49
Types of Maps

Types of maps, long, lat, satellites, time zones

Embed Size (px)

Citation preview

Page 1: Types of maps, long, lat, satellites, time zones

Types of Maps

Page 2: Types of maps, long, lat, satellites, time zones

• Cartography is the science of mapmaking.

• For thousands of years, people have used maps to define borders and to find places.

What is a Map?

•A map is a graphic representation or scale model of spatial concepts.

•It is a means for conveying geographic information.

• Old maps provide much information about what was known in times past, as well as the philosophy and cultural basis of the map, which were often much different from modern cartography.

Mapping the Earth

Page 3: Types of maps, long, lat, satellites, time zones

1. Geologic Maps – displays geologic features (rock type).

Page 4: Types of maps, long, lat, satellites, time zones

a. Topographic Maps – maps that show shape and elevation of the Earth.

Page 5: Types of maps, long, lat, satellites, time zones

2. Bathymetric Maps – displays oceanic features (seafloor topography, currents, salinity, temperatures).

Page 6: Types of maps, long, lat, satellites, time zones
Page 7: Types of maps, long, lat, satellites, time zones
Page 8: Types of maps, long, lat, satellites, time zones

3. Weather maps – displays atmospheric conditions

Page 9: Types of maps, long, lat, satellites, time zones

Latest ISOTHERMS

Isotherms – lines of equal temperatures.

Page 10: Types of maps, long, lat, satellites, time zones

Isobars – lines of equal air pressure.

Latest ISOBARS

Page 11: Types of maps, long, lat, satellites, time zones

4. Astronomical Maps – displays location of object in space (planets, stars, comets, ect…).

Page 12: Types of maps, long, lat, satellites, time zones
Page 13: Types of maps, long, lat, satellites, time zones

Other types of Maps

Page 14: Types of maps, long, lat, satellites, time zones

Types of Maps (underline the following)• Maps are flat models of a three-dimensional

object, Earth.

Types of Maps

• All flat maps distort to some degree either the shapes or the areas of landmasses.

• Cartographers use projections to make maps.

• A map projection is made by transferring points and lines on a globe’s surface onto a sheet of paper.

Page 15: Types of maps, long, lat, satellites, time zones

1. Projections• A Mercator projection shows parallel lines of

latitude and longitude.

Types of Maps

• In a Mercator projection, the shapes of the landmasses are correct, but their areas are distorted.

Page 16: Types of maps, long, lat, satellites, time zones

2. Conic Projections• A conic projection a map made

by projecting points and lines from a globe onto a cone.

Types of Maps

• The cone touches the globe at a particular line of latitude along which there is very little distortion in the areas or shapes of landmasses.

• Distortion is evident near the top and bottom of the projection.

Page 17: Types of maps, long, lat, satellites, time zones

3. Gnomonic Projections• A gnomonic projection - a map made by taking a

picture from the north or south pole.

Types of Maps

• Gnomonic projections distort direction and distance between landmasses.

• Gnomonic projections are useful in plotting long-distance trips by air or sea.

Page 18: Types of maps, long, lat, satellites, time zones

Map Scales

and

Legends

Page 19: Types of maps, long, lat, satellites, time zones

• A map legend explains what the symbols represent.

Map Legends

• Topographic maps and most other maps include both human-made and natural features that are located on Earth’s surface.

• These features are represented by different symbols.

Types of Maps

Page 20: Types of maps, long, lat, satellites, time zones

• A map scale is the ratio between distances on a map and actual distances on the surface of Earth.

Map Scales

• When using a map, you need to know how to measure distances.

Types of Maps

Page 21: Types of maps, long, lat, satellites, time zones

Map Scales• There are three types of map scales: verbal

scales, graphic scales, and fractional scales.

Types of Maps

– A verbal scale expresses distance in voice, such as saying, “One centimeter is equal to one kilometer.”

– A graphic scale – a picture that represents a certain distance, such as 5 km or 5 miles.

– A fractional scale expresses distance as a ratio, such as 1:63 500. (1 inch equals 63,500 INCHES)

Page 22: Types of maps, long, lat, satellites, time zones

Satellites

&

Infrared imagery

Page 23: Types of maps, long, lat, satellites, time zones

Remote Sensing• Until recently, mapmakers had to go on-site to

collect the data needed to make maps.

Remote Sensing

• Today, advanced technology has changed the way maps are made.

• The process of collecting data about Earth from far above Earth’s surface is called Remote sensing (Satellites).

Page 24: Types of maps, long, lat, satellites, time zones

1. Satellites• A Landsat satellite uses wavelengths of light

including infrared radiation to produce an image.

Remote Sensing

• Since the features on Earth’s surface radiate warmth at slightly different frequencies, they show up as different colors in images

Landsat Images

Page 25: Types of maps, long, lat, satellites, time zones
Page 26: Types of maps, long, lat, satellites, time zones

Landsat image of Virginia

Page 27: Types of maps, long, lat, satellites, time zones

Virginia Beach – Landsat image.

Page 28: Types of maps, long, lat, satellites, time zones

2. Topex/Poseidon Satellite• The Topex/Poseidon satellite uses radar to map

features on the ocean floor.

Remote Sensing

• Radar uses high-frequency signals that are transmitted from the satellite to the surface of the ocean.

• A receiving device then picks up the returning echo as it is reflected off the water.

Page 29: Types of maps, long, lat, satellites, time zones
Page 30: Types of maps, long, lat, satellites, time zones
Page 31: Types of maps, long, lat, satellites, time zones
Page 32: Types of maps, long, lat, satellites, time zones

3. The Global Positioning System• The Global Positioning System, or GPS, is a

radio-navigation system of at least 24 satellites that allows its users to determine their exact position on Earth.

Remote Sensing

• Each satellite orbits Earth and transmits high-frequency microwaves that contain information about the satellite’s position and the time of transmission.

• A GPS receiver calculates the user’s precise latitude and longitude by processing the signals emitted by multiple satellites.

Page 33: Types of maps, long, lat, satellites, time zones

4. Sea Beam• Sea Beam technology is similar to the Topex/

Poseidon satellite in that it is used to map the ocean floor.

Remote Sensing

Sonar (SOUND NAVIGATION AND RANGE) is the use of sound waves to detect and measure objects underwater.

Page 34: Types of maps, long, lat, satellites, time zones

Sea Beam• First, a sound wave is sent from a ship toward the

ocean floor.

Remote Sensing

• A receiving device then picks up the returning echo when it bounces off the seafloor.

• Computers on the ship can then calculate the distance to the ocean bottom based on the time it takes the signal to be reflected.

Page 35: Types of maps, long, lat, satellites, time zones

Latitude

and

Longitude

Page 36: Types of maps, long, lat, satellites, time zones

• Cartographers use an imaginary grid of parallel lines and vertical lines to locate points on Earth.

• The equator circles Earth halfway between the north and south poles separating Earth into two equal halves called the northern hemisphere and the southern hemisphere.

Latitude and Longitude

Latitude and Longitude

Page 37: Types of maps, long, lat, satellites, time zones

Latitude• Lines of latitude are lines running parallel to

the equator.

Latitude and Longitude

• Latitude is the distance in degrees north or south of the equator.

Page 38: Types of maps, long, lat, satellites, time zones

Latitude• Latitude is thus measured from 0° at the equator

to 90° at the poles.

Latitude and Longitude

• Locations north of the equator are referred to by degrees north latitude (N).

• Locations south of the equator are referred to by degrees south latitude (S).

Page 39: Types of maps, long, lat, satellites, time zones

LatitudeDegrees of Latitude

Latitude and Longitude

– Each degree of latitude is equivalent to about 111 km (°) on Earth’s surface. 1° = 70 miles

– To locate positions on Earth more precisely, cartographers break down degrees of latitude into 60 smaller units, called minutes (´). 1' = 1.2 miles

– A minute of latitude can be further divided into seconds (´´). 1" = .02 miles

– Longitude is also divided into degrees, minutes, and seconds.

Page 40: Types of maps, long, lat, satellites, time zones

Longitude• To locate positions in east and west directions,

cartographers use lines of longitude, also known as meridians.

Latitude and Longitude

• Longitude is the distance in degrees east or west of the prime meridian.

• The prime meridian, representing 0° longitude, is the reference point for longitude.

Page 41: Types of maps, long, lat, satellites, time zones

Longitude• Points west of the prime meridian are numbered

from 0° to 180° west longitude (W).

Latitude and Longitude

• Points east of the prime meridian are numbered from 0° to 180° east longitude (E).

Page 42: Types of maps, long, lat, satellites, time zones

Longitude

Semicircles

Latitude and Longitude

– Lines of longitude are not parallel; they are large semicircles that extend vertically from pole to pole.

– The distances covered by degrees of longitude vary with location.

– One degree of longitude varies from about 111 km at the equator to essentially the distance covered by a point at the poles.

Degrees of Longitude

Page 43: Types of maps, long, lat, satellites, time zones

Longitude

Locating Places with Coordinates

Latitude and Longitude

– Both latitude and longitude are needed to precisely locate positions on Earth.

– For example, the location of New Orleans is 29°57´N, 90°04´W.

– Note that latitude comes first in reference to the coordinates of a particular location.

Page 44: Types of maps, long, lat, satellites, time zones

Time Zones

Page 45: Types of maps, long, lat, satellites, time zones

Time Zones

Calendar Dates

Latitude and Longitude

– Every time zone experiences this transition from one day to the next, with the calendar advancing to the next day at midnight.

– Each time you travel through a time zone, you gain or lose time, eventually gaining or losing an entire day.

– The International Date Line, or 180° meridian, serves as the transition line for calendar days.

– Traveling west across the International Date Line, you would advance your calendar one day.

– Traveling east, you would move your calendar back one day.

Page 46: Types of maps, long, lat, satellites, time zones

Time Zones• Because Earth takes about 24 hours to rotate

once on its axis, it is divided into 24 times zones, each representing a different hour.

Latitude and Longitude

Page 47: Types of maps, long, lat, satellites, time zones

Time Zones• Each time zone is 15° wide, corresponding

roughly to lines of longitude.

Latitude and Longitude

• Time zone boundaries have been adjusted in local areas for convenience.

Page 48: Types of maps, long, lat, satellites, time zones

Time Zones• There are six

different time zones in the United States.

Latitude and Longitude

Page 49: Types of maps, long, lat, satellites, time zones