71
Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010 Copyright © R.M. and C.M. Barrett 2013 all rights reserved unclassified ITAR /EAR unrestricted 1 The University of Kansas Adaptive Aerostructures Laboratory The University of Minnesota College of Biological Sciences Revolutionary New Adaptive Material “SolutionCell © ” SolutionCell© is a Pressure Adaptive Honeycomb (PAH) www.SolutionCell.com & www.SolutionCell.net Brought to you by: Shawn Paul Boike Solution Vehicles Co & American Industrial Consultants From: BOEING, Northrop, Lockheed, FORD, GM & NASA Long Beach, CA. 90803 562.343.5660 / 562.338.9911 (m) https://www.facebook.com/AmericanIndustrialConsultantsGroup by Ron Barrett The University of Kansas, Lawrence Aerospace Engineering Department and Cassandra Barrett The University of Minnesota College of Biological Sciences

Solution wings for Aerospace Applications

Embed Size (px)

DESCRIPTION

Which handles huge strains (>50%) and is easy to control to handle real loads. Lighter than conventional aircraft actuator systems. Provides less drag & less cost for actuation & certifiable under FAR 23/25, 27,29.

Citation preview

Page 1: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

1 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Revolutionary New Adaptive Material

“SolutionCell © ” SolutionCell© is a Pressure Adaptive Honeycomb (PAH)

www.SolutionCell.com & www.SolutionCell.net

Brought to you by:

Shawn Paul Boike Solution Vehicles Co &

American Industrial Consultants

From: BOEING, Northrop, Lockheed, FORD, GM & NASA Long Beach, CA. 90803

562.343.5660 / 562.338.9911 (m) https://www.facebook.com/AmericanIndustrialConsultantsGroup

by

Ron Barrett The University of Kansas, Lawrence

Aerospace Engineering Department

and

Cassandra Barrett The University of Minnesota

College of Biological Sciences

Page 2: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

2 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Presentation Dates

• So. California (Feb 24-28 2014):

Mon 2/24

Zodiac Aero

Eaton/Parker

Tue 2/25

Aero/Def

Aero/Def

Wed 2/26

Northrop UAV *San

Diego

San Diego Gen

Atomics??

Thu

2/27

Boeing Seal Bch

Boeing HB

Fri

2/28

Boeing LB

???

Page 3: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

3 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Revolutionary Adaptive Aerostructures, Changing

Flight via Nature's Analogs for Dramatic Fuel Savings

by

Ron Barrett The University of Kansas, Lawrence

Aerospace Engineering Department

and

Cassandra Barrett The University of Minnesota

College of Biological Sciences

1st international Conference and Exhibition on Mechanical and

Aerospace Engineering, San Antonio, Texas

30 September – 2 October 2013

Page 4: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

4 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Outline

1. Introduction & Motivation

2. Fast-Response Actuators in Eukaryotes

3. Biomimetic FAA-Certifiable Artificial Muscles

4. Selected Aerospace Applications

5. Summary

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5. Summary

Page 5: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

5 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Automotive

Motivation: The same as nature

T/O & Landing: Maximize CLmax, Reject Gust Loading

Cruise: Maximize L/D

Minimize Airframe Weight

Page 6: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

6 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Successful Applications of Biomimicking

Adaptive Materials In the Aerospace Industry:

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5. Summary

Piezoelectric, Shape-Memory-Alloys, Electroluminiscent Materials...

Weapon Systems

Page 7: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

7 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5. Summary

Successful Applications of Biomimicking

Adaptive Materials In the Aerospace Industry:

Disappearing UAVs

Page 8: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

8 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Selected Aerospace Morphing Concepts

Planform Morphing Section Morphing

University of Florida

1990’s: NASA’s AAW

1980’s: Mission Adaptive Wing

Lockheed Martin

MissionAdaptiveWing

Gould et al. 1981

Pe

nd

elto

n e

t a

l. 1

98

1 w

ww

.ne

xtg

en

ae

ron

au

tics.c

om

20

08

w

ww

.ge

ocitie

s.c

om

20

08

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5. Summary

Page 9: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

9 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Adaptive Materials & Structures

Piezoelectric Materials Shape Memory Alloys

McMurtry 2004

Air Muscles

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5. Summary

Page 10: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

10 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5. Summary

Conventional Adaptive Materials Current range of actuator materials available

Can they be used in commercial aircraft as a class?

...or in primary structure?

Page 11: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

11 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

An "Ideal" Adaptive Aeromaterial/Aerostructure:

•Material capable of "huge" (>50+%?) strains

•Fully proportional, easily controlled

•Stiff & strong enough to handle "real" loads

•Lighter & faster than conventional aircraft actuation systems

•Less costly & lower drag than conventional aircraft actuation systems

•Certifiable under FAR 23/25, 27/29

What Would an Aircraft Designer want if s/he could

design an adaptive material???

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5. Summary

Page 12: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

12 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Solution? ...Biomimetics

"You should pay attention to what

Mother Nature has done because

she's got a 4.2 billion year lead in

research and development.

-Prof. H.W. Smith, PE, Ph.D.

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 13: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

13 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Fast-Response Actuators

in Eukaryotes

•Animal Muscle Cells and Tissues

• Fast-Acting Plant

Cells and Tissues

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 14: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

14 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Fast-Response Actuators

in Eukaryotes

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Animal Muscle Cell & Tissues

Page 15: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

15 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Automotive Video Credit: & © C.M. Barrett

Solution:

Actuators Made from 100% FAA-Certifiable

materials, but arranged like fast-acting plant cells

Page 16: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

16 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Solution:

FAA-Certifiable Actuators based on Plant Cell Structures

Albizia julibrissin

Page 17: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

17 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Solution:

FAA-Certifiable Actuators based on Plant Cell Structures

Pulvinus

Page 18: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

18 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Solution:

FAA-Certifiable Actuators based on Plant Cell Structures

Ground Cells

Phloem

Xylem

Page 19: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

19 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Automotive

Solution:

Actuators Made from 100% FAA-Certifiable

Materials, but arranged like fast-acting plant cells

Video Credit: & © C.M. Barrett

Page 20: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

20 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Solution:

FAA-Certifiable Actuators based on Plant Cell Structures

Fundamental Structural Arrangement:

Page 21: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

21 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Biomimetic Honeycomb

Based on Plant Actuator Cells

• Easily modeled, light, strong

• Made of conventional materials

(aluminum, steel, aramids)

• Already known and accepted by certifying

agencies like the FAA

Page 22: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

22 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Theory, Experiment & Correlation

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 23: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

23 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Single-Cell Tension-Compression Test

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 24: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

24 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Multi-Cell Compression Test

180mm

Page 25: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

25 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Single-Cell Tension-Compression Test

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 26: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

26 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Comparison to Other

Adaptive Materials and Actuators

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

High Pressure

Adaptive Honeycomb

Atmospherically Triggered

Adaptive Honeycombs

Conventional Hydraulic Actuators

Page 27: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

27 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Automotive

A New Approach to Flight Control...

Based on Nature:

PAH employs distributed, rather than concentrated actuation...

Page 28: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

28 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Current Aircraft Actuator Design

Philosophy

Distributed airloads

Control surface loads

concentrated at

finite hard points

Loads transferred

through actuators

& tracks

Loads redistributed

into primary

structure

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 29: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

29 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Control surface loads

stayed distributed

Distributed control

surface loads passed

thru distributed

actuators

Distributed loads

transferred to primary

strucure

PAH Actuator Design Philosophy

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 30: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

30 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Comparison of PAH to Adaptive Materials

and FAA Certified Actuators

High Pressure Adaptive Honeycomb

Conventional

Hydraulics

& Pneumatics

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 31: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

31 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Pressure Adaptive Wing Section

Mu

rra

y e

t a

l. 2

00

7

Page 32: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

32 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Pressure-Adaptive Flap in Wind Tunnel (cont.)

40kPa CDP

0kPa CDP

Page 33: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

33 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Wing Section: Controllable Aerocompliance

1.6

1.4

1.3

1.0

0.8

0.6

0.4

0.2

0

Angle of Attack, a (deg) -5 0 5 10 15

Lift C

oeff

icie

nt, C

l (~

)

Base Stiffness Cell Differential Pressure Behavior

NCCDP

(kPa)

40

20

0

-20

-40

Net Camber CDP = 40kpa

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 34: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

34 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Current Aircraft Technology in Gust Fields

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 35: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

35 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Wings: Enhancing Ride Quality, Fatigue

Properties & Flight Safety via Active Aerocompliance

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 36: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

36 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

The Real Savings... from Class I Design Forward

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Structure of a typical FAR-25 V-n Diagram

+1

0

-1

Load

Fac

tor,

n (

g's)

VS1 VA VC VD

Maneuver Limits Gust Limits

Gust Limits

Commercial Aircraft

Structural Weights are

set by these points

Flight Speed, Vflt (kts)

Page 37: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

37 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

+1

0

-1

Load

Fac

tor,

n (

g's)

VS1 VA VC VD

Weight Saving Paradigm Shift:

Compression of Gust Lines to within Maneuver

...just like birds do, via dynamic aerocompliance

Flight Speed, Vflt (kts)

Page 38: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

38 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Compression of Gust Lines to within Maneuver

...just like birds do, via dynamic aerocompliance

saving... 7 – 23% total aircraft structural weight!

+1

0

-1

Load

Fac

tor,

n (

g's)

VS1 VA VC VD

Weight Saving Paradigm Shift:

Flight Speed, Vflt (kts)

Page 39: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

39 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Reference: Boeing 787 $32B investment in new product RDT&E:

• Just over half of the RDT&E was devoted to new materials & manufacturing

to achieve a ~20% weight reduction WRT conventional materials

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 40: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

40 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Implications for Commercial Aircraft

Implications for commercial jets:

• Reduction in Structural Weight 9 - 22%

• Increase in mission integrated L/Dmax 6 - 9%

• Reduction in DOC at constant range 7 - 11%

• Increase in range at constant TOW 12 - 18%

• Airfoil section gust load rejection: up to 380%

• Net airframe gust load rejection up to 87%

• Safe Airframe Life Extension 11 - 14%

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

US Pat. 8,366,057 Issued 13 February 2013

Page 41: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

41 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Acknowledgements

NASA Ames Research Center

Prof. Roelof Vos

Page 42: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

42 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Flap and Winglet System Implications

Implications for commercial jet fleets:

Korean Air:

KRW11.807 trillion 2011 in operating expenses

Retrofit Impacts: ~ +KRW200B

(Net loss in 2011: KRW98B)

New Equipment Impacts:

+KRW850B DOC savings +

+KRW220B Airframe Life Extension +

+KRW660B increased cargo carriage revenue ~ KRW1.7 trillion

European Patent EP 2459442 A2

US Patent 8,366,057 B2 February 2013

Page 43: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

43 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Questions?

Page 44: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

44 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Something about the flight environment itself

could deploy the surfaces...

What if...

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Automotive

Page 45: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

45 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Pressure Adaptive Honeycomb (PAH)

Flap Systems

Example for LSA wing

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Automotive

Page 46: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

46 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Implications for LSA* based on a 20% increase of clean CLmax:**

• 17% reduction in wing wetted area

• 20% increase in aspect ratio

• 10% increase in L/D

• 8% reduction fuel burn and DOC at constant range

• 1.5% decrement in TOW and purchase price at constant range

• 37% gust rejection loads

*45kts flaps-up stall requirement

**Based on: Roskam “Airplane Design,” part I, II, V, and VIII, and Cessna 162 Skykatcher Data

Potential Application: Pressure Adaptive

Honeycomb (PAH) Flap

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Automotive

Page 47: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

47 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Gurney Flap (cont.)

Implications for jets based on a 6% increase of CLmax:

5.8% decrease in wetted area

6% increase in aspect ratio

3% increase in L/Dmax

3.2% reduction in DOC at constant range

3% increase in range at constant TOW

380% section gust load rejection

87% net airframe gust load rejection

*Based on: Roskam “Airplane Design,” part I, II, and V, and Cessna Citation Sovereign

Data 1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Automotive

Page 48: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

48 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Implications for Commercial Aircraft

Implications for commercial jets: Retrofit Class I

STC Design

• Increase in CLmaxL/TO 3% 6%

• Reduction in Structural Weight 0% 9 - 22%

• Increase in mission integrated L/Dmax: 2.4% 6 - 9%

• Reduction in DOC at constant range 2.5% 7 - 11%

• Increase in range at constant TOW 2.2% 12 - 18%

• Section gust load rejection: 43% 380%

• Net airframe gust load rejection 21% 87%

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Automotive

Page 49: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

49 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Cell Modeling

Page 50: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

50 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Linear-Elastic Modeling Background

Cellular Material Theory (CMT) after Gibson et al. 1988

Considerations:

• Only valid for small thickness-to-length ratio

• Only valid for +/- 20% of strain

• Linear stress-strain relationship

qi

l

t

Page 51: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

51 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Linear-Elastic Modeling Background

Page 52: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

52 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Theoretical Characterization

Global stress-strain relations:

@ constant pressure:

@ constant mass:

with

Page 53: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

53 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Geo-Kinematic Properties

CDP = Cell Differential Pressure

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Automotive

Page 54: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

54 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Non-linear Mechanics of PAH Structures

Page 55: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

55 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Effects of Different PAH Boundary Conditions

Page 56: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

56 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Longitudinal Stress-Strain Correlation

p = 55kPa p = 60kPa

Page 57: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

57 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Experimental PAH Stress-Strain Relations

Page 58: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

58 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Four-Cell Tensile Test of Steel PAH

Page 59: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

59 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Bender Experimental Characterization

Validation

Experiment:

Three-point

bend test

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Automotive

FEM Modeling:

Page 60: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

60 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Cell Modeling

Page 61: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

61 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Multi-Cell Compression Test

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 62: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

62 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Gurney Flaps & Winglets

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Automotive

Page 63: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

63 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Fast-Response Actuators in Eukaryotes Molecuar Mechanism of Muscle Contraction

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Stimulus Myosin head binds to actin

Myosin head turns as P1 is released

6.7nm

contraction

Page 64: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

64 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Fast-Response Actuators

in Eukaryotes

Mechanical Analogs of Animal Muscle Tissues:

-Shape-Memory-Alloys

-Pneumatic Tubes

-Piezoelectric Polymers

-Adaptive Gels

-Electrostatic Actuators

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 65: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

65 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5. Summary

Successful Applications of Biomimicking

Adaptive Materials In the Aerospace Industry:

UAVs & Hovering Missiles

Page 66: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

66 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Standard Auxetic Hybrid

Biomimetic Plant-Cell Based

Honeycomb Actuator

Aft

er:

Oly

mp

io e

t a

l. 2

00

7

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 67: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

67 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Automotive

Aerocompliance: Key to Birds Wings and PAH

Gust load relieving smoothes flight

Page 68: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

68 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Four-Cell Tensile Test of Steel

Honeycombs

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 69: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

69 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Automotive

Solution:

FAA-Certifiable Actuators based on Plant Cell Structures

Page 70: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

70 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

Pressure Adaptive Honeycomb (PAH)

Breakdown for Modeling

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary

Page 71: Solution wings for Aerospace Applications

Unclassified distribution unlimited © R. Barrett All Rights Reserved rev. 28 February 2010

Co

pyri

gh

t ©

R.M

. a

nd

C.M

. B

arr

ett

20

13

all r

igh

ts r

ese

rve

d

u

ncla

ssifie

d

ITA

R /E

AR

un

restr

icte

d

71 The University of Kansas

Adaptive Aerostructures Laboratory

The University of Minnesota College of Biological Sciences

PAH Nonlinear Mechanics

1.Introduction 2.Nat. Actuators 3.Art.Muscles 4.Aerospace 5.Summary