

ble

proc

esse

s.

We

show

tha

t th

e in

stan

tane

ous v

olat

ility

of

exch

ange

ra

tes

with

in a

bar

d is

no

t ne

cess

arily

les

s th

an th

e vo

latil

ity un

der f

ree

floa

t an

d an

alyz

e th

e

ixpl

icat

ions

for

inte

rest

rat

e di

ffer

entia

l dy

nam

ics.

Will

em F

l. B

aite

r Pa

olo

A.

Pese

nti

Ipar

toen

t of

Eco

nom

ics

Cep

arbn

ent o

f E

cono

mic

s Y

ale

Uni

vers

ity

Yal

e U

nive

rsity

19

72 Y

ale

Stat

ion

1972

Yal

e St

atio

n N

ew H

aven

, C

I 06

520—

1972

N

ew H

aven

, cr

065

20—

1972

I. I

ntro

duct

ion

The

rec

ent

liter

atur

e on

exc

hang

e ra

te t

arge

t zo

nes

insp

ired

by

Kru

gman

's

sem

inal

ar

ticle

on

the

subj

ect

(Kru

gman

[199

0])

repr

esen

ts

a su

cces

sful

mar

riag

e of

polic

y re

leva

nce a

nd t

echn

ical

inno

vatio

n. F

orm

al t

arge

t zon

es l

ike

the

exch

ange

rat

e

arra

ngem

ents

of th

e E

urop

ean M

onet

ary

Syst

em a

nd i

nfor

mal

tar

get z

ones

bet

wee

n th

e

U.S

. do

llar,

the

Japa

nese

yen

and

the

D—

Mar

k si

nce

the

mid

dle o

f th

e la

st d

ecad

e w

ere

a pr

omin

ent f

eatu

re o

f the

exc

hang

e ra

te s

yste

m o

f the

Eig

htie

s and

pro

mis

e to

be

so

for t

he N

inet

ies.

T

he t

echn

ical

mod

elin

g in

nova

tion

cons

ists

in

the

appb

catio

n of th

e

theo

ry o

f re

gula

ted

Bro

wni

an m

otio

n (s

ee e

.g.

Mal

liari

s an

d B

rock

[19

82],

Har

riso

n

[198

5], D

ixit

[198

8], K

arat

zas

and

Shre

ve [

1988

], D

umas

[1

989]

and

Flo

od a

nd G

arbe

r

[198

9]) to

the

stud

y of

the

beha

vior

of

a fl

oatin

g ex

chan

ge

rate

that

is c

onst

rain

ed

by

appr

opri

ate i

nter

vent

ions

not

to s

tray

out

side

som

e gi

ven

rang

e or t

arge

t zon

e.

The

lite

ratu

re o

n th

is s

ubje

ct i

s gr

owin

g ve

ry f

ast.

Am

ong

the

man

y re

cent

cont

ribu

tions

are

Kru

gman

[198

7], K

rugm

an

and

Rot

embe

rg [1

990]

, Mill

er a

nd W

elle

r

[198

8a,b

; 19

89;

1990

a,b,

c],

Mill

er a

nd S

uthe

rlan

d [1

990]

, Fro

ot a

nd O

bstf

eld

[198

9a,b

],

Ber

tola

an

d C

abal

lero

[1

989,

199

0],

Kle

in [

1989

], S

vens

son

[198

9; 1

990a

,b],

Pes

enti

[190

0], D

elga

do a

nd D

umas

[19

90],

Lew

is [1

990]

, A

vesa

ni [

1990

], Ic

hika

wa,

M

iller

and

Suth

erla

nd [1

990]

, and

Sm

ith a

nd S

penc

er [

1990

].

A c

omm

on

elem

ent

in a

ll of

the

se a

naly

ses

is t

hat

a "f

unda

men

tals

onl

y"

solu

tion

is c

hose

n fo

r th

e ex

chan

ge r

ate:

The

exc

hang

e ra

te, a

non—

pred

eter

min

ed s

tate

vari

able

, is e

xpre

ssed

as

a fu

nctio

n of

the

curr

ent a

nd e

xpec

ted

futu

re v

alue

s of

the

fund

amen

tals

onl

y.

The

lite

ratu

re i

n fa

ct

conc

entr

ates

on

mod

els

with

a

sing

le

fund

amen

tal.

Thi

s fu

ndam

enta

l is g

over

ned

by r

egul

ated

Bro

wni

an m

otio

n, th

at i

s by

unre

gula

ted

Bro

wni

an m

otio

n as

lon

g as

the

fund

amen

tal s

tays

with

in t

he lo

wer

and

uppe

r in

terv

entio

n th

resh

olds

and

by

(int

erm

itten

t) i

nter

vent

ions

tha

t ke

ep

the

fund

amen

tal

with

in t

hese

thr

esho

lds

whe

neve

r th

e un

regu

late

d B

row

nian

m

otio

n

thre

aten

s to

tak

e th

e fu

ndam

enta

l ou

tsid

e th

e in

terv

entio

n lim

its (

and

thus

the

—2—

exch

ange

ra

te o

utsi

de i

ts t

arge

t zo

ne).

T

his

perm

its t

he c

urre

nt

valu

e of

the

spot

exch

ange

ra

te to

be

expr

esse

d as

a n

on—

linea

r fun

ctio

n of

the

cur

rent

val

ue o

f th

e

fund

amen

tal o

nly.

The

firs

t ste

p in

this

arg

umen

t, th

e de

cisi

on to

sol

ve f

or th

e cu

rren

t val

ue o

f th

e

exch

ange

ra

te a

s a

func

tion

only

of

the

cur

rent

an

d ex

pect

ed fu

ture

val

ues

of t

he

fund

amen

tal,

mea

ns th

at s

pecu

lativ

e bu

bble

s ar

e ru

led o

ut.

In d

ynam

ic

linea

r ra

tiona

l exp

ecta

tions

mod

els

the

argu

men

ts

for

rulin

g ou

t

spec

ulat

ive

bubb

les

are

wel

l—kn

own,

if n

ot n

eces

sari

ly w

holly

con

vinc

ing.

In

man

y of

the

mos

t po

pula

r m

odel

s th

e bu

bble

pr

oces

ses

are

non—

stat

iona

ry.'

The

se

non—

stat

iona

ry

bubb

le p

roce

sses

th

en

lead

to

non

—st

atio

nary

be

havi

or o

f st

ate

vari

able

s su

ch a

s as

set

pric

es.

Unb

ound

ed g

row

th o

r de

clin

e in

the

se s

tate

vari

able

s for

cons

tant

val

ues o

f th

e fu

ndam

enta

ls is

arg

ued

to v

iola

te,

even

tual

ly, c

erta

in o

ften

onl

y

impl

icitl

y st

ated

feas

ibili

ty co

nstr

aint

s.2

Bla

ncha

rd [1

979]

ha

s de

velo

ped

an e

xam

ple

of a

non—

stat

iona

ry (

stoc

hast

ic o

r

dete

rmin

istic

) lin

ear b

ubbl

e th

at h

as a

fini

te ex

pect

ed l

ifet

ime.

T

he p

roba

bilit

y of

the

bubb

le su

rviv

ing

for

a gi

ven

peri

od o

f tim

e de

clin

es w

ith th

e le

ngth

of th

at p

erio

d at

a co

nsta

nt e

xpon

entia

l ra

te a

nd a

ppro

ache

s ze

ro a

sym

ptot

ical

ly

(see

als

o B

lanc

hard

and

Fisc

her

[198

9, c

hapt

er 5

]).

Alth

ough

th

e bu

bble

rem

ains

non

-sta

tiona

ry a

nd i

ts

expe

cted

val

ue g

row

s ex

pone

ntia

lly

with

out b

ound

, th

e fi

nite

exp

ecte

d lif

etim

e of

this

bubb

le m

ay m

ake

it le

ss v

ulne

rabl

e to

the

stan

dard

cri

tique

of n

on-s

tatio

nary

bub

bles

.

Mill

er a

nd W

elle

r [1

990a

[ an

d M

iller

, W

elle

r an

d W

illia

mso

n [1

989]

use

the

Bla

ncha

rd

bubb

le

to a

naly

ze e

xcha

nge

rate

beh

avio

r (b

oth

with

and

with

out a

tar

get

zone

) in

a

stoc

hast

ic ve

rsio

n of

the

Dor

nbus

ch o

vers

hoot

ing

mod

el (

Dor

nbus

ch

[197

6]).

Cer

tain

no

n—lin

ear m

odel

s al

so p

osse

ss n

on—

stat

iona

ry b

ubbl

e so

lutio

ns.

For

inst

ance

, the

def

latio

nary

an

d in

flat

iona

ry b

ubbl

es

stud

ied

by H

ahn

[198

2] a

nd b

y

Obs

tfel

d an

d R

ogof

f [1

983]

, al

thou

gh o

btai

ned

in n

on—

linea

r m

odel

s,

are

also

non—

stat

iona

ry.

In m

ore

gene

ral

non—

linea

r mod

els

it it

how

ever

qui

te c

omm

on t

o

—3—

find

stat

iona

ry b

ubbl

es.3

The

exc

hang

e ra

te t

arge

t zo

ne m

odel

pot

entia

lly p

rovi

des

a pa

rtic

ular

ly h

appy

non—

linea

r br

eedi

ng g

roun

d fo

r sp

ecul

ativ

e bu

bble

s.

Prov

ided

the

targ

et z

one

is

cred

ible

, th

at i

s pr

ovid

ed

ther

e is

cer

tain

ty th

at t

he i

nter

vent

ions

requ

ired

to

defe

nd

the

targ

et z

one

will

ta

ke

plac

e,

the

exch

ange

ra

te c

an n

eith

er ri

se n

or f

all

with

out

boun

d.

The

re a

re i

nfin

itely

man

y in

terv

entio

n ru

les

that

are

com

patib

le w

ith t

he

defe

nse

of a

giv

en t

arge

t zo

ne.

For

a ra

tiona

l sp

ecul

ativ

e bu

bble

to

exis

t, th

e

inte

rven

tion

rule

mus

t of c

ours

e be

con

sist

ent,

both

with

in th

e ta

rget

zon

e an

d at

the

boun

dari

es, w

ith th

e be

havi

or o

f th

e (r

egul

ated

) fun

dam

enta

ls.

Thi

s pa

per d

evel

ops

a

sim

ple

and

intu

itive

int

erve

ntio

n ru

le th

at e

ncom

pass

es a

s a

spec

ial

case

the

sol

utio

n

with

out

a bu

bble

, ye

t is

ge

nera

l en

ough

to

perm

it a

wid

e ra

nge

of e

xoge

nous

and

fund

amen

tal—

depe

nden

t de

term

inis

tic or

sto

chas

tic b

ubbl

es.

With

thi

s in

terv

entio

n

rule

the

argu

men

ts a

gain

st b

ubbl

es l

ose

thei

r bite

. A

non

—st

atio

nary

bub

ble

does

not

now

im

ply

non—

stat

iona

ry b

ehav

ior o

f th

e ex

chan

ge r

ate.

T

his

argu

men

t is

not

new

.

As

earl

y as

198

7 W

illia

m H

. B

rans

on,

in c

onve

rsat

ion

and

disc

ussi

on,

repe

ated

ly ra

ised

the

poss

ibili

ty th

at ta

rget

zon

es m

ight

lead

to "

inde

term

inac

y" of

the

exc

hang

e ra

te.

Thi

s pa

per c

an b

e vi

ewed

as

an a

naly

tical

conf

irm

atio

n of h

is c

onje

ctur

e.

In t

he n

ext

Sect

ions

we

expo

sit

the

sim

ples

t ve

rsio

n of

the

cred

ible

tar

get

zone

mod

el a

nd a

naly

ze its

beh

avio

r with

or

with

out s

pecu

lativ

e bu

bble

s.

II.

A T

arge

t Zon

e M

odel

With

or W

ithou

t Spe

cula

tive

Bub

bles

.

(a) T

he M

odel

.

Our

ana

lysi

s of

the

pla

ce a

nd r

ole

of s

pecu

lativ

e bu

bble

s in

an

exch

ange

rat

e

targ

et z

one

requ

ires

the

exch

ange

ra

te t

o be

a no

n—pr

edet

erm

ined

(fo

rwar

d—lo

okin

g)

—4—

,

stat

e va

riab

le,

but

does

not

m

ake

furt

her

dem

ands

on

de

scri

ptiv

e re

alis

m.

We

ther

efor

e fe

el

com

fort

able

in

usi

ng

Occ

am's

ra

zor

and

follo

win

g th

e bu

lk

of t

he

liter

atur

e on

tar

get

zone

s by

cas

ting

the

anal

ysis

in

ter

ms

of th

e si

mpl

est

poss

ible

linea

r in

tert

empo

ral s

ubst

itutio

n eq

uatio

n fo

r th

e ex

chan

ge

rate

and

a (

cont

inuo

us

time)

rand

om w

alk

with

dri

ft f

or th

e un

regu

late

d fun

dam

enta

l. (N

otab

le d

epar

ture

s

from

the

cult

of e

xtre

me

sim

plic

ity

are

Mill

er a

nd W

elle

r [1

988a

,b;

1989

; 19

90a,

b,c]

who

ana

lyze

stoc

hast

ic ve

rsio

ns o

f the

rich

er D

ornb

usch

ove

rsho

otin

g m

odel

.)

The

exc

hang

e ra

te p

roce

ss i

s gi

ven

in e

quat

ion

(1).

(1)

s(t)

dt =

f(t)

dt +

a'E

tds(

t)

a >

0.

Her

e s(

t)

is th

e na

tura

l lo

gari

thm

of t

he s

pot

nom

inal

exc

hang

e ra

te a

nd f(

t)

the

fund

amen

tal

dete

rmin

ant

of

the

exch

ange

ra

te.

Et

is

the

mat

hem

atic

al

expe

ctat

ion o

pera

tor c

ondi

tiona

l on

the

info

rmat

ion

avai

labl

e at t

ime

t to

the

priv

ate

sect

or a

nd th

e re

gula

tor.

Bot

h sO

) an

d f(

t)

are

assu

med

to b

e ob

serv

able

at ti

me

t,

i.e.

Ets

(t) =

sO)

and

Etf

(t) =

f(t)

, an

d th

e st

ruct

ure

of th

e m

odel

is

know

n.

For

the

purp

ose

of th

is p

aper

, the

econ

omic

int

erpr

etat

ion

of

f(t)

is

irr

elev

ant

exce

pt i

nsof

ar a

s it

affe

cts

the

cred

ibili

ty of

our

ass

umpt

ion t

hat,

with

eert

alnt

y, th

e

targ

et z

one

will

be

succ

essf

ully

def

ende

d.

A c

omm

on i

nter

pret

atio

n of

f is

in t

erm

s of

rela

tive

nom

inal

mon

ey s

tock

s m

inus

rela

tive

real

—in

com

e—re

late

d de

man

ds

for

real

mon

ey b

alan

ces,

i.e

.

* *

f=m

—m

k(y—

y )

whe

re

m i

s th

e lo

gari

thm

of th

e ho

me

coun

try n

omin

al m

oney

sto

ck,

y th

e lo

gari

thm

of h

ome

coun

try

real

out

put

and

k is

the

(co

mm

on)

inco

me

elas

ticity

of

mon

ey

dem

and.

St

arre

d va

riab

les

deno

te fo

reig

n qu

antit

ies,

In

thi

s ca

se

a de

note

s th

e

—5—

inve

rse o

f the

(com

mon

) in

tere

st s

emi—

elas

ticity

of m

oney

dem

and.

4

If th

e tw

o na

tiona

l rea

l out

puts

are

gov

erne

d by

exo

geno

us B

row

nian

mot

ion,

inte

rven

tion

mea

ns ch

ange

s in

the

rela

tive

mon

ey s

uppl

ies b

roug

ht a

bout

by

mon

etar

y

fina

ncin

g of

pub

lic

sect

or f

inan

cial

def

icits

, th

roug

h op

en m

arke

t op

erat

ions

or

by

unst

erili

zed

fore

ign

exch

ange

m

arke

t in

terv

entio

n.

As

show

n in

Bui

ter

[198

9] s

uch

inte

rven

tion

polic

ies

will

in

gene

ral

requ

ire

adju

stm

ents

to p

rim

ary

(non

—in

tere

st)

fisc

al

surp

luse

s to

be

sust

aina

ble

inde

fini

tely

fr

om a

tec

hnic

al p

oint

of

view

(i.e

. in

orde

r to

prev

ent e

ither

exh

aust

ion

of f

orei

gn e

xcha

nge

rese

rves

or u

nbou

nded

grow

th of

the

publ

ic d

ebt)

. A

pro

of th

at t

hey

are

polit

ical

ly f

easi

ble

and

cred

ible

is

beyo

nd t

he

scop

e of

this

pap

er.

In th

e ab

senc

e of

inte

rven

tion,

the

(unr

egul

ated

) fun

dam

enta

l f w

ould

fol

low

a

Bro

wni

an m

otio

n pr

oces

s w

ith d

rift

p an

d in

stan

tane

ous v

aria

nce c

.

di(t

) =

pdt

+ u1

dW1(

t)

clf>

0.

W1(

t)

is a

sta

ndar

d W

iene

r pr

oces

s (d

Wf

e 1 im

w

here

is

at

-to

inde

pend

ently

and

norm

ally

dist

ribu

ted

with

zer

o m

ean

and

unit

vari

ance

).

We

now

al

low

fo

r in

terv

entio

n at

the

upp

er a

nd l

ower

bo

unda

ries

of

the

exch

ange

rat

e ta

rget

zon

e. T

he re

gula

ted f

unda

men

tal

is g

over

ned

by

(2)

df(t

) =

pdt

+ yI

Wf(

t) —

dlu

+ d

lt

and I a

re t

he c

umul

ativ

e int

erve

ntio

ns

at th

e up

per

and

low

er b

ound

s of

the

exch

ange

rat

e ta

rget

zon

e, g

iven

by

5u an

d s1

resp

ectiv

ely

with

<

<

5u

< .

A

deta

iled s

peci

fica

tion

of th

ese

inte

rven

tions

is g

iven

bel

ow.

—6-

(b)

The

Sol

utio

n

The

gen

eral

sol

utio

n of

(1)

is

give

n in

equ

atio

n (3

).

B(t

) is

the

val

ue o

f th

e

spec

ulat

ive

bubb

le a

t tim

e t.

(3)

5(t)

=

i: E

tf(v)

e(v_

t)dv

+ B

(t).

The

bub

ble

B(t

) ca

n be

an

y st

ocha

stic

or

st

rict

ly d

eter

min

istic

pro

cess

satis

fyin

g

(4)

B(t

)dt

= a'

Etd

B(t

).

Not

e tha

t si

nce

s(t)

is

part

of t

he in

form

atio

n se

t at t

, so

is B

(t).

W

e re

stri

ct

B, w

here

it i

s st

ocha

stic

, to

follo

w a

dif

fusi

on p

roce

ss.

Exc

ept f

or t

he c

ase

of t

he

"Bla

ncha

rd b

ubbl

e",

all

exam

ples

w

ill

in f

act

rest

rict

it

furt

her

to b

e a

twic

e

cont

inuo

usly

di

ffer

entia

ble

func

tion o

f Bro

wni

an m

otio

ns.

Fina

lly,

it is

impo

rtan

t to

note

that

the

aut

hori

ties a

re a

ssum

ed t

o be

una

ble t

o

inte

rven

e di

rect

ly in

the

bub

ble

proc

ess

(and

in

deed

in t

he e

xcha

nge

rate

pro

cess

).

The

y ca

n on

ly r

egul

ate t

he fu

ndam

enta

l £

In t

he i

nter

ior

of th

e ta

rget

zon

e, t

he g

ener

al s

olut

ion

for

s as

a f

unct

ion

of

curr

ent f a

nd c

urre

nt B

is g

iven

by5

.A2(

f(t)

—C

(t))

(5

) s(

t) =

f(t)

+ B

(t) +

+

A1(

t)e

+ A

2(t)

w

ith

/7 +

2nc

2 crf

—7—

A1,

A2

and

C a

re c

onst

ant

as l

ong

as s

rem

ains

in t

he i

nter

ior

of t

he t

arge

t

zone

, hut

can

cha

nge

whe

n s

is a

t its

upp

er o

r lo

wer

bou

ndar

y.

In fa

ct w

e ha

ve

(6)

A1(

t) =

A1(

r)

A2(

t) =

A2(

r)

C(t

) =

—B

(r)

B(r

) is

the

val

ue o

f th

e bu

bble

at t

ime

r, w

hich

is th

e da

te o

f the

mos

t rec

ent

visi

t pri

or to

t of

the

exch

ange

rat

e s

to o

ne o

f th

e bo

unda

ries

, th

at i

s

(7)

r a S

upre

mum

{t' �

t, su

ch th

at s

(t')

= 5u

or S

O')

=

We

also

def

ine s to

be

a va

lue

off

both

str

ictly

gre

ater

than

s an

d ar

bitr

arily

clos

e to

. S

imila

rly,

s

is a

valu

e of

f st

rict

ly le

ss t

han

5 an

d ar

bitr

arily

clo

se to

s.

We

next

def

ine

two

criti

cal v

alue

s of

the

bubb

le,

Bu

and

Bt

Bu

is d

eter

min

ed,

toge

ther

with

A1,

A2

and

by e

quat

ions

(8a

—d)

.

A(s

-l-B

) A

(s-4

-B)

(8a)

5u

5u+

+B

uie

1 u

u+A

e 2

u u

(8b)

=

(1

+ 5u

X +

i A1

eA1(

5u+

+ A

2 eA

2(5u

)

A(s

+B

)

A(s

1-i-B

)

(Sc)

si

=ft

++

Bu+

Aie

1 u+

A2e

2 u

(Sd)

=

(1

+

+ A

1A1

eA1(

51+

+ A

2 eA

2(5)

.

—8—

Ana

logo

usly

, B

1 is

det

erm

ined

, to

geth

er w

ith A

1,

A2

and

f fr

om e

quat

ions

U

(9a-

d).

(9a)

s

= f

+

+ B

1 +

A1

eA1

1)

A2 e2

1)

U

U

a

(9b)

0

= (1

+

)(1

+ A

1 A

1 eA

1(5u

1) +

A2 e2

1))

U

A

(s1-

l-B

1)

(9c)

s1

= 8

1+ +

B

+ A

1 e1

(11)

+ A2

e 2

A (s

1+B

1) +

A2 e2

1)).

(9

d)

0 =

(1 +

f=

s1 +

A1A

1 e

1

If B

> B

(r)

> B

1, th

en

A1(

r) an

d A

2(i-

) ar

e de

fine

d, t

oget

her w

ith f

(r)

and

f1(r

) by

equ

atio

ns (l

Oa—

d).

A [f

(r)+

B(r

)]

(ba)

s

=f (

r)+

B(r

)++

A1(

r)e

l +

A2(

r)e

u u

a

(lob

) =

f1(r

) + B

() +

+

A1(

r)e

+ A

2(r)

e A

(bc)

0 =

(1 +

)(

1 +

A1

A1(

r)e

+ A

2A2(

r)e 2(

TT

) U

(lO

d) 0

= (1

+ q

T)-

)(l +

A1 A

1(r)

e'' + A

2 A

2(r)

e )

—9.

-.

Whe

n B

(r) � B

u A

1(r)

and

A2(

r) a

re d

eter

min

ed by

equ

atio

ns (l

la,b

).

(ha)

s =

s +

+ B

(r)

Ai(

r) e

iu +

A2(

r) eA

250

(ub)

0

= (1

+

+ A

1 A

1 ei

u +

A2

A2

eA25

).

Whe

n B

(r)

B1

, A

1(r)

and A

2(r)

are

dete

rmin

ed b

y eq

uatio

ns (l

ic,d

).

- .\i

A

s1

(hic

) 5r

s1 +

+

B(r

) + A

1(r)

e +

A2(

r) e

(lid

) 0

= (

1 +

+

A

1 el

l + A

2 A

2 e2

1).

Equ

atio

ns (i

oa,b

) de

fine

u

and

f1 fo

r giv

en

8u' s

1 an

d B

. E

quat

ions

(ioc

,d)

are

the

fam

iliar

tang

ency

or n

o—ar

bitr

age

cond

ition

s of

ten

refe

rred

to, i

nacc

urat

ely,

as

'sm

ooth

pa

stin

g' c

ondi

tions

, th

at e

xpec

ted

inte

rven

tions

in f

shou

ld

not

chan

ge t

he

valu

e of

the

exc

hang

e ra

te.

As

we

shal

l se

e in

Sec

tion

IV b

elow

, th

e va

lue

of t

he

bubb

le

may

dep

end

oo

the

curr

ent

valu

e of

th

e un

regu

late

d fu

ndam

enta

l. T

he

cond

ition

s (1

0c—

d), (

iib) a

nd (l

id) a

llow

for

thi

s.

Not

e th

at fo

r B0

< B

C B

t A1

and

A2

are

inde

pend

ent o

f the

val

ue o

f the

bub

ble,

and

the

refo

re c

onst

ant o

ver t

ime.

It

is

also

read

ily se

en t

hat

in th

is c

ase

df

d11

—10

Equ

atio

ns (l

la,b

) ch

arac

teri

ze a

one

—si

ded

'sm

ooth

pas

ting'

con

ditio

n at

the

uppe

r bo

unda

ry (

s =

on

ly.

Equ

atio

ns (l

lc,d

) ch

arac

teri

ze a

one

—si

ded

'sm

ooth

past

ing'

con

ditio

n at

the

low

er b

ound

ary

(s =

on

ly.

The

se n

on—

stan

dard

bou

ndar

y

cond

ition

s w

ill b

e in

terp

rete

d fu

rthe

r be

low

.

We

now

det

ail

the

inte

rven

tions

at

the

uppe

r an

d lo

wer

bo

unda

ries

of

the

exch

ange

rat

e ta

rget

zon

e.

From

equ

atio

n (5

), t

he e

xcha

nge

rate

in th

e ta

rget

zon

e ca

n

be w

ritte

n as

5(

t) =

g(f

(t),

B(r

)) +

B(t

).

The

bub

ble

at ti

me

t can

be

a fu

nctio

n of

the

curr

ent u

nreg

ulat

ed fu

ndam

enta

l f(

t) a

nd/o

r of

oth

er v

aria

bles

z(t

).

Not

e th

at

z(t)

co

uld

be a

fun

ctio

n of

nM

or

exoe

cted

fqe

valu

es o

f th

e un

regu

late

d fu

ndam

enta

l. T

here

fore

B(t

) =

b(f

(t),

z(t)

).

The

exc

hang

e ra

te i

n th

e ta

rget

zon

e

can

ther

efor

e be

wri

tten

as

5 =

h(f,

•), w

here

a

+ . Fo

r sim

plic

ity

we

Of

rest

rict

the

ana

lysi

s to

tho

se b

ubbl

es f

or w

hich

, ev

en i

f B(t

) de

pend

s on

1(

t),

the

func

tion

h(f,

.),

reta

ins

its f

amili

ar s

sha

pe w

ith a

uni

que

inte

rior

min

imum

an

d a

uniq

ue i

nter

ior

max

imum

. In

the

cas

e w

here

Bu

< B

(r) c

B,

u is

the

refo

re th

e

valu

e of

f fo

r w

hich

s =

5u an

d th

e h

func

tion

has

an i

nter

ior m

axim

um, t

hat

is u

is

defi

ned

by h

(fu;

)

= 5u

' =

0

and

•) <

0.

Not

e th

at b

ecau

se of

the

bubb

le,

s m

ay r

each

5u

at v

alue

s of

fun

dam

enta

l dif

fere

nt f

rom

u•

The

se w

ill

be

deno

ted f

. Sim

ilarl

y, s

may

reac

h s

at v

alue

s of

f d

iffe

rent

fro

m f

The

se w

ill b

e

deno

ted

f1.

We

cons

ider

th

e si

mpl

est

poss

ible

exa

mpl

e of

a t

arge

t zo

ne.

A p

laus

ible

inte

rpre

tatio

u of

the

form

al m

odel

is th

at t

here

is a

fully

cre

dibl

e co

mm

itmen

t tha

t the

valu

e of

the

exch

ange

ra

te w

ill b

e co

ntai

ned

with

in a

n ex

ogen

ousl

y gi

ven

boun

ded

rang

e, t

hat i

s —

z C

s

s 5u

< z

. T

he in

terv

entio

ns in

the

fun

dam

enta

l pro

cess

that

kee

p th

e ex

chan

ge r

ate

with

in th

is ra

nge o

ccur

onl

y w

hen

the e

xcha

nge

rate

is at

the

boun

dari

es.

Tw

o di

stin

ct k

inds

of

inte

rven

tions

are

requ

ired

to d

efen

d th

e ta

rget

zo

ne in

the

pres

ence

of a

bubb

le.

11 —

The

fir

st i

s a

pair

of

infi

nite

sim

al re

flec

ting

inte

rven

tions

, _dl

u <

0 a

t th

e

uppe

r bou

ndar

y if

f =

u an

d dI

1> 0

at t

he l

ower

bou

ndar

y of

the

targ

et z

one

if

=

The

se n

egat

ive i

nfin

itesi

mal

inte

rven

tions

at th

e up

per b

ound

ary

s =

s a

nd

posi

tive

infi

nite

sim

al in

terv

entio

ns a

t the

low

er b

ound

ary

s =

5, c

orre

spon

d to

the

orig

inal

sch

eme

anal

yzed

by

Kru

gman

[1

990]

. II

inte

rven

tions

in t

he i

nter

ior

of th

e

targ

et

zone

("

intr

amar

gina

l" i

nter

vent

ions

) w

ere

perm

itted

, a

pair

of

refl

ectin

g

inte

rven

tions

of

exog

enou

sly

give

n fi

nite

mag

nitu

des,

_A

Iu <

0

and

Al1

> 0

co

uld

be a

llow

ed (

see

Floo

d an

d G

arbe

r [19

89])

.

The

sec

ond

clas

s of

inte

rven

tions

com

pris

es i

nter

vent

ions

of f

inite

mag

nitu

de,

that

are

fun

ctio

ns o

f the

cha

nge

in th

e m

agni

tude

of th

e bu

bble

sin

ce t

he p

revi

ous

visi

t

to th

e bo

unda

ries

. T

hey

too

occu

r onl

y w

hen

the

exch

ange

rat

e is

at t

he b

ound

arie

s of

the

targ

et z

one.

T

hey

alw

ays

are

in t

he o

ppos

ite

dire

ctio

n fr

om t

he in

fini

tesi

mal

(typ

e I)

int

erve

ntio

ns at

the

sam

e bo

unda

ry.

We

inte

rpre

t th

ese

(typ

e II

) di

scre

te

inte

rven

tions

as

th

e pa

ssiv

e

acco

mm

odat

ion

of r

atio

nal

spec

ulat

ive

atta

cks

at t

he b

ound

arie

s of

the

tar

get

zone

,

that

are

con

sist

ent

with

the

sur

viva

l of

the

targ

et z

one.

W

e re

fer t

o su

ch s

tock

—sh

ift

port

folio

res

huff

ies

as "

sust

aini

ng"

or "

frie

ndly

" sp

ecul

ativ

e at

tack

s.

The

beh

avio

r of

the

regu

late

d fun

dam

enta

l is

give

n in

equ

atio

ns (1

2a) t

o (1

2c).

The

co

nditi

ons

in (

12a)

, (1

2b),

(12

c(a)

) an

d (1

2c(y

))

are

the

stan

dard

one

s fo

r

regu

late

d Bro

wni

an m

otio

n (s

ee e

.g.

Har

riso

n ]1

985,

p.

80])

. If

>

u an

d if

f =

whe

n =

5u' t

hey

char

acte

rize

a r

efle

ctin

g ba

rrie

r at

f =

u (

give

n by

(12

a),

(12b

)

and

(12c

(a))

. If

f1 c

s an

d if

f =

f1

whe

n s

= s,

th

ey c

hara

cter

ize

a re

flec

ting

barr

ier a

t f =

f1 g

iven

by

(12a

), (

12b)

and

(12

c('y

)).

The

oth

er c

ondi

tions

ar

e no

n-st

anda

rd a

nd a

re r

equi

red

for

our

anal

ysis

of

ratio

nal

bubb

les

in a

targ

et

zone

. If

>

5u'

they

cha

ract

eriz

e (d

iscr

ete)

acco

mm

odat

ed

spec

ulat

sve

atta

cks

from

f =

f to

I =

u' fo

llow

ed b

y (i

nfin

itesi

mal

)

refl

ectio

n at

f =

u (

give

n by

(12

a),

(12b

) an

d (1

2c(f

i)).

If

f1 <

s,

they

cha

ract

eriz

e

—12

acco

mm

odat

ed sp

ecul

ativ

e atta

cks

from

f

= f

to

I =

f, fo

llow

ed b

y re

flec

tion a

t

=1

(giv

en

by (

12a)

, (1

2b)

and

(12c

(6))

. If

f0

s,

they

cha

ract

eriz

e

acco

mm

odat

ed

spec

ulat

ive a

ttack

s fr

om I =

I (to

I =

s (g

iven

by

(12a

), (

12b)

and

(12c

(c))

. If

I � s

, th

ey c

hara

cter

ize

acco

mm

odat

ed

spec

ulat

ive a

ttack

s fr

om I

=

to I

= s

(giv

en b

y (1

2a),

(12

b) a

nd l

2c(s

)).

The

rea

sons

for

thes

e no

n—st

anda

rd

feat

ores

will

bec

ome

clea

r be

low

.

We

rest

rict

atte

ntio

n to

sta

rtin

g st

ates

s

and

star

ting

date

t

= 0

and

defi

ne t

as th

e in

stan

t im

med

iate

ly be

fore

t, th

at is

t_e

lim (

t—ht

) t-

4O

at>

o

The

regu

late

d fun

dam

enta

l is fo

rmal

ly d

efin

ed a

s fo

llow

s:

(12a

) 1(

t) e

pt +

dW

1—10

(t)

+ I/

t) fo

r all

t � 0

(12b

) 1n

and

I ar

e co

nsta

nt if

s1 <

s <

(12c

) jO

an

d I v

ary

whe

n =

or

s

= s

(I

) 1f

f0 >

5 an

d 1

< 5

then

:

(a)

II s

= s

and

I = 1

then

1U

is

cont

inuo

us

and

incr

easi

ng.

(jl)

If

s(t

) =

s an

d 1(

t) =

10,

then

1(

t) =

f0(t

) an

d (a

) ap

plie

s he

ncef

orth

.

('y)

II s

= s1

an

d I =

1 th

en I

is co

ntin

uous

and

incr

easi

ng.

( II

s(t_

) =

s1 an

d 1(

t) =

1,

then

1(t

) =

f/t)

and

()

appl

ies

henc

efor

th.

— 1

3—

(ha)

1f

f � s

then

(c)

If s

(t_)

= s

then

1(t

) =

s

If s

= s

then

(y)

or (

8)

appl

y.

(JIb

) If

1� s

then

(77)

If

s(t)

= s

then

1(t

) =

s1

If s

= s

then

(a)

or

(fi)

app

ly.

It w

ill h

e ap

pare

nt t

hat,

for

any

size

bub

ble

we

can

calc

ulat

e exa

ctly

bot

h th

e

mag

nitu

des

of th

e pa

ssiv

e or

acc

omm

odat

ing

disc

rete

int

erve

ntio

ns re

quir

ed to

allo

w

the

targ

et z

one

to s

urvi

ve a

nd th

e va

lues

of

the

fund

amen

tals

at w

hich

they

will

occ

ur.

In o

ur

rudi

men

tary

mod

el,

ther

e is

no

pos

sibi

lity

of t

he s

pecu

lativ

e bu

bble

infl

uenc

ing

the

beha

vior

of th

e fu

ndam

enta

l. A

bub

ble

in th

is m

odel

can

onl

y in

flue

nce

the

exch

ange

ra

te d

irec

tly.

If th

e pr

oces

s go

vern

ing

the

unre

gula

ted

fund

amen

tal

incl

uded

th

e ex

chan

ge

rate

as

an a

rgum

ent

then

, be

caus

e th

e bu

bble

af

fect

s th

e

exch

ange

ra

te,

it w

ill

indi

rect

ly i

nflu

ence

th

e be

havi

or o

f th

e fu

ndam

enta

l. A

n

inte

rest

ing

anal

ysis

of

a m

odel

in

whi

ch t

he b

ubbl

e af

fect

s th

e ex

chan

ge

rate

bot

h

dire

ctly

and

ind

irec

tly th

roug

h th

e fu

ndam

enta

l is

ana

lyze

d by

Mill

er—

Wel

ler [

1990

a]

and

by M

iller

, Wel

ler

and

Will

iam

son

[198

9].

Fina

lly,

the

beha

vior

of

the

auth

oriti

es at

the

edge

s of

the

tar

get

zone

can

be

sum

mar

ized

as

fol

low

s:

"Ref

lect

w

hen

this

is

suff

icie

nt;

acco

mm

odat

e whe

n th

is i

s

nece

ssar

y.

Ill.

Smoo

th P

astin

g a

Bub

bly E

xcha

nge R

ate

Con

side

r the

cas

e of

an e

xoge

nous

bub

ble,

tha

t is

one

tha

t do

es n

ot d

epen

d on

1.

The

bub

ble

can

be ei

ther

det

erm

inis

tic

or s

toch

astic

. T

he g

raph

ic re

pres

enta

tion o

f

this

cas

e is

sho

wn

in F

igur

es la

and

lb.

We

now

def

ine

the

bubb

le e

ater

of

the

exch

ange

rat

e fo

r a

give

n va

lue

of th

e

— 1

4—

bubb

le,

B(t

). T

he b

ubbl

e ea

ter

of s

fo

r B

(t)

satis

fies

equ

atio

n (5

) w

ith

A1,

A2

and

C

dete

rmin

ed by

equ

atio

ns (6

) an

d (l

Oa—

d) f

or th

e ac

tual

ly p

reva

iling

va

lue

of

the

bubb

le, t

hat

is f

or

C(t

) =

—B

(t).

T

hat

is t

he b

ubbl

e ea

ter

of

s fo

r B

=

B is

give

n by

A1(

f + B

) A

2(f +

B)

(13a

) s=

f++

B+

A1e

+

A2e

A1(

f +

B)

A2(

f +

B)

(13b

) 5u

=fu

+ +

B + A

1 e

u +

A2e

u

A (f

+

B)

A2(

f +

B)

(13c

) O

=l+

A1A

1e 1

u +

A2A

2e

u

A1(

f1 +

B)

A2(

f1 +

B)

(13d

) s1

=f,

+-j

-B +

A1e

+

A2e

A1(

f1+

B)

A2(

f1+

B)

(13e

) O

=1+

A1A

1e

+A

2A2e

Thi

s bu

bble

ea

ter

shif

ts

cont

inuo

usly

w

ith

B;

an in

crea

se (

decr

ease

) in

B

corr

espo

nds

to a

n eq

ual h

oriz

onta

l di

spla

cem

ent

to t

he le

ft (

righ

t) o

f th

e gr

aph.

N

ote

that

the

bubb

le e

ater

giv

es a

ref

eren

ce t

raje

ctor

y on

ly

and

does

not

sho

w t

he a

ctua

l

mov

emen

t of

f an

d s

whe

n B

ch

ange

s un

less

Bu

> B

(r)

> B

1 an

d ei

ther

s =

an

d f=

f or

s=

s1 a

nd f

=f1

. W

hen

s is

in t

he in

teri

or o

f th

e ta

rget

zon

e an

d B

u >

B(r

) > B

1, its

pos

ition

ca

n be

def

ined

with

ref

eren

ce t

o th

e pe

riod

r bu

bble

eat

er,

that

is

the

bubb

le

eate

r

corr

espo

ndin

g to

the

valu

e of

B t

hat p

reva

iled a

t the

pre

viou

s (m

ost

rece

nt) v

isit

of

ui oq 03 sAnqe lnq) 'j jo q2u aqj o; aq osjt w

oo j 'ojqqnq gems A

puapgjns t °a

au!! .ç aq jo 24211 a; o3 si 434JM 'J =

; axoq'T v A

npunoq zaddn 042 03

Aoua2utl jo lulod e oe 'T

a + (1a ';)2 =

g £q uaA

I2 '1 ioj ;aoa aqquq 0112 '(ui2uo alp q2rIoflp 01511 ,ç alp uo si qotqA

t) "iJ Jo 3J0 01J3 02 51

J O

jII{M 3043 03°N

;o; 10300 oqqnq 0112 0AO

O 0a —

1a 100!310A

0 ' + (a ')2 =

qdei2aipuoarT

put u put

20813043'11J=J put

°J=j

;o; uoddoq w

oo siq; °s

puxq joddu 531 o 0201 a2uoqoxo 012 s2uuq

1H

02 ojqqnq

042 JO otis alp us aseanui w

e 1104M suodctsq T

eqht .ioprsuoo M

ON

A

repunoq IO

MO

j 0112

30 9jj

3ulod Aoua2w

e3 t put Arepunoq ;oddn 0l

0u 3uiod A

ouo2ut t swq 4314M

+ (0a 'J)2 =

s A

q UO

A!2 '0

IOJ

10200 oqqnq 042 31e;s eJ ain2sj uj

Aouonuo 0111 JO

uoireiooidop

popadxa ss 3043 '5 JO

oPuoqo jo 0201 popodxo OA

i3iSOd 0 0A

04 J4M O

uiJ Ji 043 JO 3J31

012 02 tusod Any

AO

UO

IIUO

042 Jo uOiltl001dcFe

po330dxa we 43!M

Si 3eq 's Jo a2wsqo

JO 0201 pa300dxa O

A!202011 0 q2!M

p0301301st oq 1PM 0114

.91' 043 JO 342!

042 03 3uiOd L

ull

'3p — s)o =

spa aousg

J = s

UIPIIO

013 4200143 0114 .91' 013 JO 212!; 012 03 504 (0

a;tuep.rooo put 0J ossiosqo) [0 0] usod oqi '(js <

°j q3!M) ojqqnq jrem

s o ;oj

us aqqnq aAs3ssO

cI v Jo osoo 043 10tS11O3 L

juo OM

'L3SA

OIq JO

ots ioj V

a 5 a) s 02

renba 10 11043 1030012 J stq ojqqnq oA

i3o8ou o2itj o put (1q < a <

o) s 11042 °1

504 ajqqnq O

A!3020u

'Asno2otuy °H

<

H ! 3043

115 03 rnba 10 1101{3

8101

oeq ajqqnq aAs3s od o2rei y

°a > a >

o ! 3043 11043 1030012 J

JO O

fijEA

0 0A2

(p—oi)

suolsonbo 4O0M

loJ 0110 51 ajqqnq oAslisod item

s y oqquq O

A!3!SO

d 0a2rej o Jo 3013 q o;n2sj 'ajqqnq aA

r3ssod j[tlS1 0 JO 0503 042

S3uOSO

ldOl

02 0102!J

•1a + (0a 'flP =

Lq U

OA

! s s

JO uo131sod 100300 012 '1H

5! a JO

Ofl[O

A [n30t 01J2

2 011112

30 J! U041

=

0 L3it1auo2 Jo 5501 315042!M

) 0a +

(0a 'j)2 = s

pa3ouap aq

UR

O

iOJ

10200 aqqnq 041 0H

aq

H Jo O

O10A

301J3 301 50fl0U

flO4 01j3 JO

ouo 02

— PT

—16

of

hi).

*2

w

ill

alw

ays

be to

the

lef

t of

ll•

From

11

*1 (o

r 11

2)

ther

e is

a

disc

rete

inte

rven

tion

(a s

tock

—sh

ift i

ncre

ase

in f

) w

hich

, at

a c

onst

ant

exch

ange

rat

e

= s,

mov

es t

he s

yste

m t

o Q

, the

poin

t of

tang

eocy

of

the

bobb

le e

ater

of

B1

and

the

uppe

r lim

it of

the

targ

et z

one.

T

he h

oriz

onta

l dis

tanc

e be

twee

n an

d hi

is

jus

t eq

ual

to t

he d

iffe

renc

e be

twee

n B

1 an

d B

°, i

.e.

— fj

= B

1 —

B°.

Mor

eove

r,

the

hori

zont

al d

ista

nce

betw

een

(1 an

d f

is a

lway

s gr

eate

r th

an t

he

dist

ance

bet

wee

n 11

0 an

d T

hese

tw

o di

stan

ces

wou

ld b

e eq

ual

only

if th

e sl

ope

of

the

bubb

le e

ater

wer

e 45

de

gree

s, w

hich

is n

ot p

ossi

ble.

*1

N

ote

that

at

Il

the

smoo

th p

astin

g (o

r no

—ar

bitr

age)

con

ditio

ns

(lO

a—d)

are

not s

atis

fied

. A

t Il

l in

Fig

ure

la th

e sm

ooth

pas

ting

cond

ition

s ar

e sa

tisfi

ed a

nd t

he

expe

cted

ra

te o

f cha

nge

of th

e ex

chan

ge r

ate

is n

egat

ive

(Ili

is to

the

righ

t of

the

45

line

thro

ugh

the

orig

in).

Il

l is

the

refo

re

cons

iste

nt w

ith c

redi

ble

inte

rven

tion

to

prev

ent

s fr

om ri

sing

abo

ve

s.d.

T

his

is n

ot th

e ca

se w

ith th

e la

rge b

ubbl

e sh

own

in

Figu

re l

b.

Ill

is to

the

left

of t

he 4

5* l

ine

thro

ugh

the

orig

in a

nd t

here

fore

rep

rese

nts

a po

sitiv

e ex

pect

ed

rate

of c

hang

e of

the

exc

hang

e ra

te,

inco

nsis

tent

w

ith

a cr

edib

le

defe

nse

of th

e up

per

limit

of th

e ta

rget

zon

e. In

this

cas

e th

e in

terv

entio

n rul

e le

ads

to

the

follo

win

g sc

enar

io.

From

Il

l a

one—

off

disc

rete

(st

ock-

shif

t) in

crea

se i

n f

brin

gs

the

syst

em to

11u

' tha

t is

the

poi

nt [

st,

su],

an a

rbitr

arily

sm

all

dist

ance

to th

e ri

ght

of t

he in

ters

ectio

n of

s =

an

d th

e 45

0 lin

e th

roug

h th

e or

igin

. Si

nce

s is

kep

t

cons

tant

at

s =

8n'

ther

e ar

e no

arb

itrag

e pro

fits

. Fr

om 1

l the

syst

em, w

ith A

1 an

d

A2

now

def

ined

by

the

one—

side

d 's

moo

th p

astin

g' c

ondi

tions

giv

en in

(lla

,b),

can

now

agai

n m

ove i

nto

the

inte

rior

of

the

targ

et z

one.

In F

igui

e lb

, the

gra

ph o

f s w

ith A

1 an

d A

2 de

term

ined

by

(ha)

and

(lib

) an

d B

= B

u de

note

d s'

, coi

ncid

es w

ith t

he b

ubbl

e ea

ter

of B

u Fo

r a

slig

htly

larg

er

valu

e of

B

, the

gra

ph o

f s

with

A

1 an

d A

2 de

term

ined

by

tbe

one

-sid

ed s

moo

th

past

ing

cond

ition

s (ha

) and

(lib

) is

deno

ted

s' '.

A la

rger

valu

e of

s

yiel

ds s

'' A

s B

go

es to

infi

nity

the

gra

ph o

f s

appr

oach

es a

vert

ical

line

thro

ugh

t1u

—17

Not

e th

at,

by c

onst

ruct

ion,

we

alw

ays

have

a l

ocal

max

imum

at t

he ta

ngen

cy

poin

t f2

(fo

r fin

ite v

alue

s of

B).

For

pos

itive

unr

egul

ated

real

izat

ions

of

f, s

tand

ard

infi

nite

sim

al re

flec

tion

stop

s th

e re

gula

ted

valu

e of

f f

rom

ris

ing

beyo

nd s.

For

nega

tive r

ealiz

atio

ns of

the

unre

gula

ted f

, the

sys

tem

mov

es (

give

n B

) in

to th

e in

teri

or

of th

e ta

rget

zon

e.

As

in t

he c

ase

of a

sm

all

bubb

le,

a va

riat

ion

in t

he v

alue

of th

e

bubb

le i

n th

e in

teri

or o

f the

targ

et zo

ne re

pres

ents

a ve

rtic

al d

ispl

acem

ent o

f the

gra

ph

of th

e ex

chan

ge r

ate

(with

con

stan

t val

ues

of A

1 an

d A

2).

With

a l

arge

bub

ble,

the

shap

e of

the

grap

h ch

ange

s ev

ery

time

the

exch

ange

rat

e vi

sits

the

bou

ndar

ies a

t a n

ew

valu

e of

B.

Sinc

e th

e bu

bble

gro

ws

expo

nent

ially

(i

n ex

pect

atio

n)

we

expe

ct

mor

e fr

eque

nt

inte

rven

tions

at

the

uppe

r (l

ower

) bo

unda

ry if

the

cur

rent

va

lue

of t

be b

ubbl

e is

posi

tive

(neg

ativ

e) th

an w

ith

a ze

ro b

ubbl

e.

We

cons

ider

the

se r

esul

ts

to b

e qu

ite

intu

itive

. O

ne

wou

ld e

xpec

t an

exc

hang

e ra

te s

ubje

ct t

o a

posi

tive

and

grow

ing

(in

expe

ctat

ion)

bub

ble

to s

pend

a lo

t of

time

at th

e up

per

boun

dary

of

the

targ

et z

one,

with

the

aut

hori

ties

inte

rven

ing

to c

ount

erac

t not

onl

y th

e un

regu

late

d fu

ndam

enta

l

but a

lso

the

bubb

le.

It i

s ap

pare

nt t

hat

whe

n s

reac

hes

5u w

ith

a la

rge

bubb

le,

the

stoc

k—sh

ift

incr

ease

in

f m

ust t

ake

the

syst

em to

a p

ositi

on s

tric

tly t

o th

e ri

ght

of t

he 4

50 l

ine

thro

ugh

the

orig

in.

On

the

450

line

the

expe

cted

rat

e of

dep

reci

atio

n is

zero

. If

we

impo

se t

he 's

moo

th p

astin

g' c

ondi

tions

w

hen

f =

= 5u

' (sm

all)

posi

tive r

ealiz

atio

ns o

f

incr

emen

ts

in t

he u

nreg

ulat

ed f

unda

men

tal

will

be

offs

et w

ith i

nfin

itesi

mal

refl

ectin

g

inte

rven

tions

. Neg

ativ

e re

aliz

atio

ns o

f df

wou

ld b

ring

the

sys

tem

to th

e le

ft o

f the

450

line

thro

ugh

the

orig

in,

that

is

to a

poi

nt w

ith a

pos

itive

exp

ecte

d ra

te o

f ch

ange

of s

.

Thi

s is

of

cour

se i

ncon

sist

ent w

ith

a cr

edib

le d

efen

se o

f the

tar

get

zone

. If

pri

vate

agen

ts

belie

ved

that

the

aut

hori

ties

wer

e st

abili

zing

th

e ex

chan

ge

rate

at 'e

u' u

b a

frie

ndly

spec

ulat

ive

atta

ck o

f in

fini

tesi

mal

size

wou

ld o

ccur

, br

ingi

ng th

e sy

stem

back

to

1u'

Thi

s am

ount

s to

sta

biliz

ing

the

fund

amen

tal

at f

= 5u

Si

nce

—18

Etd

s =

a(s

— f)

th

e ex

chan

ge

rate

wou

ld e

ffec

tivel

y be

exp

ecte

d to

be

fixe

d.

It is

easi

ly se

en th

at a

n ex

chan

ge r

ate

cann

ot re

mai

n fi

xed

for

any

fini

te in

terv

al o

f tim

e if

the

fund

amen

tal

is c

onst

ant

and

ther

e is

a n

on—

zero

spe

cula

tive

bubb

le.

Con

side

r

equa

tion

(3),

for

the

spec

ial

case

in w

hich

f is

kep

t con

stan

t at

s fo

reve

r.

The

sol

utio

n

for

the

exch

ange

rat

e is

giv

en b

y s

= 5u

+ B

whi

ch i

mpl

ies

that

, un

less

B =

0,

the

exch

ange

rat

e ca

nnot

be c

onst

ant.

The

re is

a s

impl

e, un

ifyi

ng c

hara

cter

izat

ion

of th

e in

terv

entio

ns th

at su

stai

n th

e

targ

et z

one.

It

is th

at th

e go

vern

men

t is

cre

dibl

y co

mm

itted

to in

fini

tesi

mal

refl

ectin

g

inte

rven

tions

at th

e bo

unda

ries

s1

an

d T

he v

alue

of

the

fund

amen

tal a

t w

hich

thes

e in

fini

tesi

mal

refl

ectin

g int

erve

ntio

ns at

the

mar

gins

occ

ur a

re d

eter

min

ed by

the

appr

opri

ate

two—

side

d or

one

—si

ded

"no—

arbi

trag

e"

(or

smoo

th

past

ing)

bou

ndar

y

cond

ition

s.

Con

side

r fi

rst t

he c

ase

of a

sm

all p

ositi

ve b

obbl

e sh

own

in F

igur

e la

. T

he v

alue

of th

e fu

ndam

enta

l at w

hich

the

exch

ange

rat

e re

ache

s, s

ay, t

he u

pper

bou

ndar

y u'

in Fi

gure

la

) is

dif

fere

nt fr

om th

e va

lue

of

f th

at c

hara

cter

izes

th

e ta

ngen

cy o

f th

e

bubb

le e

ater

and

the

upp

er b

ound

ary

(4 in

Fig

ure

la)

exce

pt i

n th

e ca

se o

f a

zero

bubb

le.

Sinc

e u

is le

ss t

han

u' th

e di

scre

te (

stoc

k-sh

ift)

jum

p in

the

fund

amen

tal

that

tak

es th

e sy

stem

to t

he re

flec

tion

poin

t Q

ca

n be

int

erpr

eted

as

a fr

iend

ly o

r

sust

aini

ng sp

ecul

ativ

e at

tack

whi

ch is

acc

omm

odat

ed

by th

e au

thor

ities

. *1

11

is

not

a c

redi

ble

eqm

hbrs

um i

f th

e pr

ivat

e se

ctor

kno

ws

the

gove

rnm

ent's

inte

rven

tion

rule

, as

the

re c

an b

e no

traj

ecto

ry s

= g(

f, B

0) +

B1

that

th

e up

per

boun

dary

if th

ere

is in

fini

tesi

mal

refl

ectio

n at

the

poi

nt w

here

s

= g

(f,

B0)

+ B

1 =

The

re is

a c

redi

ble

refl

ectin

g equ

ilibr

ium

at

Ili.

Not

e th

at

Etd

s =

n(su

_41)

dt>

Etd

s =

n(s0

_4)d

t

—19

Sinc

e th

e ex

pect

ed

rate

of

chan

ge o

f s

at

in F

igur

e la

is (

posi

tive

and)

high

er th

an t

he (n

egat

ive)

exp

ecte

d ra

te o

f cha

nge

of s

at

Il ,

the

shift

from

1u

to

can

he i

nter

pret

ed a

s an

inc

reas

e in

the

rela

tive

dem

and f

or h

ome

coun

try

mon

ey

due

to a

dec

reas

e in

the

dom

estic

—fo

reig

n in

tere

st d

iffe

rent

ial.6

T

he a

utho

ritie

s

oblig

ingl

y ac

com

mod

ate

this

frie

ndly

or s

usta

inin

g sp

ecul

ativ

e at

tack

.7 N

ote

that

if at

time

t th

e ex

chan

ge r

ate

reac

hes

s at

f =

fu(B

(rfl

that

is w

hen

the

curr

ent

valu

e

of th

e bu

bble

is t

he s

ame

as t

he v

alue

of

B

at th

e m

ost

rece

nt p

revi

ous

boun

dary

visi

t, th

e si

ze o

f th

e fr

iend

ily s

pecu

lativ

e at

tack

is o

bvio

usly

zer

o, a

nd o

nly

a re

flec

ting

inte

rven

tion o

ccur

s.

With

a la

rge b

ubbl

e (s

ee F

igur

e ib

) th

e st

ock-

-shi

ft i

ncre

ase i

n f

from

f =

f*1

to f

= s

can

also

be

inte

rpre

ted

as t

he p

assi

ve a

ccom

mod

atio

n of

a di

scre

te f

rien

dly

spec

ulat

ive

atta

ck.

The

bub

ble

eate

r of

the

larg

e bu

bble

B

1 in

Fig

ure

lb p

rodu

ces

a

tang

ency

po

int

with

the

upp

er b

ound

ary

at

whi

ch i

s to

the

lef

t of

the

45

line

thro

ugh

the

orig

in.

It th

eref

ore

has

a po

sitiv

e exp

ecte

d ra

te o

f cha

nge

of s,

whi

ch i

s

inco

nsis

tent

with

a c

redi

ble d

efen

se o

f th

e ta

rget

zon

e.

At

11u'

th

e ex

chan

ge r

ate

is

expe

cted

to a

ppre

ciat

e, w

hich

is c

onsi

sten

t with

a cr

edib

le ta

rget

zon

e.

The

pol

icy

rule

w

e us

e to

def

end

the

targ

et z

one

in t

he p

rese

nce

of r

atio

nal

spec

ulat

ive

bubb

les i

s no

t the

onl

y on

e ca

pabl

e of

del

iver

ing

the

surv

ival

of th

e ta

rget

zo

ne.

We

coul

d, f

or in

stan

ce, a

pply

the

one—

side

d sm

ooth

pas

ting

cond

ition

s [(

lla,b

) w

hen

s =

an

d (l

lc,d

) whe

n s

=

even

whe

n B

u >

B(r

) >

B1,

at a

ny e

xoge

nous

ly

give

n va

lue

of

f = u

> 5u

w

hen

s =

s an

d at

any

exo

geno

usly

gi

ven

valu

e of

=

<

whe

n s

= s

. W

e ch

ose

the

part

icul

ar r

ule

give

n in

(lO

a—d)

, (lla

,b)

and

(llc

,d)

both

bec

ause

it i

s qu

ite i

ntui

tive

and

beca

use

it is

as

clos

e as

pos

sibl

e to

the

orig

inal

mod

el.

In p

artic

ular

it i

nclu

des

the

trad

ition

al 's

moo

th p

astin

g" s

olut

ion

as

the

spec

ial

case

whe

n th

ere

is n

o bu

bble

.

—20

W. A

Sur

feit

of B

ubbl

es

Con

side

r ag

ain

the

gene

ral

solu

tion

to e

qnat

ion

(1)

give

n in

(3)

. T

he fi

rst t

erm

on th

e R.H

.S. o

f (3

) is

com

mon

ly c

alle

d th

e fu

ndam

enta

l so

lutio

n, s

1

(14)

5f

0) =

a

Etf(

v) e

(\T

_t)d

v

Con

side

r eq

uatio

n (1

5) b

elow

, w

hich

is a

spec

ial

case

of e

quat

ion

(5).

.\f

If

(15)

s=

f++

A1e

1 +

A2e

2

In th

e te

rmin

olog

y of

McC

allu

m

[198

3] th

is i

s th

e m

inim

al

stat

e so

lutio

n: i

t in

volv

es o

nly

the

stat

e va

riab

le(s

) an

d th

e st

ate

vari

able

s ent

er i

n a

"min

imal

" w

ay.

The

fir

st tw

o te

rms

on t

he R

.II.

S of

(15

) ar

e th

e fu

ndam

enta

l sol

utio

n fo

r th

e

unre

gula

ted f

unda

men

tal.

All

of th

e R

.H.S

. of

(15

), f

or s

ome

give

n (n

on—

zero

) val

ues

of A

1 an

d A

2, is

the

fund

amen

tal s

olut

ion

for t

he r

egul

ated

fund

amen

tal.

For

the

unre

gula

ted

fund

amen

tal,

non—

zero

va

lues

of

A1

and/

or A

2 w

ould

perm

it w

hat

Froo

t an

d O

bstf

eld

[198

9c]

call

intr

insi

c bu

bble

s, w

ithin

the

cla

ss o

f fu

nctio

ns ex

pres

sing

s(

t)

as a

func

tion

of c

urre

nt f

unda

men

tals

(f(

t))

ppjy

.

For

the

regu

late

d fu

ndam

enta

l, th

e ex

iste

nce

of in

trin

sic

bubb

les

wou

ld r

equi

re

that

f

ente

rs t

he s

olut

ion

for

the

exch

ange

rat

e in

the

int

erio

r of

the

targ

et z

one

thro

ugh

term

s oth

er th

an th

e on

es a

ppea

ring

(w

ith A

1 an

d A

2 de

term

ined

by

(lO

a—d)

,

(lla

,b)

or

(llc

,d))

on

the

11.1

1.5.

of

equ

atio

n (1

4)

and

with

no

othe

r va

riab

le(s

) in

clud

ed.

Such

intr

insi

c bu

bble

s ar

e cl

earl

y im

poss

ible

.

The

lite

ratu

re h

as g

ener

ally

cas

t its

dis

cuss

ion

of bu

bble

s fo

r our

cla

ss o

f mod

els

in t

erm

s of

the

beha

vior

of

s as

a f

unct

ion

only

of

curr

ent

f for

dif

fere

nt v

alue

s of A

1 an

d A

2.

For

exam

ple,

in

the

case

of

a fr

eely

flo

atin

g ex

chan

ge r

ate,

unl

ess

A1

= 0,

the

—21

devi

atio

n of

s fr

om f

will

bec

ome

infi

nite

as

I gro

ws

with

out b

ound

(si

nce

A1

> )

and

unle

ss A

2 =

0,

the

devi

atio

n of s

from

f w

ill b

ecom

e in

fini

te a

s f f

alls

with

out b

ound

(sin

ce

A2

< 0

).

A1

= A

2 =

0

rule

s ou

t on

ly

intr

insi

c bu

bble

s.

Man

y ki

nds

of

exch

ange

rat

e bu

bble

s ar

e po

ssib

le u

nder

a f

loat

ing

rate

eve

n if

A1

= A

2 =

0.

With

such

bub

bles

, s c

an d

evia

te fr

om f

(for

any

giv

en va

lue

of f

) by

even

tual

ly un

boun

ded

amou

nts.

It is

rec

ogni

zed

in t

he l

itera

ture

(Fr

oot

and

Obs

tfel

d [1

989b

] are

an

exam

ple)

,

that

the

choi

ce o

f A

1 an

d A

2 on

ly r

estr

icts

the

rela

tions

hip b

etw

een

s an

d f,

but

that

stat

e va

riab

les o

ther

than

I m

ay e

nter

the

solu

tion

for

s th

roug

h bu

bble

s.

In g

ener

al,

bubb

les

can

intr

oduc

e on

e or

mor

e ad

ditio

nal s

tate

var

iabl

es i

nto

the

solu

tion

for

s.

Subj

ect

to th

e co

nstr

alnt

that

the

se b

ubbl

es o

bey

(4),

th

ey c

an c

ause

s t

o de

viat

e in

alm

ost a

ny c

once

ivab

le m

anne

r fro

m g

(f,

.),

for

any

valu

es o

f A1

and

A2.

Wha

t is

not,

we

belie

ve,

reco

gniz

ed a

s cl

earl

y is

tha

t s

can

depe

nd o

n fi

n w

ays

othe

r th

an g

iven

by

g(f,

•)

(or

the

R.H

.S.

of (1

5)),

pro

vide

d s

also

dep

ends

(th

roug

h

B)

on a

t lea

st o

ne o

ther

sta

te v

aria

ble.

We

show

bel

ow th

at t

he b

ubbl

e at

tim

e t,

B(t

)

can

be a

fun

ctio

n of

the

unre

gula

ted

fund

amen

tal

f(t)

, pr

ovid

ed

it al

so d

epen

ds o

n

som

e ot

her

stat

e va

riab

le (

or st

ate

vari

able

s) z

(t),

with

P1.

1 =

0, w

hich

ens

ures

that

01

(t)

Etd

B =

csB

dt.

Thi

s im

plie

s th

at w

ithin

the

targ

et z

one,

dB

ca

n be

a fu

nctio

n of

df.

z(t)

ca

n (b

ut n

eed

not)

be

a fu

nctio

n ex

clus

ivel

y of

pas

t an

d/or

ant

icip

ated

fut

ure

valu

es

of t

he u

nreg

ulat

ed f

unda

men

tal.

We

call

this

cla

ss o

f ge

nera

lized

in

trin

sic

bubb

les "

fund

amen

tal-

.dep

ende

nt" b

ubbl

es.

(a) B

ubbl

es th

at d

on't

burs

t

We

begi

n by

con

side

ring

spe

cula

tive

bubb

les,

bot

h de

term

inis

tic an

d st

ocha

stic

,

that

don

't co

llaps

e.

Exa

mpl

es o

f non

—co

llaps

ing b

ubbl

e pr

oces

ses

satis

fyin

g (4

) in

clud

e

the

sim

ple

exog

enou

s de

term

inis

tic p

roce

ss

give

n in

(16

),

whe

re B

(0)

= B

0 is

an

— 2

2 —

arbi

trar

y in

itial

val

ue fo

r the

B p

roce

ss.

(16)

B

(t) =

B0e

4.

An

exam

ple

of a

si

mpl

e ex

ogen

ous

(bac

kwar

d—lo

okio

g) s

toch

astic

bub

ble

satis

fyin

g (4

) is

give

n in

equ

atio

ns (1

7a,b

), w

ith B

0 ar

bitr

ary.

(17a

) dB

(t)

= n

B(t

)dt +

abd

Wb

(llb

) B

(t) =

j.t e

abdW

b(v)

+

e'B

0.

The

par

amet

er

cb is

the

ins

tant

aoeo

us va

rian

ce o

f th

e bu

bble

pro

cess

. N

ote

that

5b

co

uld

be a

fuo

ctio

n of

s,

f,

t or

any

oth

er s

et o

f va

riab

les

with

out t

his

affe

ctin

g th

e fa

ct t

hat

equa

tion

(17a

) sat

isfi

es

(4).

Fo

r in

stan

ce, i

f U

B

is a

pos

itive

cons

tant

, th

e bu

bble

can

"ch

ange

sig

n".

With

geo

met

ric

Bro

wni

an

mot

ion

prop

ortio

nal t

o B

), s

ign

reve

rsal

s of

the

bub

ble

are

rule

d ou

t, al

thou

gh B

ca

n ch

ange

dIre

ctio

n.

Impo

rtan

t fo

r ou

r an

alys

is,

the

bubb

le p

roce

ss

can

itsel

f be

a

func

tion

of

curr

ent,

past

or

antic

ipat

ed f

utur

e va

lues

of

the

unre

gula

ted

fund

amen

tal

f.

One

exam

ple

is g

iven

in e

quat

ions

(18

a,b)

bel

ow.

In w

hat f

ollo

ws

the

vari

able

z(

t)

is

eith

er s

tric

tly d

eter

min

istic

or f

ollo

ws

a di

ffus

ion

proc

ess.

T

he z

(t)

proc

ess

is a

twic

e

cont

inuo

usly

dif

fere

ntia

ble

func

tion

of it

s ar

gum

ents

. T

he k

ey d

efin

ing

prop

erty

of

z(t)

is

tha

t it d

oes

not v

ary

with

f(t

), i

.e.

= 0.

Fo

r the

exa

mpl

e giv

en be

low

, U

f(t)

th

e z

proc

ess

give

n in

equ

atio

n (l

Sb)

(a b

ackw

ard—

look

ing

dete

rmin

istic

pro

cess

)

gene

rate

s, to

geth

er w

ith e

quat

ion

(18a

), a

bubb

le p

roce

ss th

at sa

tisfi

es e

quat

ion

(4).

—23

-—

(isa)

B

(t) =

kf(

t) +

z(t

) k

# —

1

(18b

) z(

t) =

et

_[k(

of(v

) —

#)]d

v +

ez0

is a

n ar

bitr

ary

initi

al v

alue

for

the

z pr

oces

s.

Not

e th

at t

he b

ound

ary

cond

ition

s

(iO

a—d)

ca

nnot

be

satis

fied

if

k =

—1

and

that

, gi

ven

the

boun

dary

cond

ition

s (i

ia,b

)

or (

lied)

, A1

and

A2

are

inde

term

inat

e if k

= —

1.

Mor

e ge

nera

lly, e

quat

ion

(18a

) will

hol

d pr

ovid

ed z

sat

isfi

es

(19)

E

tdz(

t) =

[k(

of(t

) - j)

+ o

z(t)

]dt.

The

z p

roce

ss

give

n in

(1

9)

(and

th

eref

ore

the

B

proc

ess

itsel

f) c

an b

e

forw

ard—

look

ing,

bac

kwar

d—lo

okin

g (o

r a

linea

r co

mbi

natio

n of

the

for

war

d—lo

okin

g

and

back

war

d—lo

okin

g so

lutio

ns),

it

can

be s

tric

tly d

eter

min

istic

or st

ocha

stic

.

An

exam

ple

of

a fo

rwar

d—lo

okin

g so

lutio

n fo

r z

(now

tr

eate

d as

a

non—

pred

eter

min

ed v

aria

ble)

whi

ch s

atis

fies

equ

atio

ns

(isa

) an

d (1

9)

(and

of

cou

rse

equa

tion

(4))

is g

iven

in e

quat

ion

(20)

.

(20)

z(

t) =

- J e(

t)E

tk(a

i(v)

- ji)

dv +

R(t

).

Her

e R

(t)

is a

ny

stri

ctly

det

erm

inis

tic

or s

toch

astic

pro

cess

w

hich

sat

isfi

es

Btd

R(t

)dt

= c

sR(t

)dt.

It c

an b

e pr

edet

erm

ined

or

non

—pr

edet

erm

ined

. O

ne p

ossi

ble

choi

ce f

or

R(t

) w

ould

be

the

proc

ess

give

n on

the

rig

ht—

hand

sid

e of

(iS

b).

Thi

s

wou

ld m

ake

the

bubb

le

B(t

) in

(is

a) a

func

tion

of c

urre

nt,

past

and

ant

icip

ated

futu

re v

alue

s of

the

unre

gula

ted f

unda

men

tal.

Ano

ther

inte

rest

ing

bubb

le p

roce

ss i

nvol

ving

f

is th

e fo

llow

ing:

—24

(21a

) B

(t) =

fO)z

(t)

(21b

) dz

(t) =

f(t)

[ai(t

) — p]

z(t)

dt +

adW

5 If

0 z(

t)=

0 1=

0

(dW

and

dW1

are

assu

med

to

be co

ntem

pora

neou

sly

inde

pend

ent)

.

An

exam

ple

of a

cla

ss o

f ra

tiona

l bub

bles

th

at h

as t

he p

rope

rty

that

-

01(t

) de

pend

s on

1(

t) is

giv

en in

(22a

—b)

.

(22a

) B

(t) =

f(t)

2 +

z(t)

(22b

) E

tdz(

t) =

[o(f

(t)2

+ z

(t))

— 2

f(t)

p — o]

dt.

A s

impl

e bac

kwar

d—lo

okin

g de

term

inis

tic

solu

tion

for

a th

at sa

tisfi

es (

22b)

is

(23)

z(

t) =

j eo(

t_v)

[a(v

)2 —

2f(

v) —

a]dt

+ e

ulz0

.

If B

ca

n de

pend

on

the

regu

late

d va

lue

of th

e fu

ndam

enta

l as

wel

l as

on

the

unre

gula

ted

fund

amen

tal,

we

can

gene

rate

the

very

unu

sual

bub

ble

give

n in

equ

atio

n

(24)

.

(24)

B

(t) =

- g(f

(t),

B(r

)) +

kf(

t) +

z(t

).

Thi

s bu

bble

is c

onsi

sten

t with

the

law

of

mot

ion

(4),

pro

vide

d th

at (2

5) h

olds

:

— 2

5 —

(25)

Etd

z(t)

= {—

a[g

(f(t

),.)

— kf

(t)

— z(

t)] +

[g'(f

(t),

.) —

k]p

+ g

' '(f(

t),.)

a}dt

Equ

atio

n (2

6) i

s an

exa

mpl

e of

a s

impl

e st

ocha

stic

proc

ess

for

z th

at

satis

fies

(25)

(26)

z(

t) =

eQ

(t) [{

-a[g

(f(v

),.)

- kf(

v)]

+ [g

' (f(

v),.)

—k]

p +

g

/ (fN

),.)

a}dv

+ cz

dWz(

v)] dv

+ e

z0.

Whi

le th

is b

ubbl

e is

con

sist

ent w

ith t

he l

aw o

f m

otio

n (4

) w

ithin

the

targ

et

zone

, it

does

not

per

mit

the

boun

dary

cond

ition

s to

be

satis

fied

. W

ith th

is p

roce

ss f

or

B(t

) th

e ex

chan

ge r

ate

is g

iven

by

(27)

s(

t) =

kf(

t) +

z(t)

.

Not

e th

at in

this

cas

e s

incr

ease

s or

dec

reas

es l

inea

rly

with

f

(if k

# 0

), t

hus

mak

ing

"sm

ooth

pas

ting"

bo

unda

ry c

ondi

tions

im

poss

ible

to

appl

y.

Whe

n k

= 0

, 5(

t)

is in

depe

nden

t of

f(t)

, al

thou

gh

z(t)

of

cou

rse

depe

nds

on p

ast v

alue

s of

f

(and

of f

l

(b)

Bub

bles

that

bur

st

Bla

ncha

rd [

1979

] pr

ovid

es

an i

nter

estin

g ex

ampl

e of

a r

atio

nal

spec

ulat

ive

bubb

le w

hose

exp

ecte

d du

ratio

n (t

ime

until

the

mom

ent a

col

laps

e oc

curs

) is

fini

te.

It

is

mos

t ea

sily

mot

ivat

ed i

n di

scre

te t

ime.

E

quat

ion

(28)

is

the

disc

rete

ana

log

of

equa

tion

(1).

(28)

5t

= 0

(1 +

u)f

t + (1

+ a

)'Ets

t+r

0> 0

— 2

6

The

sol

utio

n of

(28

) co

o±tio

n on

cur

rent

and

exp

ecte

d fu

ture

vue

s of

1t i

s

(29)

s

= o

(i +

0)_

i E0

(1 +

or'

Etf

t+ +

Bt

whe

re

Bt

satis

fies

(30)

E

tBt+

i = (1

+ o)

Bt.

Con

side

r th

e fo

llow

ing

proc

ess

for B

(31)

B

t+i =

(1 —

irr'(

i + o

)Bt

+ +

i w

ith p

roba

bilit

y 1

Bt+

i = 6t

+i

with

pro

babi

lity

r

whe

re

0< r

< 1

an

d

(32)

E

tct+

i = E

tct+

i = 0.

It is

eas

ily c

heck

ed t

hat

(31)

an

d (3

2) s

atis

fy (

30).

E

quat

ions

(31)

an

d (3

2)

defi

ne a

bub

ble

(sto

cbas

tic if

t

or

is a

ran

dom

var

iabl

e)

for

whi

ch th

ere

is a

cons

tant

pro

babi

lity

of co

llaps

e,

ir,

each

per

iod.

If

a c

olla

pse

occu

rs i

n pe

riod

t+

l, th

e ex

chan

ge r

ate

retu

rns

to it

s fu

ndam

enta

l val

ue if

=

0.

Mor

e ge

nera

lly, i

f

is r

ando

m,

the

expe

cted

po

st—

colla

pse

valu

e of

the

exc

hang

e ra

te i

s its

fund

amen

tal v

alue

, but

the

rea

lized

val

ue o

f th

e ex

chan

ge r

ate

can

diff

er f

rom

this

expe

ctat

ion b

y a

zero

mea

n fo

reca

st e

rror

. If

the

bubb

le c

olia

pses

in

peri

od

t+1

and

—27

is

non—

zero

, a

new

bub

ble

star

ts i

n pe

riod

t+

1 w

hicb

fol

low

s a

law

of

mot

ion

like

(31)

and

(32)

, bu

t pos

sibl

y w

itb a

dif

fere

nt v

alue

of

ir a

nd d

iffe

rent

(al

thou

gh st

ill

zero

mea

n) ra

ndom

dis

turb

ance

term

s c

and

c.

In co

ntin

uous

tim

e th

e sa

me

idea

is c

aptu

red

as f

ollo

ws.

ir

now

is t

he c

onst

ant

inst

anta

neou

s pr

obab

ility

of

colla

pse

of t

he b

ubbl

e.

Con

ditio

nal

on t

he b

ubbl

e no

t

havi

ng c

olla

psed

by

time

t, th

e pr

obab

ility

of

the

bubb

le l

astin

g til

l tim

e t +

At

is

e_iA

t (A

t 0)

. W

e co

nsid

er t

he f

ollo

win

g pr

oces

s fo

r B.

As

befo

re,

Wb

and

Wb

are

stan

dard

Wie

ner p

roce

sses

. C

ondi

tiona

l on

the

bubb

le h

avin

g la

sted

till

time

t, w

e

have

(33)

B

(t+

At)

= e

( r)

AtB

(t) +

Cb Jl

e(X

WbN

) w

ith p

roba

bilit

y

B(t

+A

t) =

b Je

b(v)

-i

rAt

with

pro

babi

lity

1 —

e

It fo

llow

s th

at t

he e

xpec

ted

rate

of

chan

ge o

f B

per

uni

t tim

e ov

er t

he in

terv

al

[t,

t+A

t] is

B B

(t+

At)

— B

(t)

oAt

(34

____

____

____

__ _

(e

—_1

)Bt

At

At

In t

he li

mit

as

At

0 th

is b

ecom

es

Etd

B(t

) =

oB

(t)d

t, as

req

uire

d. W

hile

the

bubb

le l

asts

, the

inst

anta

neou

s rat

e of

cha

nge

of t

he b

ubbl

e is

giv

en by

—28

dB(t

) (a

+ ir

)B(t

)dt +

cbdW

b(t)

.

Whi

le th

e ex

pect

ed r

ate

of c

hang

e of

the

bubb

le i

s E

tdB

= a

Bdt

, th

e ex

pect

ed

rate

of v

aria

tion

of

B

cond

ition

al

on th

e bu

bble

sur

vivi

ng t

he n

ext i

nsta

nt, i

s gi

ven

by (a

+ ir

)Bdt

.

Let

tc be

the

(ran

dom

) tim

e w

hen

the

bubb

le c

olla

pses

. If

the

valu

e of

B

at

tc

(a-i

-r)(

t —

v)

the

time

of c

olla

pse,

B

(tc)

= b

e

c dW

b(v)

is n

on—

zero

, a

new

bub

ble

will

sta

rt a

t tc

pos

sibl

y w

ith a

dif

fere

nt v

alue

of

ii,

diffe

rent

whi

te n

oise

pro

cess

es

dWb

and

dWb

and

diff

eren

t va

lues

for

ab

and

A B

lanc

hard

bubb

le i

s pe

rfec

tly

com

patib

le w

ith o

ur t

arge

t zon

e m

odel

. W

hen

it co

llaps

es t

here

will

be

a di

scre

te c

hang

e in

the

leve

l of

the

exch

ange

rat

e, w

hich

lie

s

on t

he t

raje

ctor

y ap

prop

riat

e to

the

new

(po

st—

colia

pse)

bub

ble.

Si

nce

this

cha

nge

is

unex

pect

ed,

no a

rbitr

age o

ppor

tuni

ties a

rise

.

zone

s w

ith fu

ndam

enta

l—de

pend

ent

bubb

les

If th

e va

lue

of th

e bu

bble

at t

ime

t is

a fu

nctio

n of

the

cont

empo

rane

ous

valu

e

of t

he u

nreg

ulat

ed f

unda

men

tal,

then

with

in t

he t

arge

t zo

ne

the

resp

onse

of

the

exch

ange

rat

e to

the

fund

amen

tal w

ill b

e af

fect

ed r

elat

ive t

o th

e ca

se o

f an

exo

geno

us

bubb

le (

and,

a—

fort

iori

, rel

ativ

e to

the

no—

bubb

le

case

). T

his

is s

trai

ghtf

orw

ard,

sinc

e

in th

is c

ase

= 1

. A

s lo

ng a

s j —

1,

the

tang

ency

cond

ition

s (b

c—cl

), (

llb)

and

(lld

) are

the

sam

e as

in th

e ca

se o

f an

exo

geno

us b

ubbl

e.

—29

V.

The

Dis

trib

utio

n Fun

ctio

n of

the

Exc

hang

e Rat

e in

a T

arge

t Zon

e in

the

Pres

ence

of a

Rat

iona

l Spe

cula

tive B

ubbl

e

By

Ito'

s lem

ma,

the

exch

ange

rat

e in

the

targ

et z

one

is a

dif

fusi

on p

roce

ss w

ith

stoc

hast

ic di

ffer

entia

l

(35)

ds

(t)

= [g

f(f,.

)p +

gff(

f,.)

4]dt

+ gf

(f,.)

cfdW

f + dB

.

Let

V

artx

(t')

deno

te t

he v

aria

nce

of

x(t')

con

ditio

nal

on t

he in

form

atio

n av

aila

ble

at t

ime

t, th

at i

s V

artx

(t')

z E

t[x(

t') —

E

tx(t

')]2.

T

he in

stan

tane

ous

varia

nce o

f the

bub

ble

proc

ess

is g

iven

by

o(f,

f, s

, B

, .)

S

ince

the

only

res

tric

tion

on t

he b

ubbl

e pr

oces

s is

tha

t E

tdB

= nB

dt,

it is

cer

tain

ly p

erm

issi

ble

for

the

inst

anta

neou

s va

rian

ce o

f th

e bu

bble

pr

oces

s to

dep

end

on

f, f

, s,

B

or

oth

cr

vari

able

s.

As

befo

re, r

ecog

nizi

ng t

hat

B m

ay d

epen

d on

f,

we

wri

te

- .

,9z

B=

b(f,

z) w

ith

Usi

ng s

elf—

expl

anat

ory

nota

tion w

e ob

tain

(36a

) E

ds(t

) =

(gf+

bf)p

+ b

Etd

z(t)

+ {(

gff+

bff)

o +

bzzU

+ 2b

zfPf

rfff

Cz]

dl

and

(36b

) V

artd

s(t)

= [(

gf+

bf)2

o + b

a + 2

(gf +

bf)b

zPfz

afcz

] dt

.

For

a bu

bble

pr

oces

s to

be

cons

iste

nt w

ith a

targ

et z

one

unde

r th

e sp

ecif

ied

inte

rven

tion

rule

, it

mus

t be

th

e ca

se t

hat,

for

any

size

bu

bble

, th

e bo

unda

ry

—30

cond

ition

s ch

arac

teri

ze

tang

ency

po

ints

tha

t ar

e lo

cal

max

ima

(min

ima)

if

the

tang

ency

is

at t

he u

pper

(lo

wer

) bo

unda

ry.

For

a bu

bble

tha

t is

con

sist

ent w

ith t

he

law

of m

otio

n in

(4)

but d

oes

not p

erm

it sm

ooth

pas

ting

acco

rdin

g to

(lo

ad),

we r

efer

to th

e bu

bble

in

(18a

,b)

with

k =

—1

or th

e bu

bble

giv

en in

(24)

and

(25

).

Not

e th

at t

he i

nsta

ntan

eous

cond

ition

al v

aria

nce

of th

e ch

ange

in

the

exch

ange

rate

no

long

er

in g

ener

al

goes

to

zero

as

the

boun

dari

es

of t

he t

arge

t zo

ne

are

appr

oach

ed.

As

the

exch

ange

ra

te

appr

oach

es

the

boun

dary

, the

var

ianc

e of

the

exog

enou

s co

mpo

nent

of

the

bubb

le n

eed

not g

o to

zer

o no

r nee

d gf

+ bf

tend

to z

ero.

If,

in t

he

spir

it of

O

bstf

eld—

Rog

off

and

Dib

a—G

rnss

man

, w

e ac

cept

th

e

prop

ositi

on th

at u

nder

fre

e fl

oatin

g bu

bble

s ca

nnot

occ

ur,

the

cnnd

ition

al

expe

ctat

ion

and

vari

ance

of th

e ch

ange

in

the

exch

ange

rat

e w

ith a

free

flo

at a

re (

letti

ng s

den

ote

the

exch

ange

rat

e un

der a

free

flo

at):

Ft

=

and

ds(t

2

Var

1 --

-- =

Triv

ially

, sin

ce b

ubbl

es c

an e

xist

in

a ta

rget

zon

e, t

he in

stan

tane

ous c

ondi

tiona

l

vari

ance

of

chan

ges

in t

he e

xcha

nge

rate

may

be

less

und

er fr

ee f

loat

ing

than

und

er a

targ

et z

one.

If

unco

vere

d in

tere

st p

arity

hol

ds, it

mus

t be

the

case

tha

t th

e in

tere

st

diff

eren

tial

S is

giv

en b

y

8(t)

e i(

t) —

i*(t

) = F

t ds

(t)/

dt.

It f

ollo

ws

that

the

inst

anta

neou

s con

ditio

nal

mea

n an

d va

rian

ce of

the

chan

ge in

the i

nter

est d

iffe

rent

ial in

the

targ

et z

one

are

give

n by

— 3

1 —

(37a

) E

t4 =

o{(g

f+bf

-1)P

+b5

Ftd

z +

(37b

) V

art4

.l = [o

(gf+

bç—

1)]2

a +

(Obz

)2O

+ 2o

2(gf

+bf

—1)

bpfc

fc5.

As noted in Svensson [1989], if

= 0

(a

nd therefore also fz = 0

) eq

uatio

ns

(36b

) and (37b) imply that (denoting the conditional standard deviation by SD)

ds

—1

dS

SDt() —

SD

t() =

Cf.

Thi

s fi

ndin

g of

a c

onst

ant t

rade

—of

f be

twee

n th

e in

stan

tane

ous v

aria

bilit

y of

the

chan

ge i

n th

e ex

chan

ge

rate

and

the

ins

tant

aneo

us

vari

abili

ty o

f the

cba

nge

in t

he

inte

rest

dif

fere

ntia

l is

no l

onge

r au

tom

atic

ally

valid

whe

n th

ere

is a

bub

ble,

as

can

be

veri

fied

by

insp

ectio

n of

(36b

) an

d (3

7b).

The

co

nditi

onal

in

stan

tane

ous

mea

n an

d va

rian

ce of

the

chan

ge i

n th

e in

tere

st

diff

eren

tial u

nder

a fr

ee f

loat

, dS

, ar

e: Etd

b(t)

= 0

and

Var

tds(

t) =

0.

With

or w

ithou

t a b

ubbl

e, t

he fr

ee f

loat

the

refo

re a

lway

s de

liver

s m

ore

stab

ility

in c

hang

es i

n th

e in

tere

st d

iffe

rent

ial

than

doe

s th

e ta

rget

zon

e.

The

rel

atio

nshi

p be

twee

n th

e le

vel

of t

he e

xcha

nge

rate

an

d th

e in

tere

st

diff

eren

tial in

the

targ

et z

one

is f

ound

by

notin

g th

at

95

lB

= o(

gf +

1)

—32

and

DB

=

f +

It fo

llow

s th

at

Os

gf+

-3-f

-

atgf

+

Whe

n the

re is

no

bubb

le a

nd t

he ra

nge o

f pe

rmis

sibl

e va

lues

of

f is

f1 �

f � 1

(t

hat i

s th

e va

lues

of

f co

rres

pond

ing

to t

he u

pwar

d—sl

opin

g par

t of

the

bubb

le e

ater

for

B =

0)

we

have

, sin

ce 0

� gf

< 1

fo

r f1

< f <

f0

, a

dow

nwar

d—sl

opin

g re

latio

n-

ship

bet

wee

n th

e le

vel of

the

exch

ange

rat

e an

d th

e in

tere

st d

iffe

rent

ial.

Thi

s re

latio

n-

ship

is

qu

alita

tivsl

y un

affe

cted

by

the

bubb

le i

f th

e cu

rren

t va

lue

of th

e bu

bble

is

inde

pend

ent o

f th

e cu

rren

t val

ue o

f th

e fu

ndam

enta

l, if

we

agai

n re

stri

ct th

e an

alys

is t

o

the

upw

ard—

slop

ing

part

of

the

h(f,

B(r

), B

(t))

= g

(f)

+ B

(t)

func

tion.

T

here

are

,

how

ever

, no

goo

d re

ason

s fo

r th

is

rest

rict

ion

whe

n th

ere

are

bubb

les,

so

the

rela

tions

hip

betw

een

the

leve

l of

the

exch

ange

rat

e an

d th

e in

tere

st d

iffe

rent

ial c

an

chan

ge s

ign.

T

his

is s

how

n in

Fig

ure

2 fo

r an e

xoge

nous

bub

ble.

Har

riso

n [1

985,

pp.

89—

92]

show

s th

at t

he s

tead

y st

ate

or u

ncon

ditio

nal d

ensi

ty

func

tion

ir

of B

row

nian

mot

ion

f w

ith i

nsta

ntan

eous

var

ianc

e cr

an

d dr

ift

p w

hich

is re

gula

ted

on th

e cl

ose

inte

rval

[f1,

is

giv

en by

:

71ff

) =

[I0 —

f1]

if

p =

0 (t

he u

nifo

rm d

ensi

ty)

= ee

if

p

0 (t

runc

ated

exp

onen

tial d

ensi

ty)

— 3

3 —

-2

0 =

2/w

f

With

out a

bub

ble

it fo

llow

s th

at, s

ince

s

= g

(f)

is a

str

ictly

incr

easi

ng fu

nctio

n

of

f w

ith c

ontin

uous

fi

rst

deri

vativ

e on

the

open

int

erva

l f0

) an

d th

e im

plic

it

(inv

erse

) fu

nctio

n f =

g(s

) th

eref

ore

exis

ts o

n th

e ta

rget

zon

e (e

xcep

t at

the

end

poin

ts),

the

stea

dy s

tate

den

sity

func

tion

of s,

cc(

s)

say,

is g

iven

by:

(5)7

r( j

s))

Sj<

5<5

g'(f

(s))

u

Sven

sson

[1

989]

sho

ws

that

th

e re

sulti

ng d

istr

ibut

ion

of e

xcha

nge

rate

s is

U—

shap

ed.

With

a b

ubbl

e, h

owev

er,

the

long

—ru

n be

havi

or o

f the

exc

hang

e ra

te i

s qu

ite

diff

eren

t. Fi

rst

of a

ll, o

ne o

f the

sta

te v

aria

bles

, th

e bu

bble

, is

non—

stat

iona

ry a

nd

unre

gula

ted.

It

ther

efor

e do

es n

ot p

osse

ss a

ste

ady

stat

e di

stri

butio

n. T

he o

ther

sta

te

vari

able

, f,

is

of c

ours

e al

so n

on—

stat

iona

ry w

hen

unre

gula

ted,

bu

t re

gula

tion

may

st

ill e

nsur

e th

at it

has

a s

tead

y st

ate

dist

ribu

tion.

Not

e, h

owev

er t

hat

boun

ds s

et b

y

the

cont

rolle

r are

bou

nds

on s

, no

t on

f.

It is

cle

arly

pos

sibl

e fo

r f

to b

ecom

e a

nega

tive

num

ber s

mal

ler

than

the

val

ue of

f1 as

soci

ated

with

B =

U

(for

inst

ance

if a

posi

tive

bubb

le g

row

s st

eadi

ly a

nd t

here

is a

long

seq

uenc

e of

, on

ave

rage

, ne

gativ

e re

aliz

atio

ns o

f df

with

in th

e ta

rget

zon

e).

Sim

ilarl

y, f

can

bec

ome

a po

sitiv

e num

ber

larg

er th

an t

he v

alue

of f0

asso

ciat

ed w

ith

B =

0

if a

neg

ativ

e bu

bble

ste

adily

gro

ws

in s

ize

and

ther

e is

a lo

ng r

un o

f, o

n av

erag

e, p

ositi

ve re

aliz

atio

ns o

f df

.8

Whi

le th

e de

riva

tion

of th

e st

eady

-sta

te d

istr

ibut

ion o

f s

for m

ost i

nter

estin

g ca

ses

(inc

ludi

ng

the

exog

enou

s st

ocha

stic

bub

ble

and

the

stoc

hast

ic b

ubbl

e th

at

depe

nds

on

f) r

emai

ns to

be

done

, a

few

gen

eral

rem

arks

can

be

mad

e.

Con

side

r fi

rst t

he ca

se o

f an

exog

enou

s, n

on-s

toch

astic

bubb

le.

The

asy

mpt

otic

—34

)

dist

ribu

tion

of th

e ex

chan

ge r

ate

will

, if

the

bubb

le i

s po

sitiv

e,

put

all

its p

roba

bilit

y

mas

s ne

ar i

ts

uppe

r bo

unda

ry

valu

e s.

In t

his

very

sim

ple

case

, th

e ta

rget

zon

e

does

n't

kill

the

bubb

le, b

ut t

he b

ubbl

e ef

fect

ivel

y ki

lls t

he t

arge

t zo

ne a

nd t

urns

it,

asym

ptot

ical

ly, in

to a

fixe

d ex

chan

ge r

ate

regi

me.

Now

con

side

r the

cas

e w

here

the

bubb

le i

s st

ocha

stic

. If

we

have

the

exo

geno

us

geom

etri

c bub

ble

dB =

caB

dt +

cTB

BdW

B,

tbe

bubb

le c

anno

t cha

nge

sign

, al

thou

gh it

can

chan

ge d

irec

tion.

T

ake

the

case

with

B

(O)

> 0

. If

the

bub

ble

ever

rea

ches

B =

0, it

dies

and

we

are

back

hen

cefo

rth

in th

e ca

se s

tudi

ed b

y Sv

enss

oo.

Cle

arly

we

expe

ct t

o ha

ve a

non—

dege

nera

te d

istr

ibut

ion

of

s in

thi

s ca

se,

but

still

with

mor

e

mas

s at

s th

an w

ithou

t a b

ubbl

e.

u

If t

he e

xoge

nous

bu

bble

pr

oces

s is

giv

en in

stea

d by

dB

= o

Bdt

+ C

BdW

B

with

>

0

but c

onst

ant,

B

will

, in

a re

pres

enta

tive h

isto

ry, a

ssum

e bo

th p

ositi

ve

and

nega

tive

valu

es.

The

bub

ble

neve

r die

s in

this

cas

e.

Rel

ativ

e to

the

case

stu

died

by S

vens

son

we

wou

ld e

xpec

t the

lon

g—ru

n de

nsity

fun

ctio

n to

hav

e m

ore

mas

s at

the

two

end

poin

ts b

ut w

ith n

o pa

rtic

ular

bia

s to

war

ds ei

ther

s0

or s

. A

sym

ptot

ical

ly,

the

infl

uenc

e of

the

initi

al c

ondi

tions

fo

r B

on

the

den

sity

func

tion

for

s sh

ould

vani

sh.

We

hope

to b

ack

up th

ese

intu

ition

s with

sol

id a

naly

sis

in th

e ne

ar fu

ture

.

VT

. Bub

bles

, tar

get z

ones

an

d in

terv

entio

n rul

es: w

hat g

ives

whe

n th

ey a

re in

cons

iste

nt?

Our

vie

w o

f wha

t hap

pens

to

spec

ulat

ive

bubb

les

unde

r a c

redi

ble

targ

et z

one

is

rath

er d

iffe

rent

fro

m th

at o

f M

iller

, W

elle

r an

d W

illia

mso

n [198

91 (

henc

efor

th M

WW

).

The

for

mal

ana

lysi

s in

the

ir p

aper

is c

ast

in t

erm

s of

Bla

ncha

rd b

ubbl

es,

but

wou

ld

appl

y a—

fort

iori

to

the

non

—co

llaps

ing

bubb

les

we

cons

ider

ed.

MW

W p

ut

thei

r

argu

men

t su

ccin

ctly

:

If al

l mar

ket p

artic

ipan

ts be

lieve

that

, whe

n th

e ex

chan

ge ra

te

hits

the

edg

e of

the

ban

d, t

he a

utho

ritie

s will

def

end

the

rate

bp

sud

den

inte

rven

tion

(des

igne

d to

pro

duce

a

jum

p in

the

ra

te),

th

is m

ust

caus

e th

e bu

bble

to

bur

st.

But

thi

s is

—35

inco

nsis

tent

with

the

exi

sten

ce o

f a b

ubbl

e in

the

fir

st p

lace

: If

all k

now

this

col

laps

e is

cer

tain

to o

ccur

at t

ime

t, al

l w

ish

to s

ell t

he c

urre

ncy a

t t—

e. B

ut th

en c

olla

pse

will

occ

ur at

t—e.

R

ep ea

ting

this

arg

umen

t we

find

that

col

laps

e m

ust

occu

r at

time

zero

that

is, a

ll su

ch bu

bble

s ar

e "s

tran

gled

at b

irth

".

(Mill

er,

Wel

ler

and

Will

iam

son

1g8g

]).

It sh

ould

be

reco

gniz

ed

that

in

this

pap

er w

e ha

ve

chan

ged

the

inte

rven

tion

rule

s fo

llow

ed b

y th

e au

thor

ities

from

wha

t was

ass

umed

by

MW

W a

nd b

y th

e ot

her

cont

ribu

tors

to th

is li

tera

ture

. In

add

ition

to th

e st

anda

rd re

flec

tion

polic

ies,

we

allo

w

the

acco

mm

odat

ion

by

the

auth

oriti

es o

f su

stai

ning

sp

ecul

ativ

e at

tack

s.

The

inte

rven

tion

polic

ies

cons

ider

ed by

MW

W an

d in

the

rest

of t

his l

itera

ture

, do

not h

ave

this

fea

ture

. It

sho

uld

ther

efor

e co

me

as n

o su

rpri

se t

hat

from

dif

fere

nt a

ssum

ptio

ns

we

reac

h di

ffer

ent

conc

lusi

ons.

Giv

en th

e as

sum

ptio

n th

at t

he o

nly

form

of

inte

rven

tion

is r

egul

atio

n at

the

boun

dari

es

thro

ugh

infi

nite

sim

al r

efle

ctin

g op

erat

ions

, th

e co

nclu

sion

th

at

this

conf

igur

atio

n is

inc

onsi

sten

t w

ith r

atio

nal b

ubbl

es f

ollo

ws.

O

ne c

omm

on re

spon

se t

o

this

inc

onsi

sten

cy i

s to

trea

t the

bub

ble

as a

resi

duaL

T

he re

ason

ing

goes

as

follo

ws:

at

*1

a po

int l

ike

LI

in F

igur

e la

ther

e w

ould

be

a di

scon

tinuo

us

antic

ipat

ed fa

ll in

the

va

lue

of s

fr

om

5u

to

;, th

e va

lue

of t

he e

xcha

nge

rate

at

f = u

' on t

he b

ubbl

e

eate

r fo

r B

= 0,

gi

ven

by

s =

g(f

, B

0) +

B0,

int

erpr

etin

g B

° to

equ

al z

ero.

T

his

viol

ates

the

no—

arbi

trag

e co

nditi

on.

Wha

t is

pres

ente

d in

the

pre

viou

s pa

ragr

aph

as a

"re

al—

time"

eve

nt, t

he fa

ll of

th

e ex

chan

ge r

ate

from

5u to

s,

can

in fa

ct b

e no

mor

e th

an th

e de

sign

atio

n of

s as

the

only

val

ue o

f th

e ex

chan

ge

rate

rea

ched

whe

n =

tu ,

tha

t is

con

sist

ent w

ith t

he

inte

rven

tion

rule

. E

quiv

alen

tly, B

a 0

is t

he o

nly

valu

e of

the

bubb

le c

onsi

sten

t with

*1

th

e in

terv

entio

n ru

le.

If th

e sy

stem

real

ly w

ere

(som

ehow

) at

12

, th

ere

wou

ld b

e an

inco

nsis

tenc

y.

We

cann

ot d

educ

e ho

w t

he e

xcha

nge

rate

wou

ld b

ehav

e st

artin

g fr

om

an in

cons

iste

nt po

sitio

n.

Not

e th

at i

t is

not j

ust

the

assu

mpt

ion

of a

cre

dibl

e ex

chan

ge r

ate

targ

et z

one

—36

that

pr

oduc

es th

e in

cons

iste

ncy,

bu

t th

e co

mbi

natio

n of

a c

redi

ble

targ

et z

one

and

a

part

icul

ar in

terv

entio

n ru

le t

hat

can

only

sup

port

the

targ

et z

one

if n

o bu

bble

exi

sts.

Our

alte

rnat

ive

inte

rven

tion

rule

, w

hich

has

a d

iscr

ete

(sto

ck—

shif

t) in

crea

se in

f

at

*1

1 *1

Il

fr

om f1

1 to

f11

and

a co

rres

pond

ing

mov

emen

t of

the

equi

libri

um fr

om

11

to

fli,

cons

iste

ntly

com

bine

s a

cred

ible

tar

get z

one

and

ratio

nal b

ubbl

es.

An

obvi

ous

ques

tion

wou

ld s

eem

to

be:

Why

wou

ld t

he a

utho

ritie

s ad

opt a

rule

that

per

mits

the

pres

ence

of

bubb

les

rath

er th

an a

rule

that

pre

clud

es t

heir

exi

sten

ce?

Putti

ng t

he q

uest

ion

this

way

pr

ejud

ges

the

ausw

er,

beca

use

it as

sum

es t

hat,

give

n an

inc

onsi

sten

cy b

etw

een

havi

ng a

cred

ible

tar

get z

one,

a ra

tiona

l bub

ble

and

a

part

icul

ar i

nter

vent

ion

polic

y,

the

inco

nsis

tenc

y m

ust

be re

solv

ed

by d

ropp

ing

the

bubb

le,

rath

er th

an b

y dr

oppi

ng th

e ta

rget

zon

e or

the

inte

rven

tion

polic

y.

We

pref

er

to v

iew

the

exis

tenc

e of

a b

ubbl

e as

a

: A

bub

ble

eith

er e

xist

s or

it

does

n't,

and

the

auth

oriti

es m

ust

desi

gn

thei

r in

terv

entio

n po

licy

acco

rdin

gly,

if

the

y w

ish

to

supp

ort t

he ta

rget

zon

e.

A p

artic

ular

inte

rven

tion

rule

(e.

g. i

nfin

itesi

mal

refl

ectin

g in

terv

entio

ns

at th

e

boun

dari

es

with

out

acco

mm

odat

ion

of f

rien

dly

spec

ulat

ive

atta

cks)

may

of

cour

se b

e

inco

nsis

tent

with

hav

ing

a cr

edib

le

targ

et z

one

in t

he p

rese

nce

of b

ubbl

es.

Thi

s

impl

ies,

in

our

view

, a

colla

pse

eith

er o

f th

e ta

rget

zon

e or

of

the

inte

rven

tion r

ule,

but

not

of t

he b

ubbl

e,

whi

ch i

s no

t an

obj

ect

of c

hoic

e at

som

e in

itial

dat

e, n

ot e

ven

a

colle

ctiv

e on

e.

Giv

en th

e ex

iste

nce

of a

bub

ble,

a cr

edib

le t

arge

t zon

e re

quir

es a

polic

y

rule

spe

cifi

catio

n th

at p

erm

its th

e bu

bble

and

the

targ

et z

one

to c

oexi

st.

Of c

ours

e it

mus

t als

o be

cap

able

of h

andl

ing t

he n

o—bu

bble

case

.

Our

rul

e is

an

exam

ple

of s

uch

a co

nsis

tent

polic

y.9

VII

. Con

clus

ions

The

the

ory

of e

xcha

nge

rate

beh

avio

r w

ithin

a t

arge

t zon

e as

dev

elop

ed i

n th

e

—37

rece

nt

liter

atur

e ho

lds

that

exc

hang

e ra

tes

unde

r a

curr

ency

ba

nd r

egim

e ar

e le

ss

resp

onsi

ve t

o fu

ndam

enta

l sho

cks

than

exc

hang

e ra

tes

unde

r fre

e fl

oat,

prov

ided

that

the

inte

rven

tion

rule

s of

the

Cen

tral

Ban

k(s)

are

com

mon

kno

wle

dge.

M

oreo

ver,

the

re

alw

ays

exis

ts a

tra

de—

off

betw

een

the

inst

anta

neou

s vo

latil

ity o

f ch

ange

s in

the

exch

ange

rat

es a

nd c

hang

es i

n th

e in

tere

st r

ate

diff

eren

tial,

inde

pend

ently

of th

e si

ze o

f

the

band

and

the d

egre

e of

cred

ibili

ty of

the

targ

et z

one.

The

se r

esul

ts a

re d

eriv

ed a

fter

havi

ng

assu

med

a

prio

ri th

at

"rat

iona

l ex

cess

vol

atili

ty"

(due

to

so

calle

d ra

tiona

l

bubb

les)

doe

s no

t occ

ur in

the

for

eign

exc

hang

e m

arke

t. Im

plic

itly

or e

xplic

itly,

it

is

assu

med

th

at s

pecu

lativ

e bu

bble

s ar

e in

com

patib

le

with

the

exi

sten

ce a

nd t

he

pers

iste

nce o

f a c

redi

ble t

arge

t zon

e, s

o th

at th

ey n

ever

mat

eria

lize.

We

cons

ider

inst

ead

a se

tup

in w

hich

the

exis

tenc

e of

spe

cula

tive

beha

vior

is

a

datu

m t

he C

entr

al B

ank

has

to d

eal

with

. W

e sh

ow t

hat

ther

e is

no

inco

mpa

tibili

ty

betw

een

the

exis

tenc

e of a

tar

get z

one

and

the

pres

ence

of

ratio

nal b

ubbl

es.

Rat

her,

th

ere

are

inte

rven

tion

rule

s th

at

shou

ld

be

follo

wed

by

th

e C

entr

al B

ank

whe

n

spec

ulat

ive

bubb

les

aris

e, a

nd th

ese

sam

e ru

les

incl

ude

as a

spec

ial

case

the

trad

ition

al

polic

ies

for d

efen

ding

an

exch

ange

rat

e ba

nd w

hen

spec

ulat

ive

bubb

les d

o no

t occ

ur.

In

the

stan

dard

m

odel

, th

e de

fens

e of

a

targ

et

zone

is

gu

aran

teed

by

inte

rmitt

ent

vari

atio

ns

in d

omes

tic c

redi

t (s

ay

thro

ugh

open

m

arke

t op

erat

ions

)

and/

or n

on s

teri

lized

fore

ign

mar

ket

inte

rven

tions

th

at t

ake

plac

e w

hen

the

exch

ange

rate

hits

one

of

the

limits

of

the

band

. For

inst

ance

, whe

n th

e ex

chan

ge r

ate

reac

hes

the

uppe

r bo

unda

ry, t

he s

tock

of f

orei

gn r

eser

ves

(or

the

stoc

k of

dom

estic

cre

dit)

is

redu

ced

in o

rder

to p

reve

nt th

e ex

chan

ge r

ate

from

ral

sing

fur

ther

. H

euri

stic

ally

, th

ese

oper

atio

ns

can

be c

hara

cter

ized

as i

nfin

itesi

mal

re

flec

ting

inte

rven

tions

. A

lthou

gh th

e

size

of

th

e re

flec

ting

oper

atio

ns

may

be

qua

ntita

tivel

y lim

ited,

th

e in

duce

d

expe

ctat

ions

stab

ilize

the

exch

ange

rat

e ev

en b

efor

e th

e up

per

or lo

wer

lim

it is

reac

hed.

We

show

tha

t in

the

cum

bub

ble

setu

p re

flec

ting

inte

rven

tions

are

insu

ffic

ient

.

In

fact

, w

hen

spec

ulat

ive

bubb

les

aris

e,

the

com

pani

on

phen

omen

a of

spe

cula

tive

— 3

8 —

atta

cks

on t

he t

arge

t zo

ne

mus

t oc

cur

as

wel

l. T

hese

sp

ecul

ativ

e at

tack

s ar

e

stoc

k—sh

ift r

eshu

ffle

s of

pri

vate

age

nts'

fina

ncia

l po

rtfo

lios

led

by ra

tiona

l exp

ecta

tions

of ch

ange

s in

the

rat

e of

exc

hang

e ra

te d

epre

ciat

ion.

A

s an

exa

mpl

e, if

the

rate

of

appr

ecia

tion

of th

e ex

chan

ge r

ate

wer

e su

dden

ly e

xpec

ted

to i

ncre

ase,

rat

iona

l pri

vate

agen

ts w

ould

in

crea

se

thei

r de

man

d fo

r ho

me

coun

try

mon

ey

and/

or d

ecre

ase

thei

r

dem

and

for f

orei

gn c

ount

ry m

oney

due

to

a de

crea

se i

n th

e do

mes

tic—

fore

ign

inte

rest

rate

dif

fere

ntia

l.

We

show

tha

t th

e de

fens

e of

the

targ

et z

one

in t

he p

rese

nce

of b

ubbl

es is

guar

ante

ed if

the

Cen

tral

Ban

k ac

com

mod

ates

spe

cula

tive

atta

cks

wbe

n th

e la

tter

are

frie

ndly

, th

at is

whe

n th

ey a

re c

onsi

sten

t with

the

sur

viva

l of

the

targ

et z

one

itsel

f

(gtv

en

the

Cen

tral

Ban

k's

role

).

Thi

s in

tuiti

ve p

olic

y ru

le

is c

ompa

tible

with

self

—fu

lfill

ing e

xpec

tatio

ns: a

fri

endl

y at

tack

occ

urs

only

if a

gent

s kno

w th

at i

t will

be

acco

mm

odat

ed,

and

exac

tly b

ecau

se

of t

he p

assi

ve

acco

mm

odat

ion

the

spec

ulat

ive

atta

ck s

nsta

in8

the

targ

et z

one.

H

ence

, th

e po

licy

rule

is

sum

mar

ized

by

the

max

im

"Ref

lect

w

hen

this

is s

uffi

cien

t; ac

com

mod

ate

whe

n th

is is

nec

essa

ry".

We

show

tha

t w

hen

the

exch

ange

ra

te h

its o

ne o

f th

e bo

unda

ries

w

ith

a

non—

zero

bub

ble,

an

acco

mm

odat

ed

frie

ndly

spe

cula

tive

atta

ck o

ccur

s, f

ollo

wed

by

refl

ectin

g in

terv

entio

ns.

Man

y of

the

con

clus

ions

re

ache

d in

the

exi

stin

g lit

erat

ure

do

not

appe

ar

suff

icie

ntly

rob

ust w

hen

spec

ulat

ive

bubb

les

are

cons

ider

ed a

s w

ell.

Firs

t, it

is n

ot tr

ue

anym

ore

that

the

ins

tant

aneo

us v

olat

ility

of

exch

ange

ra

tes

with

in a

tar

get

zone

is

alw

ays

less

tha

n th

e in

stan

tane

ous v

olat

ility

of e

xcha

nge

rate

und

er fr

ee f

loat

, pro

vide

d

that

, for

fam

iliar

reas

ons,

in

free

flo

at n

o sp

ecul

ativ

e bu

bble

ari

ses.

Se

cond

, the

find

ing

of a

con

stan

t tr

ade—

off

betw

een

the

inst

anta

neou

s va

riab

ility

of

the

chan

ge i

n th

e

exch

ange

ra

te a

nd t

he i

nsta

ntan

eous

var

iabi

lity

of t

he c

hang

e in

the

inte

rest

rat

e p

diff

eren

tial

is n

o lo

nger

auto

mat

ical

ly va

lid w

hen

ther

e is

a b

ubbl

e.

Mor

eove

r, t

he s

tand

ard

theo

ry c

hara

cter

izes

a s

tabl

e rel

atio

n be

twee

n th

e le

vel

—39

of th

e ex

chan

ge r

ate

and

the

expe

cted

rate

of

depr

ecia

tion

(equ

al to

the

int

eres

t rat

e

diff

eren

tial

if u

ncov

ered

int

eres

t par

ity ho

lds)

. A

ccor

ding

to

this

mod

el,

the

high

er th

e

exch

ange

ra

te,

the

low

er

the

inte

rest

ra

te d

iffe

rent

ial.

Mor

eove

r th

e in

tere

st r

ate

diff

eren

tial

is a

lway

s ne

gativ

e in

the

nei

ghbo

rhoo

d of

the

uppe

r bo

unda

ry o

f th

e

exch

ange

ra

te

band

; th

e op

posi

te r

esul

t ho

lds

in t

he n

eigh

borh

ood

of t

he l

ower

boun

dary

. W

e sh

ow th

at t

his

rela

tion

is n

o lo

nger

sta

ble

whe

n bu

bble

s ari

se.

—40

I

NO

TE

S

'Con

side

r a

dyna

mic

lin

ear

ratio

nal

expe

ctat

ions

m

odel

w

ith

cons

tant

coef

fici

ents

th

at h

as

the

usua

l sa

ddle

poin

t co

nfig

urat

ion

(as

man

y pr

edet

erm

ined

vari

able

s, n

1 sa

y,

as

stab

le c

hara

cter

istic

root

s an

d as

m

any

non—

pred

eter

min

ed

vari

able

s, n

2 sa

y, a

s un

stab

le c

hara

cter

istic

ro

ots)

. T

rans

form

the

syst

em to

can

onic

al

vari

able

s, b

y di

agon

aliz

ing

it or

by

usin

g Jo

rdan

's c

anon

ical

for

m.

Gro

up t

oget

her t

he

n2

dyna

mic

equ

atio

ns

cont

aini

ng

the

cano

nica

l va

riab

les

who

se

hom

ogen

eous

equa

tions

are

gov

erne

d by

th

e un

stab

le r

oots

. T

he

gene

ral

solu

tion

for

thes

e

non—

pred

eter

min

ed

cano

nica

l va

riab

les

can

cont

ain

an n2

—di

men

sion

al bu

bble

pro

cess

that

mus

t sa

tisfy

the

hom

ogen

eous

eq

uatio

n sy

stem

of

the

n2 n

on—

pred

eter

min

ed

cano

nica

l va

riab

les.

B

ubbl

e pr

oces

ses

will

th

eref

ore

be n

on—

stat

iona

ry

(in

expe

ctat

ion)

. T

he s

tate

var

iabl

es o

f th

e m

odel

, w

hich

are

linea

r co

mbi

natio

ns

of t

he

cano

nica

l va

riab

les,

will

, if

ther

e is

a

bubb

le,

be n

on—

stat

iona

ry.

If th

ere

are

mor

e

non—

pred

eter

min

ed

stat

e va

riab

les

than

uns

tabl

e ro

ots,

st

atio

nary

bub

bles

w

ill

of

cour

se b

e po

ssib

le e

ven

in li

near

mod

els.

2Sis

nila

r ar

gum

ents

ca

n be

m

ade

for

non—

stat

iona

ry

bubb

les

(and

th

e

non—

stat

iona

ry

beha

vior

of

ke

y en

doge

nous

va

riab

les

freq

uent

ly a

ssoc

iate

d w

ith

non—

stat

iona

ry

bubb

les)

in

cert

ain

non—

linea

r mod

els.

Fo

r in

stan

ce, i

n ov

erla

ppin

g

gene

ratio

ns

(OL

G)

mod

els

of a

co

mpe

titiv

e ec

onom

y w

ith

a si

ngle

pe

rish

able

com

mod

ity

and

with

no

n—in

tere

st—

bear

ing o

utsi

de m

oney

as

the

only

sto

re o

f val

ue,

ratio

nal d

efla

tiona

ry b

ubbl

es (

i.e.

non—

stat

iona

ry b

ubbl

es w

ith th

e pr

ice l

evel

dec

linin

g

to z

ero)

hav

e be

en s

how

n to

be

infe

asib

le.

Tak

e for

inst

ance

the

case

of

a tw

o—pe

riod

OL

G m

odel

with

a c

onst

ant p

opul

atio

n in

whi

ch th

e no

min

al m

oney

sto

ck is

con

stan

t,

—41

all m

oney

is

held

by

the

old

and

only

the

you

ng r

ecei

ve a

con

stan

t bou

nded

end

owm

ent

stre

am o

f th

e si

ngle

com

mod

ity. I

f the

pri

ce le

vel

wer

e to

fall

with

out b

ound

, rea

l cas

h

bala

nces

wou

ld b

e in

crea

sing

with

out b

ound

and

the

dem

and f

or th

e co

mm

odity

by t

he

old

gene

ratio

n w

ould

incr

ease

with

out b

ound

. Si

nce

the

supp

ly of

the

good

eac

h pe

riod

is b

ound

ed a

bove

by

the

sum

of

the

end

owm

ents

of

the

you

ng,

soon

er

or l

ater

the

dem

and

for

the

com

mod

ity m

ust

outs

trip

the

sup

ply.

A

seq

uenc

e of

mon

ey

pric

es

falli

ng t

o ze

ro c

an th

eref

ore

not

be r

atio

nal e

xpec

tatio

ns

equi

libri

um (s

ee e

.g.

Hah

n

[198

2, p.

10]

).

Unl

ess

very

st

rong

re

stri

ctio

ns a

re p

lace

d on

tbe

pri

vate

util

ity f

unct

ions

,

ratio

nal i

nfla

tiona

ry b

ubbl

es (w

ith t

he p

rice

lev

el i

ncre

asin

g w

ithou

t bou

nd d

espi

te a

cons

tant

nom

inal

mon

ey s

tock

) can

exi

st in

suc

h an

eco

nom

y.

The

seq

uenc

e of

risi

ng

pric

es w

ould

, in

the

limit,

dri

ve t

he r

eal v

alue

of m

oney

to

zero

. T

he s

tead

y st

ate

to

whi

ch s

uch

a m

odel

co

nver

ges

is t

hat

of a

non

—m

onet

ary

econ

omy.

T

o ru

le

out

infl

atio

nary

bub

bles

as

w

ell,

Obs

tfel

d an

d R

ogof

f [1

983]

, in

an

inf

inite

—liv

ed

repr

esen

tativ

e ag

ent

mod

el,

impo

sed

a po

litic

al—

tech

nolo

gica

l re

stri

ctio

n on

th

e

term

inal

val

ue

of m

oney

: th

e go

vern

men

t fr

actio

nally

ba

cks

the

curr

en,c

y by

guar

ante

eing

a m

inim

al r

eal r

edem

ptio

n va

lue

for

mon

ey.

Eve

n if

pri

vate

age

nts

are

not

com

plet

ely

cert

ain

that

th

ey c

an r

edee

m t

heir

mon

ey i

n an

y gi

ven

peri

od, t

his

suff

ices

to

rule

out

spe

cula

tive h

yper

infl

atio

ns.

Whi

le th

is a

ssum

ptio

n on

gove

rnm

ent

beha

vior

seem

s qu

ite a

d—ho

c,

it is

oft

en c

ited

as t

he s

econ

d bl

ade

of th

e sc

isso

rs t

hat

cut

the

lifel

ine

of n

on—

stat

iona

ry r

atio

nal

spec

ulat

ive

bubb

les,

bo

th d

efla

tiona

ry

and

infl

atio

nary

. D

iba

and

Gro

ssm

an

[198

8] a

lso

deri

ve s

uffi

cien

t co

nditi

ons

for r

ulin

g ou

t

non—

stat

iona

ry i

nfla

tiona

ry bu

bble

s.

3Sar

gent

an

d W

alla

ce's

"U

nple

asan

t Mon

etar

ist A

rith

met

ic"

mod

el

(Sar

gent

and

Wal

lace

[19

81])

can

exh

ibit

stat

iona

ry r

atio

nal

bubb

les.

E

ven

a fi

rst

orde

r

dete

rmin

istic

non

—lin

ear

diff

eren

ce

equa

tion

may

ex

hibi

t va

riou

s ki

nds

of p

erio

dic

— 4

2 —

solu

tions

or c

haot

ic b

ehav

ior

(see

e.g

. B

enha

bib

and

Day

[19

81,

1982

] an

d G

rand

mon

t

[198

5]).

St

atio

nary

bub

bles

ar

e ea

sily

gen

erat

ed

by s

uch

mod

els

(Aza

riad

is

[198

1],

Aza

riad

is a

nd G

uesn

erie

[1

986]

, C

hiap

pori

an

d G

uesn

erie

[1

988]

, W

oodf

ord

[198

7],

Farm

er a

nd

Woo

dfor

d [1

986]

).

Seco

nd o

rder

det

erm

inis

tic n

on—

linea

r di

ffer

entia

l

equa

tions

can

gen

erat

e lim

it cy

cles

and

thi

rd o

rder

non

—lin

ear

diff

eren

tial

equa

tions

can

exhi

bit

chao

tic b

ehav

ior.

A

gain

, su

ch m

odel

s ca

n su

ppor

t st

atio

nary

rat

iona

l

spec

ulat

ive b

ubbl

es.

4Tiii

s in

terp

reta

tion

of f

com

es f

rom

the

tw

o—co

untr

y m

ini—

mod

el o

utlin

ed

belo

w.

All

vari

able

s exc

ept

inte

rest

rat

es a

re in

nat

ural

log

arith

ms.

m

is

the

hom

e

coun

try

nom

inal

mon

ey s

tock

, p

the

hom

e co

untr

y pr

ice

leve

l, y

hom

e co

untr

y re

al

GD

P, i

th

e ho

me c

ount

ry sh

ort

nom

inal

int

eres

t ra

te a

nd

s th

e sp

ot p

rice

of

fore

ign

exch

ange

. C

orre

spon

ding

for

eign

cou

ntry

var

iabl

es a

re s

tarr

ed.

— p

= k

y —

i, k

, .1

> 0

(H

ome

mon

etar

y eq

uilib

rium

)

* *

* *

— p

= k

y —

X

i (F

orei

gn m

onet

ary

equi

libri

um)

* p

= p

+

(P

urch

asin

g Pow

er P

arity

)

Etd

s(t)

= [i

(t) —

i*(t

)]dt

(U

ncov

ered

Int

eres

t Par

ity)

From

this

ver

y si

mpl

e m

odel

we

obta

in t

he fo

llow

ing

rela

tion:

s(t)

dt =

]m(t

) — m

*(t)

— k(

y(t)

— y*

(t))

]dt +

AE

tds(

t).

Thi

s co

rres

pond

s to

equ

atio

n (1

) w

ith .

1 =

o (the

int

eres

t sem

i—el

astic

ity o

f

—43

* *

mon

ey d

eman

d) a

ndf=

m—

m

—k(

y—y

).

5Equ

atio

n (5

) is

of c

ours

e eq

uiva

lent

to

the

perh

aps

mor

e fa

mili

ar fo

rm

Af(

t)

A 1(

t)

s(t)

=fO

)+B

(t)+

+A

1(t)

e 1

+A

2(t)

e 2

whe

re A

1 an

d A

2 ar

e co

nsta

nt a

s lo

ng a

s s

is in

the

inte

rior

of t

he ta

rget

zon

e, b

ut

can

chan

ge w

hen

s is

at o

ne o

f its

bou

ndar

ies.

Fo

r m

any

bubb

les,

incl

udin

g th

e

exog

enou

s on

es, t

he r

epre

sent

atio

n gi

ven

in (

5) i

s at

trac

tive

beca

use i

t can

bri

ng n

ut

clea

rly

the

hori

zont

al sh

ift

nf t

he b

ubbl

e ea

ter

(def

ined

bel

ow)

whe

n th

e m

agni

tude

of

the

bubb

le v

arie

s.

6Whi

le t

he e

xpec

ted

rate

of

chan

ge o

f s

at th

e re

flec

tion

poin

ts o

n th

e up

per

boun

dary

(po

ints

like

or

flu

) is

al

way

s le

ss t

han

that

at

poin

ts l

ike

111,

the

*1

expe

cted

rate

of c

hang

e at

II

can,

for

ver

y sm

all

bubb

les,

be n

egat

sve.

7The

no

tion

of a

frie

ndly

or

sust

aini

ng

spec

ulat

ive

atta

ck i

s re

late

d to

the

"sus

tain

ing"

mon

ey

dem

and

by a

rbitr

ageu

rs in

one

of

the

solu

tions

to

the

"go

ld

stan

dard

pa

rado

x" p

ropo

sed

by B

uite

r an

d G

rilli

[1

989]

. Se

e al

so

Kru

gman

an

d

Rot

embe

rg 11

9901

.

8The

inf

imum

of f

is

whe

re th

e do

wnw

ard—

slop

ing p

art

of th

e bu

bble

eat

er f

or

Bu

cuts

the

upp

er b

ound

ary.

T

he s

upre

mum

of f

is

whe

re th

e do

wnw

ard—

slop

ing

part

of th

e bu

bble

eat

er fo

r B

1 cu

ts th

e lo

wer

bou

ndar

y.

sepa

rate

arg

umen

t th

at m

ight

be

mad

e ag

ains

t bu

bble

equ

ilibr

ia ta

kes

aim

—44

at it

s m

ost s

trik

ing

feat

ure:

th

e po

ssib

ility

of v

ery

freq

uent

int

erve

ntio

ns at

the

edge

s

of th

e zo

ne.

Con

side

r for

sim

plic

ity

a de

term

inis

tic bu

bble

tha

t st

arts

fro

m a

pos

itive

initi

al

valu

e.

It m

ight

be

argu

ed t

hat

the

inte

rven

tions

in

the

fund

amen

tal th

at a

re re

quir

ed

to o

ffse

t su

ch a

non

—st

atio

nary

bub

ble

are

not s

usta

inab

le be

caus

e, a

s th

e m

agni

tude

of

the

bubb

le g

row

s ov

er t

ime,

inte

rven

tions

at

the

uppe

r bou

ndar

y ca

n be

exp

ecte

d to

beco

me

mor

e an

d m

ore

freq

uent

. Fi

nite

inte

rnat

iona

l res

erve

s (a

ssum

ing

tbes

e ar

e th

e

inte

rven

tion m

ediu

m) a

re b

ound

to b

e ex

haus

ted i

n du

e co

urse

.

It s

houl

d be

not

ed th

at a

very

sim

ilar a

rgum

ent c

an b

e m

ade

even

if th

ere i

s no

bubb

le,

as l

ong

as th

ere

is p

ositi

ve dr

ift i

n th

e fu

ndam

enta

l. W

hile

the

expe

cted

va

lue

of t

he f

unda

men

tal g

row

s lin

earl

y (a

t a c

onst

ant r

ate

p) r

athe

r th

an e

xpon

entia

lly

as

the

bubb

le d

oes,

the

drif

t of

the

unre

gula

ted f

unda

men

tal w

ill a

lso

in fi

nite

tim

e ca

use

any

fini

te s

tock

of r

eser

ves

to b

e ex

haus

ted

with

pro

babi

lity

one.

Ind

eed,

eve

n w

ithou

t

drif

t in

the

fun

dam

enta

l (an

d w

ithou

t a

bubb

le),

a

stoc

hast

ic fu

ndam

enta

l pr

oces

s

driv

en b

y B

row

nian

mot

ion

will

bri

ng a

ny fi

nite

stoc

k of

res

erve

s do

wn

to a

ny p

ositi

ve

low

er b

ound

in fi

nite

tim

e w

ith p

roba

bilit

y one

(se

e B

uite

r [19

89])

.

The

pro

blem

s of

inte

rnat

iona

l res

erve

exh

aust

ion

crea

ted

by t

he b

ubbl

e ar

e of

cour

se

less

se

vere

if

the

bub

ble

is

a B

lanc

hard

bub

ble,

whi

ch h

as f

inite

exp

ecte

d

dura

tion.

Not

e al

so

that

in

the

mos

t co

mm

on

inte

rpre

tatio

n of

ou

r m

odel

, th

e

fund

amen

tal

f st

ands

for

rel

ativ

e ho

me

coun

try

mon

ey s

uppl

y m

inus

rel

ativ

e re

al

inco

me

— r

elat

ed m

oney

dem

and.

Tak

ing

rela

tive n

omin

al m

oney

sto

cks

as t

he o

bjec

t

of r

egul

atio

n, th

ere

is n

othi

ng

in t

he l

ogic

of

the

mod

el t

hat

requ

ires

in

tern

atio

nal

rese

rves

to

be u

sed

to re

gula

te th

e m

oney

sto

cks.

D

omes

tic c

redi

t ex

pans

ion

(whe

ther

refl

ectin

g op

en m

arke

t ope

ratio

ns o

r m

onet

ary

fina

ncin

g of

gov

ernm

ent

budg

et d

efic

its)

can

achi

eve t

he s

ame

mon

etar

y ob

ject

ives

.

—45

RE

FE

RE

NC

ES

Ave

sani

, R

enzo

C.

[199

0],

"End

ogen

ousl

y D

eter

min

ed

Tar

get

Zon

e an

d C

entr

al B

ank

Opt

imal

Pol

icy

With

Lim

ited R

eser

ves"

, m

imeo

, U

nive

rsity

of T

rent

o, J

une.

Aza

riad

is, G

. [1

9811

, "S

elf—

fulf

illin

g Pr

ophe

sies

",

Jour

nal

of E

cono

mic

T

heor

y, 2

5, p

p.

380—

396.

____

____

and

R. G

uesn

erie

[19

86],

"Su

nspo

ts a

nd C

ycle

s",

Rev

iew

of Ec

onom

ic S

tudi

es,

53,

pp. 7

87—

806.

Ben

habi

b, J

. an

d R

. D

ay

[198

1],

Rat

iona

l Cho

ice

and

Err

atic

Beh

avio

ur",

R

evie

w of

E

cono

mic

Stud

ies,

48,

pp.

459

—71

.

____

____

and

___

____

_ [1

982]

, A

Cha

ract

eriz

atio

n of

Err

atic

Dyn

amic

s in

the

Ove

rlap

ping

G

ener

atio

ns M

odel

", Jo

urna

l of E

cono

mic

Dyn

amic

s an

d C

ontr

ol,

, pp.

37—

55.

Ber

tola

, G

iuse

ppe

and

Ric

ardo

J.

Cab

alle

ro

[198

9],

"Tar

get

Zon

es a

nd

Rea

lignm

ents

",

Mim

eo,

Dec

embe

r.

____

____

and

___

____

[19

90],

"Res

erve

s an

d R

ealig

nmen

ts in

a T

arge

t Z

one"

, m

imeo

, Ju

ne.

Bla

ncha

rd,

Oliv

ier

J. [

1979

], "

Spec

ulat

ive

Bub

bles

, C

rash

es a

nd R

atio

nal E

xpec

tatio

ns",

E

cono

mic

Let

ters

, pp.

3 87

—9.

____

____

and

Sta

nley

Fis

cher

[19

89],

L

ectu

res

on M

acro

econ

omic

s, M

IT P

ress

, Cam

brid

ge,

Mas

sach

uset

ts.

Bui

ter,

Will

em II

. [19

89],

"A

Via

ble

Gol

d St

anda

rd R

equi

res

Flex

ible

Mon

etar

y an

d Fi

scal

Po

licy"

, Rev

iew

of E

cono

mic

Stu

dies

, 56

, Jan

uary

, pp.

101

—18

.

____

____

and

Vitt

orio

Gri

lli [

1989

], "

The

'Gol

d St

anda

rd P

arad

ox' a

nd I

ts R

esol

utio

n",

NB

ER

Wor

king

Pa

per N

o. 3

178,

Nov

embe

r.

Chi

appo

ri,

P.

and

R.

Gue

sner

ie

[198

6],

"End

ogen

ous

Fluc

tuat

ions

Und

er

Rat

iona

l E

xpec

tatio

ns",

Eur

opea

n Eco

nom

ic R

evie

w,

32, p

p. 3

89—

97.

Del

gado

, Fr

anci

sco

and

Ber

nard

Dum

as [

1990

], "

Mon

etar

y C

ontr

actin

g B

etw

een

Cen

tral

B

anks

And

The

Des

ign

of S

usta

inab

le

Exc

hang

e—R

ate

Zon

es",

mim

eo,

Mar

ch.

Dib

a, B

. T

. an

d H

. I.

Gro

ssm

an

[198

8],

"Rat

iona

l In

flat

iona

ry

Bub

bles

", J

ourn

al o

f M

onet

ary

Eco

nom

ics,

21,

pp.

35—

46.

Dix

it, A

vina

sh [

1988

], "

A S

impl

ifie

d E

xpos

ition

of

Som

e R

esul

ts

Con

cern

ing

Reg

ulat

ed

Bro

wni

an M

otio

n", W

orki

ng P

aper

, Pri

ncet

on U

nive

rsity

, A

ugus

t.

Dor

nbus

ch,

Rud

iger

[19

76],

"E

xpec

tatio

ns a

nd

Exc

hang

e R

ate

Dyn

amic

s",

Jour

nal

of

Polit

ical

Eco

nom

y, 8

, pp

. 11

61—

76.

46 —

Dum

as, B

erna

rd [1

989]

, Sup

er C

onta

ct a

nd R

elat

ed O

ptim

ality

Con

ditio

ns:

A S

uppl

emen

t to

Avi

nash

Dia

lt's

"A S

impl

ifie

d E

xpos

ition

of

Som

e R

esul

ts

Con

cern

ing

Reg

ulat

ed

Bro

wni

an M

otio

n", N

BE

R T

echn

ical

Wor

king

Pap

er N

o. 7

7, A

pril.

Farm

er, R

. and

M. W

oodf

ord

[198

6], "

Self

—fu

lfill

ing

Prop

hesi

es A

nd T

he B

usin

ess

Cyc

le",

C

AR

ESS

Dis

cuss

ion

Pape

r.

Floo

d, R

ober

t P. a

nd P

eter

M. G

arbe

r [19

89],

"T

he L

inka

ge B

etw

een

Spec

ulat

ive A

ttack

an

d T

arge

t Zon

e M

odel

s of

Exc

hang

e R

ates

", N

BE

R W

orki

ng P

aper

No.

291

8.

Froo

t, K

enne

th A

. an

d M

auri

ce

Obs

tfel

d [1

989a

],

"Sto

chas

tic P

roce

ss

Switc

hing

: So

me

Sim

ple

Solu

tions

", N

BE

R W

orki

ng P

aper

No.

299

8, J

une.

____

____

_ an

d __

____

___

[198

9b[,

"E

xcha

nge R

ate

Dyn

amic

s un

der

Stoc

hast

ic R

egim

e Sh

ifts

: A

Uni

fied

App

roac

h. m

imeo

, Ju

ne.

____

____

_ an

d __

____

__ [1

989c

], "I

ntri

nsic

Bub

bles

: T

he C

ase

of S

tock

Pr

ices

", N

BE

R

Wor

king

Pa

per N

o. 3

091,

Sep

tem

ber.

Gra

ndm

ont,

J. [

1985

], "

On

End

ogen

ous

Com

petit

ive

Bus

ines

s C

ycle

s",

Eco

nom

etri

ca,

53,

pp. 9

95—

105.

Hah

n, F

rank

[19

82],

Mon

ey a

nd I

nfla

tion,

Bas

il B

lack

wel

l Pu

blis

hers

, Oxf

ord.

Har

riso

n, J

. M

icha

el [

1985

], B

row

nian

Mot

ion

and

Stoc

hast

ic F

low

Sys

tem

s, J

ohn

Wile

y an

d So

ns,

New

Yor

k.

Ichi

kaw

a,

M. M

.H. M

iller

and

A.

Suth

erla

nd [1

990]

, "E

nter

ing

a Pr

eann

ounc

ed

Cur

renc

y B

and"

, War

wic

k E

cono

mic

Res

earc

h Pa

pers

, No.

347

, M

arch

.

Kar

atza

s I.

an

d S.

E

. Sh

reve

[1

988]

, B

row

nian

m

otio

n an

d st

ocha

stic

cal

culu

s,

Spri

nger

—V

erla

g, N

ew Y

ork.

Kle

in,

Mic

hael

W.

1989

[, "

Play

ing

With

The

Ban

d: D

ynam

ic E

ffec

ts O

f Tar

get Z

ones

In

An

Ope

n E

cono

my'

, mim

eo,

Aug

ust.

Kru

gman

, Pa

ul [

1987

], "

Tri

gger

Str

ateg

ies

and

Pric

e D

ynam

ics

in E

quity

and

For

eign

E

xcha

nge

Mar

kets

", N

BE

R W

orki

ng P

aper

No.

245

9, D

ecem

ber.

____

____

[198

9],

"Tar

get Z

ones

with

Lim

ited

Res

erve

s",

Dis

cuss

ion

Pape

r, M

IT.

[199

0],

"Tar

get

Zon

es a

nd

Exc

hang

e R

ate

Dyn

amic

s",

Qua

rter

ly J

ourn

al o

f E

cono

mic

s, f

orth

com

ing.

Kru

gman

, P.

and

J. R

otem

berg

[1

990]

, "T

arge

t Z

ones

With

Lim

ited

Res

erve

s",

mim

eo,

July

.

Lew

is, K

aren

K.

[199

0], O

ccas

iona

l In

terv

entio

ns to

Tar

get R

ates

with

a F

orei

gn E

xcha

nge

App

licat

ion"

, mim

eo,

N.Y

.U.

June

.

McC

aJlu

m,

Ben

nett

T.

ç198

3[,

"On

Non

—un

ique

ness

in R

atio

nal E

xpec

tatio

ns M

odel

s: A

n A

ttem

pt a

t Pe

rspe

ctiv

e,

' Jo

urna

l of M

onet

ary

Eco

nom

ics,

11, M

arch

, pp

. 139

—68

.

—47

Maf

fiar

is, A

. G

. an

d W

. A

. B

rock

[19

821,

St

ocha

stic

Met

hods

in E

cono

mic

s an

d Fi

nanc

e,

Nor

th—

Hol

land

, A

mst

erda

m.

Mill

er,

Mar

cus,

H.

and

Paul

Wel

ler

[198

8a],

"So

lvin

g St

ocha

stic

Sad

dlep

oint

Sys

tem

s:

A

Qua

litat

ive

Tre

atm

ent

with

Eco

nom

ic A

pplic

atio

ns",

W

arw

ick

Eco

nom

ic

Res

earc

h Pa

per

No.

309

(C

oven

try,

Eng

land

: Uni

vers

ity of

War

wic

k).

____

____

and

___

____

_ [1

988b

}, "T

arge

t Z

ones

, C

urre

ncy O

ptio

ns a

nd M

onet

ary

Polic

y",

snim

eo,

July

.

____

____

and

[1

989]

, "A

Qua

litat

ive

Ana

lysi

s of

Sto

chas

tic S

addl

epat

hs

and

its

App

licat

ion t

o E

xcha

nge R

ate R

egim

es",

snim

eo,

Uni

vers

ity of

War

wic

k.

____

____

an

d __

____

__

[199

0a],

"Cur

renc

y B

ubbl

es

Whi

ch A

ffec

t Fu

ndam

enta

ls:

A

Qua

litat

ive

Tre

atm

ent"

, The

Eco

nom

ic J

ourn

al, V

ol.

100,

No.

400

, Su

pple

men

t 19

90,

pp.

170—

179.

____

____

an

d __

____

__

[199

0b],

"Cur

renc

y B

ands

, T

arge

t Z

ones

an

d C

ash

Lim

its:

Thr

esho

lds f

or M

onet

ary

and

Fisc

al P

olic

y", C

EPR

Dis

cuss

ion

Pape

r N

o. 3

82, M

arch

.

____

____

an

d __

____

__

[199

0c],

Exc

hang

e R

ate

Ban

ds

with

Pri

ce I

nert

ia.

War

wic

k U

nive

rsity

, m

imeo

, Fe

brua

ry.

Mill

er,

M.H

. an

d A

. Su

ther

land

[199

0],

"Bri

tain

's R

etur

n to

Gol

d an

d Im

pend

ing

Ent

ry

into

the

EM

S: E

xpec

tatio

ns, J

oini

ng C

ondi

tions

and

Cre

dibi

lity"

, m

imeo

, Ju

ly.

____

____

__

____

__ a

nd J

ohn

Will

iam

son

[198

9],

"The

Sta

biliz

ing

Prop

ertie

s of

Tar

get

Zon

es",

in

Ral

ph C

. B

ryan

t, D

avid

A.

Cur

rie,

Ja

cob

A.

Fren

kel,

Paul

R.

Mas

son

and

Ric

hard

Po

rtes

ed

s.,

Mac

roec

onom

ic

Polic

ies

in

an I

nter

depe

nden

t W

orld

, 11

fF,

Was

hing

ton,

D.C

., pp

. 248

—27

1.

Obs

tfel

d, M

auri

ce a

nd K

enne

th R

ogof

f [1

983]

, "Sp

ecul

ativ

e H

yper

infl

atio

ns In

Max

imiz

ing

Mod

els:

Can

We

Rul

e T

hem

Out

?" J

ourn

al o

f Pol

itica

l Eco

nom

y, 9

1, p

p. 6

75—

687.

Pese

nti,

Paol

o A

. [1

990]

, "E

xcha

nge

Rat

e St

ocha

stic

D

ynam

ics

and

Tar

get

Zon

es:

An

Intr

oduc

tory

Sur

vey"

, m

imeo

, Ja

nuar

y.

Sarg

ent,

Tho

mas

J.

and

Nei

l W

alla

ce ]1

981]

, "S

ome

Unp

leas

ant

Mon

etar

ist A

rith

met

ic",

Fe

dera

l Res

erve

Ban

k of

Min

neap

olis

Qua

rter

ly R

evie

w,

5(3)

; pp

. 1—

17.

Smith

, Gre

gor

W.

and

Mic

hael

G.

Spen

cer

[199

0],

"Est

imat

ion

and

Tes

ting

in M

odel

s of

E

xcha

nge

Rat

e T

arge

t Zon

es a

nd P

roce

ss S

witc

hing

", m

imeo

, Ju

ly.

Sven

sson

, L

ars

E. 0

. [1

989]

, "T

arge

t Zon

es a

nd In

tere

st R

ate

Var

iabi

lity"

, NB

ER

Wor

king

Pa

per

No.

321

8, D

ecem

ber.

____

____

_ [1

990a

],

"The

Ter

m S

truc

ture

Of

Inte

rest

Rat

e D

iffe

rent

ials

In

A T

arge

t Zon

e:

The

ory

and S

wed

ish

Dat

a", m

imeo

, Feb

ruar

y.

____

____

[199

0b],

"The

Sim

ples

t Tes

ts o

f T

arge

t Zon

e C

redi

bilit

y", N

BE

R W

orki

ng P

aper

, N

o. 3

394,

Jun

e.

Woo

dfor

d,

M.

[198

7],

"Lea

rnin

g T

o B

elie

ve I

n Su

nspo

ts",

m

imeo

, U

nive

rsity

of C

hica

go

Gra

duat

e Sc

hool

of

Bus

ines

s.