35
1 Design, selection and operation of distribution transformers Stefan Fassbinder Deutsches Kupferinstitut Am Bonneshof 5 D-40474 Düsseldorf Tel.: +49 211 4796-323 Fax: +49 211 4796-310 [email protected] www.kupferinstitut.de deutsc h Englis h

Transformers

Embed Size (px)

DESCRIPTION

transformers

Citation preview

Page 1: Transformers

1

Design, selection and operation of distribution transformers

Stefan FassbinderDeutsches KupferinstitutAm Bonneshof 5D-40474 DüsseldorfTel.: +49 211 4796-323Fax: +49 211 [email protected]

deutsch

English

Page 2: Transformers

2

The German Copper Institute, DKI, is the central information and advisory service dealing with all uses of copper and copper alloys. We offer our services to:

Commercial companies The skilled trades Industry R & D institutes Universities Artists and craftsmen Students Private individuals

We can be contacted by: post phone fax e-mail internet online database, or personally

Page 3: Transformers

3

1. Basics: “Gigantomania” or a necessity of economics?

Why build power stations in such huge units that you need such big transformers?

Page 4: Transformers

4

This one weighs 300t and does 600MVA...

...and this one here weighs 300g and should therefore do 600VA! But in fact it only does 6VA!

Page 5: Transformers

5

The coherence is given by an empirical formula

It's a law of physics: Higher energy density in larger plant

4/3*0,7 kVASkgM NFe

4/3*5,1 kVASkgM NCu

Spezifischer Kupfergehaltvon Transformatoren

1E-02kg

1E-01kg

1E+00kg

1E+01kg

1E+02kg

1E+03kg

1E+04kg

1E+05kg

1E-03kVA 1E-01kVA 1E+01kVA 1E+03kVA 1E+05kVA 1E+07kVA

Trafo-Nennleistung

Ku

pfe

r-E

insa

tz

20%

30%

40%

50%

60%

70%

80%

90%

100%

Vorgefundene Beispiel-TrafosTheoretische Herleitung

Spezifischer Kupfergehaltvon Transformatoren

1E-02kg

1E-01kg

1E+00kg

1E+01kg

1E+02kg

1E+03kg

1E+04kg

1E+05kg

1E-03kVA 1E-01kVA 1E+01kVA 1E+03kVA 1E+05kVA 1E+07kVA

Trafo-Nennleistung

Ku

pfe

r-E

insa

tz

20%

30%

40%

50%

60%

70%

80%

90%

100%

Wir

kun

gsg

rad

Vorgefundene Beispiel-TrafosTheoretische HerleitungWirkungsgrad

Specific copper contentof transformers

1E-02kg

1E-01kg

1E+00kg

1E+01kg

1E+02kg

1E+03kg

1E+04kg

1E+05kg

1E-03kVA 1E-01kVA 1E+01kVA 1E+03kVA 1E+05kVA 1E+07kVA

Transformer rated throughput

Co

pp

er

con

ten

t

20%

30%

40%

50%

60%

70%

80%

90%

100%

Example transformers foundTheoretical Deduction

Specific copper contentof transformers

1E-02kg

1E-01kg

1E+00kg

1E+01kg

1E+02kg

1E+03kg

1E+04kg

1E+05kg

1E-03kVA 1E-01kVA 1E+01kVA 1E+03kVA 1E+05kVA 1E+07kVA

Transformer rated throughput

Co

pp

er

con

ten

t

20%

30%

40%

50%

60%

70%

80%

90%

100%

Eff

icie

ncy

Example Transformers FoundTheoretical DeductionEnergy Efficiency

Page 6: Transformers

6

0.4kV

20kV10kV

380kV220kV110kV

50 Hz50 Hz3~3~

Structure of the public mains

27kV, nuclear21kV, e. g. coal

10kV, e. g. hydro

0.5kV, e. g. wind

Page 7: Transformers

7

Wooden spacers(not depicted in the following drawings)

HV winding LV winding

Current

Current 2. Designhere of a

distribution transformer

Page 8: Transformers

8

Yoke spanning bar

Winding spanning bolts

Yoke lamination spanning

Wooden winding spacers

HV winding

Yoke lamination

spanning boltsLV winding

Off-load tap changer

Page 9: Transformers

9

Page 10: Transformers

10

3. Operating behaviour

Equivalent circuit of a transformer:All values are referenced to one side, in this case the secondary.

Note:

Different loadsinfluence the transformer differently!

Load

RF

eX1‘ X2X

m

RCu1‘ RCu2

Page 11: Transformers

11

USC IN

By the way, what really is short-circuit voltage?

You apply a voltage magnitudeto the input side which is just enough to drive the short-circuit current in the output winding when shorted.

Xm AV

RF

e

RCu1‘ RCu2

X1‘ X2

Page 12: Transformers

12

V

By the way, what really is short-circuit power?

It doesn't really exist.

You multiply the no-load voltage by the short-circuit current.

Xm A

RF

eRCu1‘ RCu2

X1‘ X2

Page 13: Transformers

13

Vol

tage

acr

oss

the

load

(≈1

07%

!)

Equ

ival

ent i

nput

vol

tage

U1'

(100

%)

Inductive drop uX

Ohmic drop uR in the trans-

former

Total drop uSC in the transformer

R load (rated load) L load

Vol

tage

acr

oss

the

load

(≈9

4%)

Equ

ival

ent i

nput

vol

tage

U1'

(100

%)

Inductive drop uX

Ohmic drop uR in the trans-

former

Total drop uSC in the

transformerV

olta

ge a

cros

s th

e lo

ad (

≈99%

)

Equ

ival

ent i

nput

vol

tage

U1'

(100

%)

Inductive drop uX

Ohmic drop uR in the trans-

former

Total drop uSC in the

transformer

Inductive drop(uX = 5.916%)

Ohmic drop in the

transformer(e. g. uR = 1%)

Total drop inside the transformer(e. g. uSC = 6%)

Tricky: C load

Page 14: Transformers

14

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Relative Last-Admittanz Y/Y N

Rel

ativ

er L

asts

trom

I/I N

Strom bei ohmscher LastStrom bei induktiver LastStrom bei kapazitiver Last

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Relative load admittance Y/Y N

Rel

ativ

e lo

ad c

urre

ntI/I N

Current with resistive loadCurrent with inductive loadCurrent with capacitive load

Short circuit current ISC=16.7*IN

16.7*rated load

magnitude (ZSC=Zload: “half a short-circuit”)

E. g. non-detuned static Var com-pensator 1670kvaron a 100kVA transformer

Theoretical deduction of the load current

Rated load

Page 15: Transformers

15

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

Relative Last-Admittanz Y/Y N

Rel

ativ

er L

asts

trom

I/I N

Strom bei ohmscher Last

Strom bei induktiver LastStrom bei kapazitiver Last

Nennlast

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Relative load admittance Y/Y N Rel

ativ

e lo

ad c

urre

ntI/I N

Current with resistive load

Current with inductive loadCurrent with capacitive load

Rated load

Excerpt with the actually occurring values

Page 16: Transformers

16

No-load current

of a 16kV / 420V, 630kVA transformer, here excitated from the low voltage side!

RL≈400m

Ω

RF

e ≈400Ω

X1‘≈12mΩ X2≈12mΩ

Xm

>4kΩ

RCu1‘≈2mΩ RCu2 ≈2mΩ

Page 17: Transformers

17

Vector groups

Can the star point be loaded?

230V

400V

Page 18: Transformers

18

Vector groups

Can the star point be loaded?

Yes

Why?

No

U V W U V W

u v w n u v w n

Page 19: Transformers

19

Vector groups

Can the star point be loaded?

Approximate equivalent circuit of a Yyn vector group

RL≈400m

Ω

RF

e ≈400Ω

X1‘≈12mΩ X2≈12mΩ

Xm

>4kΩ

RCu1‘≈2mΩ RCu2 ≈2mΩ

RF

e ≈400Ω

X1‘≈12mΩ X2≈12mΩ

Xm

>4kΩ

RCu1‘≈2mΩ RCu2 ≈2mΩ

L1

N

L2

RL≈400Ω

Page 20: Transformers

20

Prerequisites for parallel operation:• Equal voltages of windings to be paralleled,

equal short-circuit voltage ratings,• equal vector group figures,• if input sides are not connected in parallel:

Make sure the feeding grids are in phase with each other,

• if input sides are not connected in parallel: Make sure the feeding grids have approximately equal short-circuitpowers,

• ratio of power ratings of units to beparalleled should be no greaterthan 3:1.

u X =

3.9

1%

uR = 0.9%

u SC =

4%

u X =

2.9

5%

uR = 2.7%

u SC =

4%

630 kVA transformer according to HD 428 list C

50 kVA transformer according to HD 428 list B

Page 21: Transformers

21

Jahr Material DickeVerlust (50Hz)

bei Induktion

1895 Eisendraht 6.00W/kg 1.0T1910 Warm gewalztes FeSi-Blech 0.35mm 2.00W/kg 1.5T1950 Kalt gewalzt, kornorientiert 0.35mm 1.00W/kg 1.5T1960 Kalt gewalzt, kornorientiert 0.30mm 0.90W/kg 1.5T1965 Kalt gewalzt, kornorientiert 0.27mm 0.84W/kg 1.5T1970 Kalt gewalztes HiB-Blech 0.30mm 0.80W/kg 1.5T1975 Amorphes Eisen 0.03mm 0.20W/kg 1.3T1980 Kalt gewalzt, kornorientiert 0.23mm 0.75W/kg 1.5T1980 Kalt gewalztes HiB 0.23mm 0.70W/kg 1.5T1983 Laser-behandeltes HiB-Blech 0.23mm 0.60W/kg 1.5T1985 Kalt gewalzt, kornorientiert 0.18mm 0.67W/kg 1.5T1987 Plasma-behandeltes HiB-Blech 0.23mm 0.60W/kg 1.5T1991 Chemisch gebeiztes HiB-Blech 0.23mm 0.60W/kg 1.5T

Year Material ThicknessLoss

(50Hz)at flux density

1895 Iron wire 6,00W/kg 1,0T1910 Warm rolled FeSi sheet 0,35mm 2,00W/kg 1,5T1950 Cold rolled, grain oriented 0,35mm 1,00W/kg 1,5T1960 Cold rolled, grain oriented 0,30mm 0,90W/kg 1,5T1965 Cold rolled, grain oriented 0,27mm 0,84W/kg 1,5T1970 Cold rolled HiB sheet 0,30mm 0,80W/kg 1,5T1975 Amorphous iron 0,03mm 0,20W/kg 1,3T1980 Cold rolled, grain oriented 0,23mm 0,75W/kg 1,5T1980 Cold rolled HiB sheet 0,23mm 0,70W/kg 1,5T1983 Laser treated HiB sheet 0,23mm 0,60W/kg 1,5T1985 Cold rolled, grain oriented 0,18mm 0,67W/kg 1,5T1987 Plasma treated HiB sheet 0,23mm 0,60W/kg 1,5T1991 Chemically etched HiB sheet 0,23mm 0,60W/kg 1,5T

4. EfficiencyDevelopment of magnetic steel

Page 22: Transformers

22

Nenn-Kurz-

schluss-Trocken-

trafoTrocken-

trafoleistung spg.

Schweiznach

HD538Schweiz

nach HD538

S u k Liste A Liste B Liste C 12kV OS Liste A' Liste B' Liste C' 12kV OS

50kVA 4% 1100W 1350W 875W 190W 145W 125W

100kVA 4% 1750W 2150W 1475W 1750W 2000W 320W 260W 210W 210W 440W

160kVA 4% 2350W 3100W 2000W 1800W 2700W 460W 375W 300W 250W 610W

250kVA 4% 3250W 4200W 2750W 2400W 3500W 650W 530W 425W 350W 820W

400kVA 4% 4600W 6000W 3850W 3300W 4900W 930W 750W 610W 455W 1150W

630kVA 4% 6500W 8400W 5400W 4400W 7300W 1300W 1030W 860W 635W 1500W

630kVA 6% 6750W 8700W 5600W 4400W 7600W 1200W 940W 800W 635W 1370W

1000kVA 6% 10500W 13000W 9500W 6500W 10000W 1700W 1400W 1100W 950W 2000W

1600kVA 6% 17000W 20000W 14000W 12500W 14000W 2600W 2200W 1700W 1300W 2800W

2500kVA 6% 26500W 32000W 22000W 22000W 21000W 3800W 3200W 2500W 1650W 4300W

Lastverlust

nach HD428

Leerlaufverlust

nach HD428

Öltransformator bis 24kV Öltransformator bis 24kVPower

Short-circuit

Dry transf.

Dry transf.

rating voltageSwiss

acc. to HD538

Swissacc. to HD538

S u SC List A List B List C 12kV OS List A' List B' List C' 12kV OS

50kVA 4% 1100W 1350W 875W 190W 145W 125W

100kVA 4% 1750W 2150W 1475W 1750W 2000W 320W 260W 210W 210W 440W

160kVA 4% 2350W 3100W 2000W 1800W 2700W 460W 375W 300W 250W 610W

250kVA 4% 3250W 4200W 2750W 2400W 3500W 650W 530W 425W 350W 820W

400kVA 4% 4600W 6000W 3850W 3300W 4900W 930W 750W 610W 455W 1150W

630kVA 4% 6500W 8400W 5400W 4400W 7300W 1300W 1030W 860W 635W 1500W

630kVA 6% 6750W 8700W 5600W 4400W 7600W 1200W 940W 800W 635W 1370W

1000kVA 6% 10500W 13000W 9500W 6500W 10000W 1700W 1400W 1100W 950W 2000W

1600kVA 6% 17000W 20000W 14000W 12500W 14000W 2600W 2200W 1700W 1300W 2800W

2500kVA 6% 26500W 32000W 22000W 22000W 21000W 3800W 3200W 2500W 1650W 4300W

according to HD428 according to HD428

Load loss No-load loss

Oil transformer up to 24kV Oil transformer up to 24kV

Division into classes according to thepresent HD 428

Page 23: Transformers

23

Nenn-rel.

Kurz-Gieß-harz-

leistung schl.- Liste DK Liste CK Liste BK Liste AK HD538 Liste E0 Liste D0 Liste C0 Liste B0 Liste A0

spg. ≤24kV ≤24kV ≤36kV ≤24kV ≤36kV ≤24kV ≤36kV ≤12kV ≤24kV ≤24kV ≤24kV ≤24kV ≤24kV

S N u k PK PK PK PK PK PK PK PK P0 Lärm P0 Lärm P0 Lärm P0 Lärm P0 Lärm

50kVA 4% 1350W 1100W 1450W 875W 1250W 750W 1050W 190W 55dB(A) 145W 50dB(A) 125W 47dB(A) 110W 42dB(A) 90W 39dB(A)

100kVA 4% 2150W 1750W 2350W 1475W 1950W 1250W 1650W 2000W 320W 59dB(A) 260W 54dB(A) 210W 49dB(A) 180W 44dB(A) 145W 41dB(A)

160kVA 4% 3100W 2350W 3350W 2000W 2550W 1700W 2150W 2700W 460W 62dB(A) 375W 57dB(A) 300W 52dB(A) 260W 47dB(A) 210W 44dB(A)

250kVA 4% 4200W 3250W 4250W 2750W 3500W 2350W 3000W 3500W 650W 65dB(A) 530W 60dB(A) 425W 55dB(A) 360W 50dB(A) 300W 47dB(A)

315kVA 4% 5000W 3900W 3250W 2800W 770W 67dB(A) 630W 61dB(A) 520W 57dB(A) 440W 52dB(A) 360W 49dB(A)

400kVA 4% 6000W 4600W 6200W 3850W 4900W 3250W 4000W 4900W 930W 68dB(A) 750W 63dB(A) 610W 58dB(A) 520W 53dB(A) 430W 50dB(A)

500kVA 4% 7200W 5500W 4600W 3900W 1100W 69dB(A) 880W 64dB(A) 720W 59dB(A) 610W 54dB(A) 510W 51dB(A)

630kVA 4% 8400W 6500W 8800W 5400W 6500W 4600W 5500W 7300W 1300W 70dB(A) 1030W 65dB(A) 860W 60dB(A) 730W 55dB(A) 600W 52dB(A)

630kVA 6% 8700W 6750W 8800W 5600W 6500W 4800W 5500W 7600W 1200W 70dB(A) 940W 65dB(A) 800W 60dB(A) 680W 55dB(A) 560W 52dB(A)

800kVA 6% 10500W 8400W 10500W 7000W 8400W 6000W 7000W 1400W 71dB(A) 1150W 66dB(A) 930W 61dB(A) 800W 56dB(A) 650W 53dB(A)

1000kVA 6% 13000W 10500W 13000W 9000W 10500W 7600W 8900W 10000W 1700W 73dB(A) 1400W 68dB(A) 1100W 63dB(A) 940W 58dB(A) 770W 55dB(A)

1250kVA 6% 16000W 13500W 16000W 11000W 13500W 9500W 11500W 2100W 74dB(A) 1750W 69dB(A) 1350W 64dB(A) 1150W 59dB(A) 950W 56dB(A)

1600kVA 6% 20000W 17000W 19200W 14000W 17000W 12000W 14500W 14000W 2600W 76dB(A) 2200W 71dB(A) 1700W 66dB(A) 1450W 61dB(A) 1200W 58dB(A)

2000kVA 6% 26000W 21000W 24000W 18000W 21000W 15000W 18000W 3100W 78dB(A) 2700W 73dB(A) 2100W 68dB(A) 1800W 63dB(A) 1450W 60dB(A)

2500kVA 6% 32000W 26500W 29400W 22000W 26500W 18500W 22500W 21000W 3500W 81dB(A) 3200W 76dB(A) 2500W 71dB(A) 2150W 66dB(A) 1750W 63dB(A)

Lastverlust Leerlaufverlust

Öltransformator ÖltransformatorPower

rel. short-

Cast resin

rating circuit List DK List CK List BK List AK HD538 List E0 List D0 List C0 List B0 List A0volt. ≤24kV ≤24kV ≤36kV ≤24kV ≤36kV ≤24kV ≤36kV ≤12kV ≤24kV ≤24kV ≤24kV ≤24kV ≤24kV

S N u k PK PK PK PK PK PK PK PK P0 Noise P0 Noise P0 Noise P0 Noise P0 Noise

50kVA 4% 1350W 1100W 1450W 875W 1250W 750W 1050W 190W 55dB(A) 145W 50dB(A) 125W 47dB(A) 110W 42dB(A) 90W 39dB(A)

100kVA 4% 2150W 1750W 2350W 1475W 1950W 1250W 1650W 2000W 320W 59dB(A) 260W 54dB(A) 210W 49dB(A) 180W 44dB(A) 145W 41dB(A)

160kVA 4% 3100W 2350W 3350W 2000W 2550W 1700W 2150W 2700W 460W 62dB(A) 375W 57dB(A) 300W 52dB(A) 260W 47dB(A) 210W 44dB(A)

250kVA 4% 4200W 3250W 4250W 2750W 3500W 2350W 3000W 3500W 650W 65dB(A) 530W 60dB(A) 425W 55dB(A) 360W 50dB(A) 300W 47dB(A)

315kVA 4% 5000W 3900W 0W 3250W 0W 2800W 770W 67dB(A) 630W 61dB(A) 520W 57dB(A) 440W 52dB(A) 360W 49dB(A)

400kVA 4% 6000W 4600W 6200W 3850W 4900W 3250W 4000W 4900W 930W 68dB(A) 750W 63dB(A) 610W 58dB(A) 520W 53dB(A) 430W 50dB(A)

500kVA 4% 7200W 5500W 4600W 3900W 1100W 69dB(A) 880W 64dB(A) 720W 59dB(A) 610W 54dB(A) 510W 51dB(A)

630kVA 4% 8400W 6500W 8800W 5400W 6500W 4600W 5500W 7300W 1300W 70dB(A) 1030W 65dB(A) 860W 60dB(A) 730W 55dB(A) 600W 52dB(A)

630kVA 6% 8700W 6750W 8800W 5600W 6500W 4800W 5500W 7600W 1200W 70dB(A) 940W 65dB(A) 800W 60dB(A) 680W 55dB(A) 560W 52dB(A)

800kVA 6% 10500W 8400W 10500W 7000W 8400W 6000W 7000W 1400W 71dB(A) 1150W 66dB(A) 930W 61dB(A) 800W 56dB(A) 650W 53dB(A)

1000kVA 6% 13000W 10500W 13000W 9000W 10500W 7600W 8900W 10000W 1700W 73dB(A) 1400W 68dB(A) 1100W 63dB(A) 940W 58dB(A) 770W 55dB(A)

1250kVA 6% 16000W 13500W 16000W 11000W 13500W 9500W 11500W 2100W 74dB(A) 1750W 69dB(A) 1350W 64dB(A) 1150W 59dB(A) 950W 56dB(A)

1600kVA 6% 20000W 17000W 19200W 14000W 17000W 12000W 14500W 14000W 2600W 76dB(A) 2200W 71dB(A) 1700W 66dB(A) 1450W 61dB(A) 1200W 58dB(A)

2000kVA 6% 26000W 21000W 24000W 18000W 21000W 15000W 18000W 3100W 78dB(A) 2700W 73dB(A) 2100W 68dB(A) 1800W 63dB(A) 1450W 60dB(A)

2500kVA 6% 32000W 26500W 29400W 22000W 26500W 18500W 22500W 21000W 3500W 81dB(A) 3200W 76dB(A) 2500W 71dB(A) 2150W 66dB(A) 1750W 63dB(A)

Load losses No-load losses

Oil-immersed transformer Oil-immersed transformer

Division into classes according to thefuture HD 428

Page 24: Transformers

24

98,5%

98,6%

98,7%

98,8%

98,9%

99,0%

99,1%

99,2%

99,3%

99,4%

0% 25% 50% 75% 100% 125%

Auslastungsgrad

h

Wirkungsgrad bei max. P(Fe), min. P(Cu)

Wirkungsgrad bei max. P(Cu), min. P(Fe)

98.5%

98.6%

98.7%

98.8%

98.9%

99.0%

99.1%

99.2%

99.3%

99.4%

0% 25% 50% 75% 100% 125%

Degree of loading

h

Efficiency with max. P(Fe), min. P(Cu)

Efficiency with max. P(Cu), min. P(Fe)

Page 25: Transformers

25

Channels / Design Measures & Weights Calculated Electrical Values Amor-

Ver-sion

betw. core & LV winding

in LV windingbetw. LV & HV winding

in HV windingstack height

width length MFe MCu Mtot PvFe PvCu Pvtot U hPrice tisa-

tion

front [mm]

long [mm]

front [mm]

long [mm]

front [mm]

long [mm]

front [mm]

long [mm]

[mm] [mm] [mm] [kg] [kg] [kg] [W] [W] [W] [V] [%] [DM] [a]

0 10 10 10 10 10 10 10 10 100 450 360 202 30,7 232,7 417 1634 2051 13 95,12 1715 ---

1 10 10 10 0 10 10 10 0 100 415 365 196 42,4 238,4 406 1343 1749 11 95,81 1823 0,924

2 10 10 0 0 10 10 10 0 100 417 342 196 46,6 242,6 406 1217 1623 10 96,10 1851 0,821

3 10 10 0 0 10 0 10 0 100 400 342 196 48,2 244,2 406 1090 1496 9 96,39 1867 0,707

4 10 10 0 0 10 10 0 0 100 406 340 196 59,9 255,9 406 874 1280 6 96,90 2008 0,981

5 10 10 0 0 0 0 0 0 100 408 335 196 65,9 261,9 406 753 1159 5 97,18 2077 1,048

6 As in 5, but with even thicker wire 100 412 341 196 71,3 267,3 406 626 1032 4 97,48 2152 1,108

7 As in 5, but with grain-oriented steel, lower stack height 80 412 311 155 64,7 219,7 223 580 803 4 98,03 2443 1,507

Data underlying the calculation:Electricity price 20 Pf/kWhWork days per year 242 dOperation hours per shift 8 hShifts 1 /d

Comparing 8 designs of a 40 kVA

transformer by Riedel transformer factory

Page 26: Transformers

26

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7

W

94,5

95,0

95,5

96,0

96,5

97,0

97,5

98,0

98,5%

Pvtot [W]

Efficiency

Voltage drop no load / rated load [V]

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7

V

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7

DM

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6a

Price [DM]

Amortisation [a]

Weights and measures

0

100

200

300

400

500

0 1 2 3 4 5 6 7

mm

0

50

100

150

200

250

300kg

width [mm] length [mm]

Mtot [kg] MCu [kg]

Page 27: Transformers

27

Jahr Material DickeVerlust (50Hz)

bei Induktion

1895 Eisendraht 6.00W/kg 1.0T1910 Warm gewalztes FeSi-Blech 0.35mm 2.00W/kg 1.5T1950 Kalt gewalzt, kornorientiert 0.35mm 1.00W/kg 1.5T1960 Kalt gewalzt, kornorientiert 0.30mm 0.90W/kg 1.5T1965 Kalt gewalzt, kornorientiert 0.27mm 0.84W/kg 1.5T1970 Kalt gewalztes HiB-Blech 0.30mm 0.80W/kg 1.5T1975 Amorphes Eisen 0.03mm 0.20W/kg 1.3T1980 Kalt gewalzt, kornorientiert 0.23mm 0.75W/kg 1.5T1980 Kalt gewalztes HiB 0.23mm 0.70W/kg 1.5T1983 Laser-behandeltes HiB-Blech 0.23mm 0.60W/kg 1.5T1985 Kalt gewalzt, kornorientiert 0.18mm 0.67W/kg 1.5T1987 Plasma-behandeltes HiB-Blech 0.23mm 0.60W/kg 1.5T1991 Chemisch gebeiztes HiB-Blech 0.23mm 0.60W/kg 1.5T

Year Material ThicknessLoss

(50Hz)at

induction1895 Iron wire 6.00W/kg 1.0T1910 Warm rolled FeSi sheet 0.35mm 2.00W/kg 1.5T1950 Cold rolled, grain oriented 0.35mm 1.00W/kg 1.5T1960 Cold rolled, grain oriented 0.30mm 0.90W/kg 1.5T1965 Cold rolled, grain oriented 0.27mm 0.84W/kg 1.5T1970 Cold rolled HiB sheet 0.30mm 0.80W/kg 1.5T1975 Amorphous iron 0.03mm 0.20W/kg 1.3T1980 Cold rolled, grain oriented 0.23mm 0.75W/kg 1.5T1980 Cold rolled HiB sheet 0.23mm 0.70W/kg 1.5T1983 Laser treated HiB sheet 0.23mm 0.60W/kg 1.5T1985 Cold rolled, grain oriented 0.18mm 0.67W/kg 1.5T1987 Plasma treated HiB sheet 0.23mm 0.60W/kg 1.5T1991 Chemically etched HiB sheet 0.23mm 0.60W/kg 1.5T

Amorphous steel could cut the no-load losses down to a fraction

However:

• bigger

• more expensive

• noisier

Page 28: Transformers

28

So the replacement of old transformers pays off for a variety of reasons

1958 1998(Rauscher & Stoecklin) (ABB Sécheron SA)

Geräuschpegel Abmessungen1960 58 dB (A)1970 50 dB (A)1980 46 dB (A)1990 43 dB (A)1998 38 dB (A)

Abmessungen Absolute pricesLänge Breite Höhe Volumen

mm mm mm m³1972 1710 1020 2015 3,5151998 1460 960 1735 2,432

Noise levels Dimensions1960 58 dB (A)1970 50 dB (A)1980 46 dB (A)1990 43 dB (A)1998 38 dB (A)

Dimensions Absolute pricesLength Width Height Volume

mm mm mm m³1972 1710 1020 2015 3.5151998 1460 960 1735 2.432

Page 29: Transformers

29

No-load loss of a 400 kVA 16 kV / 400 V distribution transformer

Improvement of efficienciesLoad loss of a 400 kVA 16 kV / 400 V distribution transformer

Page 30: Transformers

30

5. Too hot from “hot” loadsApparent power, TRMS voltage and TRMS current within limits – and yet it ran too hot?

Mutual influences between the trans-former and its load

Page 31: Transformers

31

The power loss in a transformer is:

The true power loss in a transformer is:

2

)()(

nomnomCunomFeLoss I

IPPP

2

)(

2

)(

2

)( *

nomnomnomad

nomnomCu

nomnomFeLoss I

I

f

fP

I

IP

U

UPP

2

)()()(

NNZNCuNFeV I

IPPPP

2

)(

2

)(

2

)( *

NNNZ

NNCu

NNFeV I

I

f

fP

I

IP

U

UPP

Page 32: Transformers

32

“supplementary” additional losses in transformers

can be calculated rapidly using the following two simple formulae:

5,0

2

2

1

2

11

Nn

n

nqh

I

In

I

I

e

eK

5,0

1

2

11

5,0

1

2

Nn

n

nNn

nn I

IIII

where:

Oh well,perhaps a practical example is clearer:

1000 compact 11W (15VA) energy-saver lamps powered by a 15kVA transformer, uSC=4%, Pad=0.1PCu

Oberschwingungen einer Sparlampe Osram Dulux 11W mit Serien-

Impedanz R =29,1W & X L=113W

U U ² I L I L² PZ /PCu

n V V² mA mA²

1 230,2 52992,0 48,5 2352,3 5,6%3 8,3 68,9 37,1 1376,4 29,5%5 10,7 114,5 20,3 412,1 24,5%7 4,3 18,5 5,3 28,1 3,3%9 1,1 1,2 3,0 9,0 1,7%

11 2,3 5,3 3,8 14,4 4,2%13 1,0 1,0 1,5 2,3 0,9%15 0,6 0,4 1,5 2,3 1,2%17 1,1 1,2 1,5 2,3 1,5%19 0,5 0,3 0,9 0,8 0,7%21 0,5 0,3 1,3 1,7 1,8%23 0,6 0,4 0,8 0,6 0,8%25 0,4 0,2 0,6 0,4 0,5%27 0,6 0,4 0,8 0,6 1,1%29 0,4 0,2 0,5 0,3 0,5%31 0,3 0,1 0,5 0,3 0,6%33 0,3 0,1 0,5 0,3 0,6%35 0,3 0,1 0,4 0,2 0,5%37 0,3 0,1 0,4 0,2 0,5%39 0,3 0,1 0,3 0,1 0,3%41 0,1 0,0 0,3 0,1 0,4%43 0,2 0,0 0,2 0,0 0,2%45 0,1 0,0 0,2 0,0 0,2%47 0,1 0,0 0,2 0,0 0,2%49 0,1 0,0 0,1 0,0 0,1%51 0,1 0,0 0,1 0,0 0,1%Anteil der Zusatz-Verluste: PZ/PCu = 81,4%

Analysis of harmonics in an 11-W Osram Dulux CFL with serial

impedance R =29.1W & X L=113W

U U ² I L I L² Pad /PCu

n V V² mA mA²

1 230.2 52992.0 48.5 2352.3 5.6%3 8.3 68.9 37.1 1376.4 29.5%5 10.7 114.5 20.3 412.1 24.5%7 4.3 18.5 5.3 28.1 3.3%9 1.1 1.2 3.0 9.0 1.7%

11 2.3 5.3 3.8 14.4 4.2%13 1.0 1.0 1.5 2.3 0.9%15 0.6 0.4 1.5 2.3 1.2%17 1.1 1.2 1.5 2.3 1.5%19 0.5 0.3 0.9 0.8 0.7%21 0.5 0.3 1.3 1.7 1.8%23 0.6 0.4 0.8 0.6 0.8%25 0.4 0.2 0.6 0.4 0.5%27 0.6 0.4 0.8 0.6 1.1%29 0.4 0.2 0.5 0.3 0.5%31 0.3 0.1 0.5 0.3 0.6%33 0.3 0.1 0.5 0.3 0.6%35 0.3 0.1 0.4 0.2 0.5%37 0.3 0.1 0.4 0.2 0.5%39 0.3 0.1 0.3 0.1 0.3%41 0.1 0.0 0.3 0.1 0.4%43 0.2 0.0 0.2 0.0 0.2%45 0.1 0.0 0.2 0.0 0.2%47 0.1 0.0 0.2 0.0 0.2%49 0.1 0.0 0.1 0.0 0.1%51 0.1 0.0 0.1 0.0 0.1%Share of additional losses Pad/PCu = 81.4%

etc.

etc.

81.4%

Page 33: Transformers

33

To some extent the transformer protects itself...

Always remember:

If the influence of the transformer upon the load did not exist, then the influence of the load upon the transformer would be nearly 9 times as high!

Analyse der Oberschwingungen in einer Kompaktsparlampe Osram

Dulux 11W

Oberschwingungen einer Sparlampe Osram Dulux 11W mit Serien-

Impedanz R =29,1W & X L=113W

U U ² I L I L² PZ /PCu

n V V² mA mA²

1 232,7 54149,3 48,9 2391,2 3,7%3 0,6 0,4 39,1 1528,8 21,5%5 4,4 19,4 26,4 697,0 27,3%7 2,3 5,3 20,0 400,0 30,7%9 0,1 0,0 19,2 368,6 46,7%

11 0,1 0,0 16,6 275,6 52,2%13 0,1 0,0 12,7 161,3 42,7%15 0,1 0,0 11,0 121,0 42,6%17 0,1 0,0 10,2 104,0 47,1%19 0,1 0,0 8,7 75,7 42,8%21 0,1 0,0 7,7 59,3 40,9%23 0,1 0,0 7,3 53,3 44,1%25 0,1 0,0 6,1 37,2 36,4%27 0,1 0,0 4,9 24,0 27,4%29 0,1 0,0 4,2 17,6 23,2%31 0,1 0,0 3,6 13,0 19,5%33 0,1 0,0 3,0 9,0 15,3%35 0,1 0,0 3,3 10,9 20,9%37 0,1 0,0 3,1 9,6 20,6%39 0,1 0,0 2,5 6,3 14,9%41 0,1 0,0 2,5 6,3 16,4%43 0,1 0,0 2,5 6,3 18,1%45 0,1 0,0 1,9 3,6 11,4%47 0,1 0,0 1,8 3,2 11,2%49 0,1 0,0 1,9 3,6 13,6%51 0,1 0,0 1,6 2,6 10,4%Anteil der Zusatz-Verluste: PZ/PCu = 701,7%

Harmonics measurement on an Osram Dulux 11W compact

fluorescent lamp

Analysis of harmonics in an 11-W Osram Dulux CFL with serial

impedance R =29.1W & X L=113W

U U ² I L I L² Pad /PCu

n V V² mA mA²

1 232.7 54149.3 48.9 2391.2 3.7%3 0.6 0.4 39.1 1528.8 21.5%5 4.4 19.4 26.4 697.0 27.3%7 2.3 5.3 20.0 400.0 30.7%9 0.1 0.0 19.2 368.6 46.7%

11 0.1 0.0 16.6 275.6 52.2%13 0.1 0.0 12.7 161.3 42.7%15 0.1 0.0 11.0 121.0 42.6%17 0.1 0.0 10.2 104.0 47.1%19 0.1 0.0 8.7 75.7 42.8%21 0.1 0.0 7.7 59.3 40.9%23 0.1 0.0 7.3 53.3 44.1%25 0.1 0.0 6.1 37.2 36.4%27 0.1 0.0 4.9 24.0 27.4%29 0.1 0.0 4.2 17.6 23.2%31 0.1 0.0 3.6 13.0 19.5%33 0.1 0.0 3.0 9.0 15.3%35 0.1 0.0 3.3 10.9 20.9%37 0.1 0.0 3.1 9.6 20.6%39 0.1 0.0 2.5 6.3 14.9%41 0.1 0.0 2.5 6.3 16.4%43 0.1 0.0 2.5 6.3 18.1%45 0.1 0.0 1.9 3.6 11.4%47 0.1 0.0 1.8 3.2 11.2%49 0.1 0.0 1.9 3.6 13.6%51 0.1 0.0 1.6 2.6 10.4%Share of additional losses Pad/PCu = 701.7%

etc.

etc.

701.7%

Page 34: Transformers

A tool is available for this, too:

The K Factor Calculator by

www.cda.org.uk

www.cda.org.uk/frontend/pubs.htm#ELECTRICAL/ENERGY%20EFFICIENCY

Page 35: Transformers

36

gave a total of 3 million Euros from within the frameworkgave a total of 3 million Euros from within the frameworkof their LEONARDO programme to establish of their LEONARDO programme to establish thethe European Europeanwebsite dealing with website dealing with allall aspects of power quality with the help of adequate aspects of power quality with the help of adequate partners! Just go topartners! Just go towww.lpqi.orgwww.lpqi.orgfrom time to time and watch the from time to time and watch the Leonardo Power Quality InitiativeLeonardo Power Quality Initiative growing! We growing! We want to develop and provide vocational training material on the mitigation of want to develop and provide vocational training material on the mitigation of power quality problems in power quality problems in 11 languages!11 languages!

We address all electrical experts working in the field: Engineers, handicraftsmen, We address all electrical experts working in the field: Engineers, handicraftsmen, building maintenance technicians, architectural and planning consultants as well building maintenance technicians, architectural and planning consultants as well as trainers and trainees.as trainers and trainees.

So long, we are 86 partners from Europe, North and South America, among them So long, we are 86 partners from Europe, North and South America, among them commercial companies, institutes, universities and 5 national copper centres. commercial companies, institutes, universities and 5 national copper centres. Participation and contributions of further partners from industry and academics is Participation and contributions of further partners from industry and academics is possible at any time and even desired by the existing project partners.possible at any time and even desired by the existing project partners.

Accounting to this salient success, the project was extended by 3 ranges of Accounting to this salient success, the project was extended by 3 ranges of topics. You can now also collect information in the areas of sustainability, topics. You can now also collect information in the areas of sustainability, decentrized energy generation and assisted living:decentrized energy generation and assisted living:www.leonardo-energy.orgwww.leonardo-energy.org

Just give us a click!Just give us a click!

The European Union

3 Projects out of about 4000 awarded – one of them was:

www.lpqi.org

www.leonardo-energy.org